1
|
Stöckmann D, Spannbrucker T, Ale-Agha N, Jakobs P, Goy C, Dyballa-Rukes N, Hornstein T, Kümper A, Kraegeloh A, Haendeler J, Unfried K. Non-Canonical Activation of the Epidermal Growth Factor Receptor by Carbon Nanoparticles. NANOMATERIALS 2018; 8:nano8040267. [PMID: 29690640 PMCID: PMC5923597 DOI: 10.3390/nano8040267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022]
Abstract
The epidermal growth factor receptor (EGFR) is an abundant membrane protein, which is essential for regulating many cellular processes including cell proliferation. In our earlier studies, we observed an activation of the EGFR and subsequent signaling events after the exposure of epithelial cells to carbon nanoparticles. In the current study, we describe molecular mechanisms that allow for discriminating carbon nanoparticle-specific from ligand-dependent receptor activation. Caveolin-1 is a key player that co-localizes with the EGFR upon receptor activation by carbon nanoparticles. This specific process mediated by nanoparticle-induced reactive oxygen species and the accumulation of ceramides in the plasma membrane is not triggered when cells are exposed to non-nano carbon particles or the physiological ligand EGF. The role of caveolae formation was demonstrated by the induction of higher order structures of caveolin-1 and by the inhibition of caveolae formation. Using an in vivo model with genetically modified mice lacking caveolin-1, it was possible to demonstrate that carbon nanoparticles in vivo trigger EGFR downstream signaling cascades via caveolin-1. The identified molecular mechanisms are, therefore, of toxicological relevance for inhaled nanoparticles. However, nanoparticles that are intentionally applied to humans might cause side effects depending on this phenomenon.
Collapse
Affiliation(s)
- Daniel Stöckmann
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Tim Spannbrucker
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Niloofar Ale-Agha
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Philipp Jakobs
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Christine Goy
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Nadine Dyballa-Rukes
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Tamara Hornstein
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Alexander Kümper
- INM-Leibniz-Institut für Neue Materialien, Campus D2 2, 66123 Saarbrücken, Germany.
| | - Annette Kraegeloh
- INM-Leibniz-Institut für Neue Materialien, Campus D2 2, 66123 Saarbrücken, Germany.
| | - Judith Haendeler
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
- Medizinische Fakultät, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Klaus Unfried
- IUF-Leibniz-Institut für Umweltmedizinische Forschung, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Tebar F, Enrich C, Rentero C, Grewal T. GTPases Rac1 and Ras Signaling from Endosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:65-105. [PMID: 30097772 DOI: 10.1007/978-3-319-96704-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.
Collapse
Affiliation(s)
- Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
3
|
Transactivation of the epidermal growth factor receptor in responses to myocardial stress and cardioprotection. Int J Biochem Cell Biol 2017; 83:97-110. [PMID: 28049018 DOI: 10.1016/j.biocel.2016.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/25/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022]
|
4
|
Plasma Membrane Organization of Epidermal Growth Factor Receptor in Resting and Ligand-Bound States. Biophys J 2016; 109:1925-36. [PMID: 26536269 DOI: 10.1016/j.bpj.2015.09.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/24/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022] Open
Abstract
The spatial arrangement of the epidermal growth factor receptor (EGFR) on the cellular plasma membrane is one of the prime factors that control its downstream signaling pathways and related functions. However, the molecular organization, which spans the scale from nanometers to micrometer-size clusters, has not been resolved in detail, mainly due to a lack of techniques with the required spatiotemporal resolution. Therefore, we used imaging total internal reflection-fluorescence correlation spectroscopy to investigate EGFR dynamics on live CHO-K1 plasma membranes in resting and ligand-bound states. In combination with the fluorescence correlation spectroscopy diffusion law, this provides information on the subresolution organization of EGFR on cell membranes. We found that overall EGFR organization is sensitive to both cholesterol and the actin cytoskeleton. EGFR in the resting state is partly trapped in cholesterol-containing domains, whereas another fraction exhibits cholesterol independent trapping on the membrane. Disruption of the cytoskeleton leads to a broader range of EGFR diffusion coefficients and a reduction of hop diffusion. In the ligand-bound state we found a dose-dependent behavior. At 10 ng/mL EGF the EGFR is endocytosed and recycled to the membrane, whereas diffusion and organization do not change significantly. At 100 ng/mL EGF the EGFR forms clusters, which are subsequently internalized, whereas outside the clusters diffusivity increases and the organization of the receptor remains unchanged. After disruption of cholesterol-containing domains or actin cytoskeleton, EGF induces microscopic EGFR clusters on the membrane and endocytosis is inhibited.
Collapse
|
5
|
Marshansky V, Rubinstein JL, Grüber G. Eukaryotic V-ATPase: novel structural findings and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:857-79. [PMID: 24508215 DOI: 10.1016/j.bbabio.2014.01.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/25/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023]
Abstract
The eukaryotic V-type adenosine triphosphatase (V-ATPase) is a multi-subunit membrane protein complex that is evolutionarily related to F-type adenosine triphosphate (ATP) synthases and A-ATP synthases. These ATPases/ATP synthases are functionally conserved and operate as rotary proton-pumping nano-motors, invented by Nature billions of years ago. In the first part of this review we will focus on recent structural findings of eukaryotic V-ATPases and discuss the role of different subunits in the function of the V-ATPase holocomplex. Despite structural and functional similarities between rotary ATPases, the eukaryotic V-ATPases are the most complex enzymes that have acquired some unconventional cellular functions during evolution. In particular, the novel roles of V-ATPases in the regulation of cellular receptors and their trafficking via endocytotic and exocytotic pathways were recently uncovered. In the second part of this review we will discuss these unique roles of V-ATPases in modulation of function of cellular receptors, involved in the development and progression of diseases such as cancer and diabetes as well as neurodegenerative and kidney disorders. Moreover, it was recently revealed that the V-ATPase itself functions as an evolutionarily conserved pH sensor and receptor for cytohesin-2/Arf-family GTP-binding proteins. Thus, in the third part of the review we will evaluate the structural basis for and functional insights into this novel concept, followed by the analysis of the potentially essential role of V-ATPase in the regulation of this signaling pathway in health and disease. Finally, future prospects for structural and functional studies of the eukaryotic V-ATPase will be discussed.
Collapse
Affiliation(s)
- Vladimir Marshansky
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Kadmon Pharmaceuticals Corporation, Alexandria Center for Life Science, 450 East 29th Street, New York, NY 10016, USA.
| | - John L Rubinstein
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Gerhard Grüber
- Nanyang Technological University, Division of Structural Biology and Biochemistry, School of Biological Sciences, Singapore 637551, Republic of Singapore; Bioinformatics Institute, A(⁎)STAR, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
6
|
Tebar F, Gelabert-Baldrich M, Hoque M, Cairns R, Rentero C, Pol A, Grewal T, Enrich C. Annexins and Endosomal Signaling. Methods Enzymol 2014; 535:55-74. [DOI: 10.1016/b978-0-12-397925-4.00004-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Xu Y, Parmar A, Roux E, Balbis A, Dumas V, Chevalier S, Posner BI. Epidermal growth factor-induced vacuolar (H+)-atpase assembly: a role in signaling via mTORC1 activation. J Biol Chem 2012; 287:26409-22. [PMID: 22689575 DOI: 10.1074/jbc.m112.352229] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Using proteomics and immunofluorescence, we demonstrated epidermal growth factor (EGF) induced recruitment of extrinsic V(1) subunits of the vacuolar (H(+))-ATPase (V-ATPase) to rat liver endosomes. This was accompanied by reduced vacuolar pH. Bafilomycin, an inhibitor of V-ATPase, inhibited EGF-stimulated DNA synthesis and mammalian target of rapamycin complex 1 (mTORC1) activation as indicated by a decrease in eukaryotic initiation factor 4E-binding 1 (4E-BP1) phosphorylation and p70 ribosomal S6 protein kinase (p70S6K) phosphorylation and kinase activity. There was no corresponding inhibition of EGF-induced Akt and extracellular signal-regulated kinase (Erk) activation. Chloroquine, a neutralizer of vacuolar pH, mimicked bafilomycin effects. Bafilomycin did not inhibit the association of mTORC1 with Raptor nor did it affect AMP-activated protein kinase activity. Rather, the intracellular concentrations of essential but not non-essential amino acids were decreased by bafilomycin in EGF-treated primary rat hepatocytes. Cycloheximide, a translation elongation inhibitor known to augment intracellular amino acid levels, prevented the effect of bafilomycin on amino acids levels and completely reversed its inhibition of EGF-induced mTORC1 activation. In vivo administration of EGF stimulated the recruitment of Ras homologue enriched in brain (Rheb) but not mammalian target of rapamycin (mTOR) to endosomes and lysosomes. This was inhibited by chloroquine treatment. Our results suggest a role for vacuolar acidification in EGF signaling to mTORC1.
Collapse
Affiliation(s)
- Yanqing Xu
- Polypeptide Hormone Laboratory, Faculty of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Looyenga BD, Mackeigan JP. Characterization of differential protein tethering at the plasma membrane in response to epidermal growth factor signaling. J Proteome Res 2012; 11:3101-11. [PMID: 22559174 DOI: 10.1021/pr201077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Physical tethering of membrane proteins to the cortical actin cytoskeleton provides functional organization to the plasma membrane and contributes to diverse cellular processes including cell signaling, vesicular trafficking, endocytosis, and migration. For these processes to occur, membrane protein tethering must be dynamically regulated in response to environmental cues. In this study, we describe a novel biochemical scheme for isolating the complement of plasma membrane proteins that are physically tethered to the actin cytoskeleton. We utilized this method in combination with tandem liquid chromatography/mass spectrometry (LC-MS/MS) to demonstrate that cytoskeletal tethering of membrane proteins is acutely regulated by epidermal growth factor (EGF) in normal human kidney (HK2) cells. Our results indicate that several proteins known to be involved in EGF signaling, as well as other proteins not traditionally associated with this pathway, are tethered to the cytoskeleton in dynamic fashion. Further analysis of one hit from our proteomic survey, the receptor phosphotyrosine phosphatase PTPRS, revealed a correlation between cytoskeletal tethering and endosomal trafficking in response to EGF. This finding parallels previous indications that PTPRS is involved in the desensitization of EGFR and provides a potential mechanism to coordinate localization of these two membrane proteins in the same compartment upon EGFR activation.
Collapse
Affiliation(s)
- Brendan D Looyenga
- Laboratory of Systems Biology, Van Andel Research Institute , Grand Rapids, Michigan 49503, United States
| | | |
Collapse
|
9
|
Bieberich E. It's a lipid's world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem Res 2012; 37:1208-29. [PMID: 22246226 DOI: 10.1007/s11064-011-0698-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/31/2011] [Indexed: 01/20/2023]
Abstract
Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called "bioactive lipids". Pioneering work in Dr. Robert Ledeen's laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: (1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and (2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed.
Collapse
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street Room CA4012, Augusta, GA 30912, USA.
| |
Collapse
|
10
|
Zheng ZY, Cheng CM, Fu XR, Chen LY, Xu L, Terrillon S, Wong ST, Bar-Sagi D, Songyang Z, Chang EC. CHMP6 and VPS4A mediate the recycling of Ras to the plasma membrane to promote growth factor signaling. Oncogene 2012; 31:4630-8. [PMID: 22231449 PMCID: PMC3326214 DOI: 10.1038/onc.2011.607] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
While Ras is well-known to function on the plasma membrane (PM) to mediate growth factor signaling, increasing evidence suggests that Ras has complex roles in the cytoplasm. To uncover these roles, we screened a cDNA library and isolated H-Ras-binding proteins that also influence Ras functions. Many isolated proteins regulate trafficking involving endosomes; CHMP6/VPS20 and VPS4A, which interact with ESCRT-III, were chosen for further study. We showed that the binding is direct and occurs in endosomes. Furthermore, the binding is most efficient when H-Ras has a functional effector-binding-loop and is GTP-bound and ubiquitylated. CHMP6 and VPS4A also bound N-Ras, but not K-Ras. Repressing CHMP6 and VPS4A blocked Ras-induced transformation, which correlated with inefficient Ras localization to the PM as measured by cell fractionation and photobleaching. Moreover, silencing CHMP6 and VPS4A also blocked EGFR recycling. These data suggest that Ras interacts with key ESCRT-III components to promote recycling of itself and EGFR back to the PM to create a positive feedback loop to enhance growth factor signaling.
Collapse
Affiliation(s)
- Z-Y Zheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The classical view of heterotrimeric G protein signaling places G -proteins at the cytoplasmic surface of the cell's plasma membrane where they are activated by an appropriate G protein-coupled receptor. Once activated, the GTP-bound Gα and the free Gβγ are able to regulate plasma membrane-localized effectors, such as adenylyl cyclase, phospholipase C-β, RhoGEFs and ion channels. Hydrolysis of GTP by the Gα subunit returns the G protein to the inactive Gαβγ heterotrimer. Although all of these events in the G protein cycle can be restricted to the cytoplasmic surface of the plasma membrane, G protein localization is dynamic. Thus, it has become increasingly clear that G proteins are able to move to diverse subcellular locations where they perform non-canonical signaling functions. This chapter will highlight our current understanding of trafficking pathways that target newly synthesized G proteins to the plasma membrane, activation-induced and reversible translocation of G proteins from the plasma membrane to intracellular locations, and constitutive trafficking of G proteins.
Collapse
|
12
|
Dolganiuc A. Role of lipid rafts in liver health and disease. World J Gastroenterol 2011; 17:2520-35. [PMID: 21633657 PMCID: PMC3103810 DOI: 10.3748/wjg.v17.i20.2520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are an increasingly common cause of morbidity and mortality; new approaches for investigation of mechanisms of liver diseases and identification of therapeutic targets are emergent. Lipid rafts (LRs) are specialized domains of cellular membranes that are enriched in saturated lipids; they are small, mobile, and are key components of cellular architecture, protein partition to cellular membranes, and signaling events. LRs have been identified in the membranes of all liver cells, parenchymal and non-parenchymal; more importantly, LRs are active participants in multiple physiological and pathological conditions in individual types of liver cells. This article aims to review experimental-based evidence with regard to LRs in the liver, from the perspective of the liver as a whole organ composed of a multitude of cell types. We have gathered up-to-date information related to the role of LRs in individual types of liver cells, in liver health and diseases, and identified the possibilities of LR-dependent therapeutic targets in liver diseases.
Collapse
|
13
|
Luo Y, Cheng Z, Dixon CJ, Hall JF, Taylor E, Boarder MR. Endosomal signalling of epidermal growth factor receptors contributes to EGF-stimulated cell cycle progression in primary hepatocytes. Eur J Pharmacol 2010; 654:173-80. [PMID: 21172338 DOI: 10.1016/j.ejphar.2010.11.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/09/2010] [Accepted: 11/15/2010] [Indexed: 12/11/2022]
Abstract
Agonist-induced internalisation of receptors may lead to the formation of signalling endosomes. There is little evidence relating to whether this occurs to native receptors in non-transformed cells, and no previous studies asking whether this endosomal signalling can promote cell cycle progression in non-transformed cells. We investigated the hypothesis that in primary hepatocytes clathrin-dependent epidermal growth factor (EGF)-induced internalisation of the EGF receptor leads to signalling from endosomal EGF-EGF receptor complexes which may support EGF-stimulated cell cycle progression. We used EGF-stimulation of rat hepatocytes followed by confocal microscopy, and Western blots for phosphoproteins. [(3)H]thymidine incorporation into DNA was used as a indicator of progression to S-phase. Confocal microscopy demonstrated co-internalisation of EGF, EGF receptors and transferrin into endosomes. Internalisation of EGF/EGF receptor/transferrin was blocked by expression of dominant-negative dynamin, but not by the tyrosine kinase inhibitor AG 1478. Dominant-negative dynamin expression reduced EGF-stimulated extracellular signal-related kinase and Akt signalling, but increased tyrosine phosphorylated EGF receptor. EGF-stimulated cell cycle progression requires stimulation of EGF receptors during an initial period (e.g. 1h) and also later during a 24h incubation. EGF receptor internalisation in the presence of AG 1478 followed by removal of the inhibitor resulted in signalling from internalised EGF receptors that is sufficient for the initial stimulation to provide progression to S-phase of the cell cycle. These observations on hepatocytes characterise, for the first time in non-transformed cells, endosomal signalling from internalised EGF receptors, and provide evidence that this endosomal signalling may support the early phase of EGF-stimulated cell cycle progression.
Collapse
Affiliation(s)
- Yi Luo
- The Cell Signalling Laboratory, Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, England, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Balbis A, Posner BI. Compartmentalization of EGFR in cellular membranes: role of membrane rafts. J Cell Biochem 2010; 109:1103-8. [PMID: 20143338 DOI: 10.1002/jcb.22505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is now abundant evidence that the intracellular concentration of the EGFR and many other receptors for peptide hormones and growth factors is important for the temporal and spatial regulation of cell signaling. Spatial control is achieved by the selective compartmentalization of signaling components into endosomes. However further control may be effected by sequestration into sub-domains within a given organelle such as membrane rafts which are dynamic, nano scale structures rich in cholesterol and sphingolipids. Current data suggest the presence of EGFRs in non-caveolae membrane rafts. High doses of EGF seem to promote the sorting of EGFR to late endosomes through a raft/cholesterol dependant mechanism, implicating them in EGFR degradation. However our work and that of others has led us to propose a model in which membrane rafts in late endosomes sequester highly active EGFR leading to the recruitment and activation of MAPK in this compartment.
Collapse
Affiliation(s)
- Alejandro Balbis
- Polypeptide Hormone Laboratory, McGill University and the Royal Victoria Hospital, Montreal, Quebec, Canada H3A2B2
| | | |
Collapse
|
15
|
Payelle-Brogard B, Pellegrini S. Biochemical monitoring of the early endocytic traffic of the type I interferon receptor. J Interferon Cytokine Res 2010; 30:89-98. [PMID: 20028207 DOI: 10.1089/jir.2009.0044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The type I interferon (IFN) receptor consists of two transmembrane chains IFNAR1 and IFNAR2, associated with the tyrosine kinases Tyk2 and Jak1, respectively. Binding of IFN to this receptor complex induces activation of Jak/Stat and non-Stat signaling pathways. Ligand binding also drives receptor internalization and sorting toward degradation or recycling. To gain insights into receptor trafficking and its relation to signaling, we performed subcellular organelle fractionation from IFN-stimulated Daudi cells and defined biochemically an early endosomal antigen-1 (EEA1)-positive compartment bearing the activated IFN receptor. Endosomes were thus purified by immunoaffinity isolation on anti-EEA1 antibodies-coated beads. The content of these purified endosomal fractions was analyzed by Western blot and proteomics. Shortly after IFN stimulation, robustly ubiquitinated IFNAR1 and a small amount of IFNAR2 were found in this endosomal compartment, which also contained tyrosine-phosphorylated Tyk2 and Jak1. These data strongly point to the prolonged interaction during traffic of the tyrosine kinases, still in an activated configuration, with the receptors. Among the major constituents of this EEA1-positive compartment, some proteins that have been implicated in IFN signaling were identified. Altogether, these observations suggest that trafficking of the IFN receptor through endosomes may regulate signaling pathways.
Collapse
|
16
|
Abstract
Peptide hormones and growth factors initiate signalling by binding to and activating their cell surface receptors. The activated receptors interact with and modulate the activity of cell surface enzymes and adaptor proteins which entrain a series of reactions leading to metabolic and proliferative signals. Rapid internalization of ligand-receptor complexes into the endosomal system both prolongs and augments events initiated at the cell surface. In addition endocytosis brings activated receptors into contact with a wider range of substrates giving rise to unique signalling events critical for modulating proliferation and apoptosis. Within the endosomal system, receptor function is regulated by lowering vacuolar pH, augmenting ligand proteolysis and promoting receptor kinase dephosphorylation. Ubiquitination-deubiquitination plays a key role in regulating receptor traffic through the endosomal system resulting in either recycling to the cell surface or degradation in multivesicular-lysosomal elements. From a clinical perspective there are several studies showing that manipulating endosomal processes may constitute a new therapeutic strategy.
Collapse
|
17
|
Ge X, Qiu Y, Loh HH, Law PY. GRIN1 regulates micro-opioid receptor activities by tethering the receptor and G protein in the lipid raft. J Biol Chem 2009; 284:36521-36534. [PMID: 19861419 DOI: 10.1074/jbc.m109.024109] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The lipid raft location of mu-opioid receptor (MOR) determines the receptor activities. However, the manner in which MOR is anchored within the lipid rafts is undetermined. Using the targeted proteomic approach and mass spectrometry analyses, we have identified GRIN1 (G protein-regulated inducer of neurite outgrowth 1) can tether MOR with the G protein alpha-subunit and subsequently regulate the receptor distribution within the lipid rafts. Glutathione S-transferase fusion pulldown and receptor mutational analyses indicate that GRIN1-MOR interaction involves a receptor sequence (267)GSKEK(271) within the MOR third intracellular loop that is not involved in Galpha interaction. The GRIN1 domains involved in MOR interaction are also distinct from those involved in Galpha interaction. Pertussis toxin pretreatment reduced the amount of GRIN1 co-immunoprecipitated with MOR but not the amount with Galpha. Furthermore, overexpression of GRIN1 significantly enhanced the amount of MOR in lipid raft and the receptor signaling magnitude as measured by Src kinase activation. Such increase in MOR signaling was demonstrated further by determining the GRIN1-dependent pertussis toxin-sensitive neurite outgrowth. In contrast to minimal neurite outgrowth induced by etorphine in control neuroblastoma N2A cells, overexpression of GRIN1 resulted in the increase in etorphine- and non-morphine-induced neurite outgrowth in these cells. Knocking down endogenous GRIN1 by small interfering RNA attenuated the agonist-induced neurite outgrowth. Disrupting lipid raft by methyl-beta-cyclodextrin also blocked neurite outgrowth. Hence, by tethering Galpha with MOR, GRIN1 stabilizes the receptor within the lipid rafts and potentiates the receptor signaling in the neurite outgrowth processes.
Collapse
Affiliation(s)
- Xin Ge
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455.
| | - Yu Qiu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| |
Collapse
|
18
|
Tomshine JC, Severson SR, Wigle DA, Sun Z, Beleford DAT, Shridhar V, Horazdovsky BF. Cell proliferation and epidermal growth factor signaling in non-small cell lung adenocarcinoma cell lines are dependent on Rin1. J Biol Chem 2009; 284:26331-9. [PMID: 19570984 DOI: 10.1074/jbc.m109.033514] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rin1 is a Rab5 guanine nucleotide exchange factor that plays an important role in Ras-activated endocytosis and growth factor receptor trafficking in fibroblasts. In this study, we show that Rin1 is expressed at high levels in a large number of non-small cell lung adenocarcinoma cell lines, including Hop62, H650, HCC4006, HCC827, EKVX, HCC2935, and A549. Rin1 depletion from A549 cells resulted in a decrease in cell proliferation that was correlated to a decrease in epidermal growth factor receptor (EGFR) signaling. Expression of wild type Rin1 but not the Rab5 guanine nucleotide exchange factor-deficient Rin1 (Rin1Delta) complemented the Rin1 depletion effects, and overexpression of Rin1Delta had a dominant negative effect on cell proliferation. Rin1 depletion stabilized the cell surface levels of EGFR, suggesting that internalization was necessary for robust signaling in A549 cells. In support of this conclusion, introduction of either dominant negative Rab5 or dominant negative dynamin decreased A549 proliferation and EGFR signaling. These data demonstrate that proper internalization and endocytic trafficking are critical for EGFR-mediated signaling in A549 cells and suggest that up-regulation of Rin1 in A549 cell lines may contribute to their proliferative nature.
Collapse
Affiliation(s)
- Jin C Tomshine
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The Rab family of small GTPases functions in regulating vesicular transport in all eukaryotes. In the past few years, several important reports have linked some members of the Rab family to intriguing mechanistic aspects of cancer cell migration and invasiveness. Rab5 and Rab21 associate with alpha-integrin subunits and modulate their endosomal traffic and subcellular localization. Expression of the latter enhances adhesion and migration of certain cancer cell types. Rab25 has been functionally linked to tumor progression and the invasiveness of some epithelial cancers. Rab25 promotes invasive migration of cells in three-dimensional microenvironments by associating with alpha5beta1 integrin, and directing its recycling to dynamic ruffling protrusions at the migrating cell front. Acting directly, or through its effector, the Rab-coupling protein, Rab25 could potentially engage both integrin and epidermal growth factor receptor and enhance their oncogenic recycling and signaling. Tumor invasiveness may also be modulated by Rab8-mediated exocytic traffic of MT1-matrix metalloproteinase, with the latter's activity likely influenced by interaction with the mammalian suppressor of Sec4 (Mss4), a Rab8 guanine nucleotide exchange factor, and integrin. We discuss highlights in the recent literature that point towards a role for Rab-mediated membrane traffic in cancer cell migration and invasion.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | | |
Collapse
|
20
|
Tomshine JC, Severson SR, Wigle DA, Sun Z, Beleford DAT, Shridhar V, Horazdovsky BF. Cell proliferation and epidermal growth factor signaling in non-small cell lung adenocarcinoma cell lines are dependent on Rin1. J Biol Chem 2009. [PMID: 19570984 DOI: 10.1074/jbc.m109.03351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Rin1 is a Rab5 guanine nucleotide exchange factor that plays an important role in Ras-activated endocytosis and growth factor receptor trafficking in fibroblasts. In this study, we show that Rin1 is expressed at high levels in a large number of non-small cell lung adenocarcinoma cell lines, including Hop62, H650, HCC4006, HCC827, EKVX, HCC2935, and A549. Rin1 depletion from A549 cells resulted in a decrease in cell proliferation that was correlated to a decrease in epidermal growth factor receptor (EGFR) signaling. Expression of wild type Rin1 but not the Rab5 guanine nucleotide exchange factor-deficient Rin1 (Rin1Delta) complemented the Rin1 depletion effects, and overexpression of Rin1Delta had a dominant negative effect on cell proliferation. Rin1 depletion stabilized the cell surface levels of EGFR, suggesting that internalization was necessary for robust signaling in A549 cells. In support of this conclusion, introduction of either dominant negative Rab5 or dominant negative dynamin decreased A549 proliferation and EGFR signaling. These data demonstrate that proper internalization and endocytic trafficking are critical for EGFR-mediated signaling in A549 cells and suggest that up-regulation of Rin1 in A549 cell lines may contribute to their proliferative nature.
Collapse
Affiliation(s)
- Jin C Tomshine
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Chia WJ, Tang BL. Emerging roles for Rab family GTPases in human cancer. Biochim Biophys Acta Rev Cancer 2009; 1795:110-6. [PMID: 19425190 DOI: 10.1016/j.bbcan.2008.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Member of the Ras-associated binding (Rab) family of small GTPases function as molecular switches regulating vesicular transport in eukaryotes cells. Their pathophysiological roles in human malignancies are less well-known compared to members of Ras and Rho families. Several members of the Rab family have, however, been shown to be aberrantly expressed in various cancer tissues. Recent findings have also revealed , in particular, Rab25 as a determinant of tumor progression and aggressiveness of epithelial cancers. Rab25 associates with alpha5beta1 integrin, and enhances tumor cell invasion by directing the localization of integrin-containing vesicles to the leading edge of matrix invading pseudopodia. We summarized here recent integrin on Rab25 and other Rabs implicated to be involved in a variety of human cancers, and discussed plausible mechanisms of how dysregulation of Rab expression could be tumorigenic or tumor suppressive.
Collapse
Affiliation(s)
- Wan Jie Chia
- Department of Biochemistry,Yong Loo Lin School of Medicine, national University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | |
Collapse
|
22
|
Wang Y, Posner BI, Balbis A. Compartmentalization of epidermal growth factor receptor in liver plasma membrane. J Cell Biochem 2009; 107:96-103. [DOI: 10.1002/jcb.22105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Nada S, Hondo A, Kasai A, Koike M, Saito K, Uchiyama Y, Okada M. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J 2009; 28:477-89. [PMID: 19177150 DOI: 10.1038/emboj.2008.308] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 12/22/2008] [Indexed: 12/29/2022] Open
Abstract
The regulation of endosome dynamics is crucial for fundamental cellular functions, such as nutrient intake/digestion, membrane protein cycling, cell migration and intracellular signalling. Here, we show that a novel lipid raft adaptor protein, p18, is involved in controlling endosome dynamics by anchoring the MEK1-ERK pathway to late endosomes. p18 is anchored to lipid rafts of late endosomes through its N-terminal unique region. p18(-/-) mice are embryonic lethal and have severe defects in endosome/lysosome organization and membrane protein transport in the visceral endoderm. p18(-/-) cells exhibit apparent defects in endosome dynamics through perinuclear compartment, such as aberrant distribution and/or processing of lysosomes and impaired cycling of Rab11-positive recycling endosomes. p18 specifically binds to the p14-MP1 complex, a scaffold for MEK1. Loss of p18 function excludes the p14-MP1 complex from late endosomes, resulting in a downregulation of the MEK-ERK activity. These results indicate that the lipid raft adaptor p18 is essential for anchoring the MEK-ERK pathway to late endosomes, and shed new light on a role of endosomal MEK-ERK pathway in controlling endosome dynamics.
Collapse
Affiliation(s)
- Shigeyki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases.
Collapse
Affiliation(s)
- Zhimin Lu
- Department of Neuro-Oncology and Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer, Houston, Texas 77030;
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037;
| |
Collapse
|
25
|
Patra SK. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta Rev Cancer 2007; 1785:182-206. [PMID: 18166162 DOI: 10.1016/j.bbcan.2007.11.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/24/2007] [Accepted: 11/29/2007] [Indexed: 01/09/2023]
Abstract
Cancer is one of the most devastating disorders in our lives. Higher rate of proliferation than death of cells is one of the essential factors for development of cancer. The dynamicity of cell membrane plays some vital roles in cell survival and cell death, including protection, endocytosis, signaling, and increases in mechanical stability during cell division, as well as decrease of shear forces during separation of two cells after division, and cell separation from tissues for cancer metastasis. Within the membrane, there are specialized domains, known as lipid rafts. A raft can coordinate various signaling pathways. Recent data on the proteomics of lipid rafts/caveolae have highlighted the enigmatic role of various signaling proteins in cancer development. Analysis of these data of raft proteome from various tumors, cancer tissues, and cell lines cultured without and with therapeutic agents, as well as from model rafts revealed that there may be two subsets of raft assemblage in cell membrane. One subset of raft is enriched with cholesterol-sphingomyeline-ganglioside-cav-1/Src/EGFR (hereafter, "chol-raft") that is involved in normal cell signaling, and when dysregulated promotes cell transformation and tumor progression; another subset of raft is enriched with ceramide-sphingomyeline-ganglioside-FAS/Ezrin (hereafter, "cer-raft") that generally promotes apoptosis. In view of this, and to focus insight into the cancer cell physiology caused by the lipid rafts mediated signals and their receptors, and the downstream transmitters, either proliferative (for example, EGF and EGFR) or death-inducing (for example, FASL and FAS), and the precise roles of some therapeutic drugs and endogenous acid sphingomylenase in this scenario in in situ transformation of "chol-raft" into "cer-raft" are summarized and discussed in this contribution.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Cancer Epigenetics Research, Kalyani (B-7/183), Nadia, West Bengal, India-741235.
| |
Collapse
|