1
|
Liang F, Wang M, Li J, Guo J. The evolution of S-nitrosylation detection methodology and the role of protein S-nitrosylation in various cancers. Cancer Cell Int 2024; 24:408. [PMID: 39702281 DOI: 10.1186/s12935-024-03568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024] Open
Abstract
S-nitrosylation (SNO) modification, a nitric oxide (NO)-mediated post-translational modification (PTM) of proteins, plays an important role in protein microstructure, degradation, activity, and stability. Due to the presence of reducing agents, the SNO modification process mediated by NO derivatives is often reversible and unstable. This reversible transformation between SNO modification and denitrification often influences the structure, activity, and function of proteins. The reversibility of SNO modifications also poses a challenge when verifying changes in the biological functions of proteins. Moreover, SNO modification of key signaling pathway proteins, such as caspase-3, NF-κB, and Bcl-2, can affect tumor proliferation, invasion, and apoptosis. The SNO-modified proteins play important roles in both promoting and inhibiting cancer, which indirectly confirms the duality and complexity of SNO modification functions. This article reviews the biological significance of various SNO-modified proteins in different cancers, providing a theoretical basis for determining whether the related changes of SNO-modified proteins are universal in cancers. Additionally, this review presents a comprehensive and detailed summary of the evolution of detection methods for SNO-modified proteins, providing a possible methodological basis for future research on SNO-modified proteins.
Collapse
Affiliation(s)
- Feng Liang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jie Guo
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Liang F, Wang S, Guo Y, Mu Y, Shang F, Wang M. Proteome profiling of endogenous and potential S-nitrosylation in colorectal cancer. Front Endocrinol (Lausanne) 2023; 14:1153719. [PMID: 37124724 PMCID: PMC10140627 DOI: 10.3389/fendo.2023.1153719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Background As a common cancer with high incidence rate and mortality, colorectal cancer (CRC) is seriously threatening human health. S-nitrosylation (SNO) proteins mediated by nitric oxide (NO) has important implications in the genesis, progression, and apoptosis of CRC. It's worth noting that the SNO proteins also play an important role in the tumor endocrine and metabolic pathways of CRC. Materials and methods In this study, the protein extracts of human tissues and cell lines were treated by biotin switch technology and magnetic beads enrichment. The proteomic results of endogenous and potential SNO proteins were analyzed by mass spectrometry (MS). Through the comparison and analysis of MS results, Gene Ontology (GO) analysis, and literatures, some endogenous and potential SNO proteins were identified in CRC, which were closely related to the tumor endocrine and metabolic pathways, the apoptotic signaling pathways, protein maturation, and other biological processes of the proliferation and apoptosis of CRC cells. Results A total of 19 proteins containing potential or endogenous SNO sites were detected in both human cancer tissue and SW 480 cells. Through the cross validation of MS results, GO analysis, and literatures, several SNO proteins were identified frequently in CRC, such as the actin, cytoplasmic 1 (ACTB), peroxiredoxin-4 (PRDX4), protein S100A8 (S100A8), pyruvate kinase PKM (PKM), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which were closely related to the tumor endocrine and metabolic pathways and the apoptotic signaling pathways of CRC. Conclusion Different CRC cells and tissues contained potential and endogenous SNO modified proteins. In addition, some SNO proteins could participate in the proliferation, metastasis and apoptosis of CRC by regulating the tumor endocrine and metabolic pathways.
Collapse
Affiliation(s)
- Feng Liang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Yu Guo
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yu Mu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - FengJia Shang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Nowak N, Kulma A, Gutowicz J. Up-regulation of Key Glycolysis Proteins in Cancer Development. Open Life Sci 2018; 13:569-581. [PMID: 33817128 PMCID: PMC7874691 DOI: 10.1515/biol-2018-0068] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
In rapid proliferating cancer cells, there is a need for fast ATP and lactate production, therefore cancer cells turn off oxidative phosphorylation and turn on the so called "Warburg effect". This regulating the expression of genes involved in glycolysis. According to many studies, glucose transporter 1, which supplies glucose to the cell, is the most abundantly expressed transporter in cancer cells. Hexokinase 2, is one of four hexokinase isoenzymes, is also another highly expressed enzyme in cancer cells and it functions to enhance the glycolytic rate. The up-regulation of these two proteins has been established as an important factor in promoting development and metastasis in many types of cancer. Furthermore, other enzymes involved in glycolysis pathway such as phosphoglucose isomerase and glyceraldehyde 3-phosphate dehydrogenase, exhibit additional functions in promoting tumor growth in a non-glycolytic way. This review demonstrates the pivotal role of GLUT1, HK2, PGI and GAPDH in cancer development. In particular, we look at how the multifunctional proteins, PGI and GAPDH, affect cancer cell survival. We also present various clinical cancer cases in terms of the overexpression of selected proteins, which may be considered as a therapeutic target.
Collapse
Affiliation(s)
- Nicole Nowak
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - Anna Kulma
- Department of Biotechnology, Wrocław University, 51-148 Wrocław, Poland
| | - Jan Gutowicz
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| |
Collapse
|
4
|
Huang Y, Zhang P, Yang Z, Wang P, Li H, Gao Z. Interaction of glyceraldehyde-3-phosphate dehydrogenase and heme: The relevance of its biological function. Arch Biochem Biophys 2017; 619:54-61. [PMID: 28315300 DOI: 10.1016/j.abb.2017.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/11/2017] [Accepted: 03/11/2017] [Indexed: 10/20/2022]
Abstract
GAPDH was speculated to function as a transient trap to reduce the potential toxicity of free heme by a specific and reversible binding with heme. Up to now, there has been lack of studies focused on this effect. In this paper, the efficiency of GAPDH-heme complex on catalyzing protein carbonylation and nitration, the cross-linking of heme to protein formation, and cytotoxicity of GAPDH-heme were studied. It was found that the binding of GAPDH could inhibit H2O2-mediated degradation of heme. Peroxidase activity of GAPDH-heme complex was higher than that of free heme, but significantly lower than that of HSA-heme. Catalytic activity of heme corresponded complex toward tyrosine oxidation/nitration was decreased in the order of HSA-heme, heme and GAPDH-heme. GAPDH also inhibited heme-H2O2-NO2- induced protein carbonylation. No covalent bond was formed between heme and GAPDH after treated with H2O2. GAPDH was more effective than HSA on protecting cells against heme-NO2--H2O2 induced cytotoxicity. These results indicate that binding of GAPDH inhibits the activity of heme in catalyzing tyrosine nitration and protects the coexistent protein against oxidative damage, and the mechanism is different from that of HSA. This study may help clarifying the protective role of GAPDH acting as a chaperone in heme transfer to downstream areas.
Collapse
Affiliation(s)
- Yi Huang
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Zhen Yang
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, United States
| | - Peipei Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Hailing Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan, 430074, PR China
| | - Zhonghong Gao
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan, 430074, PR China.
| |
Collapse
|
5
|
Abstract
Aside from its well-established role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been shown to possess many key functions in cells. These functions are regulated by protein oligomerization , biomolecular interactions, post-translational modifications , and variations in subcellular localization . Several GAPDH functions and regulatory mechanisms overlap with one another and converge around its role in intermediary metabolism. Several structural determinants of the protein dictate its function and regulation. GAPDH is ubiquitously expressed and is found in all domains of life. GAPDH has been implicated in many diseases, including those of pathogenic, cardiovascular, degenerative, diabetic, and tumorigenic origins. Understanding the mechanisms by which GAPDH can switch between its functions and how these functions are regulated can provide insights into ways the protein can be modulated for therapeutic outcomes.
Collapse
|
6
|
Kalinichenko OV, Myshunina TM, Tron’ko MD. NITRIC OXIDE SYNTHASE ACTIVITY AND ITS CONCENTRATION IN THE TISSUES OF HUMAN THYROID CARCINOMAS. ACTA ACUST UNITED AC 2016; 62:9-19. [PMID: 29569867 DOI: 10.15407/fz62.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study of the activity of the constitutive form of nitric
oxide synthase (cNOS) revealed that in the papillary thyroid
carcinomas it corresponded to that detected in unchanged
extratumoral tissue, while the enzyme activity in follicular
carcinoma was half lesser. At the same time, the activity of
inducible nitric oxide synthase (іNOS) was higher in the
papillary and follicular carcinomas. Such changes in the
enzyme activity were associated with an increase in its level
in papillary carcinomas, and with minor changes in follicular
carcinomas. In medullary carcinomas the parameters under
study corresponded to those in unchanged tissue, and in the
papillary carcinoma metastases without changes in enzyme
activity of nitric oxide formation, the level of the latter was
much higher. Elevated levels of nitric oxide and іNOS activity
in papillary thyroid carcinomas did not depend significantly
on the aggression characteristics of the latter, being however
absent in tumors of T4 category on a background of reduced
cNOS activity and less expressed in tumors surrounded by the
tissue in the presence of a chronic thyroiditis. Furthermore,
in the papillary carcinomas of papillary or follicular structure
nitric oxide level did not differ from the normal range, being
slightly higher in tumors of solid or heterogeneous structure
with presence of solid areas, whereas in carcinomas of
papillary-follicular structure it was twice, and in tissue of solidinsular
structure three times higher. іNOS hyperactivity was
observed in the carcinomas of different structure, except for
tumors of solid structure, in the tumor of which enzyme activity
was within the normal range, and in tumor of solid-insular
structure where it was significantly higher (as well as cNOS
activity) compared with tumors of other structure. Nitric oxide
generating system is involved in the transformation of thyroid
cells and progression of tumor growth, including through
apoptosis regulation, as shown by the results of an analysis
of data obtained both in the present study and previously. The
nature of such involvement in papillary thyroid carcinomas
with different histological structure is different.
Key words: nitric oxide; constitutive and inducible nitric oxide
synthase; thyroid carcinoma; apoptosis.
Collapse
|
7
|
Nicola JP, Peyret V, Nazar M, Romero JM, Lucero AM, Montesinos MDM, Bocco JL, Pellizas CG, Masini-Repiso AM. S-Nitrosylation of NF-κB p65 Inhibits TSH-Induced Na(+)/I(-) Symporter Expression. Endocrinology 2015; 156:4741-54. [PMID: 26587909 DOI: 10.1210/en.2015-1192] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) is a ubiquitous signaling molecule involved in a wide variety of cellular physiological processes. In thyroid cells, NO-synthase III-endogenously produced NO reduces TSH-stimulated thyroid-specific gene expression, suggesting a potential autocrine role of NO in modulating thyroid function. Further studies indicate that NO induces thyroid dedifferentiation, because NO donors repress TSH-stimulated iodide (I(-)) uptake. Here, we investigated the molecular mechanism underlying the NO-inhibited Na(+)/I(-) symporter (NIS)-mediated I(-) uptake in thyroid cells. We showed that NO donors reduce I(-) uptake in a concentration-dependent manner, which correlates with decreased NIS protein expression. NO-reduced I(-) uptake results from transcriptional repression of NIS gene rather than posttranslational modifications reducing functional NIS expression at the plasma membrane. We observed that NO donors repress TSH-induced NIS gene expression by reducing the transcriptional activity of the nuclear factor-κB subunit p65. NO-promoted p65 S-nitrosylation reduces p65-mediated transactivation of the NIS promoter in response to TSH stimulation. Overall, our data are consistent with the notion that NO plays a role as an inhibitory signal to counterbalance TSH-stimulated nuclear factor-κB activation, thus modulating thyroid hormone biosynthesis.
Collapse
Affiliation(s)
- Juan Pablo Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Victoria Peyret
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Magalí Nazar
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Jorge Miguel Romero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Ariel Maximiliano Lucero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - María del Mar Montesinos
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Claudia Gabriela Pellizas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Ana María Masini-Repiso
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (J.P.N., V.P., M.N., A.M.L., M.d.M.M., J.L.B., C.G.P., A.M.M.-R.) and Centro de Investigaciones en Química Biológica (J.M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
8
|
Seabra AB, Ouellet M, Antonic M, Chrétien MN, English AM. Catalysis of nitrite generation from nitroglycerin by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Nitric Oxide 2013; 35:116-22. [PMID: 24064205 DOI: 10.1016/j.niox.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 01/11/2023]
Abstract
Vascular relaxation to nitroglycerin (glyceryl trinitrate; GTN) requires its bioactivation by mechanisms that remain controversial. We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the release of nitrite from GTN. In assays containing dithiothreitol (DTT) and NAD(+), the GTN reductase activity of purified GAPDH produces nitrite and 1,2-GDN as the major products. A vmax of 2.6nmolmin(-)(1)mg(-)(1) was measured for nitrite production by GAPDH from rabbit muscle and a GTN KM of 1.2mM. Reductive denitration of GTN in the absence of DTT results in dose- and time-dependent inhibition of GAPDH dehydrogenase activity. Disulfiram, a thiol-modifying drug, inhibits both the dehydrogenase and GTN reductase activity of GAPDH, while DTT or tris(2-carboxyethyl)phosphine reverse the GTN-induced inhibition. Incubation of intact human erythrocytes or hemolysates with 2mM GTN for 60min results in 50% inhibition of GAPDH's dehydrogenase activity, indicating that GTN is taken up by these cells and that the dehydrogenase is a target of GTN. Thus, erythrocyte GAPDH may contribute to GTN bioactivation.
Collapse
Affiliation(s)
- Amedea B Seabra
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | | | | | | | | |
Collapse
|
9
|
Maturu P, Vaddi DR, Pannuru P, Nallanchakravarthula V. Modification of Erythrocyte Membrane Proteins, Enzymes and Transport Mechanisms in Chronic Alcoholics: An In vivo and In vitro Study. Alcohol Alcohol 2013; 48:679-86. [DOI: 10.1093/alcalc/agt071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
10
|
Wang C, Han C, Li T, Yang D, Shen X, Fan Y, Xu Y, Zheng W, Fei C, Zhang L, Xue F. Nuclear translocation and accumulation of glyceraldehyde-3-phosphate dehydrogenase involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella). Vet Res 2013; 44:29. [PMID: 23651214 PMCID: PMC3655105 DOI: 10.1186/1297-9716-44-29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 04/18/2013] [Indexed: 01/09/2023] Open
Abstract
In mammalian cells, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) has recently been shown to be implicated in numerous apoptotic paradigms, especially in neuronal apoptosis, and has been demonstrated to play a vital role in some neurodegenerative disorders. However, this phenomenon has not been reported in protists. In the present study, we report for the first time that such a mechanism is involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella). We found that upon treatment of parasites with diclazuril, the expression levels of GAPDH transcript and protein were significantly increased in second-generation merozoites. Then, we examined the subcellular localization of GAPDH by fluorescence microscopy and Western blot analysis. The results show that a considerable amount of GAPDH protein appeared in the nucleus within diclazuril-treated second-generation merozoites; in contrast, the control group had very low levels of GAPDH in the nucleus. The glycolytic activity of GAPDH was kinetically analyzed in different subcellular fractions. A substantial decrease (48.5%) in glycolytic activity of GAPDH in the nucleus was displayed. Moreover, the activities of caspases-3, -9, and −8 were measured in cell extracts using specific caspase substrates. The data show significant increases in caspase-3 and caspase-9 activities in the diclazuril-treated group.
Collapse
Affiliation(s)
- Congcong Wang
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The contribution of N₂O₃ to the cytotoxicity of the nitric oxide donor DETA/NO: an emerging role for S-nitrosylation. Biosci Rep 2013; 33:BSR20120120. [PMID: 23402389 PMCID: PMC3610299 DOI: 10.1042/bsr20120120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The relationship between the biological activity of NO and its chemistry is complex. The objectives of this study were to investigate the influence of oxygen tension on the cytotoxicity of the NO• donor DETA/NO and to determine the effects of oxygen tension on the key RNS (reactive nitrogen species) responsible for any subsequent toxicity. The findings presented in this study indicate that the DETA/NO-mediated cytotoxic effects were enhanced under hypoxic conditions. Further investigations revealed that neither ONOO− (peroxynitrite) nor nitroxyl was generated. Fluorimetric analysis in the presence of scavengers suggest for the first time that another RNS, dinitrogen trioxide may be responsible for the cytotoxicity with DETA/NO. Results showed destabilization of HIF (hypoxia inducible factor)-1α and depletion of GSH levels following the treatment with DETA/NO under hypoxia, which renders cells more susceptible to DETA/NO cytotoxicity, and could account for another mechanism of DETA/NO cytotoxicity under hypoxia. In addition, there was significant accumulation of nuclear p53, which showed that p53 itself might be a target for S-nitrosylation following the treatment with DETA/NO. Both the intrinsic apoptotic pathway and the Fas extrinsic apoptotic pathway were also activated. Finally, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is another important S-nitrosylated protein that may possibly play a key role in DETA/NO-mediated apoptosis and cytotoxicity. Therefore this study elucidates further mechanisms of DETA/NO mediated cytotoxicity with respect to S-nitrosylation that is emerging as a key player in the signalling and detection of DETA/NO-modified proteins in the tumour microenvironment.
Collapse
|
12
|
Niles AL, Moravec RA, Riss TL. Update on in vitro cytotoxicity assays for drug development. Expert Opin Drug Discov 2013; 3:655-69. [PMID: 23506147 DOI: 10.1517/17460441.3.6.655] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND in vitro cytotoxicity testing provides a crucial means of ranking compounds for consideration in drug discovery. The choice of using a particular viability or cytotoxicity assay technology may be influenced by specific research goals. OBJECTIVE Although the high-throughput screening (HTS) utility is typically dependent upon sensitivity and scalability, it is also impacted by signal robustness and resiliency to assay interferences. Further consideration should be given to data quality, ease-of-use, reagent stability, and matters of cost-effectiveness. METHODS Here we focus on three main classes of assays that are at present the most popular, useful, and practical for HTS drug discovery efforts. These methods measure: i) viability by metabolism reductase activities; ii) viability by bioluminescent ATP assays; or iii) cytotoxicity by enzymes 'released' into culture medium. Multi-parametric technologies are also briefly discussed. RESULTS/CONCLUSION Each of these methods has its relative merits and detractions; however multi-parametric methods using both viability and cytotoxicity markers may mitigate the inherent shortcomings of single parameter measures.
Collapse
Affiliation(s)
- Andrew L Niles
- Senior Research Scientist Promega Corporation, Research and Development, 2800 Woods Hollow Road, Madison, Wisconsin, 53711, USA +1 608 247 4330, ext. 1447 ; +1 608 298 4818 ;
| | | | | |
Collapse
|
13
|
Han Q, Zhang C, Zhang J, Tian Z. The role of innate immunity in HBV infection. Semin Immunopathol 2012; 35:23-38. [PMID: 22814721 DOI: 10.1007/s00281-012-0331-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 07/05/2012] [Indexed: 12/20/2022]
Abstract
Hepatitis B virus (HBV) infection is one of the main causes of chronic liver diseases. Whether HBV infection is cleared or persists is determined by both viral factors and host immune responses. It becomes clear that innate immunity is of importance in protecting the host from HBV infection and persistence. However, HBV develops strategies to suppress the antiviral immune responses. A combined therapeutic strategy with both viral suppression and enhancement of antiviral immune responses is needed for effective long-term clearance and cure for chronic HBV infection. We and others confirmed that bifunctional siRNAs with both gene silencing and innate immune activation properties are beneficial for inhibition of HBV and represent a potential approach for treatment of viral infection. Understanding the nature of liver innate immunity and their roles in chronic HBV progression and HBV clearance may aid in the design of novel therapeutic strategies for chronic HBV infection.
Collapse
Affiliation(s)
- Qiuju Han
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
14
|
Joo HY, Woo SR, Shen YN, Yun MY, Shin HJ, Park ER, Kim SH, Park JE, Ju YJ, Hong SH, Hwang SG, Cho MH, Kim J, Lee KH. SIRT1 interacts with and protects glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from nuclear translocation: implications for cell survival after irradiation. Biochem Biophys Res Commun 2012; 424:681-6. [PMID: 22789853 DOI: 10.1016/j.bbrc.2012.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
Upon apoptotic stimulation, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cytosolic enzyme normally active in glycolysis, translocates into the nucleus and activates an apoptotic cascade therein. In the present work, we show that SIRT1 prevents nuclear translocation of GAPDH via interaction with GAPDH. SIRT1 depletion triggered nuclear translocation of cytosolic GAPDH even in the absence of apoptotic stress. Such translocation was not, however, observed when SIRT1 enzymatic activity was inhibited, indicating that SIRT1 protein per se, rather than the deacetylase activity of the protein, is required to inhibit GAPDH translocation. Upon irradiation, SIRT1 prevented irradiation-induced nuclear translocation of GAPDH, accompanied by interaction of SIRT1 and GAPDH. Thus, SIRT1 functions to retain GAPDH in the cytosol, protecting the enzyme from nuclear translocation via interaction with these two proteins. This serves as a mechanism whereby SIRT1 regulates cell survival upon induction of apoptotic stress by means that include irradiation.
Collapse
Affiliation(s)
- Hyun-Yoo Joo
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Isolation of antibodies against different protein conformations using immunoaffinity chromatography. Anal Biochem 2012; 426:47-53. [DOI: 10.1016/j.ab.2012.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/12/2012] [Accepted: 03/28/2012] [Indexed: 11/16/2022]
|
16
|
Bianchi L, Bruzzese F, Leone A, Gagliardi A, Puglia M, Di Gennaro E, Rocco M, Gimigliano A, Pucci B, Armini A, Bini L, Budillon A. Proteomic analysis identifies differentially expressed proteins after HDAC vorinostat and EGFR inhibitor gefitinib treatments in Hep-2 cancer cells. Proteomics 2012; 11:3725-42. [PMID: 21761561 DOI: 10.1002/pmic.201100092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several solid tumors are characterized by poor prognosis and few effective treatment options, other than palliative chemotherapy in the recurrent/metastatic setting. Epidermal growth factor receptor (EGFR) has been considered an important anticancer target because it is involved in the development and progression of several solid tumors; however, only a subset of patients show a clinically meaningful response to EGFR inhibition, particularly to EGFR tyrosine kinase inhibitors such as gefitinib. We have recently demonstrated synergistic antitumor effect of the histone deacetylase inhibitor vorinostat combined with gefitinib. To further characterize the interaction between these two agents, cellular extracts from Hep-2 cancer cells that were untreated or treated for 24 h with either vorinostat or gefitinib alone or with a vorinostat/gefitinib combination were analyzed using 2-D DIGE. Software analysis using DeCyder was performed, and numerous differentially expressed protein spots were visualized between the four examined settings. Using MALDI-TOF MS and ESI-Ion trap MS/MS, several differentially expressed proteins were identified; some of these were validated by Western blotting. Finally, a pathway analysis of experimental data performed using MetaCore highlighted a relevant relationship between the identified proteins and additional potential effectors. In conclusion, we performed a comprehensive analysis of proteins regulated by vorinostat and gefitinib, alone and in combination, providing a useful insight into their mechanisms of action as well as their synergistic interaction.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Molecular Biology, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang Q, Lan F, Zheng Z, Xie F, Han J, Dong L, Xie Y, Zheng F. Akt2 kinase suppresses glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-mediated apoptosis in ovarian cancer cells via phosphorylating GAPDH at threonine 237 and decreasing its nuclear translocation. J Biol Chem 2011; 286:42211-42220. [PMID: 21979951 DOI: 10.1074/jbc.m111.296905] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein kinase B (Akt) plays important roles in regulation of cell growth and survival, but while many aspects of its mechanism of action are known, there are potentially additional regulatory events that remain to be discovered. Here we detected a 36-kDa protein that was co-immunoprecipitated with protein kinase Bβ (Akt2) in OVCAR-3 ovarian cancer cells. The protein was identified to be glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by MALDI-TOF/TOF MS, and the interaction of Akt2 and GAPDH was verified by reverse immunoprecipitation. Our further study showed that Akt2 may suppress GAPDH-mediated apoptosis in ovarian cancer cells. Overexpression of GAPDH increased ovarian cancer cell apoptosis induced by H(2)O(2), which was inhibited by Akt2 overexpression and restored by the PI3K/Akt inhibitor wortmannin or Akt2 siRNA. Akt2 phosphorylated Thr-237 of GAPDH and decreased its nuclear translocation, an essential step for GAPDH-mediated apoptosis. The interaction between Akt2 and GAPDH may be important in ovarian cancer as immunohistochemical analysis of 10 normal and 30 cancerous ovarian tissues revealed that decreased nuclear expression of GAPDH correlated with activation (phosphorylation) of Akt2. In conclusion, our study suggests that activated Akt2 may increase ovarian cancer cell survival via inhibition of GAPDH-induced apoptosis. This effect of Akt2 is partly mediated by its phosphorylation of GAPDH at Thr-237, which results in the inhibition of GAPDH nuclear translocation.
Collapse
Affiliation(s)
- Qiaojia Huang
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China.
| | - Fenghua Lan
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Zhiyong Zheng
- Department of Pathology, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Feilai Xie
- Department of Pathology, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Junyong Han
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Lihong Dong
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Yanchuan Xie
- Department of Experimental Medicine, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| | - Feng Zheng
- Department of Nephrology, Fuzhou General Hospital (Dongfang Hospital), 156 North Xi-er Huan Road, Fuzhou City, Fujian Province 350025, China
| |
Collapse
|
18
|
Miura T, Kakehashi H, Shinkai Y, Egara Y, Hirose R, Cho AK, Kumagai Y. GSH-mediated S-transarylation of a quinone glyceraldehyde-3-phosphate dehydrogenase conjugate. Chem Res Toxicol 2011; 24:1836-44. [PMID: 21827172 DOI: 10.1021/tx200025y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many cellular proteins with reactive thiols form covalent bonds with electrophiles, thereby modifying their structures and activities. Here, we describe the recovery of a glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), from such an electrophilic attack by 1,2-napthoquinone (1,2-NQ). GAPDH readily formed a covalent bond with 1,2-NQ through Cys152 at a low concentration (0.2 μM) in a cell-free system, but when human epithelial A549 cells were exposed to this quinone at 20 μM, only minimal binding was observed although extensive binding to numerous other cellular proteins occurred. Depletion of cellular glutathione (GSH) with buthionine sulfoximine (BSO) resulted in some covalent modification of cellular GAPDH by 1,2-NQ and a significant reduction of GAPDH activity in the cells. Incubation of native, but not boiled, human GAPDH that had been modified by 1,2-NQ with GSH resulted in a concentration-dependent removal of 1,2-NQ from the GAPDH conjugate, accompanied by partial recovery of lost catalytic activity and formation of a 1,2-NQ-GSH adduct (1,2-NQ-SG). While GAPDH is recognized as a multifunctional protein, our results show that GAPDH also has a unique ability to recover from electrophilic modification by 1,2-NQ through a GSH-dependent S-transarylation reaction.
Collapse
Affiliation(s)
- Takashi Miura
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Shahani N, Sawa A. Protein S-nitrosylation: role for nitric oxide signaling in neuronal death. Biochim Biophys Acta Gen Subj 2011; 1820:736-42. [PMID: 21803124 DOI: 10.1016/j.bbagen.2011.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/21/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND One of the signaling mechanisms mediated by nitric oxide (NO) is through S-nitrosylation, the reversible redox-based modification of cysteine residues, on target proteins that regulate a myriad of physiological and pathophysiological processes. In particular, an increasing number of studies have identified important roles for S-nitrosylation in regulating cell death. SCOPE OF REVIEW The present review focuses on different targets and functional consequences associated with nitric oxide and protein S-nitrosylation during neuronal cell death. MAJOR CONCLUSIONS S-Nitrosylation exhibits double-edged effects dependent on the levels, spatiotemporal distribution, and origins of NO in the brain: in general Snitrosylation resulting from the basal low level of NO in cells exerts anti-cell death effects, whereas S-nitrosylation elicited by induced NO upon stressed conditions is implicated in pro-cell death effects. GENERAL SIGNIFICANCE Dysregulated protein S-nitrosylation is implicated in the pathogenesis of several diseases including degenerative diseases of the central nervous system (CNS). Elucidating specific targets of S-nitrosylation as well as their regulatory mechanisms may aid in the development of therapeutic intervention in a wide range of brain diseases.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
20
|
Huang J, Xiong N, Chen C, Xiong J, Jia M, Zhang Z, Cao X, Liang Z, Sun S, Lin Z, Wang T. Glyceraldehyde-3-phosphate dehydrogenase: activity inhibition and protein overexpression in rotenone models for Parkinson's disease. Neuroscience 2011; 192:598-608. [PMID: 21736921 DOI: 10.1016/j.neuroscience.2011.06.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/13/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
Rotenone, a widely used pesticide and an environmental risk factor for Parkinson's disease (PD), induces nigrostriatal injury, Lewy body-like inclusions, and Parkinsonian symptoms in rat models for PD. Our previous data indicated that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) overexpression and glycolytic inhibition were co-current in rotenone-induced PC12 (rat adrenal pheochromocytoma cells) cell death. However, whether GAPDH overexpression plays any role in dopaminergic neurodegeneration in vivo remains unknown. In this study, we have found that GAPDH overexpression and GAPDH-positive Lewy body-like aggregates in nigral dopaminergic neurons while nigral GAPDH glycolytic activity decreases in rotenone-based PD animal models. Furthermore, GAPDH knockdown reduces rotenone toxicity significantly in PC12. These in vitro and in vivo data suggest that GAPDH contributes to the pathogenesis of Parkinson's disease, possibly representing a new molecular target for neuroprotective strategies and alternative therapies for PD.
Collapse
Affiliation(s)
- J Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sirover MA. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta Gen Subj 2011; 1810:741-51. [PMID: 21640161 DOI: 10.1016/j.bbagen.2011.05.010] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND New studies provide evidence that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is not simply a classical glycolytic protein of little interest. Instead, it is a multifunctional protein with significant activity in a number of fundamental cell pathways. GAPDH is a highly conserved gene and protein, with a single mRNA transcribed from a unique gene. Control mechanisms must exist which regulate its functional diversity. SCOPE OF REVIEW This review focuses on new, timely studies defining not only its diverse activities but also those which define the regulatory mechanisms through which those functions may be controlled. The reader is referred to the author's prior review for the consideration of past reports which first indicated GAPDH multiple activities (Sirover, Biochim. Biophys. Acta 1432 (1999) 159-184.) CONCLUSIONS These investigations demonstrate fundamental roles of GAPDH in vivo, dynamic changes in its subcellular localization, and the importance of posttranslational modifications as well as protein:protein interactions as regulatory control mechanisms. GENERAL SIGNIFICANCE GAPDH is the prototype "moonlighting" protein which exhibits activities distinct from their classically identified functions. Their participation in diverse cell pathways is essential. Regulatory mechanisms exist which control those diverse activities as well as changes in their subcellular localization as a consequence of those new functions.
Collapse
Affiliation(s)
- Michael A Sirover
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
22
|
Sun L, Li HM, Seufferheld MJ, Walters KR, Margam VM, Jannasch A, Diaz N, Riley CP, Sun W, Li YF, Muir WM, Xie J, Wu J, Zhang F, Chen JY, Barker EL, Adamec J, Pittendrigh BR. Systems-scale analysis reveals pathways involved in cellular response to methamphetamine. PLoS One 2011; 6:e18215. [PMID: 21533132 PMCID: PMC3080363 DOI: 10.1371/journal.pone.0018215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 02/28/2011] [Indexed: 12/20/2022] Open
Abstract
Background Methamphetamine (METH), an abused illicit drug, disrupts many cellular
processes, including energy metabolism, spermatogenesis, and maintenance of
oxidative status. However, many components of the molecular underpinnings of
METH toxicity have yet to be established. Network analyses of integrated
proteomic, transcriptomic and metabolomic data are particularly well suited
for identifying cellular responses to toxins, such as METH, which might
otherwise be obscured by the numerous and dynamic changes that are
induced. Methodology/Results We used network analyses of proteomic and transcriptomic data to evaluate
pathways in Drosophila melanogaster that are affected by
acute METH toxicity. METH exposure caused changes in the expression of genes
involved with energy metabolism, suggesting a Warburg-like effect (aerobic
glycolysis), which is normally associated with cancerous cells. Therefore,
we tested the hypothesis that carbohydrate metabolism plays an important
role in METH toxicity. In agreement with our hypothesis, we observed that
increased dietary sugars partially alleviated the toxic effects of METH. Our
systems analysis also showed that METH impacted genes and proteins known to
be associated with muscular homeostasis/contraction, maintenance of
oxidative status, oxidative phosphorylation, spermatogenesis, iron and
calcium homeostasis. Our results also provide numerous candidate genes for
the METH-induced dysfunction of spermatogenesis, which have not been
previously characterized at the molecular level. Conclusion Our results support our overall hypothesis that METH causes a toxic syndrome
that is characterized by the altered carbohydrate metabolism, dysregulation
of calcium and iron homeostasis, increased oxidative stress, and disruption
of mitochondrial functions.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Entomology, University of Illinois at Urbana-Champaign,
Urbana, Illinois, United States of America
- Synthetic Biology & Bioenergy, J. Craig Venter Institute, San Diego,
California, United States of America
- Department of Entomology, Purdue University, West Lafayette, Indiana,
United States of America
| | - Hong-Mei Li
- Department of Entomology, University of Illinois at Urbana-Champaign,
Urbana, Illinois, United States of America
| | - Manfredo J. Seufferheld
- Department of Crop Sciences, University of Illinois at Urbana-Champaign,
Urbana, Illinois, United States of America
| | - Kent R. Walters
- Department of Entomology, University of Illinois at Urbana-Champaign,
Urbana, Illinois, United States of America
| | - Venu M. Margam
- Department of Entomology, Purdue University, West Lafayette, Indiana,
United States of America
| | - Amber Jannasch
- Metabolomics Profiling Facility at Bindley Bioscience Center, Purdue
University, West Lafayette, Indiana, United States of America
| | - Naomi Diaz
- Metabolomics Profiling Facility at Bindley Bioscience Center, Purdue
University, West Lafayette, Indiana, United States of America
| | - Catherine P. Riley
- Metabolomics Profiling Facility at Bindley Bioscience Center, Purdue
University, West Lafayette, Indiana, United States of America
| | - Weilin Sun
- Department of Entomology, University of Illinois at Urbana-Champaign,
Urbana, Illinois, United States of America
| | - Yueh-Feng Li
- Department of Entomology, Purdue University, West Lafayette, Indiana,
United States of America
- Chung Hwa College of Medical Technology, Jen-Te Hsiang, Tainan,
Taiwan
| | - William M. Muir
- Department of Animal Sciences, Purdue University, West Lafayette,
Indiana, United States of America
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette, Indiana,
United States of America
| | - Jing Wu
- Department of Statistics, Carnegie Mellon University, Pittsburgh,
Pennsylvania, United States of America
| | - Fan Zhang
- School of Informatics, Indiana University, Indianapolis, Indiana, United
States of America
| | - Jake Y. Chen
- School of Informatics, Indiana University, Indianapolis, Indiana, United
States of America
| | - Eric L. Barker
- Medicinal Chemistry and Molecular Pharmacology, Purdue University, West
Lafayette, Indiana, United States of America
| | - Jiri Adamec
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska,
United States of America
| | - Barry R. Pittendrigh
- Department of Entomology, University of Illinois at Urbana-Champaign,
Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
23
|
Kojic SL, Strugnell SS, Wiseman SM. Anaplastic thyroid cancer: a comprehensive review of novel therapy. Expert Rev Anticancer Ther 2011; 11:387-402. [DOI: 10.1586/era.10.179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
24
|
Ventura M, Mateo F, Serratosa J, Salaet I, Carujo S, Bachs O, Pujol MJ. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int J Biochem Cell Biol 2010; 42:1672-80. [PMID: 20601085 DOI: 10.1016/j.biocel.2010.06.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 06/02/2010] [Accepted: 06/16/2010] [Indexed: 11/29/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping glycolitic enzyme that recently has been implicated in cell signaling. Under apoptotic stresses, cells activate nitric oxide formation leading to S-nitrosylation of GAPDH that binds to Siah and translocates to the nucleus. The GAPDH-Siah interaction depends on the integrity of lysine 227 in human GAPDH, being the mutant K227A unable to associate with Siah. As lysine residues are susceptible to be modified by acetylation, we aimed to analyze whether acetylation could mediate transport of GAPDH from cytoplasm to the nucleus. We observed that the acetyltransferase P300/CBP-associated factor (PCAF) interacts with and acetylates GAPDH. We also found that over-expression of PCAF induces the nuclear translocation of GAPDH and that for this translocation its intact acetylase activity is needed. Finally, the knocking down of PCAF reduces nuclear translocation of GAPDH induced by apoptotic stimuli. By spot mapping analysis we first identified Lys 117 and 251 as the putative GAPDH residues that could be acetylated by PCAF. We further demonstrated that both Lys were necessary but not sufficient for nuclear translocation of GAPDH after apoptotic stimulation. Finally, we identified Lys 227 as a third GAPDH residue whose acetylation is needed for its transport from cytoplasm to the nucleus. Thus, results reported here indicate that nuclear translocation of GAPDH is mediated by acetylation of three specific Lys residues (117, 227 and 251 in human cells). Our results also revealed that PCAF participates in the GAPDH acetylation that leads to its translocation to the nucleus.
Collapse
Affiliation(s)
- Mireia Ventura
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Ou XM, Stockmeier CA, Meltzer HY, Overholser JC, Jurjus GJ, Dieter L, Chen K, Lu D, Johnson C, Youdim MB, Austin MC, Luo J, Sawa A, May W, Shih JC. A novel role for glyceraldehyde-3-phosphate dehydrogenase and monoamine oxidase B cascade in ethanol-induced cellular damage. Biol Psychiatry 2010; 67:855-63. [PMID: 20022592 PMCID: PMC2854240 DOI: 10.1016/j.biopsych.2009.10.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 10/14/2009] [Accepted: 10/17/2009] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alcoholism is a major psychiatric condition at least partly associated with ethanol (EtOH)-induced cell damage. Although brain cell loss has been reported in subjects with alcoholism, the molecular mechanism is unclear. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and monoamine oxidase B (MAO B) reportedly play a role in cellular dysfunction under stressful conditions and might contribute to EtOH-induced cell damage. METHODS Expression of GAPDH and MAO B protein was studied in human glioblastoma and neuroblastoma cell lines exposed to physiological concentrations of EtOH. Expression of these proteins was also examined in the prefrontal cortex from human subjects with alcohol dependence and in rats fed with an EtOH diet. Coimmunoprecipitation, subcellular fractionation, and luciferase assay were used to address nuclear GAPDH-mediated MAO B activation. To test the effects of inactivation, RNA interference and pharmacological intervention were used, and cell damage was assessed by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick End Labeling (TUNEL) and hydrogen peroxide measurements. RESULTS Ethanol significantly increases levels of GAPDH, especially nuclear GAPDH, and MAO B in neuronal cells as well as in human and rat brains. Nuclear GAPDH interacts with the transcriptional activator, transforming growth factor-beta-inducible early gene 2 (TIEG2), and augments TIEG2-mediated MAO B transactivation, which results in cell damage in neuronal cells exposed to EtOH. Knockdown expression of GAPDH or treatment with MAO B inhibitors selegiline (deprenyl) and rasagiline (Azilect) can block this cascade. CONCLUSIONS Ethanol-elicited nuclear GAPDH augments TIEG2-mediated MAO B, which might play a role in brain damage in subjects with alcoholism. Compounds that block this cascade are potential candidates for therapeutic strategies.
Collapse
Affiliation(s)
- Xiao-Ming Ou
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, Departments of Psychiatry (CAS, GJJ and LD) and Psychology (JCO), Case Western Reserve University, Cleveland, OH 44106
| | - Herbert Y. Meltzer
- Department of Psychiatry, Psychiatric Hospital at Vanderbilt University, Nashville, TN 37212
| | - James C. Overholser
- Departments of Psychiatry (CAS, GJJ and LD) and Psychology (JCO), Case Western Reserve University, Cleveland, OH 44106
| | - George J. Jurjus
- Departments of Psychiatry (CAS, GJJ and LD) and Psychology (JCO), Case Western Reserve University, Cleveland, OH 44106
| | - Lesa Dieter
- Departments of Psychiatry (CAS, GJJ and LD) and Psychology (JCO), Case Western Reserve University, Cleveland, OH 44106
| | - Kevin Chen
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Deyin Lu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216
| | - Chandra Johnson
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216
| | - Moussa B.H. Youdim
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel
| | - Mark C. Austin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216
| | - Jia Luo
- Departments of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536
| | - Akira Sawa
- Departments of Psychiatry and Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD 21287
| | - Warren May
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216
| | - Jean C. Shih
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
26
|
Kwon HJ, Rhim JH, Jang IS, Kim GE, Park SC, Yeo EJ. Activation of AMP-activated protein kinase stimulates the nuclear localization of glyceraldehyde 3-phosphate dehydrogenase in human diploid fibroblasts. Exp Mol Med 2010; 42:254-69. [PMID: 20177150 PMCID: PMC2859325 DOI: 10.3858/emm.2010.42.4.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2010] [Indexed: 12/12/2022] Open
Abstract
In addition to its well-known glycolytic activity, GAPDH displays multiple functions, such as nuclear RNA export, DNA replication and repair, and apoptotic cell death. This functional diversity depends on its intracellular localization. In this study, we explored the signal transduction pathways involved in the nuclear translocation of GAPDH using confocal laser scanning microscopy of immunostained human diploid fibroblasts (HDFs). GAPDH was present mainly in the cytoplasm when cultured with 10% FBS. Serum depletion by culturing cells in a serum-free medium (SFM) led to a gradual accumulation of GAPDH in the nucleus, and this nuclear accumulation was reversed by the re-addition of serum or growth factors, such as PDGF and lysophosphatidic acid. The nuclear export induced by the re-addition of serum or growth factors was prevented by LY 294002 and SH-5, inhibitors of phosphoinositide 3-kinase (PI3K) and Akt/protein kinase B, respectively, suggesting an involvement of the PI3K signaling pathway in the nuclear export of GAPDH. In addition, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), an activator of AMP-activated protein kinase (AMPK), stimulated the nuclear translocation of GAPDH and prevented serum- and growth factor-induced GAPDH export. AMPK inhibition by compound C or AMPK depletion by siRNA treatment partially prevented SFM- and AICAR-induced nuclear translocation of GAPDH. Our data suggest that the nuclear translocation of GAPDH might be regulated by the PI3K signaling pathway acting mainly as a nuclear export signal and the AMPK signaling pathway acting as a nuclear import signal.
Collapse
Affiliation(s)
- Hyun Jin Kwon
- Department of Biochemistry, Gachon University of Medicine and Science, Incheon 406-799, Korea
| | | | | | | | | | | |
Collapse
|
27
|
Yego ECK, Mohr S. siah-1 Protein is necessary for high glucose-induced glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation and cell death in Muller cells. J Biol Chem 2010; 285:3181-90. [PMID: 19940145 PMCID: PMC2823464 DOI: 10.1074/jbc.m109.083907] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Indexed: 11/06/2022] Open
Abstract
The translocation and accumulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the nucleus has closely been associated with cell death induction. However, the mechanism of this process has not been completely understood. The E3 ubiquitin ligase siah-1 (seven in absentia homolog 1) has recently been identified as a potential shuttle protein to transport GAPDH from the cytosol to the nucleus. Previously, we have demonstrated that elevated glucose levels induce GAPDH nuclear accumulation in retinal Müller cells. Therefore, this study investigated the role of siah-1 in high glucose-induced GAPDH nuclear translocation and subsequent cell death in retinal Müller cells. High glucose significantly increased siah-1 expression within 12 h. Under hyperglycemic conditions, siah-1 formed a complex with GAPDH and was predominantly localized in the nucleus of Müller cells. siah-1 knockdown using 50 nm siah-1 small interfering RNA significantly decreased high glucose-induced GAPDH nuclear accumulation at 24 h by 43.8 +/- 4.0%. Further, knockdown of siah-1 prevented high glucose-induced cell death of Müller cells potentially by inhibiting p53 phosphorylation consistent with previous observations, indicating that nuclear GAPDH induces cell death via p53 activation. Therefore, inhibition of GAPDH nuclear translocation and accumulation by targeting siah-1 promotes Müller cell survival under hyperglycemic conditions.
Collapse
Affiliation(s)
- E. Chepchumba K. Yego
- From the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - Susanne Mohr
- From the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
- the Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
28
|
Demarse NA, Ponnusamy S, Spicer EK, Apohan E, Baatz JE, Ogretmen B, Davies C. Direct binding of glyceraldehyde 3-phosphate dehydrogenase to telomeric DNA protects telomeres against chemotherapy-induced rapid degradation. J Mol Biol 2009; 394:789-803. [PMID: 19800890 DOI: 10.1016/j.jmb.2009.09.062] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 01/01/2023]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that displays several non-glycolytic activities, including the maintenance and/or protection of telomeres. In this study, we determined the molecular mechanism and biological role of the interaction between GAPDH and human telomeric DNA. Using gel-shift assays, we show that recombinant GAPDH binds directly with high affinity (K(d)=45 nM) to a single-stranded oligonucleotide comprising three telomeric DNA repeats, and that nucleotides T1, G5, and G6 of the TTAGGG repeat are essential for binding. The stoichiometry of the interaction is 2:1 (DNA:GAPDH), and GAPDH appears to form a high-molecular-weight complex when bound to the oligonucleotide. Mutation of Asp32 and Cys149, which are localized to the NAD-binding site and the active-site center of GAPDH, respectively, produced mutants that almost completely lost their telomere-binding functions both in vitro and in situ (in A549 human lung cancer cells). Treatment of A549 cells with the chemotherapeutic agents gemcitabine and doxorubicin resulted in increased nuclear localization of expressed wild-type GAPDH, where it protected telomeres against rapid degradation, concomitant with increased resistance to the growth-inhibitory effects of these drugs. The non-DNA-binding mutants of GAPDH also localized to the nucleus when expressed in A549 cells, but did not confer any significant protection of telomeres against chemotherapy-induced degradation or growth inhibition; this occurred without the involvement of caspase activation or apoptosis regulation. Overall, these data demonstrate that GAPDH binds telomeric DNA directly in vitro and may have a biological role in the protection of telomeres against rapid degradation in response to chemotherapeutic agents in A549 human lung cancer cells.
Collapse
Affiliation(s)
- Neil A Demarse
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Colell A, Green DR, Ricci JE. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ 2009; 16:1573-81. [PMID: 19779498 DOI: 10.1038/cdd.2009.137] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Growing evidence points to the fact that glucose metabolism has a central role in carcinogenesis. Among the enzymes controlling this energy production pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is of particular interest. Initially identified as a glycolytic enzyme and considered as a housekeeping gene, this enzyme is actually tightly regulated and is involved in numerous cellular functions. Particularly intriguing are recent reports describing GAPDH as a regulator of cell death. However, its role in cell death is unclear; whereas some studies point toward a proapoptotic function, others describe a protective role and suggest its participation in tumor progression. In this study, we highlight recent findings and discuss potential mechanisms through which cells regulate GAPDH to fulfill its diverse functions to influence cell fate.
Collapse
Affiliation(s)
- A Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas and Liver Unit, Hospital Clinic i Provincial, Centro de Investigaciones Biomédicas Esther Koplowitz, and CIBEREHD, IDIBAPS, 08036-Barcelona, Spain.
| | | | | |
Collapse
|
30
|
Foster MW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 2009; 15:391-404. [PMID: 19726230 DOI: 10.1016/j.molmed.2009.06.007] [Citation(s) in RCA: 577] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 12/24/2022]
Abstract
Protein S-nitrosylation constitutes a large part of the ubiquitous influence of nitric oxide on cellular signal transduction and accumulating evidence indicates important roles for S-nitrosylation both in normal physiology and in a broad spectrum of human diseases. Here we review recent findings that implicate S-nitrosylation in cardiovascular, pulmonary, musculoskeletal and neurological (dys)function, as well as in cancer. The emerging picture shows that, in many cases, pathophysiology correlates with hypo- or hyper-S-nitrosylation of specific protein targets rather than a general cellular insult due to loss of or enhanced nitric oxide synthase activity. In addition, it is increasingly evident that dysregulated S-nitrosylation can not only result from alterations in the expression, compartmentalization and/or activity of nitric oxide synthases, but can also reflect a contribution from denitrosylases, including prominently the S-nitrosoglutathione (GSNO)-metabolizing enzyme GSNO reductase. Finally, because exogenous mediators of protein S-nitrosylation or denitrosylation can substantially affect the development or progression of disease, potential therapeutic agents that modulate S-nitrosylation could well have broad clinical utility.
Collapse
Affiliation(s)
- Matthew W Foster
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
31
|
Low JM, Chauhan AK, Gibson DS, Zhu M, Chen S, Rooney ME, Ombrello MJ, Moore TL. Proteomic analysis of circulating immune complexes in juvenile idiopathic arthritis reveals disease-associated proteins. Proteomics Clin Appl 2009; 3:829-40. [DOI: 10.1002/prca.200800073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Involvement of glyceraldehyde-3-phosphate dehydrogenase in rotenone-induced cell apoptosis: Relevance to protein misfolding and aggregation. Brain Res 2009; 1279:1-8. [DOI: 10.1016/j.brainres.2009.05.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 04/05/2009] [Accepted: 05/02/2009] [Indexed: 12/21/2022]
|
33
|
Wang HQ, Du ZX, Liu BQ, Gao YY, Meng X, Guan Y, Zhang HY. TNF-related apoptosis-inducing ligand suppresses PRDX4 expression. FEBS Lett 2009; 583:1511-5. [PMID: 19364504 DOI: 10.1016/j.febslet.2009.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/04/2009] [Indexed: 11/18/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is currently considered a promising target for developing anti-cancer therapies. Accumulating evidences have now shown that oxidative stress is involved in the TRAIL-mediated cell death. The peroxiredoxins (PRDXs) are a ubiquitous family of proteins involved in protection against oxidative stress through the detoxification of cellular peroxides. Here we demonstrated that endogenous expression of PRDX4 was significantly decreased by TRAIL at the transcriptional level. In addition, overexpression of PRDX4 dramatically suppressed TRAIL-induced apoptosis. Taken together, these data for the first time suggested that TRAIL suppressed the PRDX4 gene at the transcriptional level and that downregulation of PRDX4 might facilitate cell death induced by TRAIL.
Collapse
Affiliation(s)
- Hua-Qin Wang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ho J, Kong JWF, Choong LY, Loh MCS, Toy W, Chong PK, Wong CH, Wong CY, Shah N, Lim YP. Novel breast cancer metastasis-associated proteins. J Proteome Res 2009; 8:583-94. [PMID: 19086899 DOI: 10.1021/pr8007368] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the use of the breast cancer metastatic model, which comprises four isogenic cell lines, iTRAQ-based ESI-LC/MS/MS proteomics was employed to catalog protein expression changes as cancer cells acquire increasing metastatic potential. From more than 1000 proteins detected, 197 proteins, including drug-targetable kinases, phosphatases, proteases and transcription factors, displayed differential expression when cancer cells becomes more metastatic. Overall, the number of protein expression changes was evenly distributed across mildly ( approximately 30%), moderately ( approximately 40%) and aggressively ( approximately 30%) metastatic cancer cells. Some changes were found to be specific to one while others were required for two or more phenotypes. KEGG Orthology suggests major reprogramming in cell metabolism and to smaller extents in genetic and environmental information processing. Ten novel metastasis-associated proteins were identified and the iTRAQ-based expression profiles of 7 proteins were verified to be congruent with antibody-based methods. With the use of tissue microarrays comprising 50 matched cases of invasive and metastatic lesions, the expression profiles of SH3GLB1 and SUB1, SND1, TRIM28 were validated to be down- and up-regulated, respectively, during clinical progression of carcinoma in situ to invasive and metastatic carcinomas. Our study has unraveled proteome-wide molecular aberrations and potentially new players in breast cancer metastasis.
Collapse
Affiliation(s)
- Jiapei Ho
- Oncology Research Institute, Yong Loo Lin School of Medicine, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 2008; 10:1941-88. [PMID: 18774901 PMCID: PMC2774718 DOI: 10.1089/ars.2008.2089] [Citation(s) in RCA: 441] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 02/06/2023]
Abstract
Sulfhydryl chemistry plays a vital role in normal biology and in defense of cells against oxidants, free radicals, and electrophiles. Modification of critical cysteine residues is an important mechanism of signal transduction, and perturbation of thiol-disulfide homeostasis is an important consequence of many diseases. A prevalent form of cysteine modification is reversible formation of protein mixed disulfides (protein-SSG) with glutathione (GSH). The abundance of GSH in cells and the ready conversion of sulfenic acids and S-nitroso derivatives to S-glutathione mixed disulfides suggests that reversible S-glutathionylation may be a common feature of redox signal transduction and regulation of the activities of redox sensitive thiol-proteins. The glutaredoxin enzyme has served as a focal point and important tool for evolution of this regulatory mechanism, because it is a specific and efficient catalyst of protein-SSG deglutathionylation. However, mechanisms of control of intracellular Grx activity in response to various stimuli are not well understood, and delineation of specific mechanisms and enzyme(s) involved in formation of protein-SSG intermediates requires further attention. A large number of proteins have been identified as potentially regulated by reversible S-glutathionylation, but only a few studies have documented glutathionylation-dependent changes in activity of specific proteins in a physiological context. Oxidative stress is a hallmark of many diseases which may interrupt or divert normal redox signaling and perturb protein-thiol homeostasis. Examples involving changes in S-glutathionylation of specific proteins are discussed in the context of diabetes, cardiovascular and lung diseases, cancer, and neurodegenerative diseases.
Collapse
Affiliation(s)
- John J Mieyal
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | | | | | | | |
Collapse
|
36
|
Van Meter KE, Stuart MK. A monoclonal antibody that inhibits translation in Sf21 cell lysates is specific for glyceraldehyde-3-phosphate dehydrogenase. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 69:107-117. [PMID: 18850593 DOI: 10.1002/arch.20271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Monoclonal antibody (Mab) 8B7 was shown in a previous study to inhibit protein translation in lysates of Sf21 cells. The antibody was thought to be specific for a 60-kDa form of elongation factor-1 alpha (EF-1alpha), primarily because the antigen immunoprecipitated by Mab 8B7 cross-reacted with Mab CBP-KK1, an antibody generated to EF-1alpha from Trypanosoma brucei. The purpose of the current study was to investigate further the antigenic specificity of Mab 8B7. The concentration of the 60-kDa antigen relative to total cellular protein proved insufficient for its definitive identification. However, subcellular fractionation of Sf21 cells yielded an additional protein of 37 kDa in the cytosolic and microsomal fractions that was reactive with Mab 8B7. The 37-kDa protein could be easily visualized by colloidal Coomassie Blue G-250 staining as a series of pI 6.9-8.4 spots on two-dimensional gels. Excision of an abundant immunoreactive spot enabled identification of the protein as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and protein database searching. Subsequent immunoblotting of purified rabbit skeletal muscle GAPDH with Mab 8B7 confirmed the antibody's specificity for GAPDH. Besides the pivotal role GAPDH plays in glycolysis, the enzyme has a number of noncanonical functions, including binding to mRNA and tRNA. The ability of Mab 8B7 to disrupt these lesser-known functions of GAPDH may account for the antibody's inhibitory effect on in vitro translation.
Collapse
Affiliation(s)
- Kipp E Van Meter
- Department of Microbiology/Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University, 800 W. Jefferson Street, Kirksville, MO 63501, USA
| | | |
Collapse
|
37
|
Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability. Mol Cell Biol 2008; 28:7139-55. [PMID: 18809573 DOI: 10.1128/mcb.01145-08] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The regulation of the synthesis of the endothelial-derived vasoconstrictor endothelin-1 (ET-1) is a complex process encompassing transcriptional as well as mRNA stability mechanisms. We have described recently the existence of a mechanism for the control of ET-1 expression based on the mRNA-destabilizing capacity of specific cytosolic proteins through interaction with AU-rich elements (AREs) present in the 3' untranslated region of the gene. We now identify glyceraldehyde-3'-phosphate dehydrogenase (GAPDH) as a protein which binds to the AREs and is responsible for the destabilization of the mRNA. Oxidant stress alters the binding of GAPDH to the mRNA and its capacity to modulate ET-1 expression, a phenomenon occurring through specific S glutathionylation of the catalytically active residue Cys 152. Finally, we provide data consistent with a role for GAPDH in mRNA unwinding, yielding this molecule more prone to degradation. In contrast, S-thiolated GAPDH appears unable to modify mRNA unwinding, thus facilitating enhanced stability. Taken together, these results describe a novel, redox-based mechanism regulating mRNA stability and add a new facet to the panoply of GAPDH cellular homeostatic actions.
Collapse
|