1
|
Sadeghirad M, Soleimanzadeh A, Shalizar-Jalali A, Behfar M. Synergistic protective effects of 3,4-dihydroxyphenylglycol and hydroxytyrosol in male rats against induced heat stress-induced reproduction damage. Food Chem Toxicol 2024; 190:114818. [PMID: 38880467 DOI: 10.1016/j.fct.2024.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Testicular heat stress disrupts spermiogenesis and damages testicular tissue. The study aims to assess 3,4-dihydroxyphenylglycol (DHPG) and hydroxytyrosol (HT) from olive oil as antioxidants to reduce heat-induced testicular damage. Seven groups of 35 male rats were used. Group I got normal saline. Group 2 had HS (43 °C for 20 min/day) and normal saline for 60 days. Groups 3-7 had HS and DHPG/HT doses (0.5 mg/kg DHPG, 1 mg/kg DHPG, 5 mg/kg HT, 0.5 mg/kg DHPG + 5 mg/kg HT, and 1 mg/kg DHPG + 5 mg/kg HT). The evaluation included tests on testicular tissue, sperm quality, oxidative status, gene activity, and fertility after 60 days. After DHPG and HT treatment, sperm motility, viability, and plasma membrane functionality, as well as levels of total antioxidant capacity (TAC), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT), and Bcl-2 gene expression, and in vivo fertility indexes increased. Meanwhile, abnormal morphology and DNA damage decreased, along with levels of glutathione (GSH), nitric oxide (NO), and malondialdehyde (MDA), and Bax, caspase-3, and caspase-9 gene expression, compared to the HS group. The study found that DHPG and HT have a more substantial synergistic effect when used together, improving reproductive health.
Collapse
Affiliation(s)
- Milad Sadeghirad
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ali Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Ali Shalizar-Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehdi Behfar
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Mohammadi T. Ameliorative effects of omega-3 and omega-6 on spermatogenesis, testicular antioxidant status and in vivo fertility index in heat-stressed rats. J Therm Biol 2024; 122:103885. [PMID: 38861860 DOI: 10.1016/j.jtherbio.2024.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The current study aimed to investigate the use of omega-6 (ω6) or omega-3 (ω3) in reducing heat-induced damage to the testicles. This is due to the known detrimental effects of heat and the potential protective properties of ω6 and ω3. In the study, 48 male rats were divided into eight groups, each containing 6 rats. Group I (control) received normal saline. Group 2 was exposed to high temperatures (43 °C for 20 min/day) and also received normal saline for 60 days. Groups 3-7 underwent identical HS conditions and received varying doses of ω6 or ω3 (0.5 mg/kg DHPG, 1 mg/kg DHPG, 5 mg/kg HT, 0.5 mg/kg DHPG + 5 mg/kg HT, and 1 mg/kg DHPG + 5 mg/kg HT), respectively. After 60 days, various tests were conducted on the testicular tissue, sperm quality, oxidative status, gene activity, and in vivo fertility indexes to evaluate the effects of the treatments. Treatment with ω6 and ω3 could reduce abnormal morphology and DNA damage while increasing total and progressive motility, characteristics motility, viability, and plasma membrane functional impairment compared with HS-exposed groups. Antioxidant status levels in testicular tissue were improved after administration of ω6 and ω3. Furthermore, after receiving ω6 and ω3, there were significantly lower expression levels of P53 and Caspase-3 and significantly higher expression levels of Bcl-2 compared to the HS-exposed group. Furthermore, the results showed that administration of ω6 and ω3 to rats exposed to HS could increase their in vivo fertility indexes compared to the group not exposed to HS. According to our data, all doses of ω6 and ω3 (particularly doses of ω6-1.25 and ω3-300) can improve the testicular damage, testicular antioxidant defense mechanism, regulate germ cell apoptosis, and increase in vivo fertility indexes.
Collapse
Affiliation(s)
- Tohid Mohammadi
- Department of Basic Science, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| |
Collapse
|
3
|
Effects of Lycium barbarum polysaccharides on the proliferation and differentiation of primary Sertoli cells in young rats. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
4
|
Hu SQ, Liu DL, Li CR, Xu YH, Hu K, Cui LD, Guo J. Wuzi-Yanzong prescription alleviates spermatogenesis disorder induced by heat stress dependent on Akt, NF-κB signaling pathway. Sci Rep 2021; 11:18824. [PMID: 34552120 PMCID: PMC8458393 DOI: 10.1038/s41598-021-98036-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Akt and nuclear factor kappa B (NF-κB) signaling pathways are involved in germ cell apoptosis and inflammation after testicular heat stress (THS). We observed that after THS induced by the exposure of rat testes to 43 °C for 20 min, their weight decreased, the fraction of apoptotic testicular germ cells significantly increased, and the proliferation of germ cells was inhibited. In addition, THS lowered serum testosterone (T) level, whereas the levels of follicle stimulating hormone and luteinizing hormone were not significantly changed. The ultrastructure of the seminiferous tubules became abnormal after THS, the structure of the blood-testis barrier (BTB) became loose, and the Sertoli cells showed a trend of differentiation. The level of phosphorylated Akt was reduced, whereas the amount of phosphorylated NF-κB p65 was augmented by THS. Wuzi-Yanzong (WZYZ), a classic Chinese medicine prescription for the treatment of male reproductive dysfunctions, alleviated the changes induced by THS. In order to determine the mechanism of action of WZYZ, we investigated how this preparation modulated the levels of T, androgen receptor (AR), erythropoietin (EPO), EPO receptor, and Tyro-3, Axl, and Mer (TAM) family of tyrosine kinase receptors. We found that WZYZ activated the Akt pathway, inhibited the Toll-like receptor/MyD88/NF-κB pathway, and repaired the structure of BTB by regulating the levels of T, AR, TAM receptors, and EPO. In conclusion, these results suggest that WZYZ activates the Akt pathway and inhibits the NF-κB pathway by acting on the upstream regulators, thereby improving spermatogenesis deficit induced by THS.
Collapse
Affiliation(s)
- Su-Qin Hu
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Dian-Long Liu
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Chun-Rui Li
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Ya-Hui Xu
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Ke Hu
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Li-Dan Cui
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Jian Guo
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| |
Collapse
|
5
|
Abstract
INTRODUCTION Sertoli cells play central roles in the development of testis formation in fetuses and the initiation and maintenance of spermatogenesis in puberty and adulthood, and disorders of Sertoli cell proliferation and/or functional maturation can cause male reproductive disorders at various life stages. It's well documented that various genes are either overexpressed or absent in Sertoli cells during the conversion of an immature, proliferating Sertoli cell to a mature, non-proliferating Sertoli cell, which are considered as Sertoli cell stage-specific markers. Thus, it is paramount to choose an appropriate Sertoli cell marker that will be used not only to identify the developmental, proliferative, and maturation of Sertoli cell status in the testis during the fetal period, prepuberty, puberty, or in the adult, but also to diagnose the mechanisms underlying spermatogenic dysfunction. AREAS COVERED In this review, we principally enumerated 5 categories of testicular Sertoli cell markers - including immature Sertoli cell markers, mature Sertoli cell markers, immature/mature Sertoli cell markers, Sertoli cell functional markers, and others. EXPERT OPINION By delineating the characteristics and applications of more than 20 Sertoli cell markers, this review provided novel Sertoli cell markers for the more accurate diagnosis and mechanistic evaluation of male reproductive disorders.
Collapse
Affiliation(s)
- Xu You
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China
| | - Qian Chen
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China.,The Second People's Hospital of Yichang, China Three Gorges University, Yichang China
| | - Ding Yuan
- College of Medicine, China Three Gorges University, Yichang, China
| | - Changcheng Zhang
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China
| | - Haixia Zhao
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China
| |
Collapse
|
6
|
Lycium barbarum Polysaccharide Ameliorates Heat-Stress-Induced Impairment of Primary Sertoli Cells and the Blood-Testis Barrier in Rat via Androgen Receptor and Akt Phosphorylation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5574202. [PMID: 34211569 PMCID: PMC8187067 DOI: 10.1155/2021/5574202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 12/02/2022]
Abstract
Male infertility induced by heat stress has been attracting more and more attention. Heat stress not only causes apoptosis of spermatocytes but also has adverse effects on Sertoli cells, further damaging spermatogenesis. Lycium barbarum polysaccharide (LBP) is the main bioactive component of Lycium barbarum, which has a protective effect on male reproduction, but its mechanism is still unclear. In this study, our results proved that LBP blocked the inhibitory effect on the proliferation activity of Sertoli cells after heat stress, reversed the dedifferentiation of Sertoli cells induced by heat stress, and ameliorated the structural integrity of the blood-testis barrier. In addition, it increased the expression of the androgen receptor and activated Akt signaling pathway to resist heat-stress-induced injury of Sertoli cells.
Collapse
|
7
|
Mahdivand N, Shalizar-Jalali A, Nejati V, Najafi G, Rahmani F. Adaptogenic potential of royal jelly in reproductive system of heat stress-exposed male rats. J Therm Biol 2021; 96:102827. [PMID: 33627267 DOI: 10.1016/j.jtherbio.2020.102827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/23/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Testicular heat stress (HS) can lead to testicular tissue destruction and spermatogenesis disturbances. Royal Jelly (RJ) has been introduced as a potent antioxidant. We investigated the effects of RJ on testicular tissue, oxidative stress and sperm apoptosis in HS-exposed rats. Compared to HS-exposed groups, RJ co-treatment could improve testosterone reduction and histopathological damages. The RJ co-administration decreased MDA level in testicular tissue, while TAC and CAT levels were remarkably increased compared to HS-exposed groups. Moreover, significant higher expression level of Bcl-2 and lower expression levels of P53 and Caspase-3 were seen following RJ co-administration compared to HS-exposed groups. Our data suggest that RJ can effectively ameliorate experimental HS-induced testiculopathies in rats through testicular antioxidant defense system restoration and germ cells apoptosis regulation.
Collapse
Affiliation(s)
- Noushin Mahdivand
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Ali Shalizar-Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Vahid Nejati
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Gholamreza Najafi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Fatemeh Rahmani
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| |
Collapse
|
8
|
Atta MS, Farrag FA, Almadaly EA, Ghoneim HA, Hafez AS, Al Jaouni SK, Mousa SA, El-Far AH. Transcriptomic and biochemical effects of pycnogenol in ameliorating heat stress-related oxidative alterations in rats. J Therm Biol 2020; 93:102683. [PMID: 33077109 DOI: 10.1016/j.jtherbio.2020.102683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND Heat stress is a condition that is due to extreme heat exposure. It occurs when the body cannot keep its temperature healthy in response to a hot climate and associated with oxidative stress. Testicular hyperthermia can induce apoptosis of sperm cells, affect sperm production and decrease sperm concentration, leading to sperm disorder, for this reason, we examined the protective impact of pycnogenol that it has a wide range of biological benefits, including antioxidant, anti-inflammatory and anti-cancer activities against the oxidative alterations that happen in testicular and brain tissues due to heat stress in rats. STUDY DESIGN Forty-eight Wistar male rats, approximately around 6 weeks age were allocated randomly into four groups (12 in each) of control, HS (subjected to heat stress and supplemented orally with 50 mg of pycnogenol/kg b. w./day dissolved in saline for 21 days), and pycnogenol (rats supplemented orally with 50 mg of pycnogenol/kg b. w./day dissolved in saline for 21 days). RESULTS Data revealed a promising role of pycnogenol as an antioxidant, natural product to successfully reverse the heat-induced oxidative alterations in testicular and brain tissues of rats through significant upregulation of superoxide dismutase-2, catalase, reduced glutathione, and anti-apoptotic gene, while downregulating pro-apoptotic, and heat shock protein70. Pycnogenol treatment also reversed the reproductive hormone level and spermatogenesis to their normal values. CONCLUSION Pycnogenol as a natural protective supplement could recover these heat stress-induced oxidative changes in testes and hypothalamus.
Collapse
Affiliation(s)
- Mustafa S Atta
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Foad A Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Essam A Almadaly
- Department of Theriogenology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Hanan A Ghoneim
- Department of Physiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Ahmed S Hafez
- Department of Pharmacology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Soad K Al Jaouni
- Hematology/Pediatric Oncology, King Abdulaziz University Hospital and Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jaddah, 21589, Saudi Arabia.
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
9
|
Rizzoto G, Kastelic JP. A new paradigm regarding testicular thermoregulation in ruminants? Theriogenology 2019; 147:166-175. [PMID: 31785861 DOI: 10.1016/j.theriogenology.2019.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 02/05/2023]
Abstract
Increased testicular temperature reduces percentages of morphologically normal and motile sperm and fertility. Specific sperm defects appear at consistent intervals after testicular hyperthermia, with degree and duration of changes related to intensity and duration of the thermal insult. Regarding pathogenesis of testicular hyperthermia on sperm quality and fertility, there is a long-standing paradigm that: 1) testes operate near hypoxia; 2) blood flow to the testes does not increase in response to increased testicular temperature; and 3) an ensuing hypoxia is the underlying cause of heat-induced changes in sperm morphology and function. There are very limited experimental data to support this paradigm, but we have data that refute it. In 2 × 3 factorial studies, mice and rams were exposed to two testicular temperatures (normal and increased) and three concentrations of O2 in inspired air (hyperoxia, normoxia and hypoxia). As expected, increased testicular temperature had deleterious effects on sperm motility and morphology; however, hyperoxia did not prevent these changes nor did hypoxia replicate them. In two follow-up experiments, anesthetized rams were sequentially exposed to: 1) three O2 concentrations (100, 21 and 13% O2); or 2) three testicular temperatures (33, 37 and 40 °C). As O2, decreased, testis maintained O2 delivery and uptake by increasing testicular blood flow and O2 extraction, with no indication of anaerobic metabolism. Furthermore, as testicular temperature increased, testicular metabolic rate nearly doubled, but increased blood flow and O2 extraction prevented testicular hypoxia and anaerobic metabolism. In conclusion, our data, in combination with other reports, challenged the paradigm that testicular hyperthermia fails to increase testicular blood flow and the ensuing hypoxia disrupts spermatogenesis.
Collapse
Affiliation(s)
- G Rizzoto
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, 3280 Hospital Drive, Calgary, AB, Canada, T2N 4Z6
| | - J P Kastelic
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, 3280 Hospital Drive, Calgary, AB, Canada, T2N 4Z6.
| |
Collapse
|
10
|
Mahdivand N, Najafi G, Nejati V, Shalizar-Jalali A, Rahmani F. Royal jelly protects male rats from heat stress-induced reproductive failure. Andrologia 2018; 51:e13213. [PMID: 30548301 DOI: 10.1111/and.13213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 01/23/2023] Open
Abstract
Royal jelly (RJ) as an antioxidant has been shown to have attenuated oxidative stress damages in reproductive organs. The objective was carried out the effects of RJ on sperm characteristics, sperm malondialdehyde (MDA) concentration and in vitro fertilisation (IVF) outcome in heat stress (HS) exposed male rats. Forty-eight male rats were randomly divided into eight groups; group 1 received normal saline, group 2 received RJ (100 mg kg-1 day-1 ; PO), groups 3, 4 and 5 were heat-stressed (43, 39 and 37°C for 20 min per day respectively) and groups 6, 7 and 8 were heat-stressed along with RJ (43, 39 and 37°C for 20 min per day, respectively, plus RJ at a dose of 100 mg kg-1 day-1 ; PO). The HS was induced through immersion of experimental rat scrotums in a water bath. After 48 days, the HS induced remarkable diminish in sperm motility, viability and fertilising potential along with reduced blastulation rate and enhanced sperm chromatin abnormality, MDA levels and DNA damage. Nevertheless, RJ co-administration improved sperm characteristics and early embryo development as well as sperm lipid peroxidation level. Our data suggest that RJ can effectively ameliorate the experimental HS-induced infertility in rats through MDA concentration restoration and sperm characteristics and pre-implantation embryo development improvement.
Collapse
Affiliation(s)
- Noushin Mahdivand
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| | - Gholamreza Najafi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Vahid Nejati
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| | - Ali Shalizar-Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Fatemeh Rahmani
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
11
|
Xiao L, Wang Y, Liang W, Liu L, Pan N, Deng H, Li L, Zou C, Chan FL, Zhou Y. LRH-1 drives hepatocellular carcinoma partially through induction of c-myc and cyclin E1, and suppression of p21. Cancer Manag Res 2018; 10:2389-2400. [PMID: 30122988 PMCID: PMC6078084 DOI: 10.2147/cmar.s162887] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background To explore potential therapeutic target is one of the areas of great interest in both clinical and basic hepatocellular carcinoma (HCC) studies. Nuclear receptor liver receptor homolog-1 (LRH-1, NR5A2) is proved to play a positive role in several cancers including breast cancer, pancreatic cancer and intestinal cancer in recent years. However, the exact role of LRH-1 in the development and progression of HCC is not fully elucidated. Methods The LRH-1 expression level in HCC clinical samples was examined by immunohis-tochemistry (IHC). Stable LRH-1-suppressed HepG2 clones (HepG2LRH-1/-) were generated by transcription activator-like effector nucleases (TALENs) and both in vitro and in vivo experiments were conducted. Results We confirmed that LRH-1 showed an increased expression pattern in HCC clinical samples. Our in vitro and in vivo results indicated that suppression of LRH-1 in HepG2 significantly attenuated its proliferation rate and tumorigenic capacity. Gene expression microarray analysis indicated that LRH-1mostly regulated gene expression involved in cell cycle. In addition, our gain-of-function experiments indicated that ectopic expression of LRH-1 dramatically induced the mRNA and protein levels of c-myc and cyclin E1, while attenuating the expression of p21. Conclusion Our results suggest that LRH-1 might be a potential therapeutic target for clinical HCC treatment.
Collapse
Affiliation(s)
- Lijia Xiao
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China, .,Department of Clinical Laboratory, Nanshan Affiliated Hospital of Guangdong Medical University, Shenzhen, China
| | - Yuliang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China,
| | - Weicheng Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China,
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Nannan Pan
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China,
| | - Huimin Deng
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China,
| | - Luqian Li
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China,
| | - Chang Zou
- Clinical Medicine Research Center, Shenzhen Public Service Platform of Precision Medicine and Molecular Diagnosis on Tumor, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Franky Leung Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China,
| | - Yiwen Zhou
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China,
| |
Collapse
|
12
|
Liguori G, Squillacioti C, Assisi L, Pelagalli A, Vittoria A, Costagliola A, Mirabella N. Potential role of orexin A binding the receptor 1 for orexins in normal and cryptorchid dogs. BMC Vet Res 2018; 14:55. [PMID: 29482574 PMCID: PMC5828418 DOI: 10.1186/s12917-018-1375-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/15/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cryptorchidism is one of the most common birth disorders of the male reproductive system identified in dogs and other mammals. This condition is characterised by the absence of one (unilateral) or both (bilateral) gonads from the scrotum. The peptides orexin A (OxA) and B (OxB) were obtained by post-transcriptional proteolytic cleavage of a precursor molecule, called prepro-orexin. These substances bind two types of G-coupled receptors called receptor 1 (OX1R) and 2 (OX2R) for orexins. OX1R is specific to OxA while OX2R binds the two peptides with equal affinity. Orexins modulate a great variety of body functions, such as the reproductive mechanism. The purpose of the present research was to study the presence of OxA and its receptor 1 and their possible involvement in the canine testis under healthy and pathological conditions. METHODS This study was performed using adult male normal dogs and male dogs affected by unilateral cryptorchidism. Tissue samples were collected from testes and were divided into three groups: normal, contralateral and cryptic. The samples were used for immunohistochemistry, Western blot and in vitro tests for testosterone evaluation in normal and pathological conditions. RESULTS OxA-immunoreactivity (IR) was described in interstitial Leydig cells of the normal gonad, and Leydig, Sertoli cells and gonocytes in the cryptic gonad. In the normal testis, OX1R-IR was described in Leydig cells, in pachytene and second spermatocytes and in immature and mature spermatids throughout the stages of the germ developing cycle of the male gonad. In the cryptic testis OX1R-IR was distributed in Leydig and Sertoli cells. The presence of prepro-orexin and OX1R was demonstrated by Western blot analysis. The incubation of fresh testis slices with OxA caused the stimulation of testosterone synthesis in the normal and cryptic gonad while the steroidogenic OxA-induced effect was cancelled by adding the selective OX1R antagonist SB-408124. CONCLUSIONS These results led us to hypothesise that OxA binding OX1R might be involved in the modulation of spermatogenesis and steroidogenesis in canine testis in healthy and pathological conditions.
Collapse
Affiliation(s)
- Giovanna Liguori
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy
| | - Loredana Assisi
- Department of Biology, University of Naples “Federico II”, Via Mezzocannone 6, 80134 Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy
| | - Alfredo Vittoria
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy
| | - Anna Costagliola
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy
| |
Collapse
|
13
|
Xiao L, Wang Y, Xu K, Hu H, Xu Z, Wu D, Wang Z, You W, Ng CF, Yu S, Chan FL. Nuclear Receptor LRH-1 Functions to Promote Castration-Resistant Growth of Prostate Cancer via Its Promotion of Intratumoral Androgen Biosynthesis. Cancer Res 2018; 78:2205-2218. [PMID: 29438990 DOI: 10.1158/0008-5472.can-17-2341] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/27/2017] [Accepted: 02/05/2018] [Indexed: 11/16/2022]
Abstract
Targeting of steroidogenic enzymes (e.g., abiraterone acetate targeting CYP17A1) has been developed as a novel therapeutic strategy against metastatic castration-resistant prostate cancer (CRPC). However, resistance to steroidal inhibitors inevitably develops in patients, the mechanisms of which remain largely unknown. Liver receptor homolog-1 (LRH-1, NR5A2) is a nuclear receptor, originally characterized as an important regulator of some liver-specific metabolic genes. Here, we report that LRH-1, which exhibited an increased expression pattern in high-grade prostate cancer and CRPC xenograft models, functions to promote de novo androgen biosynthesis via its direct transactivation of several key steroidogenic enzyme genes, elevating intratumoral androgen levels and reactivating AR signaling in CRPC xenografts as well as abiraterone-treated CRPC tumors. Pharmacologic inhibition of LRH-1 activity attenuated LRH-1-mediated androgen deprivation and anti-androgen resistance of prostate cancer cells. Our findings not only demonstrate the significant role of LRH-1 in the promotion of intratumoral androgen biosynthesis in CRPC via its direct transcriptional control of steroidogenesis, but also suggest targeting LRH-1 could be a potential therapeutic strategy for CRPC management.Significance: These findings not only demonstrate the significant role of the nuclear receptor LRH-1 in the promotion of intratumoral androgen biosynthesis in CRPC via its direct transcriptional control of steroidogenesis, but also suggest targeting LRH-1 could be a potential therapeutic strategy for CRPC management. Cancer Res; 78(9); 2205-18. ©2018 AACR.
Collapse
Affiliation(s)
- Lijia Xiao
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China.,Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuliang Wang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Kexin Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Hao Hu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Zhenyu Xu
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Dinglan Wu
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zhu Wang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Wenxing You
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Fai Ng
- Department of Surgery, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Shan Yu
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China.
| | - Franky Leung Chan
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Rao M, Zeng Z, Tang L, Cheng G, Xia W, Zhu C. Next-generation sequencing-based microRNA profiling of mice testis subjected to transient heat stress. Oncotarget 2017; 8:111672-111682. [PMID: 29340083 PMCID: PMC5762351 DOI: 10.18632/oncotarget.22900] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/16/2017] [Indexed: 02/02/2023] Open
Abstract
This study aimed to investigate the role of microRNA (miRNA) in heat stress-induced spermatogenic impairment. Testes from 15 adult ICR mice subjected to testicular hyperthermia at 43°C for 30 min and from 15 control mice were collected and pooled into 3 samples. Isolated RNA from these samples was subjected to small RNA high-throughput sequencing, and differentially expressed miRNAs were identified and validated using RT-PCR. The identified miRNAs were further subjected to Gene Ontology and KEGG analyses, which revealed significant enrichment for pathways potentially involved in heat stress-induced spermatogenic impairment. Additionally, a correlation analysis of the relative levels of validated miRNAs with germ cell apoptosis was performed. Of the 11 miRNAs identified as differentially expressed, 8 were validated as consistent with sequencing data. Further analyses suggested that the target genes of those miRNAs were involved in various pathways (e.g., ribosomal, HIF-1, MAPK) that may be critical to heat stress-induced testicular damage. Some identified miRNAs, including miR-449a-3p, miR-92a-1-5p, miR-423-3p, and miR-128-3p, correlated closely with germ cell apoptosis. The study results reveal a detailed miRNA profile of heat stress-induced testicular damage and highlight new and potentially important candidate targets in the process of male infertility.
Collapse
Affiliation(s)
- Meng Rao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhengyan Zeng
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Tang
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guiping Cheng
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changhong Zhu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Shadmehr S, Fatemi Tabatabaei SR, Hosseinifar S, Tabandeh MR, Amiri A. Attenuation of heat stress-induced spermatogenesis complications by betaine in mice. Theriogenology 2017; 106:117-126. [PMID: 29049923 DOI: 10.1016/j.theriogenology.2017.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022]
Abstract
High temperatures can induce oxidative stress, impairment of spermatogenesis, and reduction of sperm quality and quantity concomitant with transient periods of partial or complete infertility in male mammals. Promising beneficial effects of betaine supplementation on the epididymal spermatozoa have been reported in experimental studies; however, its effects on testicular heat stress (HS)-induced impairment have yet to be determined. In the present study, betaine (Bet) was orally administrated (250 mg/kg day) during a 14-day period, before (Bet + HS group) or after (HS + Bet group) induction of testicular HS in 7-9 week-old male mice. HS was induced by testicular immersion in water at 42 °C in stress groups. Epididymal spermatozoa and testes were collected at days 14 and 28 after HS induction in order to analyze sperm characteristics, testicular oxidative status, and histological changes. Our studies showed that HS reduced testicular weight, the quality and quantity of epididymal spermatozoa, and impaired maturation of germinal cells. The levels of MDA, catalase, SOD, and GPX were increased in the testes of HS-induced mice (P < 0.01). Although betaine treatment before and after exposure to HS enhanced antioxidant defense (P < 0.05) and accelerated germinal epithelium regeneration, its effects on the characteristics of epididymal spermatozoa were scarce. On the other hand, in the absence of heat stress, quality and quantity of epididymal spermatozoa were improved following 14 days of betaine consumption. Our study revealed the beneficial effect of betaine on HS-induced complications of spermatogenesis, as well as its potency to improve epididymal spermatozoa in intact mice.
Collapse
Affiliation(s)
- Somayeh Shadmehr
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Shima Hosseinifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Alireza Amiri
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
16
|
Mengmeng H, Lijun W, Yinghui C, Tingting Z, Jian G. Effect of Wuziyanzong pill on levels of sex hormones, and expressions of nuclear- associated antigen Ki-67 and androgen receptor in testes of young rats. J TRADIT CHIN MED 2016; 36:743-8. [DOI: 10.1016/s0254-6272(17)30009-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Rao M, Xia W, Yang J, Hu LX, Hu SF, Lei H, Wu YQ, Zhu CH. Transient scrotal hyperthermia affects human sperm DNA integrity, sperm apoptosis, and sperm protein expression. Andrology 2016; 4:1054-1063. [PMID: 27410176 DOI: 10.1111/andr.12228] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
This prospective randomized clinical study is aimed to evidence the reproductive impairment of frequent scrotal heat exposure. A total of 20 normozoospermic subjects were randomly divided into two groups to undergo testicular warming in a 43 °C water bath 10 times, for 30 min each time; the subjects in group 1 underwent testicular warming for 10 consecutive days and those in group 2 once every 3 days. Sperm chromatin structure assay (SCSA), sperm mitochondrial membrane potential (MMP), apoptosis, and seminal plasma-soluble Fas (sFas) were analyzed before treatment and every 2 weeks after, for a total of 10 times. In group 1, some critical proteins involved in heat stress, hypoxia, structure, and function of sperm mitochondria and flagella were evaluated before hyperthermia and 2, 6, 10, and 16 weeks after hyperthermia. Both groups showed a reversible increase in the proportion of spermatozoa with a disrupted MMP (both p < 0.05 when the minimums were compared with baseline levels, the same below), sperm apoptosis (both p < 0.01) and high DNA stainability (both p < 0.05). The sFas concentration in both groups showed no obvious changes except one: the value at week 2 was significantly increased over baseline in group 1 (p = 0.036). The level of Bcl-2 decreased significantly at weeks 6 and 10 (p = 0.017 and 0.05, respectively) and recovered to baseline at week 16. Proteins involved in heat stress and mitochondria functions were up-regulated, whereas in flagella structure and function was down-regulated (all p < 0.05). This study demonstrated that transient and frequent scrotal hyperthermia severely and reversibly damaged spermatogenesis, consecutive heat exposure had more serious effects than intermittent exposure, whereas intermittent exposure led to a later recovery of sperm damage.
Collapse
Affiliation(s)
- M Rao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - W Xia
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Yang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L-X Hu
- Department of Histology and Embryology, Xinxiang Medical University, Xinxiang, China
| | - S-F Hu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H Lei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y-Q Wu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - C-H Zhu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Changes in Levels of Seminal Nitric Oxide Synthase, Macrophage Migration Inhibitory Factor, Sperm DNA Integrity and Caspase-3 in Fertile Men after Scrotal Heat Stress. PLoS One 2015; 10:e0141320. [PMID: 26512992 PMCID: PMC4626044 DOI: 10.1371/journal.pone.0141320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 10/07/2015] [Indexed: 01/26/2023] Open
Abstract
Background This study observes changes in levels of seminal nitric oxide (NO), nitric oxide synthase (NOS), macrophage migration inhibitory factor (MIF), sperm DNA integrity, chromatin condensation and Caspase-3in adult healthy men after scrotal heat stress (SHS). Methods Exposure of the scrotum of 25 healthy male volunteers locally at 40–43°C SHS belt warming 40 min each day for successive 2 d per week. The course of SHS was continuously 3 months. Routine semen analysis, hypo-osmotic swelling (HOS) test, Aniline blue (AB) staining, HOS/AB and terminal deoxynucleotidyl transferase-mediated d UDP nick-end labeling (TUNEL) were carried out before, during and after SHS. Seminal NO and NOS contents were determined by nitrate reduction method. The activated Caspase-3 levels of spermatozoa and MIF in seminal plasma were measured by the enzyme-linked immunosorbent assay (ELISA) method. Statistical significance between mean values was determined using statistical ANOVA tests. Results The mean parameters of sperm concentration, motile and progressive motile sperm and normal morphological sperm were significantly decreased in groups during SHS 1, 2 and 3 months compared with those in groups of pre-SHS (P<0.001). Statistically significant differences of sperm DNA fragmentation, normal sperm membrane, and Caspase-3 activity as well as the level of NO, NOS and MIF in semen were observed between the groups before SHS and after SHS 3 months and the groups during SHS 1, 2 and 3 months (P<0.001). After three months of the SHS, various parameters recovered to the level before SHS. WBC in semen showed a positively significant correlation with the levels of NO, NOS, MIF and Caspase-3 activity. The percentage of abnormal sperm by using the test of HOS showed a positively significant correlation with that of HOS/AB. Conclusions The continuously constant SHS can impact the semen quality and sperm DNA and chromatin, which may be contributed to the high level of NO, NOS, MIF and Caspase-3 by SHS.
Collapse
|
19
|
Chihara M, Nakamura T, Otsuka-Kanazawa S, Ichii O, Elewa YHA, Kon Y. Genetic factors derived from the MRL/MpJ mouse function to maintain the integrity of spermatogenesis after heat exposure. Andrology 2015; 3:991-9. [DOI: 10.1111/andr.12082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/14/2015] [Accepted: 06/23/2015] [Indexed: 01/19/2023]
Affiliation(s)
- M. Chihara
- Laboratory of Anatomy; Department of Biomedical Sciences; Graduate School of Veterinary Medicine; Hokkaido University; Kita-ku Sapporo Japan
| | - T. Nakamura
- Laboratory of Anatomy; Department of Biomedical Sciences; Graduate School of Veterinary Medicine; Hokkaido University; Kita-ku Sapporo Japan
- Section of Biological Safety Research; Chitose Laboratory; Japan Food Research Laboratories; Chitose Hokkaido Japan
| | - S. Otsuka-Kanazawa
- Laboratory of Anatomy; Department of Biomedical Sciences; Graduate School of Veterinary Medicine; Hokkaido University; Kita-ku Sapporo Japan
| | - O. Ichii
- Laboratory of Anatomy; Department of Biomedical Sciences; Graduate School of Veterinary Medicine; Hokkaido University; Kita-ku Sapporo Japan
| | - Y. H. A. Elewa
- Laboratory of Anatomy; Department of Biomedical Sciences; Graduate School of Veterinary Medicine; Hokkaido University; Kita-ku Sapporo Japan
- Department of Histology and Cytology; Faculty of Veterinary Medicine; Zagazig University; Zagazig Egypt
| | - Y. Kon
- Laboratory of Anatomy; Department of Biomedical Sciences; Graduate School of Veterinary Medicine; Hokkaido University; Kita-ku Sapporo Japan
| |
Collapse
|
20
|
Camats N, Audí L, Fernández-Cancio M, Andaluz P, Mullis PE, Carrascosa A, Flück CE. LRH-1 May Rescue SF-1 Deficiency for Steroidogenesis: An in vitro and in vivo Study. Sex Dev 2015; 9:144-54. [DOI: 10.1159/000381575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 11/19/2022] Open
|
21
|
Scrotal heat stress causes sperm chromatin damage and cysteinyl aspartate-spicific proteinases 3 changes in fertile men. J Assist Reprod Genet 2015; 32:747-55. [PMID: 25702164 DOI: 10.1007/s10815-015-0451-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/03/2015] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To observe changes in semen parameters, sperm DNA integrity, chromatin condensation and cysteinyl aspartate-spicific proteinases (Caspase-3) in adult healthy men after scrotal heat stress (SHS). METHODS The scrotums of 19 healthy male volunteers were exposed to the condition of 40-43 °C SHS belt warming 40 min each day for successive 2 days per week. The course of SHS was continuously 3 months. Routine semen analysis, hypo-osmotic swelling (HOS) test, eosin Y (EY) staining sperm HOS and chromatin dispersion (HOS/SCD) test, HOS and aniline blue (HOS/AB) staining test were carried out before, during and after SHS. The activated Caspase 3 levels of spermatozoa were determined with a microtiter plate reader. RESULTS The mean parameters of sperm concentration, motility and normal morphological sperm were significantly decreased in groups with sperm being collected during SHS 1, 2 and 3 months when compared with those in groups of pre-SHS (P < 0.01). Statistically significant differences of sperm DNA fragmentation, normal sperm membrane and vitality, and Caspase-3 activity were observed between the groups of before SHS and after SHS 3 months and the groups of during SHS 1, 2 and 3 months (P < 0.001). Three months the SHS stopped, various parameters recovered to the level before SHS. Abnormal sperm with HOS/AB and HOS/SCD showed a negatively significant correlation with normal sperm by HOS/EY test, and WBC in semen showed a positively significant correlation with Caspase-3 activity. The percentage of abnormal sperm by using the test of HOS/SCD showed a positively significant correlation with that of HOS/AB. CONCLUSIONS The continuously constant SHS can impact the semen quality, sperm DNA integrity, chromatin condensation and Caspase-3, and the combination of HOS plus AB test may simultaneously determine the integrity of membrane and chromatin condensation at the same spermatozoon.
Collapse
|
22
|
Chen SR, Liu YX. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction 2014; 149:R159-67. [PMID: 25504872 DOI: 10.1530/rep-14-0481] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is a continuous and productive process supported by the self-renewal and differentiation of spermatogonial stem cells (SSCs), which arise from undifferentiated precursors known as gonocytes and are strictly controlled in a special 'niche' microenvironment in the seminiferous tubules. Sertoli cells, the only somatic cell type in the tubules, directly interact with SSCs to control their proliferation and differentiation through the secretion of specific factors. Spermatocyte meiosis is another key step of spermatogenesis, which is regulated by Sertoli cells on the luminal side of the blood-testis barrier through paracrine signaling. In this review, we mainly focus on the role of Sertoli cells in the regulation of SSC self-renewal and spermatocyte meiosis, with particular emphasis on paracrine and endocrine-mediated signaling pathways. Sertoli cell growth factors, such as glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), as well as Sertoli cell transcription factors, such as ETS variant 5 (ERM; also known as ETV5), nociceptin, neuregulin 1 (NRG1), and androgen receptor (AR), have been identified as the most important upstream factors that regulate SSC self-renewal and spermatocyte meiosis. Other transcription factors and signaling pathways (GDNF-RET-GFRA1 signaling, FGF2-MAP2K1 signaling, CXCL12-CXCR4 signaling, CCL9-CCR1 signaling, FSH-nociceptin/OPRL1, retinoic acid/FSH-NRG/ERBB4, and AR/RB-ARID4A/ARID4B) are also addressed.
Collapse
Affiliation(s)
- Su-Ren Chen
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Xun Liu
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
23
|
Chihara M, Nakamura T, Sakakibara N, Otsuka S, Ichii O, Kon Y. The Onset of Heat-Induced Testicular Calcification in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2480-92. [DOI: 10.1016/j.ajpath.2014.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 11/27/2022]
|
24
|
Li L, Ji SY, Yang JL, Li XX, Zhang J, Zhang Y, Hu ZY, Liu YX. Wnt/β-catenin signaling regulates follicular development by modulating the expression of Foxo3a signaling components. Mol Cell Endocrinol 2014; 382:915-25. [PMID: 24246780 DOI: 10.1016/j.mce.2013.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 01/16/2023]
Abstract
Wnt signaling is an evolutionarily conserved pathway that regulates cell proliferation, differentiation and apoptosis. To investigate the possible role of Wnt signaling in the regulation of ovarian follicular development, secondary follicles were isolated and cultured in vitro in the presence or absence of its activator (LiCl or Wnt3a) or inhibitor (IWR-1). We have demonstrated that activation of β-catenin signals by activators dramatically suppressed follicular development by increasing granulosa cell apoptosis and inhibiting follicle steroidogenesis. In contrast, inhibition of Wnt signaling by IWR-1 was observed with better developed follicles and increased steroidogenesis. Further studies have shown that the transcription factor Forkhead box O3a (Foxo3a) and its downstream target molecules were modulated by the activators or the inhibitor. These findings provide evidence that Wnt signaling might negatively regulate follicular development potentially through Foxo3a signaling components.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shao-Yang Ji
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Ling Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Xia Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao-Yuan Hu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Xun Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
25
|
Kim B, Park K, Rhee K. Heat stress response of male germ cells. Cell Mol Life Sci 2013; 70:2623-36. [PMID: 23007846 PMCID: PMC11113252 DOI: 10.1007/s00018-012-1165-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/19/2012] [Accepted: 09/10/2012] [Indexed: 01/09/2023]
Abstract
The vast majority of mammalian testes are located outside the body cavity for proper thermoregulation. Heat has an adverse effect on mammalian spermatogenesis and eventually leads to sub- or infertility. Recent studies have provided insights into the molecular response of male germ cells to high temperatures. Here, we review the effects of heat on male germ cells and discuss the mechanisms underlying germ cell loss and impairment. We also discuss the role of translational control in male germ cells as a potential protective mechanism against heat-induced germ cell apoptosis.
Collapse
Affiliation(s)
- Byunghyuk Kim
- Department of Biological Sciences, Seoul National University, Seoul, 151-747 Korea
| | - Kyosun Park
- Department of Biological Sciences, Seoul National University, Seoul, 151-747 Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, 151-747 Korea
| |
Collapse
|
26
|
Li XX, Chen SR, Shen B, Yang JL, Ji SY, Wen Q, Zheng QS, Li L, Zhang J, Hu ZY, Huang XX, Liu YX. The Heat-Induced Reversible Change in the Blood-Testis Barrier (BTB) Is Regulated by the Androgen Receptor (AR) via the Partitioning-Defective Protein (Par) Polarity Complex in the Mouse1. Biol Reprod 2013; 89:12. [DOI: 10.1095/biolreprod.113.109405] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
27
|
Maqdasy S, Baptissart M, Vega A, Baron S, Lobaccaro JMA, Volle DH. Cholesterol and male fertility: what about orphans and adopted? Mol Cell Endocrinol 2013; 368:30-46. [PMID: 22766106 DOI: 10.1016/j.mce.2012.06.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 12/24/2022]
Abstract
The link between cholesterol homeostasis and male fertility has been clearly suggested in patients who suffer from hyperlipidemia and metabolic syndrome. This has been confirmed by the generation of several transgenic mouse models or in animals fed with high cholesterol diet. Next to the alteration of the endocrine signaling pathways through steroid receptors (androgen and estrogen receptors); "orphan" and "adopted" nuclear receptors, such as the Liver X Receptors (LXRs), the Proliferating Peroxisomal Activated Receptors (PPARs) or the Liver Receptor Homolog-1 (LRH-1), have been involved in this cross-talk. These transcription factors show distinct expression patterns in the male genital tract, explaining the large panel of phenotypes observed in transgenic male mice and highlighting the importance of lipid homesostasis and the complexity of the molecular pathways involved. Increasing our knowledge of the roles of these nuclear receptors in male germ cell differentiation could help in proposing new approaches to either treat infertile men or define new strategies for contraception.
Collapse
|
28
|
Zeller E, Hammer K, Kirschnick M, Braeuning A. Mechanisms of RAS/β-catenin interactions. Arch Toxicol 2013; 87:611-32. [PMID: 23483189 DOI: 10.1007/s00204-013-1035-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/28/2013] [Indexed: 12/20/2022]
Abstract
Signaling through the WNT/β-catenin and the RAS (rat sarcoma)/MAPK (mitogen-activated protein kinase) pathways plays a key role in the regulation of various physiological cellular processes including proliferation, differentiation, and cell death. Aberrant mutational activation of these signaling pathways is closely linked to the development of cancer in many organs, in humans as well as in laboratory animals. Over the past years, more and more evidence for a close linkage of the two oncogenic signaling cascades has accumulated. Using different experimental approaches, model systems, and experimental conditions, a variety of molecular mechanisms have been identified by which signal transduction through WNT/β-catenin and RAS interact, either in a synergistic or an antagonistic manner. Mechanisms of interaction comprise an upstream crosstalk at the level of pathway-activating ligands and their receptors, interrelations of cytosolic kinases involved in either pathways, as well as interaction in the nucleus related to the joint regulation of target gene transcription. Here, we present a comprehensive review of the current knowledge on the interaction of RAS/MAPK- and WNT/β-catenin-driven signal transduction in mammalian cells.
Collapse
Affiliation(s)
- Eva Zeller
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Germany
| | | | | | | |
Collapse
|
29
|
Role for endogenous estrogen in prepubertal Sertoli cell maturation. Anim Reprod Sci 2012; 135:106-12. [DOI: 10.1016/j.anireprosci.2012.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 11/18/2022]
|
30
|
Adly MA, Hussein MRA. Expression of cytokeratin 10 protein in the human testis showing normal and abnormal spermatogenesis. Ultrastruct Pathol 2012; 35:209-13. [PMID: 21910566 DOI: 10.3109/01913123.2011.598255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND CK10 is a heterotetramer of type I and two type II keratins. AIM This study examines the expression pattern of cytokeratin 10 (CK10) in human testis. MATERIALS AND METHODS CK10 protein expression was examined using immunofluorescense staining methods in 30 human testicular biopsy specimens (normal spermatogenesis, maturation arrest and Sertoli cell only syndrome, 10 cases each) obtained from patients undergoing investigations for infertility. RESULTS In the testis showing normal spermatogenesis, CK10 was expressed in the interstitium and in the seminiferous tubules. A strong cytoplasmic expression was seen in the Leydig cells, Sertoli cells, and spermatocytes. In testes showing spermatogenic arrest, weak CK10 protein expression was observed both in the interstitium and seminiferous tubules (some primary spermatocytes). In the testes showing Sertoli cell only syndrome, negligible CK10 staining was seen both in the seminiferous tubules and in the interstitial cells of Leydig. CONCLUSIONS To the authors' knowledge, this is the first study indicating CK10 expression in the human testis during normal and abnormal spermatogenesis. The varied expression of CK10 in testes showing abnormal spermatogenesis suggests its possible involvement in this process.
Collapse
Affiliation(s)
- Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt.
| | | |
Collapse
|
31
|
Molecular basis of cryptorchidism-induced infertility. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1274-83. [DOI: 10.1007/s11427-010-4072-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/07/2010] [Indexed: 10/18/2022]
|
32
|
Cai H, Ren Y, Li XX, Yang JL, Zhang CP, Chen M, Fan CH, Hu XQ, Hu ZY, Gao F, Liu YX. Scrotal heat stress causes a transient alteration in tight junctions and induction of TGF-β expression. ACTA ACUST UNITED AC 2010; 34:352-62. [PMID: 20633196 DOI: 10.1111/j.1365-2605.2010.01089.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specialized junctions, which occur at sites of Sertoli-Sertoli and Sertoli-germ cell contact of seminiferous epithelium, play pivotal roles in spermatogenesis. Slight increase in scrotal temperature can induce oligospermia or azoospermia via increasing germ cell apoptosis. In this study, we demonstrated that the expression of tight junction (TJ) components, such as occludin, claudin-3 and zonula occludens-1 (ZO-1), was reduced 24-48h after a single mild scrotal heat exposure (43°C for 30min), whereas mRNA levels of claudin-11 were increased. Moreover, the protein localization of occludin and ZO-1 was lost from the blood-testis barrier (BTB) site, whereas claudin-11 immunostaining became diffuse and cytoplasmic 2days following heat exposure. Electron microscopic analysis showed that 2days after the heat treatment, the intercellular space between the two adjacent Sertoli cells was expanded, coupled with defragmentation of actin bundles and the endoplasmic reticulum. In addition, the TJ permeability increased significantly 2days after the heat exposure and recovered approximately 10days later. Heat-induced reversible BTB disruption was associated with a transient induction of transforming growth factor (TGF)-β2, -3 and p38 mitogen-activated protein kinase activation. However, the TGF-β antagonist only partially prevented the heat-induced BTB disruption. In conclusion, the expression of TJ-associated molecules and BTB were reversibly perturbed after mild testicular hyperthermia, and the induction of TGF-β expression may be partially involved in heat-induced BTB damage.
Collapse
Affiliation(s)
- H Cai
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shi YQ, Li YC, Hu XQ, Liu T, Liao SY, Guo J, Huang L, Hu ZY, Tang AYB, Lee KF, Yeung WSB, Han CS, Liu YX. Male germ cell-specific protein Trs4 binds to multiple proteins. Biochem Biophys Res Commun 2009; 388:583-8. [PMID: 19706271 DOI: 10.1016/j.bbrc.2009.08.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/10/2009] [Indexed: 01/15/2023]
Abstract
Temperature-related sequence 4 (Trs4) has been identified as a testis-specific gene with expression sensitive to the abdominal temperature changes induced by artificial cryptorchidism. In murine testes, Trs4 mRNA was detected in round spermatids and its protein was localized mainly in the elongating spermatids as well as in the acrosomes and tails of mature spermatozoa. Using a yeast two-hybrid screening system, we identified Rshl-2, Gstmu1, and Ddc8 as putative binding partners of the Trs4 protein in mouse testes. Their interactions were confirmed by in vivo and in vitro binding assays. Further studies demonstrated that Ddc8, a newly identified gene with unknown functions, displayed a similar expression pattern with Trs4 in mouse testes. In particular, Trs4, Ddc8, and Rshl-2 proteins were co-localized to the tails of mature spermatozoa. These results suggested that Trs4 might be involved in diverse processes of spermiogenesis and/or fertilization through interactions with its multiple binding partners.
Collapse
Affiliation(s)
- Yu-Qiang Shi
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ortiz RJ, Lizama C, Codelia VA, Moreno RD. A molecular evaluation of germ cell death induced by etoposide in pubertal rat testes. Mol Hum Reprod 2009; 15:363-71. [PMID: 19346530 DOI: 10.1093/molehr/gap024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Etoposide is widely used in the treatment of patients with testicular cancer. The mechanism underlying apoptosis induction in cancer cells has been studied in different cell types, but it is not known whether the same factors participate in viable germ cells undergoing programmed cell death. Since testicular cancer primarily affects young males, we used pubertal rats (21 days old) as a model to determine different apoptotic parameters after etoposide treatment in healthy testes. We found that one intratesticular injection of etoposide (1.2 microg/testis) induced a significant increase in spermatocytes undergoing apoptosis, along with activation of caspase-9, -8 and -3 after 24 h of treatment. Spermatocyte apoptosis was inhibited when a general caspase inhibitor was added along with etoposide. Etoposide induces a significant stabilization/activation of p53, resulting in an increase level of this protein. The mRNA of Bcl-2 antagonist of cell death (BAD), a pro-apoptotic gene and a transcriptional target of p53, was significantly increased after etoposide treatment. Thus, our results suggest a single injection of etoposide induces apoptosis in healthy pachytene spermatocytes mediated by p53 and caspase activation. These findings will assist the search for new therapies to prevent the deleterious effect of cancer drugs upon normal cells.
Collapse
Affiliation(s)
- Rina J Ortiz
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | |
Collapse
|
35
|
Chen M, Cai H, Yang JL, Lu CL, Liu T, Yang W, Guo J, Hu XQ, Fan CH, Hu ZY, Gao F, Liu YX. Effect of heat stress on expression of junction-associated molecules and upstream factors androgen receptor and Wilms' tumor 1 in monkey sertoli cells. Endocrinology 2008; 149:4871-82. [PMID: 18535113 DOI: 10.1210/en.2007-1093] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sertoli cells are important in determining the fate of spermatogenic cells by providing nutrition and structural support via cell junctions. In this study, we sought to examine the effect of 43 C warming on cell junctions in seminiferous epithelium and the expression of junction-associated molecules in Sertoli cells. Electron microscopy showed the appearance of large vacuoles between Sertoli and germ cells and adjacent Sertoli cells, leading to disruption of corresponding cell junctions 24 h after terminating the heat treatment. Using primary Sertoli cells isolated from pubertal monkey testes, we demonstrated that expression of adherens junction-associated molecules, such as N-cadherin and beta-catenin, and tight junction-associated molecule zonula occludens protein 1 was significantly reduced in 24-48 h after heat treatment. In contrast, intermediate filament vimentin expression was up-regulated in 6-48 h. Androgen receptor (AR) and Wilms' tumor gene 1 expression dramatically decreased after heat treatment. Both proteins completely disappeared immediately after terminating heat treatment and began to recover after 6 h. Treatment of the monkey Sertoli cells with an AR antagonist, flutamide, could mimic the heat-induced changes in the expression of junction-associated molecules in Sertoli cells. Furthermore, overexpression of AR in the Sertoli cells up-regulated the expression of N-cadherin, beta-catenin, and zonula occludens protein 1 and down-regulated vimentin expression. Their expression after heat treatment could be rescued by the AR overexpression. These results indicate that the decreased AR expression after heat treatment is involved in heat-induced cell junction disruption.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen M, Yuan JX, Shi YQ, Zhang XS, Hu ZY, Gao F, Liu YX. Effect of 43 degrees treatment on expression of heat shock proteins 105, 70 and 60 in cultured monkey Sertoli cells. Asian J Androl 2008; 10:474-85. [PMID: 18385910 DOI: 10.1111/j.1745-7262.2008.00391.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM To examine the possible effect of heat treatment on expression of heat shock proteins (Hsps) 105, 70, and 60 in primary monkey Sertoli cells and to evaluate the possible signal pathways. METHODS Western blot analysis, real-time polymerase chain reaction (PCR), and confocal immunohistochemistry were used to analyze mRNA and protein levels of the Hsps in response to 43 degrees treatment of Sertoli cells isolated from pubertal monkey testes. RESULTS Staining with Hoechst 33342 indicated Sertoli cells did not undergo apoptosis after heat treatment. Hsp105 was expressed in cytoplasm of untreated Sertoli cells. Both Hsp105 mRNA and protein levels were increased approximately 20-fold compared to those of the untreated controls at 12 h after heat treatment. Untreated Sertoli cells did not express Hsp70, but heat stress induced its expression in the cell cytoplasm. The time-course of changes in Hsp70 was similar to that of Hsp105. In contrast to Hsp105 and Hsp70, the change in Hsp60 expression was much less obvious. The protein level between 12 h and 48 h after heat treatment was only approximately 1.5-fold that of the untreated control. Extracellular regulated kinase (ERK) 1/2 inhibitor (U0126) or phosphoinositide kinase-3 (PI3K) inhibitor (LY294002) could partially block the response of Hsp105 and Hsp70 induced by heat treatment. CONCLUSION These results indicate that the heat-induced expression of the three types of Hsp in monkey Sertoli cells might be regulated by ERK and/or PI3K signal pathways, but the profile of their expression is different, suggesting that they might have different regulatory functions in Sertoli cells.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|