1
|
Mamedova E, Dmytriyeva O, Rekling JC. Thyrotropin-releasing hormone induces Ca 2+ increase in a subset of vagal nodose ganglion neurons. Neuropeptides 2022; 94:102261. [PMID: 35704969 DOI: 10.1016/j.npep.2022.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022]
Abstract
Thyrotropin-releasing hormone (TRH) plays a central role in metabolic homeostasis, and single-cell sequencing has recently demonstrated that vagal sensory neurons in the nodose ganglion express thyrotropin-releasing hormone receptor 1 (TRHR1). Here, in situ hybridization validated the presence of TRHR1 in nodose ganglion (NG) neurons and immunohistochemistry showed that the receptor is expressed at the protein level. However, it has yet to be demonstrated whether TRHR1 is functionally active in NG neurons. Using NG explants transduced with a genetically encoded Ca2+ indicator (GECI), we show that TRH increases Ca2+ in a subset of NG neurons. TRH-induced Ca2+ transients were briefer compared to those induced by CCK-8, 2-Me-5-HT and ATP. Blocking Na+ channels with TTX or Na+ substitution did not affect the TRH-induced Ca2+ increase, but blocking Gq signaling with YM-254890 abolished the TRH-induced response. Field potential recordings from the vagus nerve in vitro showed an increase in response to TRH, suggesting that TRH signaling produces action potentials in NG neurons. These observations indicate that TRH activates a small group of NG neurons, involving Gq pathways, and we hypothesize that these neurons may play a role in gut-brain signaling.
Collapse
Affiliation(s)
- Esmira Mamedova
- Department of Neuroscience, University of Copenhagen, Panum - 24.4, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens C Rekling
- Department of Neuroscience, University of Copenhagen, Panum - 24.4, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
2
|
Zhang Z, Machado F, Zhao L, Heinen CA, Foppen E, Ackermans MT, Zhou J, Bisschop PH, Boelen A, Fliers E, Kalsbeek A. Administration of Thyrotropin-Releasing Hormone in the Hypothalamic Paraventricular Nucleus of Male Rats Mimics the Metabolic Cold Defense Response. Neuroendocrinology 2018; 107:267-279. [PMID: 30092582 PMCID: PMC6390456 DOI: 10.1159/000492785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cold exposure increases thyrotropin-releasing hormone (TRH) expression primarily in the hypothalamic paraventricular nucleus (PVN). The PVN is a well-known hypothalamic hub in the control of energy metabolism. TRH terminals and receptors are found on PVN neurons. We hypothesized that TRH release in the PVN plays an important role in the control of thermogenesis and energy mobilization during cold exposure. METHODS Male Wistar rats were exposed to a cold environment (4°C) or TRH retrodialysis in the PVN for 2 h. We compared the effects of cold exposure and TRH administration in the PVN on plasma glucose, corticosterone, and thyroid hormone concentrations, body temperature, locomotor activity, as well as metabolic gene expression in the liver and brown adipose tissue. RESULTS Cold exposure increased body temperature, locomotor activity, and plasma corticosterone concentrations, but blood glucose concentrations were similar to that of room temperature control animals. TRH administration in the PVN also promptly increased body temperature, locomotor activity and plasma corticosterone concentrations. However, TRH administration in the PVN markedly increased blood glucose concentrations and endogenous glucose production (EGP) compared to saline controls. Selective hepatic sympathetic or parasympathetic denervation reduced the TRH-induced increase in glucose concentrations and EGP. Gene expression data indicated increased gluconeogenesis in liver and lipolysis in brown adipose tissue, both after cold exposure and TRH administration. CONCLUSIONS We conclude that TRH administration in the rat PVN largely mimics the metabolic and behavioral changes induced by cold exposure indicating a potential link between TRH release in the PVN and cold defense.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Amsterdam, the Netherlands
| | - Frederico Machado
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Amsterdam, the Netherlands
| | - Li Zhao
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Amsterdam, the Netherlands
| | - Charlotte A Heinen
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mariette T Ackermans
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jiangning Zhou
- CAS Key Laboratory of Brain Function and Disease, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anita Boelen
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Amsterdam, the
| |
Collapse
|
3
|
Grottelli S, Ferrari I, Pietrini G, Peirce MJ, Minelli A, Bellezza I. The Role of Cyclo(His-Pro) in Neurodegeneration. Int J Mol Sci 2016; 17:E1332. [PMID: 27529240 PMCID: PMC5000729 DOI: 10.3390/ijms17081332] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases may have distinct genetic etiologies and pathological manifestations, yet share common cellular mechanisms underpinning neuronal damage and dysfunction. These cellular mechanisms include excitotoxicity, calcium dysregulation, oxidative damage, ER stress and neuroinflammation. Recent data have identified a dual role in these events for glial cells, such as microglia and astrocytes, which are able both to induce and to protect against damage induced by diverse stresses. Cyclo(His-Pro), a cyclic dipeptide derived from the hydrolytic removal of the amino-terminal pyroglutamic acid residue of the hypothalamic thyrotropin-releasing hormone, may be important in regulating the nature of the glial cell contribution. Cyclo(His-Pro) is ubiquitous in the central nervous system and is a key substrate of organic cation transporters, which are strongly linked to neuroprotection. The cyclic dipeptide can also cross the brain-blood-barrier and, once in the brain, can affect diverse inflammatory and stress responses by modifying the Nrf2-NF-κB signaling axis. For these reasons, cyclo(His-Pro) has striking potential for therapeutic application by both parenteral and oral administration routes and may represent an important new tool in counteracting neuroinflammation-based degenerative pathologies. In this review, we discuss the chemistry and biology of cyclo(His-Pro), how it may interact with the biological mechanisms driving neurodegenerative disease, such as amyotrophic lateral sclerosis, and thereby act to preserve or restore neuronal function.
Collapse
Affiliation(s)
- Silvia Grottelli
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| | - Ilaria Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano ed Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Grazia Pietrini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano ed Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Matthew J Peirce
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| | - Alba Minelli
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| | - Ilaria Bellezza
- Dipartimento di Medicina Sperimentale, Università di Perugia, Polo Unico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| |
Collapse
|
4
|
Devanathan S, Whitehead TD, Fettig N, Gropler RJ, Nemanich S, Shoghi KI. Sexual dimorphism in myocardial acylcarnitine and triglyceride metabolism. Biol Sex Differ 2016; 7:25. [PMID: 27182432 PMCID: PMC4866274 DOI: 10.1186/s13293-016-0077-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/24/2016] [Indexed: 01/22/2023] Open
Abstract
Background Cardiovascular disease is the leading cause of death among diabetic patients. Importantly, recent data highlight the apparent sexual dimorphism in the pathogenesis of cardiovascular disease in diabetics with respect to both frequency- and age-related risk factors. The disposition to cardiovascular disease among diabetic patients has been attributed, at least in part, to excess lipid supply to the heart culminating in lipotoxicity of the heart and downstream derangements. A confounding factor in obese animal models of diabetes is that increased peripheral lipid availability to the heart can induce cardio-metabolic remodeling independent of the underlying pathophysiology of diabetes, thus masking the diabetic phenotype. To that end, we hypothesized that the use of non-obese diabetic (NOD) animal models will reveal metabolic signatures of diabetes in a sex-specific manner. Methods To test this hypothesis, male and female NOD Goto-Kakizaki (GK) rats were used to assess the expression profile of 84 genes involved in lipid metabolism. In parallel, targeted lipidomics analysis was performed to characterize sex differences in homeostasis of non-esterified fatty acids (NEFA), acylcarnitines (AC), and triglycerides (TG). Results Our analysis revealed significant sex differences in the expression of a broad range of genes involved in transport, activation, and utilization of lipids. Furthermore, NOD male rats exhibited enhanced oxidative metabolism and accumulation of TG, whereas female NOD rats exhibited reduced TG content coupled with accumulation of AC species. Multi-dimensional statistical analysis identified saturated AC16:0, AC18:0, and AC20:0 as dominant metabolites in mediating sex differences in AC metabolism. Confocal microscopy of rat cardiomyocytes exposed to AC14:0, AC16:0, and AC18:0 confirmed induction of ROS with AC18:0 being more potent followed by AC14:0. Conclusion Overall, we demonstrate sex differences in myocardial AC and TG metabolism with implications for therapy and diagnosis of diabetic cardiovascular disease. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0077-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sriram Devanathan
- Department of Radiology, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA
| | - Timothy D Whitehead
- Department of Radiology, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA
| | - Nicole Fettig
- Department of Radiology, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA
| | - Robert J Gropler
- Department of Radiology, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA.,Department of Medicine, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA
| | - Samuel Nemanich
- Department of Radiology, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA
| | - Kooresh I Shoghi
- Department of Radiology, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA.,Department of Biomedical Engineering, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA.,Division of Biology and Biomedical Sciences, Washington University in St. Louis, 510 South Kingshighway Blvd., Campus Box 8225, Saint Louis, MO 63110 USA
| |
Collapse
|
5
|
Abstract
Autonomic neuropathy complicates diabetes by increasing patient morbidity and mortality. Surprisingly, considering its importance, development and exploitation of animal models has lagged behind the wealth of information collected for somatic symmetrical sensory neuropathy. Nonetheless, animal studies have resulted in a variety of insights into the pathogenesis, neuropathology, and pathophysiology of diabetic autonomic neuropathy (DAN) with significant and, in some cases, remarkable correspondence between rodent models and human disease. Particularly in the study of alimentary dysfunction, findings in intrinsic intramural ganglia, interstitial cells of Cajal and the extrinsic parasympathetic and sympathetic ganglia serving the bowel vie for recognition as the chief mechanism. A body of work focused on neuropathologic findings in experimental animals and human subjects has demonstrated that axonal and dendritic pathology in sympathetic ganglia with relative neuron preservation represents one of the neuropathologic hallmarks of DAN but it is unlikely to represent the entire story. There is a surprising selectivity of the diabetic process for subpopulations of neurons and nerve terminals within intramural, parasympathetic, and sympathetic ganglia and innervation of end organs, afflicting some while sparing others, and differing between vascular and other targets within individual end organs. Rather than resulting from a simple deficit in one limb of an effector pathway, autonomic dysfunction may proceed from the inability to integrate portions of several complex pathways. The selectivity of the diabetic process appears to confound a simple global explanation (e.g., ischemia) of DAN. Although the search for a single unifying pathogenetic hypothesis continues, it is possible that autonomic neuropathy will have multiple pathogenetic mechanisms whose interplay may require therapies consisting of a cocktail of drugs. The role of multiple neurotrophic substances, antioxidants (general or pathway specific), inhibitors of formation of advanced glycosylation end products and drugs affecting the polyol pathway may be complex and therapeutic elements may have both salutary and untoward effects. This review has attempted to present the background and current findings and hypotheses, focusing on autonomic elements including and beyond the typical parasympathetic and sympathetic nervous systems to include visceral sensory and enteric nervous systems.
Collapse
Affiliation(s)
- Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
6
|
Zhao K, Ao Y, Harper RM, Go VLW, Yang H. Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output. Neuroscience 2013; 247:43-54. [PMID: 23701881 DOI: 10.1016/j.neuroscience.2013.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 12/11/2022]
Abstract
Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56-81% in GK rats. Fasting (48h) and refeeding (2h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity.
Collapse
Affiliation(s)
- K Zhao
- Research & Development, Department of Veterans Affairs, Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
7
|
Role of brainstem thyrotropin-releasing hormone-triggered sympathetic overactivation in cardiovascular mortality in type 2 diabetic Goto-Kakizaki rats. Hypertens Res 2011; 35:157-65. [PMID: 21900943 DOI: 10.1038/hr.2011.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sympathetic hyperactivity has an important role in cardiovascular mortality in patients with type 2 diabetes (T2D). Thyrotropin-releasing hormone (TRH)-containing fibers innervate autonomic motor and premotor nuclei of the brainstem and spinal cord that regulate cardiovascular functions. We compared cardiovascular responses to application of TRH-analog in the brainstem of Wistar and T2D Goto-Kakizaki (GK) rats. GK rats exhibited basal systolic hypertension (152±2 mm Hg) and had a significantly potentiated, dose-related hypertensive response to intracisternal (i.c.) injection of the TRH-analog RX77368 (10-60 ng). In GK rats only, i.c. RX77368 (30-60 ng) markedly increased heart rate (HR; +88 b.p.m.) and induced acute cardiac mortality (100%), concurrent with extreme hyperglycemia (>26 mmol l(-1)), increased plasma H(2)O(2) and 8-isoprostane, and enhanced heart expression of NADPH oxidase 4 and vascular cell adhesion molecule-1 mRNAs. GK rats also had elevated basal plasma epinephrine, higher adrenal gene expression of tyrosine hydroxylase and dopamine β-hydroxylase (DβH), and greater plasma catecholamine and adrenal DβH responses to i.c. TRH-analog, compared with Wistar rats. In GK rats, hexamethonium blocked i.c. RX77368-induced hypertensive and tachycardic responses, and reduced mortality by 86%, whereas phentolamine abolished the hypertensive response but enhanced tachycardia (+160 b.p.m.), and reduced mortality by 50%. The angiotensin II type 1 receptor antagonist irbesartan prevented i.c. RX77368-induced increases in blood pressure, HR and mortality. In conclusion, sympathetic overactivation triggered by brainstem TRH contributes to the mechanism of cardiovascular morbidity and mortality in T2D, which involves heightened cardiac inflammation and peripheral oxidative stress responses to sympathetic drive, and a mediating role of the renin-angiotensin system.
Collapse
|
8
|
Sattin A, Pekary AE, Blood J. Rapid modulation of TRH and TRH-like peptide release in rat brain and peripheral tissues by prazosin. Peptides 2011; 32:1666-76. [PMID: 21718733 DOI: 10.1016/j.peptides.2011.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/11/2011] [Accepted: 06/13/2011] [Indexed: 11/28/2022]
Abstract
Hyperresponsiveness to norepinephrine contributes to post-traumatic stress disorder (PTSD). Prazosin, a brain-active blocker of α(1)-adrenoceptors, originally used for the treatment of hypertension, has been reported to alleviate trauma nightmares, sleep disturbance and improve global clinical status in war veterans with PTSD. Thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH(2)) may play a role in the pathophysiology and treatment of neuropsychiatric disorders such as major depression, and PTSD (an anxiety disorder). To investigate whether TRH or TRH-like peptides (pGlu-X-Pro-NH(2), where "X" can be any amino acid residue) participate in the therapeutic effects of prazosin, male rats were injected with prazosin and these peptides then measured in brain and endocrine tissues. Prazosin stimulated TRH and TRH-like peptide release in those tissues with high α(1)-adrenoceptor levels suggesting that these peptides may play a role in the therapeutic effects of prazosin.
Collapse
Affiliation(s)
- Albert Sattin
- Psychiatry Services, VA Greater Los Angeles Healthcare System, CA 90073, USA
| | | | | |
Collapse
|
9
|
Potent hyperglycemic and hyperinsulinemic effects of thyrotropin-releasing hormone microinjected into the rostroventrolateral medulla and abnormal responses in type 2 diabetic rats. Neuroscience 2010; 169:706-19. [PMID: 20457219 DOI: 10.1016/j.neuroscience.2010.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 02/07/2023]
Abstract
We identified ventrolateral medullary nuclei in which thyrotropin-releasing hormone (TRH) regulates glucose metabolism by modulating autonomic activity. Immunolabeling revealed dense prepro-TRH-containing fibers innervating the rostroventrolateral medulla (RVLM) and nucleus ambiguus (Amb), which contain, respectively, pre-sympathetic motor neurons and vagal motor neurons. In anesthetized Wistar rats, microinjection of the stable TRH analog RX77368 (38-150 pmol) into the RVLM dose-dependently and site-specifically induced hyperglycemia and hyperinsulinemia. At 150 pmol, blood glucose reached a peak of 180+/-18 mg% and insulin increased 4-fold. The strongest hyperglycemic effect was induced when RX77368 was microinjected into C1 area containing adrenalin cells. Spinal cord transection at cervical-7 abolished the hyperglycemia induced by RVLM RX77368, but not the hyperinsulinemic effect. Bilateral vagotomy prevented the rise in insulin, resulting in a prolonged hyperglycemic response. The hyperglycemic and hyperinsulinemic effects of the TRH analog in the RVLM was peptide specific, since angiotensin II or a substance P analog at the same dose had weak or no effects. Microinjection of RX77368 into the Amb stimulated insulin secretion without influencing glucose levels. In conscious type 2 diabetic Goto-Kakizaki (GK) rats, intracisternal injection of RX77368 induced a remarkably amplified hyperglycemic effect with suppressed insulin response compared to Wistar rats. RX77368 microinjected into the RVLM of anesthetized GK rats induced a significantly potentiated hyperglycemic response and an impaired insulin response, compared to Wistar rats. These results indicate that the RVLM is a site at which TRH induces sympathetically-mediated hyperglycemia and vagally-mediated hyperinsulinemia, whereas the Amb is mainly a vagal activating site for TRH. Hyperinsulinemia induced by TRH in the RVLM is not secondary to the hyperglycemic response. The potentiated hyperglycemic and suppressed hyperinsulinemic responses in diabetic GK rats indicate that an unbalanced "sympathetic-over-vagal" activation by TRH in brainstem RVLM contributes to the pathophysiology of impaired glucose homeostasis in type 2 diabetes.
Collapse
|
10
|
Ao Y, Go VLW, Toy N, Li T, Wang Y, Song MK, Reeve JR, Liu Y, Yang H. Brainstem thyrotropin-releasing hormone regulates food intake through vagal-dependent cholinergic stimulation of ghrelin secretion. Endocrinology 2006; 147:6004-10. [PMID: 16959836 DOI: 10.1210/en.2006-0820] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The brainstem is essential for mediating energetic response to starvation. Brain stem TRH is synthesized in caudal raphe nuclei innervating brainstem and spinal vagal and sympathetic motor neurons. Intracisternal injection (ic) of a stable TRH analog RX77368 (7.5-25 ng) dose-dependently stimulated solid food intake by 2.4- to 3-fold in freely fed rats, an effect that lasted for 3 h. By contrast, RX77368 at 25 ng injected into the lateral ventricle induced a delayed and insignificant orexigenic effect only in the first hour. In pentobarbital-anesthetized rats, RX77368 (50 ng) ic induced a significant bipeak increase in serum total ghrelin levels from the basal of 8.7+/-1.7 ng/ml to 13.4+/-2.4 ng/ml at 30 min and 14.5+/-2.0 ng/ml at 90 min, which was prevented by either bilateral vagotomy (-60 min) or atropine pretreatment (2 mg/kg, -30 min) but magnified by bilateral adrenalectomy (-60 min). TRH analog ic-induced food intake in freely fed rats was abolished by either peripheral atropine or ghrelin receptor antagonist (D-Lys-3)-GHRP-6 (10 micromol/kg) or ic Y1 receptor antagonist 122PU91 (10 nmol/5 microl). Brain stem TRH mRNA and TRH receptor 1 mRNA increased by 57-58 and 33-35% in 24- and 48-h fasted rats and returned to the fed levels after a 3-h refeeding. Natural food intake in overnight fasted rats was significantly reduced by ic TRH antibody, ic Y1 antagonist, and peripheral atropine. These data establish a physiological role of brainstem TRH in vagal-ghrelin-mediated stimulation of food intake, which involves interaction with brainstem Y1 receptors.
Collapse
Affiliation(s)
- Yan Ao
- Center for Ulcer Research and Education: Digestive Diseases Research Center, Department of Medicine, University of California Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | | | | | | | | | | | | | | | | |
Collapse
|