1
|
Almirón A, Lorenz V, Varayoud J, Durando M, Milesi MM. Perinatal Exposure to Glyphosate or a Commercial Formulation Alters Uterine Mechanistic Pathways Associated with Implantation Failure in Rats. TOXICS 2024; 12:590. [PMID: 39195693 PMCID: PMC11358895 DOI: 10.3390/toxics12080590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Perinatal exposure to a glyphosate-based herbicide (GBH) or its active ingredient, glyphosate (Gly), has been demonstrated to increase implantation failure in rats. This study investigates potential mechanisms of action, analyzing uterine preparation towards the receptive state. Pregnant Wistar rats (F0) were treated orally with GBH or Gly (3.8 and 3.9 mg Gly/kg/day, respectively) from gestational day (GD) 9 until weaning. Adult F1 females became pregnant and uterine samples were collected on GD5 (preimplantation period). Histomorphological uterine parameters were assessed. Immunohistochemistry was applied to evaluate cell proliferation and protein expression of estrogen receptors (ERα and ERβ), cell cycle regulators (PTEN, cyclin G1, p27, and IGF1R-α), and the Wnt5a/β-catenin/FOXA2/Lif pathway. Both GBH and Gly females showed increased stromal proliferation, associated with a high expression of ERs. Dysregulation of PTEN and cyclin G1 was also observed in the Gly group. Reduced gland number was observed in both groups, along with decreased expression of Wnt5a/β-catenin/FOXA2/Lif pathway in the glandular epithelium. Overall, GBH and Gly perinatal exposure disrupted intrinsic uterine pathways involved in endometrial proliferation and glandular function, providing a plausible mechanism for glyphosate-induced implantation failure by compromising uterine receptivity. Similar effects between GBH and Gly suggest the active principle mainly drives the adverse outcomes.
Collapse
Affiliation(s)
- Ailín Almirón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| |
Collapse
|
2
|
Sánchez-Botet A, Quandt E, Masip N, Escribá R, Novellasdemunt L, Gasa L, Li VSW, Raya Á, Clotet J, Ribeiro MPC. Atypical cyclin P regulates cancer cell stemness through activation of the WNT pathway. Cell Oncol (Dordr) 2021; 44:1273-1286. [PMID: 34604945 PMCID: PMC8648692 DOI: 10.1007/s13402-021-00636-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Cancer stem cells represent a cancer cell subpopulation that has been found to be associated with metastasis and chemoresistance. Therefore, it is vital to identify mechanisms regulating cancer stemness. Previously, we have shown that the atypical cyclin P (CCNP), also known as CNTD2, is upregulated in lung and colorectal cancers and is associated with a worse clinical prognosis. Given that other cyclins have been implicated in pluripotency regulation, we hypothesized that CCNP may also play a role in cancer stemness. METHODS Cell line-derived spheroids, ex vivo intestinal organoid cultures and induced-pluripotent stem cells (iPSCs) were used to investigate the role of CCNP in stemness. The effects of CCNP on cancer cell stemness and the expression of pluripotency markers and ATP-binding cassette (ABC) transporters were evaluated using Western blotting and RT-qPCR assays. Cell viability was assessed using a MTT assay. The effects of CCNP on WNT targets were monitored by RNA-seq analysis. Data from publicly available web-based resources were also analyzed. RESULTS We found that CCNP increases spheroid formation in breast, lung and colorectal cancers, and upregulates the expression of stemness (CD44, CD133) and pluripotency (SOX2, OCT4, NANOG) markers. In addition, we found that CCNP promotes resistance to anticancer drugs and induces the expression of multidrug resistance ABC transporters. Our RNA-seq data indicate that CCNP activates the WNT pathway, and that inhibition of this pathway abrogates the increase in spheroid formation promoted by CCNP. Finally, we found that CCNP knockout decreases OCT4 expression in iPSCs, further supporting the notion that CCNP is involved in stemness regulation. CONCLUSION Our results reveal CCNP as a novel player in stemness and as a potential therapeutic target in cancer.
Collapse
Affiliation(s)
- Abril Sánchez-Botet
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, 08195, Sant Cugat del Vallès, Barcelona, Spain
| | - Eva Quandt
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, 08195, Sant Cugat del Vallès, Barcelona, Spain
| | - Núria Masip
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, 08195, Sant Cugat del Vallès, Barcelona, Spain
| | - Rubén Escribá
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L'Hospitalet del Llobregat, Barcelona, Spain
- Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Laura Novellasdemunt
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Laura Gasa
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, 08195, Sant Cugat del Vallès, Barcelona, Spain
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Ángel Raya
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L'Hospitalet del Llobregat, Barcelona, Spain
- Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Josep Clotet
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, 08195, Sant Cugat del Vallès, Barcelona, Spain.
| | - Mariana P C Ribeiro
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, 08195, Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|
3
|
Maternal Neutrophil Depletion Fails to Avert Systemic Lipopolysaccharide-Induced Early Pregnancy Defects in Mice. Int J Mol Sci 2021; 22:ijms22157932. [PMID: 34360700 PMCID: PMC8347248 DOI: 10.3390/ijms22157932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Maternal infection-induced early pregnancy complications arise from perturbation of the immune environment at the uterine early blastocyst implantation site (EBIS), yet the underlying mechanisms remain unclear. Here, we demonstrated in a mouse model that the progression of normal pregnancy from days 4 to 6 induced steady migration of leukocytes away from the uterine decidual stromal zone (DSZ) that surrounds the implanted blastocyst. Uterine macrophages were found to be CD206+ M2-polarized. While monocytes were nearly absent in the DSZ, DSZ cells were found to express monocyte marker protein Ly6C. Systemic endotoxic lipopolysaccharide (LPS) exposure on day 5 of pregnancy led to: (1) rapid (at 2 h) induction of neutrophil chemoattractants that promoted huge neutrophil infiltrations at the EBISs by 24 h; (2) rapid (at 2 h) elevation of mRNA levels of MyD88, but not Trif, modulated cytokines at the EBISs; and (3) dose-dependent EBIS defects by day 7 of pregnancy. Yet, elimination of maternal neutrophils using anti-Ly6G antibody prior to LPS exposure failed to avert LPS-induced EBIS defects allowing us to suggest that activation of Tlr4-MyD88 dependent inflammatory pathway is involved in LPS-induced defects at EBISs. Thus, blocking the activation of the Tlr4-MyD88 signaling pathway may be an interesting approach to prevent infection-induced pathology at EBISs.
Collapse
|
4
|
Sun M, Gao J, Meng T, Liu S, Chen H, Liu Q, Xing X, Zhao C, Luo Y. Cyclin G2 upregulation impairs migration, invasion, and network formation through RNF123/Dvl2/JNK signaling in the trophoblast cell line HTR8/SVneo, a possible role in preeclampsia. FASEB J 2020; 35:e21169. [PMID: 33205477 DOI: 10.1096/fj.202001559rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
Disruption of extravillous trophoblast (EVT) migration and invasion is considered to be responsible for pathological placentation in preeclampsia (PE). Cyclin G2 (CCNG2) is an atypical cyclin that inhibits cell cycle progression. However, its biological function and underlying molecular mechanism in PE are poorly understood. In this study, clinical data demonstrated that CCNG2 was significantly upregulated in PE placenta and associated with invasive EVT dysfunction. Additionally, Ccng2 knockout led to an attenuation of PE-like symptoms in the PE mouse model produced via treatment with NG-nitro-L-arginine methyl ester (L-NAME). In vitro, CCNG2 inhibited the migration, invasion, and endothelial-like network formation of human trophoblast cell line HTR8/SVneo. Mechanically, CCNG2 suppressed JNK-dependent Wnt/PCP signaling and its downstream indicators including epithelial-to-mesenchymal transition (EMT) markers and matrix metalloproteinases (MMPs) via promoting the polyubiquitination degradation of dishevelled 2 (Dvl2) protein in HTR8/SVneo cells. We also discovered that the E3 ligase Ring finger protein 123 (RNF123), as a novel CCNG2 target among HTR8/SVneo cells, interacted with Dvl2 and participated in CCNG2-induced polyubiquitination degradation of Dvl2. Moreover, we verified that the treatment of HTR8/SVneo cells with RNF123-specific siRNA improved polyubiquitination-induced degradation of Dvl2 and the activity of Wnt/PCP-JNK signaling mediated by CCNG2. Taken together, our results reveal that the CCNG2/RNF123/Dvl2/JNK axis may be involved in the pathogenesis and progression of PE through trophoblastic cell function modulation, thus probably providing us with new therapeutic strategies for PE treatment.
Collapse
Affiliation(s)
- Manni Sun
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, PR China
| | - Shenghuan Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Haiying Chen
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, PR China
| | - Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| |
Collapse
|
5
|
Sun M, Liu S, Gao J, Meng T, Xing X, Chen C, Chen H, Luo Y. Cyclin G2 Is Involved in the Proliferation of Placental Trophoblast Cells and Their Interactions with Endothelial Cells. Med Sci Monit 2020; 26:e926414. [PMID: 32941407 PMCID: PMC7521070 DOI: 10.12659/msm.926414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Remodeling of maternal spiral arteries after embryo implantation relies on well-regulated trophoblast functions. Although cyclin G2 (CCNG2) is thought to be involved in placental development and function, its role in trophoblasts and the mechanisms underlying placental development and function remain unclear. The present study investigated the potential role of CCNG2 in trophoblast cell proliferation and their interactions with endothelial cells. Material/Methods CCNG2 levels were modified by stable infection of HTR8/SVneo cells with lentiviruses overexpressing and silencing CCNG2. Cell proliferation was measured using CCK-8 assays. Network formation assays were performed using trophoblasts alone and co-cultured trophoblasts and endothelial cells to measure angiogenesis of trophoblasts and trophoblast-endothelial interactions. Levels of angiogenic factors (VEGF and sFlt-1) in the supernatant were measured by ELISA, and the expression of cell cycle regulatory (cyclin D1) and invasive (MMP2, MMP3, MMP9) markers implicated in artery remodeling were measured by western blotting. Results Ectopic expression of CCNG2 blocked the proliferation of HTR8/SVneo cells, as well as their abilities to form networks and integrate into human umbilical vein endothelial cells, whereas CCNG2 inhibition had the opposite effects. CCNG2 upregulation significantly reduced the expression of VEGF, cyclin D1, MMP2, MMP3, and MMP9, but enhanced the expression of sFlt-1. In contrast, CCNG2 downregulation had the opposite effects. Conclusions CCNG2 plays a critical role in trophoblast proliferation and trophoblast-endothelial cell interactions by significant affecting cell cycle, angiogenic, and invasive markers. CCNG2 may thus be a novel marker for the treatment of placental disorders.
Collapse
Affiliation(s)
- Manni Sun
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Shenghuan Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Chen Chen
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Haiying Chen
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
6
|
Chen Y, Yan R, Li B, Liu J, Liu X, Song W, Zhu C. Silencing CCNG1 protects MPC-5 cells from high glucose-induced proliferation-inhibition and apoptosis-promotion via MDM2/p53 signaling pathway. Int Urol Nephrol 2020; 52:581-593. [PMID: 32016904 DOI: 10.1007/s11255-020-02383-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Diabetic nephropathy (DN) is one of the most serious complications of diabetes mellitus and one of the most important causes of end-stage renal disease, but its pathogenesis has not been elucidated so far, and there is no effective treatment. METHODS DN models of rats and MPC-5 cells were established with streptozotocin (STZ) and high glucose (HG) in vivo and in vitro, respectively. Cell markers desmin and nephrin in foot kidney tissue were detected by Western blot. CCNG1 level in vitro was analyzed by Western blot and immunohistochemistry. CCK-8 assay and flow cytometry were conducted to analyze the effect of CCNG1 on HG-treated MPC-5 cells. Apoptosis-related proteins (Bcl-2, Bax and p53), CCNG1, and MDM2 were determined by RT-qPCR and Western blot. RESULTS The level of nephrin was decreased, while desmin was increased in STZ-induced DN rats and CCNG1 level was also enhanced by STZ. In vitro experiments indicated that MPC-5 cell viability was inhibited and apoptosis was induced by HG and we also found that CCNG1 expression was up-regulated by HG and negatively correlated with MDM2 level. The effects of HG on MPC-5 cell viability, apoptosis, and cell cycle were reversed by silencing CCNG1, but further deteriorated by overexpression of CCNG1. Furthermore, overexpression of MDM2 inhibited HG-induced MPC-5 cell injury and CCNG1 expression. CONCLUSIONS These findings revealed that down-regulation of CCNG1 has protection effects in DN that is mechanistically linked to MDM2-p53 pathways.
Collapse
Affiliation(s)
- Ye Chen
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Rui Yan
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Bo Li
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Jun Liu
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Xiaoxia Liu
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Wenyu Song
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Chunling Zhu
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou Province, China.
| |
Collapse
|
7
|
Quandt E, Ribeiro MPC, Clotet J. Atypical cyclins: the extended family portrait. Cell Mol Life Sci 2020; 77:231-242. [PMID: 31420702 PMCID: PMC6971155 DOI: 10.1007/s00018-019-03262-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Regulation of cell division is orchestrated by cyclins, which bind and activate their catalytic workmates, the cyclin-dependent kinases (CDKs). Cyclins have been traditionally defined by an oscillating (cyclic) pattern of expression and by the presence of a characteristic "cyclin box" that determines binding to the CDKs. Noteworthy, the Human Genome Sequence Project unveiled the existence of several other proteins containing the "cyclin box" domain. These potential "cyclins" have been named new, orphan or atypical, creating a conundrum in cyclins nomenclature. Moreover, although many years have passed after their discovery, the scarcity of information regarding these possible members of the family has hampered the establishment of criteria for systematization. Here, we discuss the criteria that define cyclins and we propose a classification and nomenclature update based on structural features, interactors, and phylogenetic information. The application of these criteria allows to systematically define, for the first time, the subfamily of atypical cyclins and enables the use of a common nomenclature for this extended family.
Collapse
Affiliation(s)
- Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| |
Collapse
|
8
|
de Oliveira V, Schaefer J, Calder M, Lydon JP, DeMayo FJ, Bhattacharya M, Radovick S, Babwah AV. Uterine Gα q/11 signaling, in a progesterone-dependent manner, critically regulates the acquisition of uterine receptivity in the female mouse. FASEB J 2019; 33:9374-9387. [PMID: 31091422 PMCID: PMC6662978 DOI: 10.1096/fj.201900026r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
Abstract
A nonreceptive uterus is a major cause of embryo implantation failure. This study examined the importance of the Gαq/11-coupled class of GPCRs as regulators of uterine receptivity. Mice were created lacking uterine Gαq and Gα11; as a result, signaling by all uterine Gαq/11-coupled receptors was disrupted. Reproductive profiling of the knockout females revealed that on d 4 of pregnancy, despite adequate serum progesterone (P4) levels and normal P4 receptor (PR) expression, there was no evidence of PR signaling. This resulted in the down-regulation of heart and neural crest derivatives expressed 2, Kruppel-like factor 15, and cyclin G1 and the subsequent persistent proliferation of the luminal epithelium. Aquaporin (Aqp) 11 was also potently down-regulated, whereas Aqp5/AQP5 expression persisted, resulting in the inhibition of luminal closure. Hypertrophy of the myometrial longitudinal muscle was also dramatically diminished, likely contributing to the observed implantation failure. Further analyses revealed that a major mechanism via which uterine Gαq/11 signaling induces PR signaling is through the transcriptional up-regulation of leucine-rich repeat-containing GPCR 4 (Lgr4). LGR4 was previously identified as a trigger of PR activation and signaling. Overall, this study establishes that Gαq/11 signaling, in a P4-dependent manner, critically regulates the acquisition of uterine receptivity in the female mouse, and disruption of such signaling results in P4 resistance.-de Oliveira, V., Schaefer, J., Calder, M., Lydon, J. P., DeMayo, F. J., Bhattacharya, M., Radovick, S., Babwah, A. V. Uterine Gαq/11 signaling, in a progesterone-dependent manner, critically regulates the acquisition of uterine receptivity in the female mouse.
Collapse
Affiliation(s)
- Vanessa de Oliveira
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Jennifer Schaefer
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Michele Calder
- Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, The National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Moshmi Bhattacharya
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Sally Radovick
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Andy V. Babwah
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
9
|
He B, Ni Z, Kong S, Lu J, Wang H. Homeobox genes for embryo implantation: From mouse to human. Animal Model Exp Med 2018; 1:14-22. [PMID: 30891542 PMCID: PMC6357426 DOI: 10.1002/ame2.12002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
The proper development of uterus to a state of receptivity and the attainment of implantation competency for blastocyst are 2 indispensable aspects for implantation, which is considered to be a critical event for successful pregnancy. Like many developmental processes, a large number of transcription factors, such as homeobox genes, have been shown to orchestrate this complicated but highly organized physiological process during implantation. In this review, we focus on progress in studies of the role of homeobox genes, especially the Hox and Msx gene families, during implantation, together with subsequent development of post-implantation uterus and related reproductive defects in both mouse models and humans, that have led to better understanding of how implantation is precisely regulated and provide new insights into infertility.
Collapse
Affiliation(s)
- Bo He
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| | - Zhang‐li Ni
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| | - Shuang‐bo Kong
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| | - Jin‐hua Lu
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| | - Hai‐bin Wang
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| |
Collapse
|
10
|
Ingaramo PI, Varayoud J, Milesi MM, Schimpf MG, Muñoz-de-Toro M, Luque EH. Effects of neonatal exposure to a glyphosate-based herbicide on female rat reproduction. Reproduction 2016; 152:403-15. [PMID: 27486271 DOI: 10.1530/rep-16-0171] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022]
Abstract
In this study, we investigated whether neonatal exposure to a glyphosate-based herbicide (GBH) alters the reproductive performance and the molecular mechanisms involved in the decidualization process in adult rats. Newborn female rats received vehicle or 2 mg/kg/day of a GBH on postnatal days (PND) 1, 3, 5 and 7. On PND90, the rats were mated to evaluate (i) the reproductive performance on gestational day (GD) 19 and (ii) the ovarian steroid levels, uterine morphology, endometrial cell proliferation, apoptosis and cell cycle regulators, and endocrine pathways that regulate uterine decidualization (steroid receptors/COUP-TFII/Bmp2/Hoxa10) at the implantation sites (IS) on GD9. The GBH-exposed group showed a significant increase in the number of resorption sites on GD19, associated with an altered decidualization response. In fact, on GD9, the GBH-treated rats showed morphological changes at the IS, associated with a decreased expression of estrogen and progesterone receptors, a downregulation of COUP-TFII (Nr2f2) and Bmp2 mRNA and an increased expression of HOXA10 and the proliferation marker Ki67(Mki67) at the IS. We concluded that alterations in endometrial decidualization might be the mechanism of GBH-induced post-implantation embryo loss.
Collapse
Affiliation(s)
- Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| |
Collapse
|
11
|
Gao F, Bian F, Ma X, Kalinichenko VV, Das SK. Control of regional decidualization in implantation: Role of FoxM1 downstream of Hoxa10 and cyclin D3. Sci Rep 2015; 5:13863. [PMID: 26350477 PMCID: PMC4563553 DOI: 10.1038/srep13863] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023] Open
Abstract
Appropriate regulation of regional uterine stromal cell decidualization in implantation, at the mesometrial triangle and secondary decidual zone (SDZ) locations, is critical for successful pregnancy, although the regulatory mechanisms remain poorly understood. In this regard, the available animal models that would specifically allow mechanistic analysis of site-specific decidualization are strikingly limited. Our study found that heightened expression of FoxM1, a Forkhead box transcription factor, is regulated during decidualization, and its conditional deletion in mice reveals failure of implantation with regional decidualization defects such as a much smaller mesometrial decidua with enlarged SDZ. Analysis of cell cycle progression during decidualization both in vivo and in vitro demonstrates that the loss of FoxM1 elicits diploid cell deficiency with enhanced arrests prior to mitosis and concomitant upregulation of polyploidy. We further showed that Hoxa10 and cyclin D3, two decidual markers, control transcriptional regulation and intra-nuclear protein translocation of FoxM1 in polyploid cells, respectively. Overall, we suggest that proper regional decidualization and polyploidy development requires FoxM1 signaling downstream of Hoxa10 and cyclin D3.
Collapse
Affiliation(s)
- Fei Gao
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Fenghua Bian
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Xinghong Ma
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Vladimir V. Kalinichenko
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sanjoy K. Das
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
12
|
Ma J, Li J, Yang S, Huang K, Dong X, Sui C, Zhang H. P57 and cyclin G1 express differentially in proliferative phase endometrium and early pregnancy decidua. Int J Clin Exp Med 2015; 8:5144-5149. [PMID: 26131088 PMCID: PMC4483989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/20/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE To compare the expression of P57 and Cyclin G1 in proliferation endometrium and early pregnancy decidua. METHODS Human endometrial samples were acquired from normal menstrual cycle women undergoing laparoscopy or hysterectomy for fallopian tubes problems. Decidua were acquired from women in early pregnancy who underwent artificial abortion without any endometrial problems. Twelve were in proliferative phase and 13 were deciduas. P57 and Cyclin G1 mRNA and protein were measured by real-time PCR and Western blot. RESULTS The expression of P57 mRNA and protein were lower in proliferation phase compared with the early pregnancy decidua. Cyclin G1 mRNA and protein expression were slightly higher in decidua than proliferation endometrium but it had no significant difference. CONCLUSION P57 and Cyclin G1 may play an important role in the endometrial change during the embryo implantation.
Collapse
Affiliation(s)
- Junying Ma
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Juan Li
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Shulin Yang
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Kai Huang
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Xiyuan Dong
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Cong Sui
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Medicine College, Tongji Hospital, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
13
|
Tian S, Su X, Qi L, Jin XH, Hu Y, Wang CL, Ma X, Xia HF. MiR-143 and rat embryo implantation. Biochim Biophys Acta Gen Subj 2014; 1850:708-21. [PMID: 25486623 DOI: 10.1016/j.bbagen.2014.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/26/2014] [Accepted: 11/29/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND To study the role of miR-143 during embryo implantation in rat. METHODS MiR-143 expression in rat early pregnancy was detected by Northern blot. The relation between miR-143 and Lifr predicted and confirmed by bioinformatics method, dual-luciferase activity assay, Western blot and immunohistochemistry. The role of miR-143 was detected by MTS, Edu and ranswell chamber assays. RESULTS The expression level of miR-143 on gestation day 5-8 (g.d. 5-8) was higher than on g.d. 3-4 in uteri of pregnant rat. MiR-143 was mainly localized in the superficial stroma/primary decidual zone, luminal and glandular epithelia. The expression of miR-143 was not significantly influenced by pseudopregnancy, but the activation of delayed implantation and experimentally induced decidualization significantly promoted miR-143 expression. Over-expression of miR-143 in human endometrial stromal cells (ESCs) inhibited cell proliferation, migration and invasion. Knockdown of miR-143 promoted cell proliferation and invasion. The results of recombinant luciferase reporters showed that miR-143 could bind to the 3¢-untranslated region (UTR) of leukemia inhibitory factor receptor (Lifr) to inhibit Lifr translation. CONCLUSIONS Uterine miR-143 may be involved in the successful pregnancy, especially during the process of blastocyst implantation through regulating Lifr. GENERAL SIGNIFICANCE This study may have the potential to provide new insights into the understanding of miR-143 function during embryo implantation.
Collapse
Affiliation(s)
- Shi Tian
- Haidian Maternal & Child Health Hospital, Beijing 100080, China
| | - Xing Su
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100730, China
| | - Lu Qi
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China
| | - Xiao-Hua Jin
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100730, China
| | - Yi Hu
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China
| | - Chun-Ling Wang
- Cadre Ward, China Mei-Tan General Hospital, Beijing 100028, China.
| | - Xu Ma
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100730, China.
| | - Hong-Fei Xia
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China; Graduate School, Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
14
|
Nadeem U, Ye G, Salem M, Peng C. MicroRNA-378a-5p targets cyclin G2 to inhibit fusion and differentiation in BeWo cells. Biol Reprod 2014; 91:76. [PMID: 25122062 DOI: 10.1095/biolreprod.114.119065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are expressed abundantly in the placenta throughout pregnancy. We have previously reported that microRNA (miR)-378a-5p promoted trophoblast migration and invasion. To further understand the role of miR-378a-5p during placental development, we investigated whether it may regulate the differentiation of syncytiotrophoblast (STB). Using a choriocarcinoma cell line, BeWo, we found that miR-378a-5p was down-regulated during forskolin-induced STB differentiation. Transfection of a miR-378a-5p mimic into BeWo cells decreased the formation of multinucleated STB, increased E-cadherin, and decreased the expression level of STB marker genes. On the other hand, transfection of anti-miR-378a-5p resulted in an increase in formation of multinucleated STB and expression of STB marker genes, as well as the loss of E-cadherin. Bioinformatic analysis revealed that miR-378a-5p has four potential binding sites at the 3' untranslated region (UTR) of cyclin G2 (CCNG2). Using luciferase reporter assays, we showed that miR-378a-5p decreased the luciferase activity of reporter constructs that contain CCNG2 3' UTR. In addition, miR-378a-5p decreased, whereas anti-miR-378a-5p increased, CCNG2 mRNA levels. Overexpression of CCNG2 increased the expression of syncytin-1 and fusion index and reversed the inhibitory effects of miR-378a-5p. In contrast, silencing of CCNG2 using siRNA increased E-cadherin and decreased syncytin-1 levels. These findings provide initial evidence that CCNG2 promotes STB differentiation and suggest that miR-378a-5p exerts an inhibitory role in STB differentiation, in part, by down-regulating CCNG2 expression, in the BeWo cell model.
Collapse
Affiliation(s)
- Uzma Nadeem
- Department of Biology, York University, Toronto, Canada
| | - Gang Ye
- Department of Biology, York University, Toronto, Canada
| | - Mohamed Salem
- Department of Biology, York University, Toronto, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
15
|
Yuan DZ, Yu LL, Qu T, Zhang SM, Zhao YB, Pan JL, Xu Q, He YP, Zhang JH, Yue LM. Identification and characterization of progesterone- and estrogen-regulated MicroRNAs in mouse endometrial epithelial cells. Reprod Sci 2014; 22:223-34. [PMID: 24925854 DOI: 10.1177/1933719114537714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In endometrial epithelial cells, progesterone (P4) functions in regulating the cell structure and opposing the effects of estrogen. However, the mechanisms of P4 that oppose the effects of estrogen remain unclear. MicroRNAs (miRNAs) are important posttranscriptional regulators that are involved in various physiological and pathological processes. Whether P4 directly induces miRNA expression to antagonize estrogen in endometrial epithelium is unclear. In this study, total RNAs were extracted from endometrial epithelium of ovariectomized mice, which were treated with estrogen alone or a combination of estrogen and P4. MicroRNA high-throughput sequencing with bioinformatics analysis was used to identify P4-induced miRNAs, predict their potential target genes, and analyze their possible biological functions. We observed that 146 mature miRNAs in endometrial epithelial cells were significantly upregulated by P4. These miRNAs were extensively involved in multiple biological processes. The miRNA-145a demonstrated a possible function in the antiproliferative action of P4 on endometrial epithelial cells.
Collapse
Affiliation(s)
- Dong-zhi Yuan
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lin-lin Yu
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ting Qu
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Shi-mao Zhang
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - You-bo Zhao
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jun-li Pan
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qian Xu
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ya-Ping He
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jin-hu Zhang
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Li-min Yue
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR. Physiological and molecular determinants of embryo implantation. Mol Aspects Med 2013; 34:939-80. [PMID: 23290997 DOI: 10.1016/j.mam.2012.12.011] [Citation(s) in RCA: 396] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 01/19/2023]
Abstract
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Luo W, Liu Z, Tan D, Zhang Q, Peng H, Wang Y, Tan Y. Gamma-amino butyric acid and the A-type receptor suppress decidualization of mouse uterine stromal cells by down-regulating cyclin D3. Mol Reprod Dev 2012; 80:59-69. [PMID: 23150429 DOI: 10.1002/mrd.22137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 11/07/2012] [Indexed: 12/16/2022]
Abstract
Uterine decidualization, characterized by stromal cell proliferation and differentiation into polyploid decidual cells, is critical to the establishment of pregnancy in mice, although the mechanism underlying this process remains poorly understood. This study is the first to investigate the expression of gamma-amino butyric acid (GABA) and the GABA A-type receptor π subunit (GABPR) in the early-pregnancy mouse uterus and their roles in decidualization. The expression of GABRP was detected from Day 4 to 8 of pregnancy. The effects of GABA and GABA A-type receptor on cell proliferation and apoptosis were investigated using the Cell Titer 96® AQueous One Solution Cell Proliferation Assay and flow cytometry. The levels of cyclin D3 protein were measured in cultured stromal cells artificially induced to undergo decidualization, and treated with GABA and a GABA A-type receptor agonist or antagonist, respectively, at the same time. mRNA expression of gabrp in implantation sites was lower than that in inter-implanted sites. GABA and GABRP protein were localized in the luminal and glandular epithelium, stromal cells, and decidual cells. In vitro, GABPR protein level was decreased in cultured stromal cells during the decidualization process. The addition of GABA and the GABA A-type receptor agonist Muscimol inhibited stromal cell proliferation, promoted apoptosis, and arrested cells in S-phase, followed by decreased expression of cyclin D3. These results show that in mice, GABA was actively involved in inhibiting stromal cell proliferation and suppresses decidualization progress through GABA A-type receptors by down-regulating cyclin D3 level.
Collapse
Affiliation(s)
- Wenping Luo
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Mid-gestational gene expression profile in placenta and link to pregnancy complications. PLoS One 2012; 7:e49248. [PMID: 23145134 PMCID: PMC3492272 DOI: 10.1371/journal.pone.0049248] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/04/2012] [Indexed: 12/25/2022] Open
Abstract
Despite the importance of placenta in mediating rapid physiological changes in pregnancy, data on temporal dynamics of placental gene expression are limited. We completed the first transcriptome profiling of human placental gene expression dynamics (GeneChips, Affymetrix®; ∼47,000 transcripts) from early to mid-gestation (n = 10; gestational weeks 5–18) and report 154 genes with significant transcriptional changes (ANOVA, FDR P<0.1). TaqMan RT-qPCR analysis (n = 43; gestational weeks 5–41) confirmed a significant (ANOVA and t-test, FDR P<0.05) mid-gestational peak of placental gene expression for BMP5, CCNG2, CDH11, FST, GATM, GPR183, ITGBL1, PLAGL1, SLC16A10 and STC1, followed by sharp decrease in mRNA levels at term (t-test, FDR P<0.05). We hypothesized that normal course of late pregnancy may be affected when genes characteristic to mid-gestation placenta remain highly expressed until term, and analyzed their expression in term placentas from normal and complicated pregnancies [preeclampsia (PE), n = 12; gestational diabetes mellitus (GDM), n = 12; small- and large-for-gestational-age newborns (SGA, LGA), n = 12+12]. STC1 (stanniocalcin 1) exhibited increased mRNA levels in all studied complications, with the most significant effect in PE- and SGA-groups (t-test, FDR P<0.05). In post-partum maternal plasma, the highest STC1 hormone levels (ELISA, n = 129) were found in women who had developed PE and delivered a SGA newborn (median 731 vs 418 pg/ml in controls; ANCOVA, P = 0.00048). Significantly higher expression (t-test, FDR P<0.05) of CCNG2 and LYPD6 accompanied with enhanced immunostaining of the protein was detected in placental sections of PE and GDM cases (n = 15). Our study demonstrates the importance of temporal dynamics of placental transcriptional regulation across three trimesters of gestation. Interestingly, many genes with high expression in mid-gestation placenta have also been implicated in adult complex disease, promoting the discussion on the role of placenta in developmental programming. The discovery of elevated maternal plasma STC1 in pregnancy complications warrants further investigations of its potential as a biomarker.
Collapse
|
19
|
Sroga JM, Ma X, Das SK. Developmental regulation of decidual cell polyploidy at the site of implantation. Front Biosci (Schol Ed) 2012; 4:1475-86. [PMID: 22652887 DOI: 10.2741/s347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polyploidy has been reported in several animal cells, as well as within humans; however the mechanism of developmental regulation of this process remains poorly understood. Polyploidy occurs in normal biologic processes as well as in pathologic states. Decidual polyploid cells are terminally differentiated cells with a critical role in continued uterine development during embryo implantation and growth. Here we review the mechanisms involved in polyploidy cell formation in normal developmental processes, with focus on known regulatory aspects in decidual cells.
Collapse
Affiliation(s)
- Julie M Sroga
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
20
|
Liu F, Gao X, Yu H, Yuan D, Zhang J, He Y, Yue L. The role of progesterone and its receptor on cyclin G1 expression in endometrial carcinoma cells. Reprod Sci 2012; 19:1205-10. [PMID: 22649121 DOI: 10.1177/1933719112446073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cyclin G1 protein is expressed in normal endometrial epithelial cells in a progesterone-dependent manner. It is an important mediator of the inhibiting effect of progesterone on cell proliferation. Moreover, the expression of cyclin G1 is also found to be decreased in human endometrial carcinoma cells (ECCs). To study the mechanism of decrease in the expression levels of cyclin G1, 3 ECC cell lines, Ishikawa, HEC-1-B, and KLE cells were treated with progesterone (P(4)). The KLE cells, in which progesterone receptor (PR) expression was absent, were transfected with PR-expressing plasmid before treatment with P(4). The results showed that cyclin G1 expression increased in Ishikawa and HEC-1-B cells after treatment with P(4), additionally the cell proliferation was suppressed but not in KLE cells. When the PR-expressing plasmid was transfected into KLE cells, the effect of P(4) was restored. Our data suggest that the deficiency of progesterone and its receptors is an important cause of the decreased expression of cyclin G1 in endometrial carcinoma, which may account for carcinogenesis and development of endometrial carcinomas.
Collapse
Affiliation(s)
- Fang Liu
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Ye XX, Liu CB, Chen JY, Tao BH, Zhi-Yi C. The expression of cyclin G in nasopharyngeal carcinoma and its significance. Clin Exp Med 2012; 12:21-24. [PMID: 21688120 DOI: 10.1007/s10238-011-0142-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 05/18/2011] [Indexed: 11/25/2022]
Abstract
To investigate the expression of cyclin G1, cyclin G2 in nasopharyngeal carcinoma (NPC) cell lines and its significance. The protein expression of cyclin G1, cyclin G2 in NPC cell lines of different differentiation degree (HNE2, CNE1) was detected by indirect immunofluorescence. The mRNA expression of cyclin G1, cyclin G2 in HNE2 and CNE1 was measured with RT-PCR. The cyclin G1 expression in HNE2 and CNE1 was weak, and cyclin G2 expression in the cytoplasm near cell membrane was strong, continuous, and homogeneous. The expression level of cyclin G1-mRNA in HNE2 was 2.097 ± 0.262, which was significantly higher than CNE1 (0.997 ± 0.286, P < 0.05); the expression level of cyclin G2-mRNA in HNE2 was 0.708 ± 0.107, which was significantly lower than CNE1 (1.216 ± 0.037, P < 0.05). Abnormal expression of cyclin G was closely related to tumor differentiation, the origin, and progression of NPC.
Collapse
Affiliation(s)
- Xing-Xing Ye
- Department of Otolaryngology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
22
|
Ma X, Gao F, Rusie A, Hemingway J, Ostmann AB, Sroga JM, Jegga AG, Das SK. Decidual cell polyploidization necessitates mitochondrial activity. PLoS One 2011; 6:e26774. [PMID: 22046353 PMCID: PMC3201964 DOI: 10.1371/journal.pone.0026774] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/03/2011] [Indexed: 11/18/2022] Open
Abstract
Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation.
Collapse
Affiliation(s)
- Xinghong Ma
- Division of Reproductive Sciences, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Salker MS, Christian M, Steel JH, Nautiyal J, Lavery S, Trew G, Webster Z, Al-Sabbagh M, Puchchakayala G, Föller M, Landles C, Sharkey AM, Quenby S, Aplin JD, Regan L, Lang F, Brosens JJ. Deregulation of the serum- and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nat Med 2011; 17:1509-13. [PMID: 22001908 DOI: 10.1038/nm.2498] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/30/2011] [Indexed: 11/09/2022]
Abstract
Infertility and recurrent pregnancy loss (RPL) are prevalent but distinct causes of reproductive failure that often remain unexplained despite extensive investigations. Analysis of midsecretory endometrial samples revealed that SGK1, a kinase involved in epithelial ion transport and cell survival, is upregulated in unexplained infertility, most prominently in the luminal epithelium, but downregulated in the endometrium of women suffering from RPL. To determine the functional importance of these observations, we first expressed a constitutively active SGK1 mutant in the luminal epithelium of the mouse uterus. This prevented expression of certain endometrial receptivity genes, perturbed uterine fluid handling and abolished embryo implantation. By contrast, implantation was unhindered in Sgk1-/- mice, but pregnancy was often complicated by bleeding at the decidual-placental interface and fetal growth retardation and subsequent demise. Compared to wild-type mice, Sgk1-/- mice had gross impairment of pregnancy-dependent induction of genes involved in oxidative stress defenses. Relative SGK1 deficiency was also a hallmark of decidualizing stromal cells from human subjects with RPL and sensitized these cells to oxidative cell death. Thus, depending on the cellular compartment, deregulated SGK1 activity in cycling endometrium interferes with embryo implantation, leading to infertility, or predisposes to pregnancy complications by rendering the feto-maternal interface vulnerable to oxidative damage.
Collapse
Affiliation(s)
- Madhuri S Salker
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang M, Doucette JR, Nazarali AJ. Conditional Tet-regulated over-expression of Hoxa2 in CG4 cells increases their proliferation and delays their differentiation into oligodendrocyte-like cells expressing myelin basic protein. Cell Mol Neurobiol 2011; 31:875-86. [PMID: 21479584 PMCID: PMC11498525 DOI: 10.1007/s10571-011-9685-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Hoxa2 gene was reported to be expressed by oligodendrocytes (OLs) and down-regulated at the terminal differentiation stage during oligodendrogenesis in mice (Nicolay et al. 2004b). To further investigate the role of Hoxa2 in oligodendroglial development, a tetracycline regulated controllable expression system was utilized to establish a stable cell line (CG4-SHoxa2 [sense Hoxa2]), where the expression level of Hoxa2 gene could be up-regulated. The impact of Hoxa2 over-expression on the proliferation and differentiation of CG4-SHoxa2 cells was investigated. Up-regulation of Hoxa2 increased the proliferation of CG4-SHoxa2 cells. The mRNA levels of PDGFαR (platelet-derived growth factor [PDGF] alpha receptor), which is expressed by OL progenitor cells, were not different in CG4-SHoxa2 cells compared to wild-type CG4 cells. Semi-quantitative RT-PCR revealed that the mRNA levels of myelin basic protein (MBP) was lower in CG4-SHoxa2 cells than in wild-type CG4 cells indicating the differentiation of CG4-SHoxa2 cells was delayed when the Hoxa2 gene was up-regulated.
Collapse
Affiliation(s)
- Monica Wang
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, SK S7N 5C9 Canada
| | - J. Ronald Doucette
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK Canada
| | - Adil J. Nazarali
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, SK S7N 5C9 Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK Canada
| |
Collapse
|
25
|
Das SK. Regional development of uterine decidualization: molecular signaling by Hoxa-10. Mol Reprod Dev 2010; 77:387-96. [PMID: 19921737 DOI: 10.1002/mrd.21133] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uterine decidualization, a key event in implantation, is critically controlled by stromal cell proliferation and differentiation. Although the molecular mechanism that controls this event is not well understood, the general consensus is that the factors derived locally at the site of implantation influence aspects of decidualization. Hoxa-10, a developmentally regulated homeobox transcription factor, is highly expressed in decidualizing stromal cells, and targeted deletion of Hoxa-10 in mice shows severe decidualization defects, primarily due to the reduced stromal cell responsiveness to progesterone (P(4)). While the increased stromal cell proliferation is considered to be an initiator of decidualization, the establishment of a full-grown functional decidua appears to depend on the aspects of regional proliferation and differentiation. In this regard, this article provides an overview of potential signaling mechanisms mediated by Hoxa-10 that can influence a host of genes and cell functions necessary for propagating regional decidual development.
Collapse
Affiliation(s)
- Sanjoy K Das
- Reproductive Sciences, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| |
Collapse
|
26
|
Lim HJ, Wang H. Uterine disorders and pregnancy complications: insights from mouse models. J Clin Invest 2010; 120:1004-15. [PMID: 20364098 DOI: 10.1172/jci41210] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debatable whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipulated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identified many similarities in female reproduction between the two species. This Review brings together information from studies using animal models, in particular mouse models, that shed light on normal and pathologic aspects of uterine biology and pregnancy complications.
Collapse
Affiliation(s)
- Hyunjung Jade Lim
- Department of Biomedical Science and Technology, IBST, RCTC, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701, Korea.
| | | |
Collapse
|
27
|
Hirota Y, Daikoku T, Tranguch S, Xie H, Bradshaw HB, Dey SK. Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J Clin Invest 2010; 120:803-15. [PMID: 20124728 DOI: 10.1172/jci40051] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 12/09/2009] [Indexed: 01/26/2023] Open
Abstract
Many signaling pathways that contribute to tumorigenesis are also functional in pregnancy, although they are dysregulated in the former and tightly regulated in the latter. Transformation-related protein 53 (Trp53), which encodes p53, is a tumor suppressor gene whose mutation is strongly associated with cancer. However, its role in normal physiological processes, including female reproduction, is poorly understood. Mice that have a constitutive deletion of Trp53 exhibit widespread development of carcinogenesis at early reproductive ages, compromised spermatogenesis, and fetal exencephaly, rendering them less amenable to studying the role of p53 in reproduction. To overcome this obstacle, we generated mice that harbor a conditional deletion of uterine Trp53 and examined pregnancy outcome in females with this genotype. These mice had normal ovulation, fertilization, and implantation; however, postimplantation uterine decidual cells showed terminal differentiation and senescence-associated growth restriction with increased levels of phosphorylated Akt and p21, factors that are both known to participate in these processes in other systems. Strikingly, uterine deletion of Trp53 increased the incidence of preterm birth, a condition that was corrected by oral administration of the selective COX2 inhibitor celecoxib. We further generated evidence to suggest that deletion of uterine Trp53 induces preterm birth through a COX2/PGF synthase/PGF(2alpha) pathway. Taken together, our observations underscore what we believe to be a new critical role of uterine p53 in parturition.
Collapse
Affiliation(s)
- Yasushi Hirota
- The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Ohio, USA
| | | | | | | | | | | |
Collapse
|
28
|
Das SK. Cell cycle regulatory control for uterine stromal cell decidualization in implantation. Reproduction 2009; 137:889-99. [PMID: 19307426 DOI: 10.1530/rep-08-0539] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Uterine stromal cell decidualization is integral to successful embryo implantation, which is a gateway to pregnancy establishment. This process is characterized by stromal cell proliferation and differentiation into decidual cells with polyploidy. The molecular mechanisms that are involved in these events remain poorly understood. The current concept is that locally induced factors with the onset of implantation influence uterine stromal cell proliferation and/or differentiation through modulation of core cell cycle regulators. This review will aim to address the currently available knowledge on interaction between growth factor/homeobox and cell cycle regulatory signaling in the progression of various aspects of decidualization.
Collapse
Affiliation(s)
- Sanjoy K Das
- Reproductive Sciences, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| |
Collapse
|
29
|
Activation of the insulin receptor (IR) by insulin and a synthetic peptide has different effects on gene expression in IR-transfected L6 myoblasts. Biochem J 2008; 412:435-45. [DOI: 10.1042/bj20080279] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Single-chain peptides have been recently produced that display either mimetic or antagonistic properties against the insulin and IGF-1 (insulin-like growth factor 1) receptors. We have shown previously that the insulin mimetic peptide S597 leads to significant differences in receptor activation and initiation of downstream signalling cascades despite similar binding affinity and in vivo hypoglycaemic potency. It is still unclear how two ligands can initiate different signalling responses through the IR (insulin receptor). To investigate further how the activation of the IR by insulin and S597 differentially activates post-receptor signalling, we studied the gene expression profile in response to IR activation by either insulin or S597 using microarray technology. We found striking differences between the patterns induced by these two ligands. Most remarkable was that almost half of the genes differentially regulated by insulin and S597 were involved in cell proliferation and growth. Insulin either selectively regulated the expression of these genes or was a more potent regulator. Furthermore, we found that half of the differentially regulated genes interact with the genes involved with the MAPK (mitogen-activated protein kinase) pathway. These findings support our signalling results obtained previously and confirm that the main difference between S597 and insulin stimulation resides in the activation of the MAPK pathway. In conclusion, we show that insulin and S597 acting via the same receptor differentially affect gene expression in cells, resulting in a different mitogenicity of the two ligands, a finding which has critical therapeutic implications.
Collapse
|
30
|
Mangale SS, Modi DN, Reddy KVR. Identification of genes regulated by an interaction between alphavbeta3 integrin and vitronectin in murine decidua. Reprod Fertil Dev 2008; 20:311-9. [PMID: 18255021 DOI: 10.1071/rd07155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 11/15/2007] [Indexed: 11/23/2022] Open
Abstract
The delicate balance between embryo invasion and suppression of maternal immune rejection requires a fully functional decidua in species with haemochorial placenta. Our understanding of the decidual function is very limited due to the molecular and cellular complexity involved in decidualisation. The cell adhesion molecule alpha(v)beta(3) integrin and its ligand vitronectin are upregulated in the mouse decidua during mid-pregnancy. The implications of interactions between alpha(v)beta(3) and vitronectin in regulating decidual function are not known. In the present study, interactions between alpha(v)beta(3) and vitronectin in the decidual cells of the mouse were blocked in vitro and effects on cell fate were evaluated by studying the differentially regulated genes by cDNA array and real-time polymerase chain reaction (PCR). The results indicate that expression of various genes involved in apoptotic and cell cycle pathways, as well as cytokine receptors, was deranged. Signalling through alpha(v)beta(3) seems to be important to maintain a balance between cell proliferation and apoptosis, along with the modulation of inflammatory responses of decidual cells.
Collapse
Affiliation(s)
- S S Mangale
- Department of Immunology, National Institute for Research in Reproductive Health (ICMR), J. M. Street, Parel, Mumbai 400012, India
| | | | | |
Collapse
|
31
|
Le XF, Arachchige-Don AS, Mao W, Horne MC, Bast RC. Roles of human epidermal growth factor receptor 2, c-jun NH2-terminal kinase, phosphoinositide 3-kinase, and p70 S6 kinase pathways in regulation of cyclin G2 expression in human breast cancer cells. Mol Cancer Ther 2008; 6:2843-57. [PMID: 18025271 DOI: 10.1158/1535-7163.mct-07-0109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The CCNG2 gene that encodes the unconventional cyclin G2 was one of the few genes up-regulated on anti-human epidermal growth factor receptor 2 (HER2) antibody-mediated inhibition of HER2 signaling. The purpose of this study was to explore how HER2 signaling modulates cyclin G2 expression and the effect of elevated cyclin G2 on breast cancer cell growth. Treatment of breast cancer cells that overexpress HER2 (BT474, SKBr3, and MDAMB453) with the anti-HER2 antibody trastuzumab or its precursor 4D5 markedly up-regulated cyclin G2 mRNA in vitro and in vivo, as shown by real-time PCR. Immunoblot and immunofluorescence analysis with specific antibodies against cyclin G2 showed that anti-HER2 antibody significantly increased cyclin G2 protein expression and translocated the protein to the nucleus. Trastuzumab was not able to induce cyclin G2 expression in cells weakly expressing HER2 (MCF7) or in cells that had developed resistance to trastuzumab. Enforced expression of HER2 in T47D and MDAMB435 breast cancer cells reduced cyclin G2 levels. Collectively, these data suggest that HER2-mediated signaling negatively regulates cyclin G2 expression. Inhibition of phosphoinositide 3-kinase (LY294002), c-jun NH(2)-terminal kinase (SP600125), and mammalian target of rapamycin (mTOR)/p70 S6 kinase (p70S6K; rapamycin) increased cyclin G2 expression. In contrast, treatment with inhibitors of p38 mitogen-activated protein kinase (SB203580), mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 (U0126), or phospholipase Cgamma (U73122) did not affect cyclin G2 expression. Anti-HER2 antibody in combination with LY294002, rapamycin, or SP600125 induced greater cyclin G2 expression than either agent alone. Ectopic expression of cyclin G2 inhibited cyclin-dependent kinase 2 activity, Rb phosphorylation, cell cycle progression, and cellular proliferation without affecting p27(Kip1) expression. Thus, cyclin G2 expression is modulated by HER2 signaling through multiple pathways including phosphoinositide 3-kinase, c-jun NH(2)-terminal kinase, and mTOR signaling. The negative effects of cyclin G2 on cell cycle and cell proliferation, which occur without altering p27(Kip1) levels, may contribute to the ability of trastuzumab to inhibit breast cancer cell growth.
Collapse
Affiliation(s)
- Xiao-Feng Le
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
32
|
Browne H, Taylor H. HOXA10 expression in ectopic endometrial tissue. Fertil Steril 2006; 85:1386-90. [PMID: 16647375 DOI: 10.1016/j.fertnstert.2005.10.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 10/05/2005] [Accepted: 10/05/2005] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To evaluate HOXA10 expression in endometriosis. DESIGN Laboratory study using human tissue. SETTING Academic research center. PATIENT(S) Eutopic endometrial tissue was collected from 20 fertile women without endometriosis. Ectopic endometrial tissues from pelvic peritoneum, ovary, and lung parenchyma were collected from 20 women undergoing surgery for endometriosis. INTERVENTION(S) HOXA10 protein expression and localization with immunohistochemistry. MAIN OUTCOME MEASURE(S) Quantitative analysis of HOXA10 expression, according to H score. RESULT(S) Both eutopic and ectopic endometrial tissue expressed HOXA10. Ectopic endometrial tissue had lower stromal HOXA10 expression compared with eutopic endometrium. The mean H score for stromal expression of HOXA10 was 7.6 in eutopic endometrium and 1.3 in ectopic endometrial tissue. Glandular epithelium from both eutopic and ectopic endometrium had similarly low HOXA10 expression. HOXA10 was also expressed at low levels in lung parenchyma containing endometriosis and in ovarian endometriomas. CONCLUSION(S) HOXA10 is expressed in endometriosis at locations outside of the normal HOXA10 expression domain, where it is likely necessary to impart endometrial developmental identity on endometriosis. HOXA10 might be necessary for "de novo" endometrial development. However, the diminished expression of HOXA10 in ectopic endometrium might not allow for normal endometrial development and might contribute to the pathogenesis of endometriosis by creating P resistance.
Collapse
Affiliation(s)
- Hyacinth Browne
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
33
|
Ray S, Hou X, Zhou HE, Wang H, Das SK. Bip is a molecular link between the phase I and phase II estrogenic responses in uterus. Mol Endocrinol 2006; 20:1825-37. [PMID: 16574737 PMCID: PMC4269476 DOI: 10.1210/me.2006-0046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Uterine estrogenic actions are biphasic, early (phase I) and late (phase II) responses. However, the molecular linkage between these phases is not known. Although certain phase I responses are considered estrogen receptor (ER)alpha and ERbeta independent, the phase II responses are ERalpha dependent. We previously observed that among several genes Bip is induced by estrogen in the mouse uterus in an ER-independent manner as a phase I response. Bip is a member of the chaperone family and plays roles in protein processing and confers cellular protection. However, its role in estrogen-dependent uterine biology is unknown. We show here a new function of Bip in regulating estrogen signaling in the uterus. Bip, induced during the phase I responses, molecularly interacts with ERalpha required for estrogen-mediated phase II growth responses. Utilizing in vivo and in vitro model systems, we found that adenovirus-driven suppression of Bip antagonizes ERalpha-mediated uterine gene transcription. Importantly, down-regulation of Bip compromises estrogen-dependent phase II growth responses with sustained phase I responses. In conclusion, Bip is critical for coordinating estrogen-elicited biphasic responses and serves as a molecular link between ERalpha-independent and -dependent estrogenic responses in the uterus.
Collapse
Affiliation(s)
- Sanhita Ray
- Division of Reproductive and Developmental Biology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2678, USA
| | | | | | | | | |
Collapse
|
34
|
Rahman MA, Li M, Li P, Wang H, Dey SK, Das SK. Hoxa-10 deficiency alters region-specific gene expression and perturbs differentiation of natural killer cells during decidualization. Dev Biol 2005; 290:105-17. [PMID: 16337623 PMCID: PMC4265803 DOI: 10.1016/j.ydbio.2005.11.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 11/07/2005] [Accepted: 11/09/2005] [Indexed: 12/01/2022]
Abstract
Uterine decidualization, a key event for successful implantation, is critically controlled by stromal cell proliferation and differentiation. One hallmark event of decidualization is the acquisition of stromal cell polyploidy through terminal differentiation at the anti-mesometrial pole of the implantation site. Hoxa-10, a developmentally regulated homeobox transcription factor, is highly expressed in decidualizing stromal cells, and targeted deletion of Hoxa-10 in mice shows severe decidualization defects, primarily due to reduced stromal cell responsiveness to progesterone. However, the underlying molecular mechanism by which Hoxa-10 regulates this process remains largely unknown. Here, we show that Hoxa-10 deficiency confers diminished core cell cycle activity during stromal cell proliferation without disturbing polyploidy, suggesting that these events depend on local regulators that impact cell cycle machinery. To further address this question, we compared global gene expression profiles in uteri of wild-type and Hoxa-10(-/-) mice after inducing decidualization. Our studies show two major aspects of decidualization downstream of Hoxa-10. First, Hoxa-10 deficiency results in the aberrant region-specific expression of cyclin-dependent kinase-4 (cdk4) and -6 (cdk6), growth differentiation factor 10 (Gdf10), hepatocyte growth factor (Hgf) and Snail2. Second, Hoxa-10 deficiency compromises natural killer (NK) cell differentiation without altering trafficking of NK precursor cells during decidualization. Collectively, the results provide evidence that Hoxa-10 influences a host of genes and cell functions necessary for propagating normal decidual development during the post-implantation period.
Collapse
Affiliation(s)
- Mohammad A. Rahman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Meiling Li
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ping Li
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Haibin Wang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sudhansu K. Dey
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sanjoy K. Das
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Corresponding author. Division of Reproductive and Developmental Biology, D-4105 Medical Center North, Department of Pediatrics, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232-2678, USA. Fax: +1 615 322 8397. (S.K. Das)
| |
Collapse
|