1
|
Wu G, Pan Y, Chen M, Liu Z, Li C, Sheng Y, Li H, Shen M, Liu H. Lactylation drives hCG-triggered luteinization in hypoxic granulosa cells. Int J Biol Macromol 2024; 280:135580. [PMID: 39322166 DOI: 10.1016/j.ijbiomac.2024.135580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Hypoxia that occurs during the luteinization process of granulosa cells (GC) contributes to the formation of lactate in follicles. Lysine lactylation (Kla), a post-translational modification directly regulated by lactate levels, is a metabolic sensor that converts metabolic information into gene expression patterns. In this study, we employed human chorionic gonadotropin (hCG) to induce GCs luteinization and discovered that hypoxia enhances hCG-mediated GCs luteinization by stimulating lactate production/lactylation. The elevated levels of luteinization markers (including progesterone synthesis, expression of CYP11A1 and STAR) were accompanied by increased lactate production as well as enhanced lactylation in mouse ovarian GCs after the injection of hCG in vivo. By treating GCs with hypoxia in vitro, we found that hypoxia accelerated hCG-induced GCs luteinization, which was inhibited after blocking lactate production/lactylation. Further investigations revealed that H3K18la might contribute to hCG-induced luteinization in hypoxic GCs by upregulating CYP11A1 and STAR transcription. Additionally, we identified that CREB K136la is also required for hCG-induced GCs luteinization under hypoxia. Finally, the in vitro findings were verified in vivo, which showed impaired GCs luteinization and corpus luteum formation after blocking the lactate/lactylation by intraperitoneal injection of oxamate/C646 in mice. Taken together, this study uncovered a novel role of protein lactylation in the regulation of GCs luteinization.
Collapse
Affiliation(s)
- Gang Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yitong Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanan Sheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongmin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Ucar EH, Peker C, Hitit M, Kose M, Tatar M, Bozkaya F, Atli MO. Altered luteal expression patterns of genomic and non-genomic progesterone receptors in bitches at different reproductive states. Theriogenology 2024; 218:153-162. [PMID: 38325152 DOI: 10.1016/j.theriogenology.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
The binding of steroid hormones to their specific receptors is necessary to exert their effects on target cells. Progesterone (P4), a steroid hormone, carries out its effects through both genomic and non-genomic (the cell membrane-associated) receptors. This study aimed to ascertain luteal expression patterns of genomic and non-genomic progesterone receptors in bitches in physiological (early dioestrus and early pregnant) and pathological (pyometra) reproductive states. Luteal tissue was collected from the bitches at early dioestrus (ED, n = 5), early pregnant (EP, n = 5), and pyometra (PY, n = 5). The expression profiles of Steroidogenic Acute Regulator Protein (STAR), Progesterone Receptor (PGR), Membrane Progestin Receptors (PAQR5, PAQR7 and PAQR8), and Progesterone Membrane Components (PGMRC1 and PGMRC2) were examined at the mRNA levels using Real-Time Polymerase Chain Reaction (RT-PCR). Protein levels of PGR, PGMRC1 and PGMRC2 were detected by western blotting (WB). The STAR expression was found in all groups, with a statistical difference observed between EP and PY groups (P < 0.05). The protein level of PGR was determined to be highest in the EP group and lowest in the PY group. The expression of PAQR8 increased in the EP group (P < 0.05). The PAQR5 exhibited high expression in the EP group and low expression in the PY group (P < 0.05). PGRMC1 was more elevated in the EP group and lower in the PY group (P < 0.05). Protein levels of PGMRC1 and PGMRC2 were also observed at the highest expression in EP group. According to the altered expression profiles for examined receptors, we suggest that those progesterone receptors have roles in early pregnancy or pyometra in bitches.
Collapse
Affiliation(s)
- Eyyup Hakan Ucar
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Aydin, Turkey.
| | - Cevdet Peker
- Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Aydin, Turkey.
| | - Mustafa Hitit
- Kastamonu University, Faculty of Veterinary Medicine, Department of Animal Genetics, Kastamonu, Turkey; Prairie View University, College of Agriculture, Food and Human Sciences, Prairie View, TX, USA.
| | - Mehmet Kose
- Dicle University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Diyarbakir, Turkey.
| | - Musa Tatar
- Kastamonu University, Faculty of Veterinary Medicine, Department of Histology and Emrbyology, Kastamonu, Turkey.
| | - Faruk Bozkaya
- Harran University, Faculty of Veterinary Medicine, Department of Animal Science and Animal Nutrition/Department of Veterinary Genetics, Sanliurfa, Turkey.
| | - Mehmet Osman Atli
- Harran University, Faculty of Veterinary Medicine, Department of Reproduction and Artificial Inseminatio, Sanliurfa, Turkey.
| |
Collapse
|
3
|
Morales R, Lledo B, Ortiz JA, Lozano FM, Garcia EM, Bernabeu A, Fuentes A, Bernabeu R. Identification of new variants and candidate genes in women with familial premature ovarian insufficiency using whole-exome sequencing. J Assist Reprod Genet 2022; 39:2595-2605. [PMID: 36208357 PMCID: PMC9723088 DOI: 10.1007/s10815-022-02629-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To identify candidate variants in genes possibly associated with premature ovarian insufficiency (POI). METHODS Fourteen women, from 7 families, affected by idiopathic POI were included. Additionally, 98 oocyte donors of the same ethnicity were enrolled as a control group. Whole-exome sequencing (WES) was performed in 14 women with POI to identify possibly pathogenic variants in genes potentially associated with the ovarian function. The candidate genes selected in POI patients were analysed within the exome results of oocyte donors. RESULTS After the variant filtering in the WES analysis of 7 POI families, 23 possibly damaging genetic variants were identified in 22 genes related to POI or linked to ovarian physiology. All variants were heterozygous and five of the seven families carried two or more variants in different genes. We have described genes that have never been associated to POI pathology; however, they are involved in important biological processes for ovarian function. In the 98 oocyte donors of the control group, we found no potentially pathogenic variants among the 22 candidate genes. CONCLUSION WES has previously shown as an efficient tool to identify causative genes for ovarian failure. Although some studies have focused on it, and many genes are identified, this study proposes new candidate genes and variants, having potentially moderate/strong functional effects, associated with POI, and argues for a polygenic etiology of POI in some cases.
Collapse
Affiliation(s)
- R Morales
- Molecular Biology, Instituto Bernabeu, 03016, Alicante, Spain.
| | - B Lledo
- Molecular Biology, Instituto Bernabeu, 03016, Alicante, Spain
| | - J A Ortiz
- Molecular Biology, Instituto Bernabeu, 03016, Alicante, Spain
| | - F M Lozano
- Molecular Biology, Instituto Bernabeu, 03016, Alicante, Spain
| | - E M Garcia
- Molecular Biology, Instituto Bernabeu, 03016, Alicante, Spain
| | - A Bernabeu
- Reproductive Medicine, Instituto Bernabeu, 03016, Alicante, Spain
| | - A Fuentes
- Reproductive Medicine, Instituto Bernabeu, 03016, Alicante, Spain
| | - R Bernabeu
- Reproductive Medicine, Instituto Bernabeu, 03016, Alicante, Spain
| |
Collapse
|
4
|
Kawai T, Richards JS, Shimada M. Large-scale DNA demethylation occurs in proliferating ovarian granulosa cells during mouse follicular development. Commun Biol 2021; 4:1334. [PMID: 34824385 PMCID: PMC8617273 DOI: 10.1038/s42003-021-02849-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
During ovarian follicular development, granulosa cells proliferate and progressively differentiate to support oocyte maturation and ovulation. To determine the underlying links between proliferation and differentiation in granulosa cells, we determined changes in 1) the expression of genes regulating DNA methylation and 2) DNA methylation patterns, histone acetylation levels and genomic DNA structure. In response to equine chorionic gonadotropin (eCG), granulosa cell proliferation increased, DNA methyltransferase (DNMT1) significantly decreased and Tet methylcytosine dioxygenase 2 (TET2) significantly increased in S-phase granulosa cells. Comprehensive MeDIP-seq analyses documented that eCG treatment decreased methylation of promoter regions in approximately 40% of the genes in granulosa cells. The expression of specific demethylated genes was significantly increased in association with specific histone modifications and changes in DNA structure. These epigenetic processes were suppressed by a cell cycle inhibitor. Based on these results, we propose that the timing of sequential epigenetic events is essential for progressive, stepwise changes in granulosa cell differentiation.
Collapse
Affiliation(s)
- Tomoko Kawai
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Masayuki Shimada
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
5
|
Sosa ASA, Ibrahim S, Mahmoud KGM, El-Baghdady YR, Nawito MF, Abdo MSS, Ayoub MM. Dynamic patterns of expressed genes in granulosa cells during follicular and luteal stages in Egyptian buffaloes. Trop Anim Health Prod 2021; 53:532. [PMID: 34738183 DOI: 10.1007/s11250-021-02977-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
A better understanding of the molecular mechanisms in granulosa cells (GC) is warranted, during different follicular and luteal developmental stages in buffalo cows. We aimed to (I) study the expression of selected genes in GC during follicular and luteal phases, (II) evaluate correlations between GC gene expression and steroid concentrations {17-beta estradiol (E2) and progesterone (P4)} in follicular fluid (FF), and (III) study effect of ovarian status on follicular population as well as follicular size frequency. Ovaries were collected in pairs from buffaloes (n = 178). Ovaries bearing corpus luteum (CL) were subdivided into hemorrhagic, developing, mature, and albicans. Follicles from luteal groups were classified only into small (< 4 mm) and large (9-20 mm), while follicles from follicular groups were classified into three subgroups: small (< 4 mm), medium (5-8 mm), and large (9-20 mm). The FF and GC were collected for steroid concentrations measurement and gene expression, respectively. In the follicular phase, luteinizing hormone/choriogonadotropin receptor (LHCGR) and cytochrome P450 aromatase (CYP19) in small follicles decreased compared to medium ones. Large follicle showed an increase in LHCGR and CYP19 compared to medium ones. Follicle-stimulating hormone receptor (FSHR) decreased in large compared to medium size follicles. Proliferating cell nuclear antigen (PCNA) increased in small and large follicles. Meanwhile, anti-Mullerian hormone (AMH) and phospholipase A2 group III (PLA2G3) decreased in small and large follicles. The different stages of luteal phase had a profound impact on GC gene expression. There were strong (positive and/or negative) correlations between gene expression and steroid hormones. The different scenarios between expressed genes in GC and steroid concentrations are required for the proper growth and development of follicles and CL.
Collapse
Affiliation(s)
- Ahmed S A Sosa
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Sally Ibrahim
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Karima Gh M Mahmoud
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt.
| | - Yehia Rezk El-Baghdady
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - M F Nawito
- Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - M S S Abdo
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - M M Ayoub
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Ye Q, Zeng X, Wang S, Zeng X, Yang G, Ye C, Cai S, Chen M, Li S, Qiao S. Butyrate drives the acetylation of histone H3K9 to activate steroidogenesis through PPARγ and PGC1α pathways in ovarian granulosa cells. FASEB J 2021; 35:e21316. [PMID: 33433947 DOI: 10.1096/fj.202000444r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Maintaining ovarian steroidogenesis is of critical importance, considering that steroid hormones are required for successful establishment and maintenance of pregnancy and proper development of embryos and fetuses. Investigating the mechanism that butyrate modulates the ovarian steroidogenesis is beneficial for understanding the impact of lipid nutrition on steroidogenesis. Herein, we identified that butyrate improved estradiol and progesterone synthesis in rat primary ovarian granulosa cells and human granulosa KGN cells and discovered the related mechanism. Our data indicated that butyrate was sensed by GPR41 and GPR43 in ovarian granulosa cells. Butyrate primarily upregulated the acetylation of histone H3K9 (H3K9ac). Chromatin immune-precipitation and sequencing (ChIP-seq) data of H3K9ac revealed the influenced pathways involving in the mitochondrial function (including cellular metabolism and steroidogenesis) and cellular antioxidant capacity. Additionally, increasing H3K9ac by butyrate further stimulated the PPARγ/CD36/StAR pathways to increase ovarian steroidogenesis and activated PGC1α to enhance mitochondrial dynamics and alleviate oxidative damage. The improvement in antioxidant capacity and mitochondrial dynamics by butyrate enhanced ovarian steroidogenesis. Collectively, butyrate triggers histone H3K9ac to activate steroidogenesis through PPARγ and PGC1α pathways in ovarian granulosa cells.
Collapse
Affiliation(s)
- Qianhong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Shuai Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Changchuan Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, P.R. China.,Beijing Key Laboratory of Biofeed Additives, Beijing, P.R. China
| |
Collapse
|
7
|
Pan Y, Yang S, Cheng J, Lv Q, Xing Q, Zhang R, Liang J, Shi D, Deng Y. Whole-Transcriptome Analysis of LncRNAs Mediated ceRNA Regulation in Granulosa Cells Isolated From Healthy and Atresia Follicles of Chinese Buffalo. Front Vet Sci 2021; 8:680182. [PMID: 34336976 PMCID: PMC8316591 DOI: 10.3389/fvets.2021.680182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/09/2021] [Indexed: 01/08/2023] Open
Abstract
Granulosa cells (GCs) are the main supporting cells in follicles and play an important role in the regulation of oocyte maturation and follicular atresia. Accumulating evidence indicates that non-coding RNAs participate in regulation of the physiological function of GCs. However, whole-transcriptome analysis for GCs of buffalo has yet to be reported. In this study, healthy follicles (HFs) and atretic follicles (AFs) were defined according to the apoptosis rate of GCs and the hormone level in follicular fluid. GCs were collected from HFs and AFs (n = 15, 5 < n < 8 mm) for whole-transcriptome analysis using second-generation high-throughput sequencing. A total of 1,861 and 1,075 mRNAs, 159 and 24 miRNAs, and 123 and 100 lncRNAs, were upregulated and downregulated between HFs and AFs, respectively. Enrichment of functions and signaling pathways of these differentially expressed (DE) genes showed that most of DEmRNAs and targets of DEmiRNAs were annotated to the categories of ECM–receptor interaction and focal adhesion, as well as PI3K-AKT, mTOR, TGF-beta, Rap1, and estrogen signaling pathways. The competing endogenous RNA (CeRNA) network was also constructed based on the ceRNA theory which further revealed regulatory roles of these DERNAs in GCs of buffalo follicles. Finally, we validated that lnc4040 regulated the expression of Hif1a as miR-709 sponge in a ceRNA mechanism, suggesting their critical functions in GCs of buffalo follicles. These results show that lncRNAs are dynamically expressed in GCs of HFs and AFs, and interacting with target genes in a ceRNA manner, suggesting their critical functions in buffalo follicular development and atresia.
Collapse
Affiliation(s)
- Yu Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Sufang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Juanru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qiao Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qinghua Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Ruimen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Jingyuan Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Melatonin Alleviates Hypoxia-Induced Apoptosis of Granulosa Cells by Reducing ROS and Activating MTNR1B-PKA-Caspase8/9 Pathway. Antioxidants (Basel) 2021; 10:antiox10020184. [PMID: 33525391 PMCID: PMC7911142 DOI: 10.3390/antiox10020184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
In mammalian ovaries, the avascular environment within follicular cavity is supposed to cause hypoxic status in granulosa cells (GCs), leading to apoptotic cell death accompanied by cumulative reactive oxygen species (ROS) production. Melatonin (N-acetyl-5-methoxytryptamine, MT), a broad-spectrum antioxidant that exists in porcine follicle fluid, was suggested to maintain GCs survival under stress conditions. In this study, using the established hypoxic model (1% O2) of cultured porcine GCs, we explored the effect of MT on GCs apoptosis. The results showed that MT restored cell viability and reduced the apoptosis of GCs during hypoxia exposure. In addition, GCs treated with MT exhibited decreased ROS levels and increased expression of antioxidant enzymes including heme oxygenase-1 (HO-1), glutathione S-transferase (GST), superoxide dismutase 1 (SOD1), and catalase (CAT) upon hypoxia incubation. Moreover, the hypoxia-induced expression of cleaved caspase 3, 8, and 9 was significantly inhibited after MT treatment. In contrast, blocking melatonin receptor 2 (MTNR1B) with a competitive antagonist 4-phenyl-2-propionamidotetralin (4P-PDOT) diminished the inhibitory effects of MT on caspase 3 activation. By detecting levels of protein kinase (PKA), a downstream kinase of MTNR1B, we further confirmed the involvement of MT–MTNR1B signaling in mediating GCs protection during hypoxia stress. Together, the present data provide mechanistic evidence suggesting the role of MT in defending GCs from hypoxia-induced apoptosis.
Collapse
|
9
|
Likszo P, Skarzynski DJ, Moza Jalali B. Proteomic Analysis of Porcine Pre-ovulatory Follicle Differentiation Into Corpus Luteum. Front Endocrinol (Lausanne) 2019; 10:774. [PMID: 31798533 PMCID: PMC6879000 DOI: 10.3389/fendo.2019.00774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
The luteinization of the follicular cells, following a LH surge, causes extensive molecular and structural changes in preovulatory follicles (POF) that lead to ovulation and ultimate formation of the corpus luteum (CL). The objective of this study was to identify proteins expressed in porcine POF before the LH surge and a new CL formed, 2-3 days after ovulation, and evaluate proteome changes associated with formation of the CL from a follicle. We used 2D-gel electrophoresis-based proteomics and tandem mass spectrometry followed by a functional analysis using Ingenuity Pathway analysis (IPA) to evaluate functional pathways associated with the luteinization process. Protein lysates were prepared from isolated POFs and from the newly formed CL. A total of 422 protein spots were identified in both structures. A total of 15 and 48 proteins or their proteoforms were detected only in the POFs and CL, respectively. An IPA analysis of a POF proteome showed that most of the follicular proteins were involved in cellular infiltration, endoplasmic stress responses, and the protein ubiquitination pathway. Most of the early luteal proteins were associated with steroid metabolism, cell death and survival, free radical scavenging, and the protein ubiquitination pathway. A comparison of a follicular proteome with that of an early luteal proteome revealed that 167 identified proteins or their proteoforms were differentially regulated between POFs and the newly formed CL (p < 0.05 and a fold change of >1.8). Proteins that were significantly more abundant in follicles included cAMP-dependent protein kinase, histone binding protein RBBP4, reticulocalbin, vimentin, and calumenin; more abundant luteal proteins included albumin, farnesyl diphosphate synthase, serine protease inhibitors, elongation factor-1, glutaredoxin, and selenium-binding protein. Proteins that were significantly altered with luteal formation were found to be associated with cholesterol biosynthesis, cell death and survival, and acute phase response. Moreover, upstream regulators of differentially abundant proteins in CL were identified that included insulin growth factor-1, sterol regulatory element-binding transcription factor-1, and nuclear factor erythroid-derived 2. We have identified novel proteins that advance our understanding of (1) processes associated with differentiation of POFs into the CL, (2) possible mechanisms of luteal cell survival, and (3) pathways regulating steroidogenesis in the newly formed CL.
Collapse
Affiliation(s)
| | | | - Beenu Moza Jalali
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
10
|
Ye Q, Cai S, Wang S, Zeng X, Ye C, Chen M, Zeng X, Qiao S. Maternal short and medium chain fatty acids supply during early pregnancy improves embryo survival through enhancing progesterone synthesis in rats. J Nutr Biochem 2019; 69:98-107. [PMID: 31063920 DOI: 10.1016/j.jnutbio.2019.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/23/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022]
Abstract
Exploring strategies to prevent miscarriage in women or early pregnancy loss in mammals is of great importance. Manipulating maternal lipid metabolism to maintain sufficient progesterone level is an effective way. To investigated the embryo loss and progesterone synthesis impacts of short and medium chain fatty acids on the lipid metabolism, pregnancy outcome and embryo implantation were investigated in rats fed the pregnancy diets supplemented without or with 0.1% sodium butyrate (SB), 0.1% sodium hexanoate (SH), or 0.1% sodium caprylate (SC) during the entire pregnancy and early pregnancy, respectively, followed with evaluation of potential mechanisms. Maternal SB, SH, or SC supply significantly improved live litter size and embryo implantation in rats. Serum progesterone, arachidonic acid, and phospholipid metabolites levels were significantly increased in response to maternal SB, SH, and SC supply. The expression of key genes involved in ovarian steroidogenesis and granulosa cell luteinization were elevated in ovaries and primary cultured granulosa cells, including cluster of differentiation 36 (CD36), steroidogenic acute regulatory protein (StAR), and cholesterol side-chain cleavage enzyme (CYP11A1). Additionally, the expression of lysophosphatidic acid receptor 3 (LPA3) and cyclooxygenase-2 (COX2) related with phospholipid metabolism were enhanced in uterus in vivo and in in vitro cultured uterine tissue. In conclusion, maternal SB, SH and SC supply reduced early pregnancy loss through modulating maternal phospholipid metabolism and ovarian progesterone synthesis in rats. Our results have important implications that short or medium chain fatty acids have the potential to prevent miscarriage in women or early pregnancy loss in mammals.
Collapse
Affiliation(s)
- Qianhong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, PR, China; Beijing Key Laboratory of bio-feed additives, Beijing 100193, PR, China.
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, PR, China; Beijing Key Laboratory of bio-feed additives, Beijing 100193, PR, China.
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR. China.
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, PR, China; Beijing Key Laboratory of bio-feed additives, Beijing 100193, PR, China.
| | - Changchuan Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, PR, China; Beijing Key Laboratory of bio-feed additives, Beijing 100193, PR, China.
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, PR, China; Beijing Key Laboratory of bio-feed additives, Beijing 100193, PR, China.
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, PR, China; Beijing Key Laboratory of bio-feed additives, Beijing 100193, PR, China.
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, PR, China; Beijing Key Laboratory of bio-feed additives, Beijing 100193, PR, China.
| |
Collapse
|
11
|
Fabbrocini A, Coccia E, D’Adamo R, Faggio C, Paolucci M. Mifepristone affects fertility and development in the sea urchin
Paracentrotus lividus. Mol Reprod Dev 2019; 86:1348-1356. [DOI: 10.1002/mrd.23112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/11/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Adele Fabbrocini
- National Research Council (CNR) Institute of Marine Sciences, UOS Napoli, Calata Porta di Massa Napoli Italy
- Institute for Biological Resources and Marine BiotechnologiesUOS Lesina Lesina (FG) Italy
| | - Elena Coccia
- Department of Sciences and TechnologyUniversity of Sannio Benevento Italy
| | - Raffaele D’Adamo
- National Research Council (CNR) Institute of Marine Sciences, UOS Napoli, Calata Porta di Massa Napoli Italy
- Institute for Biological Resources and Marine BiotechnologiesUOS Lesina Lesina (FG) Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesViale Ferdinando Stagno d'Alcontres Messina Italy
| | - Marina Paolucci
- Department of Sciences and TechnologyUniversity of Sannio Benevento Italy
- National Research Council (CNR) Institute of Food Science Avellino Italy
| |
Collapse
|
12
|
Genome-wide differential expression profiling of mRNAs and lncRNAs associated with prolificacy in Hu sheep. Biosci Rep 2018; 38:BSR20171350. [PMID: 29439142 PMCID: PMC5920141 DOI: 10.1042/bsr20171350] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022] Open
Abstract
Reproductive ability, especially prolificacy, impacts sheep profitability. Hu sheep, a unique Chinese breed, is recognized for its high prolificacy (HP), early sexual maturity, and year-round estrus. However, little is known about the molecular mechanisms underlying HP in Hu sheep. To explore the potential mRNAs and long non-coding RNAs (lncRNAs) involved in Hu sheep prolificacy, we performed an ovarian genome-wide analysis of mRNAs and lncRNAs during the follicular stage using Hu sheep of HP (litter size = 3; three consecutive lambings) and low prolificacy (LP, litter size = 1; three consecutive lambings). Plasma luteinizing hormone (LH) concentration was higher in the HP group than in the LP group (P<0.05) during the follicular stage. Subsequently, 76 differentially expressed mRNAs (DE-mRNAs) and five differentially expressed lncRNAs (DE-lncRNAs) were identified by pairwise comparison; quantitative real-time PCR (qRT-PCR) analysis of ten randomly selected DE genes (mRNA and lncRNA) were consistent with the sequencing results. Gene Ontology (GO) analysis of DE-mRNAs revealed significant enrichment in immune response components, actin filament severing and phagocytosis. Pathway enrichment analysis of DE-mRNAs indicated a predominance of immune function pathways, including phagosomes, lysosomes, and antigen processing. We constructed a co-expression network of DE-mRNAs and mRNA-lncRNAs, with C1qA, CD53, cathepsin B (CTSB), CTSS, TYROBP, and AIF1 as the hub genes. Finally, the expression of lysosomal protease cathepsin genes, CTSB and cathepsin D (CTSD), were significantly up-regulated in sheep ovaries in the HP group compared with the LP group (P<0.05). These differential mRNAs and lncRNAs may provide information on the molecular mechanisms underlying sheep prolificacy.
Collapse
|
13
|
Kuwabara Y, Katayama A, Tomiyama R, Piao H, Kurihara S, Ono S, Mine K, Akira S, Orimo H, Takeshita T. Gonadotropin regulation and role of ovarian osteopontin in the periovulatory period. J Endocrinol 2015; 224:49-59. [PMID: 25352284 DOI: 10.1530/joe-14-0203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteopontin (OPN), a secreted glycoprotein, has multiple physiological functions. This study investigated the regulation and roles of OPN in the mouse ovary during the periovulatory stages. Immature female mice were treated with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) to simulate follicle maturation and ovulation. In situ hybridization and real-time RT-PCR were performed to assess expression of Opn in the periovulatory ovary. Granulosa cells (GCs) from PMSG-primed immature mice were cultured with or without hCG in the presence or absence of OPN, and effects on expression of Opn, progesterone synthesis, and vascular endothelial growth factor (VEGF) signaling were assessed by real-time RT-PCR, ELISA, and western blotting analysis. Opn transcripts were significantly upregulated 3 h after hCG treatment, followed by a peak at 16 h, and the transcripts localized to GCs. Incubation with hCG significantly increased quantities of Opn transcripts in GCs and OPN levels in the culture medium at 12 and 24 h. Furthermore, OPN treatment caused a significant increase in the levels of Star protein, P 450 cholesterol side-chain cleavage enzyme (p450scc), 3-beta-hydroxysteroid dehydrogenase (Hsd3b), and progesterone in the culture medium. OPN treatment promoted Vegf expression in GCs, which was significantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor. In addition, OPN treatment stimulated phosphorylation of AKT, a downstream PI3K signaling molecule. In conclusion, expression of Opn was upregulated in mouse ovarian GCs in response to a gonadotropin surge through epidermal growth factor receptor signaling, which enhances progesterone synthesis and Vegf expression during the early-luteal phase.
Collapse
Affiliation(s)
- Yoshimitsu Kuwabara
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Akira Katayama
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Ryoko Tomiyama
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Hu Piao
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Sachiko Kurihara
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Shuichi Ono
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Katsuya Mine
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Shigeo Akira
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Hideo Orimo
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Toshiyuki Takeshita
- Departments of Obstetrics and GynecologyBiochemistry and Molecular BiologyNippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| |
Collapse
|
14
|
Kotarska K, Galas J, Przybyło M, Bilińska B, Styrna J. Increased progesterone production in cumulus-oocyte complexes of female mice sired by males with the Y-chromosome long arm deletion and its potential influence on fertilization efficiency. Reprod Sci 2014; 22:242-9. [PMID: 24899473 DOI: 10.1177/1933719114537717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It was revealed previously that B10.BR(Y(del)) females sired by males with the Y-chromosome long arm deletion differ from genetically identical B10.BR females sired by males with the intact Y chromosome. This is interpreted as a result of different epigenetic information which females of both groups inherit from their fathers. In the following study, we show that cumulus-oocyte complexes ovulated by B10.BR(Y(del)) females synthesize increased amounts of progesterone, which is important sperm stimulator. Because their extracellular matrix is excessively firm, the increased progesterone secretion belongs presumably to factors that compensate this feature enabling unchanged fertilization ratios. Described compensatory mechanism can act only on sperm of high quality, presenting proper receptors. Indeed, low proportion of sperm of Y(del) males that poorly fertilize B10.BR(Y(del)) oocytes demonstrates positive staining of membrane progesterone receptors. This proportion is significantly higher for sperm of control males that fertilize B10.BR(Y(del)) and B10.BR oocytes with the same efficiency.
Collapse
Affiliation(s)
- Katarzyna Kotarska
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Jerzy Galas
- Department of Endocrinology and Tissue Culture, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology and Tissue Culture, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Józefa Styrna
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
15
|
Lan R, Liu F, He Z, Chen C, Liu S, Shi Y, Liu Y, Yoshimura Y, Zhang M. Immunolocalization of GnRHRI, gonadotropin receptors, PGR, and PGRMCI during follicular development in the rabbit ovary. Theriogenology 2014; 81:1139-47. [DOI: 10.1016/j.theriogenology.2014.01.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/10/2014] [Accepted: 01/31/2014] [Indexed: 01/24/2023]
|
16
|
Kowalik MK, Rekawiecki R, Kotwica J. The putative roles of nuclear and membrane-bound progesterone receptors in the female reproductive tract. Reprod Biol 2013; 13:279-89. [PMID: 24287036 DOI: 10.1016/j.repbio.2013.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/21/2013] [Accepted: 09/02/2013] [Indexed: 01/11/2023]
Abstract
Progesterone produced by the corpus luteum (CL) is a key regulator of normal cyclical reproductive functions in the females of mammalian species. The physiological effects of progesterone are mediated by the canonical genomic pathway after binding of progesterone to its specific nuclear progesterone receptor (PGR), which acts as a ligand-activated transcription factor and has two main isoforms, PGRA and PGRB. These PGR isoforms play different roles in the cell; PGRB acts as an activator of progesterone-responsive genes, while PGRA can inhibit the activity of PGRB. The ratio of these isoforms changes during the estrous cycle and pregnancy, and it corresponds to the different levels of progesterone signaling occurring in the reproductive tract. Progesterone exerts its effects on cells also by a non-genomic mechanism by the interaction with the progesterone-binding membrane proteins including the progesterone membrane component (PGRMC) 1 and 2, and the membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and subsequently they can initiate specific cell responses or modulate genomic cell responses. The diversity of progesterone receptors and their cellular actions enhances the role of progesterone as a factor regulating the function of the reproductive system and other organs. This paper deals with the possible involvement of nuclear and membrane-bound progesterone receptors in the function of target cells within the female reproductive tract.
Collapse
Affiliation(s)
- Magdalena K Kowalik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | | | | |
Collapse
|
17
|
Meldi KM, Gaconnet GA, Mayo KE. DNA methylation and histone modifications are associated with repression of the inhibin α promoter in the rat corpus luteum. Endocrinology 2012; 153:4905-17. [PMID: 22865368 PMCID: PMC3512026 DOI: 10.1210/en.2012-1292] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transition from follicle to corpus luteum after ovulation is associated with profound morphological and functional changes and is accompanied by corresponding changes in gene expression. The gene encoding the α subunit of the dimeric reproductive hormone inhibin is maximally expressed in the granulosa cells of the preovulatory follicle, is rapidly repressed by the ovulatory LH surge, and is expressed at only very low levels in the corpus luteum. Although previous studies have identified transient repressors of inhibin α gene transcription, little is known about how this repression is maintained in the corpus luteum. This study examines the role of epigenetic changes, including DNA methylation and histone modification, in silencing of inhibin α gene expression. Bisulfite sequencing reveals that methylation of the inhibin α proximal promoter is low in preovulatory and ovulatory follicles but is elevated in the corpus luteum. Increased methylation during luteinization is observed within the cAMP response element in the promoter, and EMSA demonstrate that methylation of this site inhibits cAMP response element binding protein binding in vitro. Chromatin immunoprecipitation reveals that repressive histone marks H3K9 and H3K27 trimethylation are increased on the inhibin α promoter in primary luteal cells, whereas the activation mark H3K4 trimethylation is decreased. The changes in histone modification precede the alterations in DNA methylation, suggesting that they facilitate the recruitment of DNA methyltransferases. We show that the DNA methyltransferase DNMT3a is present in the ovary and in luteal cells when the inhibin α promoter becomes methylated and observe recruitment of DNMT3a to the inhibin promoter during luteinization.
Collapse
Affiliation(s)
- Kristen M Meldi
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
18
|
Joseph C, Hunter MG, Sinclair KD, Robinson RS. The expression, regulation and function of secreted protein, acidic, cysteine-rich in the follicle–luteal transition. Reproduction 2012; 144:361-72. [DOI: 10.1530/rep-12-0099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of the tissue remodelling protein, secreted protein, acidic, cysteine-rich (SPARC), in key processes (e.g. cell reorganisation and angiogenesis) that occur during the follicle–luteal transition is unknown. Hence, we investigated the regulation of SPARC in luteinsing follicular cells and potential roles of SPARC peptide 2.3 in a physiologically relevant luteal angiogenesis culture system. SPARC protein was detected mainly in the theca layer of bovine pre-ovulatory follicles, but its expression was considerably greater in the corpus haemorrhagicum. Similarly, SPARC protein (western blotting) was up-regulated in luteinising granulosa but not in theca cells during a 6-day culture period. Potential regulatory candidates were investigated in luteinising granulosa cells: LH did not affect SPARC (P>0.05); transforming growth factor (TGF) B1 (P<0.001) dose dependently induced the precocious expression of SPARC and increased final levels: this effect was blocked (P<0.001) by SB505124 (TGFB receptor 1 inhibitor). Additionally, fibronectin, which is deposited during luteal development, increased SPARC (P<0.01). In luteal cells, fibroblast growth factor 2 decreased SPARC (P<0.001) during the first 5 days of culture, while vascular endothelial growth factor A increased its expression (P<0.001). Functionally, KGHK peptide, a SPARC proteolytic fragment, stimulated the formation of endothelial cell networks in a luteal cell culture system (P<0.05) and increased progesterone production (P<0.05). Collectively, these findings indicate that SPARC is intricately regulated by pro-angiogenic and other growth factors together with components of the extracellular matrix during the follicle–luteal transition. Thus, it is possible that SPARC plays an important modulatory role in regulating angiogenesis and progesterone production during luteal development.
Collapse
|
19
|
Human cumulus cells molecular signature in relation to oocyte nuclear maturity stage. PLoS One 2011; 6:e27179. [PMID: 22087263 PMCID: PMC3210145 DOI: 10.1371/journal.pone.0027179] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/11/2011] [Indexed: 11/22/2022] Open
Abstract
The bi-directional communication between the oocyte and the surrounding cumulus cells (CCs) is crucial for the acquisition of oocyte competence. We investigated the transcriptomic profile of human CCs isolated from mature and immature oocytes under stimulated cycle. We used human Genome U133 Plus 2.0 microarrays to perform an extensive analysis of the genes expressed in human CCs obtained from patients undergoing intra-cytoplasmic sperm injection. CC samples were isolated from oocyte at germinal vesicle, stage metaphase I and stage metaphase II. For microarray analysis, we used eight chips for each CC category. Significance analysis of microarray multiclass was used to analyze the microarray data. Validation was performed by RT-qPCR using an independent cohort of CC samples. We identified differentially over-expressed genes between the three CC categories. This study revealed a specific signature of gene expression in CCs issued from MII oocyte compared with germinal vesicle and metaphase I. The CC gene expression profile, which is specific of MII mature oocyte, can be useful as predictors of oocyte quality.
Collapse
|
20
|
Luciano AM, Corbani D, Lodde V, Tessaro I, Franciosi F, Peluso JJ, Modina S. Expression of progesterone receptor membrane component-1 in bovine reproductive system during estrous cycle. Eur J Histochem 2011; 55:e27. [PMID: 22073374 PMCID: PMC3203473 DOI: 10.4081/ejh.2011.e27] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/24/2011] [Indexed: 12/11/2022] Open
Abstract
Several reports suggest the participation of progesterone receptor membrane component 1 (PGRMC1) in progesterone signaling in the reproductive system. This study aimed at investigating the presence and localization of PGRMC1 in bovine ovary, oviduct and uterus, during the follicular and luteal phases of the estrous cycle. In the ovary, PGRMC1 has been detected in surface germinal epithelium, granulosa cells, theca cells and in the germinal vesicle of the oocytes at all stages of folliculogenesis. In the corpus luteum the expression of PGRMC1 was influenced by the stage of the estrous cycle. In the oviducts and in the uterus horns, PGRMC1 was immunolocalized in the luminal epithelium, in the muscle layer cells and in the endothelial cells. In the uterus, PGRMC1 was intensely localized also in the glandular endometrium. However, in the oviducts and in the uterus horns, the localization of PGRMC1 was independent on the stage of the estrous cycle and on whether evaluating the ipsilateral or the contralateral organ. In conclusion, the present immunohistochemical study showed that PGRMC1 is located in various compartments of the bovine female reproductive organs. With the exception of the corpora lutea, PGRMC1 localization showed similar pattern during different stages of the estrous cycle.
Collapse
Affiliation(s)
- A M Luciano
- Department of Animal Sciences, Faculty of Veterinary Medicine, University of Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tsubota K, Kanki M, Noto T, Shiraki K, Takeuchi A, Nakatsuji S, Seki J, Oishi Y, Matsumoto M, Nakayama H. Transitional gene expression profiling in ovarian follicle during ovulation in normal-cycle rats. Toxicol Pathol 2011; 39:641-52. [PMID: 21551027 DOI: 10.1177/0192623311406932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evaluation of ovarian toxicity requires an understanding of the physiological changes related to the estrous cycle in the ovary. The authors investigated the transitional gene expression profile of ovulatory follicles in rats that show normal estrous cyclicity. Ovaries were collected at 10:00 and 22:00 on the proestrus day and at 10:00 on the estrus day. Ovarian follicles or early corpora lutea were isolated using laser microdissection, and extracted total RNA was analyzed using microarray technology. Clustering analysis revealed four different expression patterns: transient up- or down-regulation only at 22:00 on the proestrus day (pattern 1), up- or down-regulation only at 10:00 on the estrus day (pattern 2), continuous increase at 22:00 on the proestrus day and at 10:00 on the estrus day (pattern 3), and up- or down-regulation at 22:00 on the proestrus day and level maintenance at 10:00 on the estrus day (pattern 4). In addition, these probe sets were functionally categorized in each pattern using the Ingenuity Pathways Analysis database. These data will aid in understanding the physiology of ovulation and may be useful in assessing ovarian toxicity and its mechanism, such as in investigations of chemical-induced ovulatory impairment.
Collapse
Affiliation(s)
- Kenjiro Tsubota
- Toxicologic Pathology, Drug Safety Research Laboratories, Astellas Pharma Inc., Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Verbraak EJC, van 't Veld EM, Groot Koerkamp M, Roelen BAJ, van Haeften T, Stoorvogel W, Zijlstra C. Identification of genes targeted by FSH and oocytes in porcine granulosa cells. Theriogenology 2010; 75:362-76. [PMID: 20965553 DOI: 10.1016/j.theriogenology.2010.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/27/2010] [Accepted: 09/08/2010] [Indexed: 11/19/2022]
Abstract
In the mammalian ovarian follicle maturing oocytes are nurtured and supported by surrounding somatic cells, the mural granulosa cells and the cumulus cells. These cells are regulated by follicle-stimulating hormone (FSH), originating from the pituitary, and paracrine factors derived from the oocyte. To gain insight into the mechanisms involved in the regulation of granulosa cell function, this study aimed to identify genes in mural granulosa cells that are regulated by FSH and oocyte secreted factors using the pig as a model organism. Mural granulosa cells were collected from 3-6 mm follicles from sow ovaries and cultured in serum free medium in the presence or absence of FSH and/or isolated cumulus oocyte complexes (COCs). FSH significantly increased both the metabolic activity and progesterone production of granulosa cells, while the presence of COCs reversed these FSH effects. Expression levels of mRNA in the absence/presence of FSH and COCs were analyzed on porcine specific microarrays representing 11,300 genes. Both previously identified and novel FSH target genes as well as some oocyte affected genes were found. Expression of inhibitor of DNA binding protein 2 and 3, ID2 and ID3, was decreased by FSH but increased by COCs, as validated by quantitative PCR. These proteins function as dominant negative basic helix loop helix (bHLH) transcription factors and since all regulated genes contain the consensus E-box sequence that can bind bHLH factors, our data suggest that FSH and COCs may regulate granulosa cell function by tuning the activity of bHLH factors, through ID2 and ID3.
Collapse
Affiliation(s)
- E J C Verbraak
- Department of Biochemistry and Cell Biology, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Runx2 in normal tissues and cancer cells: A developing story. Blood Cells Mol Dis 2010; 45:117-23. [PMID: 20580290 DOI: 10.1016/j.bcmd.2010.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 11/22/2022]
Abstract
The Runx transcription factors are essential for mammalian development, most notably in the haematopoietic and osteogenic lineages. Runx1 and its binding partner, CBFbeta, are frequently targeted in acute leukaemia but evidence is accumulating that all three Runx genes may have a role to play in a wider range of cancers, either as tumour promoters or tumour suppressors. Whilst Runx2 is renowned for its role as a master regulator of bone development we discuss here its expression pattern and putative functions beyond this lineage. Furthermore, we review the evidence that RUNX2 promotes neoplastic development in haematopoietic lineages and in advanced mammary and prostate cancer.
Collapse
|
24
|
Park ES, Lind AK, Dahm-Kähler P, Brännström M, Carletti MZ, Christenson LK, Curry TE, Jo M. RUNX2 transcription factor regulates gene expression in luteinizing granulosa cells of rat ovaries. Mol Endocrinol 2010; 24:846-58. [PMID: 20197312 DOI: 10.1210/me.2009-0392] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The LH surge promotes terminal differentiation of follicular cells to become luteal cells. RUNX2 has been shown to play an important role in cell differentiation, but the regulation of Runx2 expression and its function in the ovary remain to be determined. The present study examined 1) the expression profile of Runx2 and its partner CBFbeta during the periovulatory period, 2) regulatory mechanisms of Runx2 expression, and 3) its potential function in the ovary. Runx2 expression was induced in periovulatory granulosa cells of human and rodent ovaries. RUNX2 and core binding factor-beta (CBFbeta) proteins in nuclear extracts and RUNX2 binding to a consensus binding sequence increased after human chorionic gonadotropin (hCG) administration. This in vivo up-regulation of Runx2 expression was recapitulated in vitro in preovulatory granulosa cells by stimulation with hCG. The hCG-induced Runx2 expression was reduced by antiprogestin (RU486) and EGF-receptor tyrosine kinase inhibitor (AG1478), indicating the involvement of EGF-signaling and progesterone-mediated pathways. We also found that in the C/EBPbeta knockout mouse ovary, Runx2 expression was reduced, indicating C/EBPbeta-mediated expression. Next, the function of RUNX2 was investigated by suppressing Runx2 expression by small interfering RNA in vitro. Runx2 knockdown resulted in reduced levels of mRNA for Rgc32, Ptgds, Fabp6, Mmp13, and Abcb1a genes. Chromatin immunoprecipitation analysis demonstrated the binding of RUNX2 in the promoter region of these genes, suggesting that these genes are direct downstream targets of RUNX2. Collectively, the present data indicate that the LH surge-induced RUNX2 is involved in various aspects of luteal function by directly regulating the expression of diverse luteal genes.
Collapse
Affiliation(s)
- Eun-Sil Park
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu B, Arbogast LA. Gene expression profiles of intracellular and membrane progesterone receptor isoforms in the mediobasal hypothalamus during pro-oestrus. J Neuroendocrinol 2009; 21:993-1000. [PMID: 19807848 PMCID: PMC2788049 DOI: 10.1111/j.1365-2826.2009.01920.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Progesterone action is mediated by its binding to specific receptors. Two progesterone receptor (PR) isoforms (PRA and PRB), three membrane progesterone receptor (mPR) subtypes (mPRalpha, mPRbeta and mPRgamma) and at least one progesterone membrane-binding protein [PR membrane component 1 (PRmc1)] have been identified in reproductive tissues and brain of various species. In the present study, we examined gene expression patterns for PR isoforms, mPR subtypes and PRmc1 in the rat mediobasal hypothalamus (MBH) during pro-oestrus. The mRNA level for each receptor subtype was quantified by a real-time reverse transcriptase-polymerase chain reaction (RT-PCR) at the time points: 13.00 h on dioestrous day 2; 09.00, 13.00, 17.00 and 22.00 h on pro-oestrus; and 13.00 h on oestrus. For PR, one primer set amplified PRA+PRB, whereas a second primer set amplified PRB. As expected, PRA+PRB mRNA expression was greater than PRB in MBH tissue. PRB mRNA levels increased throughout the day on pro-oestrus, with the highest levels being observed at 17.00 h. PRB mRNA levels in the MBH were increased by 2.4- and 3.0-fold at 13.00 and 17.00 h, respectively, on pro-oestrus compared to 13.00 h on dioestrous day 2. There were differential mRNA expression levels for mPRs and PRmc1 in the MBH, with the highest expression for PRmc1 and the lowest for mPRgamma. The mPRalpha mRNA contents at 13.00 and 17.00 h on pro-oestrus were increased by 1.5-fold compared to that at 13.00 h on dioestrous day 2. The mPRbeta mRNA levels at 13.00 and 17.00 h on pro-oestrus were 2.5- and 2.4-fold higher compared to that at 13.00 h on dioestrous day 2, respectively. PRA+PRB, mPRgamma and PRmc1 mRNA levels did not vary on pro-oestrus. These findings suggest that the higher expression of PRB, mPRalpha and mPRbeta in the MBH on pro-oestrous afternoon may influence both genomic and nongenomic mechanisms of progesterone action during the critical pre-ovulatory period.
Collapse
Affiliation(s)
- B Liu
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901-6523, USA
| | | |
Collapse
|
26
|
Hamel M, Dufort I, Robert C, Léveillé MC, Leader A, Sirard MA. Genomic assessment of follicular marker genes as pregnancy predictors for human IVF. Mol Hum Reprod 2009; 16:87-96. [PMID: 19778949 DOI: 10.1093/molehr/gap079] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Embryo selection efficiency in human IVF procedure is still suboptimal as shown by low pregnancy rates with single embryo transfer (SET). Bidirectional communication between the oocyte and follicular cells (FC) is essential to achieve developmental competence of the oocyte. Differences in the gene expression profile of FCs from follicles leading to pregnancy could provide useful markers of oocyte developmental competence. FCs were recovered by individual follicle puncture. FC expression levels of potential markers were assessed by Q-PCR with an intra-patient and an inter-patient analysis approach. Using gene expression, a predictive model of ongoing pregnancy was investigated. Using intra-patient analysis, four candidate genes, phosphoglycerate kinase 1 (PGK1), regulator of G-protein signalling 2 (RGS2), regulator of G-protein signalling 3 (RGS3) and cell division cycle 42 (CDC42) showed a difference between FCs from follicles leading to a pregnancy or developmental failure. The best predictors for ongoing pregnancy were PGK1 and RGS2. Additionally, inter-patient analysis revealed differences in FC expression for PGK1 and CDC42 between follicles leading to a transferred embryo with positive pregnancy results and those with negative results. Both inter-patient and intra-patient approaches must be taken into consideration to delineate gene expression variations in the context of follicular competence. A predictor model using biomarkers could improve the efficiency of predicting developmental competence of oocytes. These new approaches provide useful tools in the context of embryo selection and in the improvement of pregnancy rates with SET.
Collapse
Affiliation(s)
- Mélanie Hamel
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction (CRBR), Université Laval, QC, Canada G1K 7P4
| | | | | | | | | | | |
Collapse
|
27
|
New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis. BMC Genomics 2009; 10:434. [PMID: 19754951 PMCID: PMC2751788 DOI: 10.1186/1471-2164-10-434] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 09/15/2009] [Indexed: 12/16/2022] Open
Abstract
Background The Senegalese sole (Solea senegalensis) is a marine flatfish of increasing commercial interest. However, the reproduction of this species in captivity is not yet controlled mainly because of the poor knowledge on its reproductive physiology, as it occurs for other non-salmonid marine teleosts that exhibit group-synchronous ovarian follicle development. In order to investigate intra-ovarian molecular mechanisms in Senegalese sole, the aim of the present study was to identify differentially expressed genes in the ovary during oocyte growth (vitellogenesis), maturation and ovarian follicle atresia using a recently developed oligonucleotide microarray. Results Microarray analysis led to the identification of 118 differentially expressed transcripts, of which 20 and 8 were monitored by real-time PCR and in situ hybridization, respectively. During vitellogenesis, many up-regulated ovarian transcripts had putative mitochondrial function/location suggesting high energy production (NADH dehydrogenase subunits, cytochromes) and increased antioxidant protection (selenoprotein W2a), whereas other regulated transcripts were related to cytoskeleton and zona radiata organization (zona glycoprotein 3, alpha and beta actin, keratin 8), intracellular signalling pathways (heat shock protein 90, Ras homolog member G), cell-to-cell and cell-to-matrix interactions (beta 1 integrin, thrombospondin 4b), and the maternal RNA pool (transducer of ERBB2 1a, neurexin 1a). Transcripts up-regulated in the ovary during oocyte maturation included ion transporters (Na+-K+-ATPase subunits), probably required for oocyte hydration, as well as a proteinase inhibitor (alpha-2-macroglobulin) and a vesicle calcium sensor protein (extended synaptotagmin-2-A). During follicular atresia, few transcripts were found to be up-regulated, but remarkably most of them were localized in follicular cells of atretic follicles, and they had inferred roles in lipid transport (apolipoprotein C-I), chemotaxis (leukocyte cell-derived chemotaxin 2,), angiogenesis (thrombospondin), and prevention of apoptosis (S100a10 calcium binding protein). Conclusion This study has identified a number of differentially expressed genes in the ovary that were not previously found to be regulated during ovarian development in marine fish. Specifically, we found evidence, for the first time in teleosts, of the activation of chemoattractant, angiogenic and antiapoptotic pathways in hypertrophied follicular cells at the onset of ovarian atresia.
Collapse
|
28
|
Kim SG, Jang SJ, Soh J, Lee K, Park JK, Chang WK, Park EW, Chun SY. Expression of ectodermal neural cortex 1 and its association with actin during the ovulatory process in the rat. Endocrinology 2009; 150:3800-6. [PMID: 19372205 DOI: 10.1210/en.2008-1587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ectodermal neural cortex (ENC) 1, a member of the kelch family of genes, is an actin-binding protein and plays a pivotal role in neuronal and adipocyte differentiation. The present study was designed to examine the gonadotropin regulation and action of ENC1 during the ovulatory process in immature rats. The levels of ENC1 mRNA and protein were stimulated by LH/human chorionic gonadotropin (hCG) within 3 h both in vivo and in vitro. In situ hybridization analysis revealed that ENC1 mRNA was localized not only in theca/interstitial cells but also in granulosa cells of preovulatory follicles but not of growing follicles in pregnant mare's serum gonadotropin/hCG-treated ovaries. LH-induced ENC1 expression was suppressed by a high dose of protein kinase C inhibitor RO 31-8220 (10 microM) but not by low doses of RO 31-8220 (0.1-1.0 microM), suggesting the involvement of atypical protein kinase C. ENC1 was detected in both nucleus and cytoplasm that was increased by LH/hCG treatment. Both biochemical and morphological analysis revealed that LH/hCG treatment increased actin polymerization within 3 h in granulosa cells. Interestingly, ENC1 physically associated with actin and treatment with cytochalasin D, an actin-depolymerizing agent, abolished this association. Confocal microscopy further demonstrated the colocalization of ENC1 with filamentous actin (F-actin). The present study demonstrates that LH/hCG stimulates ENC1 expression and increases F-actin formation in granulosa cells. The present study further shows the physical association of ENC1 and F-actin, implicating the role of ENC1 in cytoskeletal reorganization during the differentiation of granulosa cells.
Collapse
Affiliation(s)
- Sun-Gyun Kim
- Hormone Research Center and School of Biological Sciences and Technology, Chonnam National University, Kwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gonadotropin regulation of genes differentially expressed in response to PKCζ inhibitor during ovulation in the rat. Life Sci 2009; 85:153-60. [DOI: 10.1016/j.lfs.2009.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 04/29/2009] [Accepted: 05/14/2009] [Indexed: 11/21/2022]
|
30
|
Satoh M, Tokoro M, Ikegami H, Nagai K, Sono Y, Shin SW, Nishikawa S, Saeki K, Hosoi Y, Iritani A, Fukuda A, Morimoto Y, Matsumoto K. Proteomic analysis of the mouse ovary in response to two gonadotropins, follicle-stimulating hormone and luteinizing hormone. J Reprod Dev 2009; 55:316-26. [PMID: 19325216 DOI: 10.1262/jrd.20217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Functional and structural changes in the mammalian ovary are coordinately regulated by the pituitary glycoprotein hormones, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), leading to follicular development, ovulation and transformation of follicles into corpus lutea. To investigate protein profiles during these processes of the mouse ovarian cycle, we applied combined methods (two-dimensional gel electrophoresis [2-DE] for separation and visualization of proteins plus matrix laser desorption/ionization time-of-flight mass spectrometry [MALDI-TOF/MS] analysis for protein identification) for comparative proteomic analysis using immature mice at 3 weeks of age. Protein profiles were obtained from proteins extracted from intact ovaries that had been collected from pregnant mare serum gonadotropin (PMSG)/human chorionic gonadotropin (hCG)-primed immature mice at 0 (no PMSG), 24 and 48 h post PMSG, as well as at 10 and 20 h post hCG. The results showed that 1028 common protein spots were found in representative gels that had been separated in the 3 to 11 pH range and the 15-200 kDa range, 253 protein spots (24.6%) of which were differentially expressed (p<0.05) during the mouse ovarian cycle. Of these 253 protein spots, 99 were identified by MALDI-TOF/MS. This comparative proteomic approach to identifying proteins that were potentially involved in the complex process of the ovarian cycle could contribute to our understanding of the molecular basis of functional and structural changes in the ovary in response to gonadotropins. Furthermore, the interesting ovarian proteins identified in this study may eventually serve as diagnostic biomarker candidates of ovarian function.
Collapse
Affiliation(s)
- Manabu Satoh
- The Centre for Reproductive Medicine and Infertility, IVF Namba Clinic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Carletti MZ, Christenson LK. Rapid effects of LH on gene expression in the mural granulosa cells of mouse periovulatory follicles. Reproduction 2009; 137:843-55. [PMID: 19225042 DOI: 10.1530/rep-08-0457] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
LH acts on periovulatory granulosa cells by activating the PKA pathway as well as other cell signaling cascades to increase the transcription of specific genes necessary for ovulation and luteinization. Collectively, these cell signaling responses occur rapidly (within minutes); however, presently no high throughput studies have reported changes before 4 h after the LH surge. To identify early response genes that are likely critical for initiation of ovulation and luteinization, mouse granulosa cells were collected before and 1 h after hCG. Fifty-seven gene transcripts were significantly (P<0.05) upregulated and three downregulated following hCG. Twenty-four of these transcripts were known to be expressed after the LH/hCG surge at later time points, while 36 were unknown to be expressed by periovulatory granulosa cells. Temporal expression of several transcripts, including the transcription factors Nr4a1, Nr4a2, Egr1, Egr2, Btg1, and Btg2, and the epidermal growth factor (EGF)-like ligands Areg and Ereg, were analyzed by quantitative RT-PCR, and their putative roles in granulosa cell function are discussed. Epigen (Epgn), another member of the family of EGF-like ligands was identified for the first time in granulosa cells as rapidly induced by LH/hCG. We demonstrate that Epgn initiates cumulus expansion, similar to the other EGF-receptor ligands Areg and Ereg. These studies illustrate that a number of changes in gene expression occur in vivo in response to LH, and that many of the differentially expressed genes are transcription factors that we would predict in turn modulate granulosa cell gene expression to ultimately impact the processes of ovulation and luteinization.
Collapse
Affiliation(s)
- Martha Z Carletti
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3075 KLSIC, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
32
|
Ren Y, Cowan RG, Harman RM, Quirk SM. Dominant activation of the hedgehog signaling pathway in the ovary alters theca development and prevents ovulation. Mol Endocrinol 2009; 23:711-23. [PMID: 19196835 DOI: 10.1210/me.2008-0391] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The role of the hedgehog (HH) signaling pathway in ovarian function was examined in transgenic mice in which expression of a dominant active allele of the signal transducer smoothened (SmoM2) was directed to the ovary and Müllerian duct by cre-mediated recombination (Amhr2(cre/+)SmoM2). Mutant mice were infertile and had ovarian and reproductive tract defects. Ovaries contained follicles of all sizes and corpora lutea (CL), but oocytes were rarely recovered from the oviducts of superovulated mice and remained trapped in preovulatory follicles. Measures of luteinization did not differ. Cumulus expansion appeared disorganized, and in vitro analyses confirmed a reduced expansion index. Microarray analysis indicated that expression levels of genes typical of smooth muscle were reduced in mutant mice, and RT-PCR showed that levels of expression of muscle genes were reduced in the nongranulosa, theca-interstitial cell-enriched fraction. Whereas a layer of cells in the outer theca was positively stained for smooth muscle actin in control ovaries, this staining was reduced or absent in mutant ovaries. Expression of a number of genes in granulosa cells that are known to be important for ovulation did not differ in mutants and controls. Expression of components of the HH pathway was observed in both granulosa cells and in the nongranulosa, residual ovarian tissue and changed in response to treatment with equine chorionic gonadotropin/human gonadotropin. The results show that appropriate signaling through the HH pathway is required for development of muscle cells within the theca and that impaired muscle development is associated with failure to release the oocyte at ovulation.
Collapse
Affiliation(s)
- Yi Ren
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
33
|
Progesterone receptor membrane component 1 (PGRMC1) gene expression in corpus luteum during the estrous cycle in cows. Reprod Biol 2008; 8:291-7. [DOI: 10.1016/s1642-431x(12)60019-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Fiedler SD, Carletti MZ, Hong X, Christenson LK. Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod 2008; 79:1030-7. [PMID: 18716288 DOI: 10.1095/biolreprod.108.069690] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
MicroRNAs (miRNAs) mediate posttranscriptional gene regulation by binding to the 3' untranslated region of messenger RNAs to either inhibit or enhance translation. The extent and hormonal regulation of miRNA expression by ovarian granulosa cells and their role in ovulation and luteinization is unknown. In the present study, miRNA array analysis was used to identify 212 mature miRNAs as expressed and 13 as differentially expressed in periovulatory granulosa cells collected before and after an ovulatory dose of hCG. Two miRNAs, Mirn132 and Mirn212 (also known as miR-132 and miR-212), were found to be highly upregulated following LH/hCG induction and were further analyzed. In vivo and in vitro temporal expression analysis by quantitative RT-PCR confirmed that LH/hCG and cAMP, respectively, increased transcription of the precursor transcript as well as the mature miRNAs. Locked nucleic acid oligonucleotides complementary to Mirn132 and Mirn212 were shown to block cAMP-mediated mature miRNA expression and function. Computational analyses indicated that 77 putative mRNA targets of Mirn132 and Mirn212 were expressed in ovarian granulosa cells. Furthermore, upon knockdown of Mirn132 and Mirn212, a known target of Mirn132, C-terminal binding protein 1, showed decreased protein levels but no change in mRNA levels. The following studies are the first to describe the extent of miRNA expression within ovarian granulosa cells and the first to demonstrate that LH/hCG regulates the expression of select miRNAs, which affect posttranscriptional gene regulation within these cells.
Collapse
Affiliation(s)
- Stephanie D Fiedler
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
35
|
Thomas P. Characteristics of membrane progestin receptor alpha (mPRalpha) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions. Front Neuroendocrinol 2008; 29:292-312. [PMID: 18343488 PMCID: PMC2600886 DOI: 10.1016/j.yfrne.2008.01.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Rapid, progestin actions initiated at the cell surface that are often nongenomic have been described in a variety of reproductive tissues, but until recently the identities of the membrane receptors mediating these nonclassical progestins actions remained unclear. Evidence has been obtained in the last 4-5 years for the involvement of two types of novel membrane proteins unrelated to nuclear steroid receptors, progesterone membrane receptors (mPRs) and progesterone receptor membrane component 1 (PGMRC1), in progestin signaling in several vertebrate reproductive tissues and in the brain. The mPRs, (M(W) approximately 40 kDa) initially discovered in fish ovaries, comprise at least three subtypes, alpha, beta and gamma and belong to the seven-transmembrane progesterone adiponectin Q receptor (PAQR) family. Both recombinant and wildtype mPRs display high affinity (K(d) approximately 5 nM), limited capacity, displaceable and specific progesterone binding. The mPRs are directly coupled to G proteins and typically activate pertussis-sensitive inhibitory G proteins (G(i)), to down-regulate adenylyl cyclase activity. Recent studies suggest the alpha subtype (mPRalpha) has important physiological functions in variety of reproductive tissues. The mPRalpha is an intermediary in progestin induction of oocyte maturation and stimulation of sperm hypermotility in fish. In mammals, the mPRalphas have been implicated in progesterone regulation of uterine function in humans and GnRH secretion in rodents. The single-transmembrane protein PGMRC1 (M(W) 26-28 kDa) was first purified from porcine livers and its cDNA was subsequently cloned from porcine smooth muscle cells and a variety of other tissues by different investigators. PGMRC1 and the closely-related PGMRC2 belong to the membrane-associated progesterone receptor (MAPR) family. The PGMRC1 protein displays moderately high binding affinity for progesterone which is 2- to 10-fold greater than that for testosterone and glucocorticoids, and also can bind to other molecules such as heme, cholesterol metabolites and proteins. The signal transduction pathways induced by binding of progesterone to PGMRC1 have not been described to date, although motifs for tyrosine kinase, kinase binding, SH2 and SH3 have been predicted from the amino acid sequence. Evidence has been obtained that PGMRC1 mediates the antiapoptotic affects of progesterone in rat granulosa cells. The PGMRC1 protein may also be an intermediary in the progesterone induction of the acrosome reaction in mammalian sperm. Despite these recent advances, many aspects of progestin signaling through these two families of novel membrane proteins remain unresolved. Biochemical characterization of the receptors has been hampered by rapid degradation of the partially purified proteins. A major technical challenge has been to express sufficient amounts of the recombinant receptors on the plasma membranes in eukaryotic systems to permit investigations of their progestin binding and signal transduction characteristics. Additional basic information on the molecular and cellular mechanisms by which mPRs and PGMRC1 interact with progestins, signal transductions pathways and other proteins will be required to establish a comprehensive model of nontraditional progestin actions mediated through these novel proteins.
Collapse
Affiliation(s)
- Peter Thomas
- University of Texas at Austin, Marine Science, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
36
|
Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, Sirard MA. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod 2008; 23:1118-27. [PMID: 18310048 DOI: 10.1093/humrep/den048] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The development of an accurate method for selection of high-quality embryos is essential to achieve high pregnancy rates with single embryo transfer in human IVF. The developmental competence of the oocyte is acquired during follicle maturation and strong communication also exists between the follicular cells (FCs) and the oocytes; thus oocyte developmental competence may be determined by markers expressed in the surrounding FCs. METHODS From consenting patients (n = 40), FCs were recovered on a per follicle basis by individual follicle puncture. Hybridization analyses using a custom-made complementary DNA microarray containing granulosa/cumulus expressed sequence tags (ESTs) from subtracted libraries and an Affymetrix GeneChip were performed to identify specific genes expressed in follicles leading to a pregnancy. The selected candidate genes were validated by quantitative-PCR (Q-PCR). RESULTS Subtractive libraries prepared from pooled samples representing pregnant versus non-pregnant patients produced 1694 ESTs. Hybridization data analysis discriminated 115 genes associated with competent follicles. Selected candidates were confirmed by Q-PCR: 3-beta-hydroxysteroid dehydrogenase 1 (P = 0.0078), Ferredoxin 1 (P = 0.0203), Serine (or cysteine) proteinase inhibitor clade E member 2 (P = 0.0499), Cytochrome P450 aromatase (P = 0.0359) and Cell division cycle 42 (P = 0.0396). CONCLUSIONS Microarray technologies are useful to mine the transcriptome of FCs expressed in follicles associated with competent oocytes and could be used to improve embryo selection with the objective of successful single embryo transfer.
Collapse
Affiliation(s)
- Melanie Hamel
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Canada G1K 7P4
| | | | | | | | | | | | | |
Collapse
|
37
|
Mihm M, Baker PJ, Fleming LM, Monteiro AM, O'Shaughnessy PJ. Differentiation of the bovine dominant follicle from the cohort upregulates mRNA expression for new tissue development genes. Reproduction 2008; 135:253-65. [DOI: 10.1530/rep-06-0193] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study was designed to identify genes that regulate the transition from FSH- to LH-dependent development in the bovine dominant follicle (DF). Serial analysis of gene expression (SAGE) was used to compare the transcriptome of granulosa cells isolated from the most oestrogenic growing cohort follicle (COH), the newly selected DF and its largest subordinate follicle (SF) which is destined for atresia. Follicle diameter, follicular fluid oestradiol (E) and E:progesterone ratio confirmed follicle identity. Results show that there are 93 transcript species differentially expressed in DF granulosa cells, but only 8 of these encode proteins known to be involved in DF development. Most characterised transcripts upregulated in the DF are from tissue development genes that regulate cell differentiation, proliferation, apoptosis, signalling and tissue remodelling. Semiquantitative real-time PCR analysis confirmed seven genes with upregulated (P≤0.05) mRNA expression in DF compared with both COH and SF granulosa cells. Thus, the new genes identified by SAGE and real-time PCR, which show enhanced mRNA expression in the DF, may regulate proliferation (cyclin D2;CCND2), prevention of apoptosis or DNA damage (growth arrest and DNA damage-inducible, β;GADD45B), RNA synthesis (splicing factor, arginine/serine rich 9;SFRS9) and unknown processes associated with enhanced steroidogenesis (ovary-specific acidic protein; DQ004742) in granulosa cells of DF at the onset of LH-dependent development. Further studies are required to show whether the expression of identified genes is dysregulated when abnormalities occur during DF selection or subsequent development.
Collapse
|
38
|
Rodriguez KF, Blomberg LA, Zuelke KA, Miles JR, Alexander JE, Farin CE. Identification of candidate mRNAs associated with gonadotropin-induced maturation of murine cumulus oocyte complexes using serial analysis of gene expression. Physiol Genomics 2006; 27:318-27. [PMID: 16912067 DOI: 10.1152/physiolgenomics.00309.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In cultured cumulus oocyte complexes (COC), FSH induces gene transcription required for germinal vesicle breakdown (GVBD). Experiments were performed to determine the critical period when gene transcription is required for GVBD and to identify candidate mRNAs involved. Experiment I: murine COC were cultured 4 h in the presence of FSH with 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) added at different intervals after the start of culture. COC cultured with FSH underwent GVBD (82 ± 7%). When DRB was added at 0, 5, or 10 min after culture initiation, oocyte maturation was blocked (17 ± 7, 14 ± 6, and 21 ± 6% GVBD, respectively). When DRB was added after 15, 20, or 30 min, progressively more COC underwent GVBD (37 ± 6, 39 ± 6, and 66 ± 6%, respectively). The critical period of transcription required for GVBD occurred between 15 and 30 min after culture initiation. Experiment II: COC were cultured for 25 min in the presence (plusDRB) or absence (minusDRB) of DRB. SAGE libraries were generated from COC RNA of each treatment group. A total of 48,431 and 45,367 tags were sequenced for the plusDRB and minusDRB libraries, respectively. Criteria used to identify transcripts of interest included a total tag count of at least 10 across both libraries and a threefold or greater difference in expression between libraries. Using these criteria, 39 and 27 transcripts were identified as differentially expressed at the P ≤ 0.01 and P ≤ 0.001 levels, respectively. Differentially expressed transcripts were classed into major categories that included cell growth, development, and regulation of gene expression. Differentially expressed transcripts represent candidates potentially involved in regulating maturation of murine COC.
Collapse
Affiliation(s)
- K F Rodriguez
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina 27695 , USA
| | | | | | | | | | | |
Collapse
|
39
|
Su YQ, Nyegaard M, Overgaard MT, Qiao J, Giudice LC. Participation of mitogen-activated protein kinase in luteinizing hormone-induced differential regulation of steroidogenesis and steroidogenic gene expression in mural and cumulus granulosa cells of mouse preovulatory follicles. Biol Reprod 2006; 75:859-67. [PMID: 16943367 DOI: 10.1095/biolreprod.106.052613] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The LH surge induces the terminal differentiation and onset of luteinization in granulosa cells of preovulatory follicles, a process that involves the differential expression of genes essential for steroidogenesis and appears to be mediated by complex signaling pathways. The objective of this study was to investigate whether these processes that commonly occur in mural granulosa cells (MGCs) also occur in cumulus cells, and whether they are mediated by the mitogen-activated protein kinase (MAPK), specifically MAPK3/1 (also commonly known as extracellular signal-regulated kinase 1&2, ERK1/2). The standard superovulation model for premature female mice was used to obtain MGCs and cumulus-oocyte complexes (COCs), and sensitive real-time RT-PCR was used to simultaneously detect the expression levels of transcripts encoding key steroidogenic enzymes in the same sample. We observed significant downregulation of Cyp19a1 and upregulation of Star and Cyp11a1 mRNA expression in both COCs and MGCs after in vivo administration of hCG or in vitro treatment with gonadotropins or 8-Br-cAMP. This differential pattern of steroidogenic gene expression was correlated with the ultimate changes of circulating estradiol (E(2)) and progesterone (P(4)) levels after administration of hCG. In vitro, when MGCs and COCs were treated with U0126 - a specific inhibitor of MAPK3/1 activation - gonadotropin-induced P(4) production, 8-Br-cAMP-induced P(4) production, and expression of Star and Cyp11a1 mRNA were significantly downregulated, whereas the levels of E(2) and Cyp19a1 mRNA in the same samples were significantly upregulated. We conclude that the surge of preovulatory LH induces the differential expression of transcripts encoding key steroidogenic enzymes essential for E(2) and P(4) synthesis in both cumulus and MGCs, and this process is mediated by the MAPK3/1-dependent pathway.
Collapse
Affiliation(s)
- You-Qiang Su
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
40
|
Agca C, Ries JE, Kolath SJ, Kim JH, Forrester LJ, Antoniou E, Whitworth KM, Mathialagan N, Springer GK, Prather RS, Lucy MC. Luteinization of porcine preovulatory follicles leads to systematic changes in follicular gene expression. Reproduction 2006; 132:133-45. [PMID: 16816339 DOI: 10.1530/rep.1.01163] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The LH surge initiates the luteinization of preovulatory follicles and causes hormonal and structural changes that ultimately lead to ovulation and the formation of corpora lutea. The objective of the study was to examine gene expression in ovarian follicles (n= 11) collected from pigs (Sus scrofa domestica) approaching estrus (estrogenic preovulatory follicle;n= 6 follicles from two sows) and in ovarian follicles collected from pigs on the second day of estrus (preovulatory follicles that were luteinized but had not ovulated;n= 5 follicles from two sows). The follicular status within each follicle was confirmed by follicular fluid analyses of estradiol and progesterone ratios. Microarrays were made from expressed sequence tags that were isolated from cDNA libraries of porcine ovary. Gene expression was measured by hybridization of fluorescently labeled cDNA (preovulatory estrogenic or -luteinized) to the microarray. Microarray analyses detected 107 and 43 genes whose expression was decreased or increased (respectively) during the transition from preovulatory estrogenic to -luteinized (P<0.01). Cells within preovulatory estrogenic follicles had a gene-expression profile of proliferative and metabolically active cells that were responding to oxidative stress. Cells within preovulatory luteinized follicles had a gene-expression profile of nonproliferative and migratory cells with angiogenic properties. Approximately, 40% of the discovered genes had unknown function.
Collapse
Affiliation(s)
- Cansu Agca
- Department of Animal Science, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
This minireview summarizes the role that progesterone (P4) plays in regulating granulosa and luteal cell function. These actions include the stimulation of P4 synthesis and the inhibition of estrogen synthesis, mitosis, and apoptosis. P4 also plays a key role in the ovulatory process. Although P4's actions are well documented, the mechanism or mechanisms that mediate all of these actions have not been defined. In addition to P4-induced gene transcription that is mediated by the nuclear P4 receptors (PGR-A and PGR-B), three other receptor/signal transduction pathways could account for P4's intraovarian actions. These pathways could be mediated by 1) the PGR localizing at or near the plasma membrane and activating SRC family kinases, 2) a membrane progestin receptor that responds to P4 by lowering intracellular cAMP and increasing MAPK 3/1 activity, and 3) a membrane receptor complex composed of serpine 1 mRNA binding protein (also known as PAIRBP1 or RDA288) and progesterone receptor membrane component 1. Ligand activation of this complex likely leads to an increase in protein kinase G activity, the maintenance of low basal intracellular free calcium, and the inhibition of granulosa and luteal cell mitosis and apoptosis. Given the complexity of P4's actions within the ovary, it is likely that all of these receptor/signal transduction pathways influence some aspect of ovarian function with the specific P4 response dependent on 1) the expression pattern of these putative P4 receptors, 2) the P4 binding affinity of each receptor system, and 3) the amount of available P4.
Collapse
Affiliation(s)
- John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| |
Collapse
|
42
|
Ma XH, Hu SJ, Ni H, Zhao YC, Tian Z, Liu JL, Ren G, Liang XH, Yu H, Wan P, Yang ZM. Serial analysis of gene expression in mouse uterus at the implantation site. J Biol Chem 2006; 281:9351-60. [PMID: 16434403 DOI: 10.1074/jbc.m511512200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although oligonucleotide chips, cDNA microarrays, differential display reverse transcription-PCR, and other approaches have been used to screen implantation-related molecules, the mechanism by which embryo implantation occurs is still unknown. The aim of this study was to profile the differential gene expression between interimplantation site and implantation site in mouse uterus on day 5 of pregnancy by serial analysis of gene expression (SAGE). In our two SAGE libraries of 11-bp tags, the total numbers of tags sequenced were 48,121 for the interimplantation site and 50,227 for the implantation site. There were 1,039 tags specifically expressed at interimplantation site, and 1,252 tags specifically expressed at the implantation site. Based on the p value, there were 195 tags significantly up-regulated at the interimplantation site and 261 tags significantly up-regulated at the implantation site, of which 100 genes were single matched at the interimplantation site and 127 genes were single matched at the implantation site, respectively. By reverse transcription-PCR, the tag ratio between the implantation site and interimplantation site was verified on 14 significantly changed genes. Using in situ hybridization, 1810014L12Rik, Psmb5, Cd63, Npm1, Fads3, and Tagln2 were shown to be highly expressed at the implantation site compared with the interimplantation site. Compared with the interimplantation site, Ddx39 was strongly expressed in the subluminal stromal cells at the implantation site on day 5 of pregnancy. Ddx39 expression at the implantation site was specifically induced by active blastocysts. Additionally, Ddx39 expression was significantly up-regulated by estrogen in the ovariectomized mice. In our SAGE data, many implantation-related genes were identified in mouse uterus. Our data could be a valuable source for future study on embryo implantation.
Collapse
Affiliation(s)
- Xing-Hong Ma
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tullet JMA, Pocock V, Steel JH, White R, Milligan S, Parker MG. Multiple signaling defects in the absence of RIP140 impair both cumulus expansion and follicle rupture. Endocrinology 2005; 146:4127-37. [PMID: 15919748 DOI: 10.1210/en.2005-0348] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The nuclear receptor corepressor RIP140 is essential in the ovary for ovulation, but is not required for follicle growth and luteinization. To identify genes that may be subject to regulation by RIP140 or play a role in ovulation, we compared ovarian gene expression profiles in untreated immature wild-type and RIP140 null mice and after treatment with pregnant mare serum gonadotropin and human chorionic gonadotropin. Many genes involved in signaling, extracellular matrix formation, cell-cell attachment, and adhesion were aberrantly regulated in the absence of RIP140, varying according to the hormone status of the mice. Notable among these was the reduced expression of a number of genes that encode components of signaling pathways and matrix proteins required for cumulus expansion, a key remodeling process necessary for ovulation. Histological analysis confirmed that cumulus expansion in RIP140 null mice is reduced, oocyte detachment from the mural cell wall is impaired, and follicles fail to rupture in response to LH. Although the expression of many genes involved in cumulus cell expansion was reduced, there was a subset of genes involved in extracellular matrix formation and cell-cell interactions that was up-regulated and may interfere with ovarian tissue remodeling. We propose that widespread gene dysregulation in ovarian tissues in the absence of RIP140 leads to the anovulatory phenotype. This helps to define an important role for RIP140 in the regulation of multiple processes leading to ovulation.
Collapse
Affiliation(s)
- Jennifer M A Tullet
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Peluso JJ, Pappalardo A, Losel R, Wehling M. Expression and Function of PAIRBP1 Within Gonadotropin-Primed Immature Rat Ovaries: PAIRBP1 Regulation of Granulosa and Luteal Cell Viability1. Biol Reprod 2005; 73:261-70. [PMID: 15814896 DOI: 10.1095/biolreprod.105.041061] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The protein PAIRBP1, which was initially referred to as RDA288, is involved in mediating the antiapoptotic action of progesterone (P4) in spontaneously immortalized granulosa cells (SIGCs). The present studies were designed to assess the expression and function of PAIRBP1 in the different cell types within the immature rat ovary. Western blot analysis detected PAIRBP1 within whole-cell lysates of immature rat ovaries. Equine gonadotropin (eCG) induced a 3-fold increase in ovarian levels of PAIRBP1. Moreover, human chorionic gonadotropin (hCG), given 48 h after eCG, maintained these elevated levels for up to 4 days. Immunohistochemical analysis confirmed this and further demonstrated that interstitial, thecal, and surface epithelial cells also expressed PAIRBP1. The level of PAIRBP1 in these cells was not influenced by gonadotropin treatment. In contrast, eCG stimulated an increase in PAIRBP1 within the granulosa cells of the developing follicles. Treatment with hCG induced ovulation and ultimately the formation of corpora lutea (CL). High levels of PAIRBP1 expression were also observed within the luteal cells. Immunocytochemical studies on living, nonpermeabilized granulosa and luteal cells revealed that some PAIRBP1 localized to the extracellular surface of these cells. The presence of PAIRBP1 on the extracellular surface was consistent with the observation that an antibody to PAIRBP1 attenuated P4's antiapoptotic action in both granulosa and luteal cells. Although the PAIRBP1 antibody attenuated P4's action, it did not reduce the capacity of cells to specifically bind (3)H-P4. Immunoprecipitation with the PAIRBP1 antibody pulled down the membrane P4 binding protein known as progesterone receptor membrane complex-1 (PGRMC1; rat homolog accession number AJ005837). Taken together, these findings suggest that gonadotropins regulate the expression of PAIRBP1 in granulosa and luteal cells and that PAIRBP1 plays an important role in mediating P4's antiapoptotic action in these ovarian cell types. The exact mechanism of PAIRBP1's action remains to be elucidated, but it may involve an interaction with PGRMC1.
Collapse
Affiliation(s)
- John J Peluso
- Department of Cell Biology, University of Conneticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | | | |
Collapse
|
45
|
Couse JF, Yates MM, Deroo BJ, Korach KS. Estrogen receptor-beta is critical to granulosa cell differentiation and the ovulatory response to gonadotropins. Endocrinology 2005; 146:3247-62. [PMID: 15831568 DOI: 10.1210/en.2005-0213] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The process of granulosa cell differentiation that occurs in preovulatory follicles is dependent on FSH but requires augmentation by estradiol. To determine which estrogen receptor (ER) form mediates the effects of estradiol during gonadotropin-induced follicle growth, differentiation, and rupture, we characterized the response of ERalpha- and ERbeta-null mice to gonadotropin-induced ovulation. Immature mice were treated with an ovulatory regimen of exogenous gonadotropins and tissues were collected at distinct time points for morphological, biochemical, gene expression, and immunohistochemical analyses. Granulosa cells of ERbeta knockout (ERKO) preovulatory follicles exhibited an attenuated response to FSH-induced differentiation, as evident by reduced aromatase activity and estradiol synthesis, and insufficient expression of LH receptor. As a result, betaERKO ovaries were unable to fully respond to an ovulatory bolus of gonadotropin, leading to a reduced rate of follicle rupture; insufficient induction of prostaglandin-synthase 2 and progesterone receptor; an aberrant increase in aromatase activity and plasma estradiol; and incomplete expansion of the cumulus-oocyte complex. Parallel characterization of alphaERKO females indicated a minimal role for ERalpha in granulosa cell differentiation, ovulation, and the concomitant changes in gene expression, although some abnormalities were revealed. These studies demonstrate that ERbeta-mediated estradiol actions are vital to FSH-induced granulosa cell differentiation; and in the absence of ERbeta, preovulatory follicles are deficient in the necessary cellular organization (i.e. antrum and cumulus oocyte complex), enzymatic activity (i.e. capacity to convert androgen precursor to estradiol), and receptor signaling pathways (i.e. LH receptor) to respond to a gonadotropin surge and expel a healthy oocyte.
Collapse
Affiliation(s)
- John F Couse
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|