1
|
Role of potassium channels in female reproductive system. Obstet Gynecol Sci 2020; 63:565-576. [PMID: 32838485 PMCID: PMC7494774 DOI: 10.5468/ogs.20064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
Potassium channels are widely expressed in most types of cells in living organisms and regulate the functions of a variety of organs, including kidneys, neurons, cardiovascular organs, and pancreas among others. However, the functional roles of potassium channels in the reproductive system is less understood. This mini-review provides information about the localization and functions of potassium channels in the female reproductive system. Five types of potassium channels, which include inward-rectifying (Kir), voltage-gated (Kv), calcium-activated (KCa), 2-pore domain (K2P), and rapidly-gating sodium-activated (Slo) potassium channels are expressed in the hypothalamus, ovaries, and uterus. Their functions include the regulation of hormone release and feedback by Kir6.1 and Kir6.2, which are expressed in the luteal granulosa cells and gonadotropin-releasing hormone neurons respectively, and regulate the functioning of the hypothalamus–pituitary–ovarian axis and the production of progesterone. Both channels are regulated by subtypes of the sulfonylurea receptor (SUR), Kir6.1/SUR2B and Kir6.2/SUR1. Kv and Slo2.1 affect the transition from uterine quiescence in late pregnancy to the state of strong myometrial contractions in labor. Intermediate- and small-conductance KCa modulate the vasodilatation of the placental chorionic plate resistance arteries via the secretion of nitric oxide and endothelium-derived hyperpolarizing factors. Treatment with specific channel activators and inhibitors provides information relevant for clinical use that could help alter the functions of the female reproductive system.
Collapse
|
2
|
Negrón AL, Yu G, Boehm U, Acosta-Martínez M. Targeted Deletion of PTEN in Kisspeptin Cells Results in Brain Region- and Sex-Specific Effects on Kisspeptin Expression and Gonadotropin Release. Int J Mol Sci 2020; 21:ijms21062107. [PMID: 32204355 PMCID: PMC7139936 DOI: 10.3390/ijms21062107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Kisspeptin-expressing neurons in the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC) of the hypothalamus relay hormonal and metabolic information to gonadotropin-releasing hormone neurons, which in turn regulate pituitary and gonadal function. Phosphatase and tensin homolog (PTEN) blocks phosphatidylinositol 3-kinase (PI3K), a signaling pathway utilized by peripheral factors to transmit their signals. However, whether PTEN signaling in kisspeptin neurons helps to integrate peripheral hormonal cues to regulate gonadotropin release is unknown. To address this question, we generated mice with a kisspeptin cell-specific deletion of Pten (Kiss-PTEN KO), and first assessed kisspeptin protein expression and gonadotropin release in these animals. Kiss-PTEN KO mice displayed a profound sex and region-specific kisspeptin neuron hyperthrophy. We detected both kisspeptin neuron hyperthrophy as well as increased kisspeptin fiber densities in the AVPV and ARC of Kiss-PTEN KO females and in the ARC of Kiss-PTEN KO males. Moreover, Kiss-PTEN KO mice showed a reduced gonadotropin release in response to gonadectomy. We also found a hyperactivation of mTOR, a downstream PI3K target and central regulator of cell metabolism, in the AVPV and ARC of Kiss-PTEN KO females but not males. Fasting, known to inhibit hypothalamic kisspeptin expression and luteinizing hormone levels, failed to induce these changes in Kiss-PTEN KO females. We conclude that PTEN signaling regulates kisspeptin protein synthesis in both sexes and that its role as a metabolic signaling molecule in kisspeptin neurons is sex-specific.
Collapse
Affiliation(s)
- Ariel L. Negrón
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA;
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Guiqin Yu
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421 Homburg, Germany;
| | - Maricedes Acosta-Martínez
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: ; Tel.: +1-631-444-6075; Fax: +1-631-444-3432
| |
Collapse
|
3
|
Kawwass JF, Sanders KM, Loucks TL, Rohan LC, Berga SL. Increased cerebrospinal fluid levels of GABA, testosterone and estradiol in women with polycystic ovary syndrome. Hum Reprod 2017; 32:1450-1456. [PMID: 28453773 PMCID: PMC6251519 DOI: 10.1093/humrep/dex086] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 10/13/2023] Open
Abstract
STUDY QUESTION Do cerebrospinal fluid (CSF) concentrations of gamma-aminobutyric acid (GABA), testosterone (T) and estradiol (E2) differ in women with polycystic ovary syndrome (PCOS) as compared to eumenorrheic, ovulatory women (EW)? SUMMARY ANSWER Women with PCOS displayed higher CSF levels of GABA and E2, and possibly T, than EW. WHAT IS KNOWN ALREADY The chronic anovulation characteristic of PCOS has been attributed to increased central GnRH drive and resulting gonadotropin aberrations. Androgens are thought to regulate GABA, which in turn regulates the neural cascade that modulates GnRH drive. STUDY DESIGN, SIZE, DURATION This cross-sectional observational study included 15 EW and 12 non-obese women with PCOS who consented to a lumbar puncture in addition to 24 h of serum blood collection at 15-min intervals. PARTICIPANTS/MATERIALS, SETTING, METHODS In total, 27 women were studied at a the General Clinical Research Center (GCRC) at the University of Pittsburgh. Serum analytes included T, E2 and androstenedione. CSF analytes included GABA, glutamate, glucose, T and E2. MAIN RESULTS AND THE ROLE OF CHANCE Women with PCOS had higher CSF GABA as compared to EW (9.04 versus 7.04 μmol/L, P < 0.05). CSF glucose and glutamate concentrations were similar between the two groups. CSF T was 52% higher (P = 0.1) and CSF E2 was 30% higher (P < 0.01) in women with PCOS compared to EW. Circulating T was 122% higher (P < 0.01) and circulating E2 was 75% higher (P < 0.01) in women with PCOS than in EW. LIMITATIONS REASONS FOR CAUTION The study is limited by its small sample size and the technical limitations of measuring CSF analytes that are pulsatile and have short half-lives. WIDER IMPLICATIONS OF THE FINDINGS Women with PCOS displayed significantly higher circulating levels of T and E2, significantly higher CSF levels of E2, and higher levels of CSF testosterone, although the latter was not statistically significant. A better understanding of the central milieu informs our understanding of the mechanisms mediating increased the GnRH drive in PCOS and lends a new perspective for understanding the presentation, pathogenesis and potential health consequences of PCOS, including gender identity issues. STUDY FUNDING/COMPETING INTEREST(S) No conflicts of interest. The study was funded by NIH grants to SLB (RO1-MH50748, U54-HD08610) and NIH RR-00056 to the General Clinical Research Center of the University of Pittsburgh. TRIAL REGISTRATION NUMBER NCT01674426.
Collapse
Affiliation(s)
- Jennifer F. Kawwass
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA
| | - Kristen M. Sanders
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Tammy L. Loucks
- Division of Research, Department of Gynecology and Obstetrics, Emory University, Atlanta, GA
| | - Lisa Cencia Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sarah L. Berga
- Section of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157
| |
Collapse
|
4
|
Piet R, de Croft S, Liu X, Herbison AE. Electrical properties of kisspeptin neurons and their regulation of GnRH neurons. Front Neuroendocrinol 2015; 36:15-27. [PMID: 24907402 DOI: 10.1016/j.yfrne.2014.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/01/2014] [Accepted: 05/27/2014] [Indexed: 01/19/2023]
Abstract
Kisspeptin neurons are critical components of the neuronal network controlling the activity of the gonadotropin-releasing hormone (GnRH) neurons. A variety of genetically-manipulated mouse models have recently facilitated the study of the electrical activity of the two principal kisspeptin neuron populations located in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (ARN) in acute brain slices. We discuss here the mechanisms and pathways through which kisspeptin neurons regulate GnRH neuron activity. We then examine the different kisspeptin-green fluorescent protein mouse models being used for kisspeptin electrophysiology and the data obtained to date for RP3V and ARN kisspeptin neurons. In light of these new observations on the spontaneous firing rates, intrinsic membrane properties, and neurotransmitter regulation of kisspeptin neurons, we speculate on the physiological roles of the different kisspeptin populations.
Collapse
Affiliation(s)
- Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon de Croft
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Xinhuai Liu
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
5
|
El-Mas MM, El-Gowilly SM, Elsalakawy LK, El-Gowelli HM. Oestrogen compromises the facilitatory effect of chronic nicotine on adenosine A2Breceptor-K+channel-mediated renal vasodilation. Clin Exp Pharmacol Physiol 2014; 41:600-7. [DOI: 10.1111/1440-1681.12255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/20/2014] [Accepted: 05/05/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Alexandria University; Alexandria Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Alexandria University; Alexandria Egypt
| | - Lamia K Elsalakawy
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Alexandria University; Alexandria Egypt
| | - Hanan M El-Gowelli
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Alexandria University; Alexandria Egypt
| |
Collapse
|
6
|
Borgquist A, Rivas VM, Kachani M, Sinchak K, Wagner EJ. Gonadal steroids differentially modulate the actions of orphanin FQ/nociceptin at a physiologically relevant circuit controlling female sexual receptivity. J Neuroendocrinol 2014; 26:329-40. [PMID: 24617903 PMCID: PMC4167875 DOI: 10.1111/jne.12148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/25/2014] [Accepted: 03/06/2014] [Indexed: 11/28/2022]
Abstract
Orphanin FQ/nociceptin (OFQ/N) inhibits the activity of pro-opiomelanocortin (POMC) neurones located in the hypothalamic arcuate nucleus (ARH) that regulate female sexual behaviour and energy balance. We tested the hypothesis that gonadal steroids differentially modulate the ability of OFQ/N to inhibit these cells via presynaptic inhibition of transmitter release and postsynaptic activation of G protein-gated, inwardly-rectifying K(+) (GIRK)-1 channels. Whole-cell patch clamp recordings were performed in hypothalamic slices prepared from ovariectomised rats. OFQ/N (1 μm) decreased the frequency of miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs), and also caused a robust outward current in the presence of tetrodotoxin, in ARH neurones from vehicle-treated animals. A priming dose of oestradiol benzoate (EB; 2 μg) increased basal mEPSC frequency, markedly diminished both the OFQ/N-induced decrease in mEPSC frequency and the activation of GIRK-1 currents, and potentiated the OFQ/N-induced decrease in mIPSC frequency. Steroid treatment regimens that facilitate sexual receptivity reinstate the basal mEPSC frequency, the OFQ/N-induced decrease in mEPSC frequency and the activation of GIRK-1 currents to levels observed in vehicle-treated controls, and largely abolish the ability of OFQ/N to decrease mIPSC frequency. These effects were observed in an appreciable population of identified POMC neurones, almost one-half of which projected to the medial preoptic nucleus. Taken together, these data reveal that gonadal steroids influence the pleiotropic actions of OFQ/N on ARH neurones, including POMC neurones, in a disparate manner. These temporal changes in OFQ/N responsiveness further implicate this neuropeptide system as a critical mediator of the gonadal steroid regulation of reproductive behaviour.
Collapse
Affiliation(s)
- Amanda Borgquist
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766
| | - Virginia Mela Rivas
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766
- Department of Physiology, Complutense University, Madrid, Spain
| | - Malika Kachani
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA 90840
| | - Edward J. Wagner
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766
| |
Collapse
|
7
|
Abstract
Reproductive function requires timely secretion of gonadotropin-releasing hormone, which is controlled by a complex excitatory/inhibitory network influenced by sex steroids. Kiss1 neurons are fundamental players in this network, but it is currently unclear whether different conditions of circulating sex steroids directly alter Kiss1 neuronal activity. Here, we show that Kiss1 neurons in the anteroventral periventricular and anterior periventricular nuclei (AVPV/PeN) of males and females exhibit a bimodal resting membrane potential (RMP) influenced by K(ATP) channels, suggesting the presence of two neuronal populations defined as type I (irregular firing patterns) and type II (quiescent). Kiss1 neurons in the arcuate nucleus (Arc) are also composed of firing and quiescent cells, but unlike AVPV/PeN neurons, the range of RMPs did not follow a bimodal distribution. Moreover, Kiss1 neuronal activity in the AVPV/PeN, but not in the Arc, is sexually dimorphic. In females, estradiol shifts the firing pattern of AVPV/PeN Kiss1 neurons and alters cell capacitance and spontaneous IPSCs amplitude of AVPV/PeN and Arc Kiss1 populations in an opposite manner. Notably, mice with selective deletion of estrogen receptor α (ERα) from Kiss1 neurons show cellular activity similar to that observed in ovariectomized females, suggesting that estradiol-induced changes in Kiss1 cellular properties require ERα. We also show that female prepubertal Kiss1 neurons are under higher inhibitory influence and all recorded AVPV/PeN Kiss1 neurons were spontaneously active. Collectively, our findings indicate that changes in cellular activity may underlie Kiss1 action in pubertal initiation and female reproduction.
Collapse
|
8
|
Núñez M, Medina V, Cricco G, Croci M, Cocca C, Rivera E, Bergoc R, Martín G. Glibenclamide inhibits cell growth by inducing G0/G1 arrest in the human breast cancer cell line MDA-MB-231. BMC Pharmacol Toxicol 2013; 14:6. [PMID: 23311706 PMCID: PMC3558386 DOI: 10.1186/2050-6511-14-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 01/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glibenclamide (Gli) binds to the sulphonylurea receptor (SUR) that is a regulatory subunit of ATP-sensitive potassium channels (KATP channels). Binding of Gli to SUR produces the closure of KATP channels and the inhibition of their activity. This drug is widely used for treatment of type 2-diabetes and it has been signaled as antiproliferative in several tumor cell lines. In previous experiments we demonstrated the antitumoral effect of Gli in mammary tumors induced in rats. The aim of the present work was to investigate the effect of Gli on MDA-MB-231 breast cancer cell proliferation and to examine the possible pathways involved in this action. RESULTS The mRNA expression of the different subunits that compose the KATP channels was evaluated in MDA-MB-231 cells by reverse transcriptase-polymerase chain reaction. Results showed the expression of mRNA for both pore-forming isoforms Kir6.1 and Kir6.2 and for the regulatory isoform SUR2B in this cell line. Gli inhibited cell proliferation assessed by a clonogenic method in a dose dependent manner, with an increment in the population doubling time. The KATP channel opener minoxidil increased clonogenic proliferation, effect that was counteracted by Gli. When cell cycle analysis was performed by flow cytometry, Gli induced a significant cell-cycle arrest in G0/G1 phase, together with an up-regulation of p27 levels and a diminution in cyclin E expression, both evaluated by immunoblot. However, neither differentiation evaluated by neutral lipid accumulation nor apoptosis assessed by different methodologies were detected. The cytostatic, non toxic effect on cell proliferation was confirmed by removal of the drug.Combination treatment of Gli with tamoxifen or doxorubicin showed an increment in the antiproliferative effect only for doxorubicin. CONCLUSIONS Our data clearly demonstrated a cytostatic effect of Gli in MDA-MB-231 cells that may be mediated through KATP channels, associated to the inhibition of the G1-S phase progression. In addition, an interesting observation about the effect of the combination of Gli with doxorubicin leads to future research for a potential novel role for Gli as an adjuvant in breast cancer treatment.
Collapse
Affiliation(s)
- Mariel Núñez
- Radioisotopes Laboratory, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Previous studies have indicated that estrogen protects the brain from ischemic damage and regulates K(ATP) channel activity; the present study was designed to address the involvement of K(ATP) channels in the neuroprotective effects of estrogen in focal cerebral ischemia: in experiment 1, K(ATP) mRNA and protein in the cortices of rats were compared among groups of ovariectomized rats (Ovx-1), Sham-operated rats (Sham-1), and ovariectomized rats administered 17β-estradiol (Estr-1). In experiment 2, neurobehavioral scores and infarct volume of rats were evaluated after middle cerebral artery occlusion in ovariectomized rats (Ovx-2), Sham-operated rats (Sham-2), ovariectomized female rats administered 17β-estradiol (Estr-2), and ovariectomized rats administered both 17β-estradiol and stereotactic injections of glibenclamide (Estr+G). Our results showed that the Kir6.2 and SUR1 mRNA and protein levels in the brain cortices of female ovariectomized rats were lower than those in Sham rats. However, the expression levels of Kir6.2 and SUR1 in brain cortices of ovariectomized rats recovered after supplementation with 17β-estradiol. The protective effects of 17β-estradiol were abolished by glibenclamide, a K(ATP) channel blocker. This indicates that estradiol significantly upregulates the expression of K(ATP) channel subunits and channel activity in the brain cortices of ovariectomized rats. This regulation is associated with the neuroprotective effects of estradiol.
Collapse
|
10
|
Scheff NN, Gold MS. Sex differences in the inflammatory mediator-induced sensitization of dural afferents. J Neurophysiol 2011; 106:1662-8. [PMID: 21753025 DOI: 10.1152/jn.00196.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Approximately 20% of the adult population suffers from migraine. This debilitating pain disorder is three times more prevalent in women than in men. To begin to evaluate the underlying mechanisms that may contribute to this sex difference, we tested the hypothesis that there is a sex difference in the inflammatory mediator (IM)-induced sensitization of dural afferents. Acutely dissociated retrogradely labeled dural afferents from adult Sprague-Dawley rats were examined with whole cell patch-clamp recordings. Baseline passive and active electrophysiological properties of dural afferents from both sexes were comparable. However, while IM-induced increases in the excitability of dural afferents from male and female rats were also comparable, the proportion of dural afferents from female rats sensitized by IM (~100%) was significantly greater than that of dural afferents from male rats (~50%). This appeared to be due to differences downstream of IM receptors, as tetrodotoxin-resistant sodium current was increased by IM in a majority of male dural afferents (13/14). These data indicate that there are both quantitative and qualitative differences in the IM-induced sensitization of dural afferents that may contribute to the sex difference in the manifestation of migraine.
Collapse
Affiliation(s)
- N N Scheff
- The Center for Neuroscience at the University of Pittsburgh, PA 15213, USA
| | | |
Collapse
|
11
|
Roland AV, Moenter SM. Glucosensing by GnRH neurons: inhibition by androgens and involvement of AMP-activated protein kinase. Mol Endocrinol 2011; 25:847-58. [PMID: 21393446 DOI: 10.1210/me.2010-0508] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
GnRH neurons integrate steroidal and metabolic cues to regulate fertility centrally. Central glucoprivation reduces LH secretion, which is governed by GnRH release, suggesting GnRH neuron activity is modulated by glucose availability. Here we tested whether GnRH neurons can sense changes in extracellular glucose, and whether glucosensing is altered by the steroids dihydrotestosterone (DHT) and/or estradiol (E). Extracellular recordings were made from GnRH neurons in brain slices from ovariectomized (OVX) mice ± DHT and/or E implants. Firing rate was reduced by a switch from 4.5 to 0.2 mm glucose in cells from OVX, OVX+E, and OVX+DHT+E mice, but not OVX+DHT mice. This suggests that androgens reduce the sensitivity of GnRH neurons to changes in extracellular glucose, but E mitigates this effect. Next we investigated potential mechanisms. In the presence of the ATP-sensitive potassium channel antagonist tolbutamide, glucosensing persisted. In contrast, glucosensing was attenuated in the presence of compound C, an antagonist of AMP-activated protein kinase (AMPK), suggesting a role for AMPK in glucosensing. The AMPK activator N1-(b-D-ribofuranosyl)-5-aminoimidazole-4-carboxamide (AICAR) mimicked the effect of low glucose and was less effective in cells from DHT-treated mice. The effect of DHT to diminish responses to low glucose and AICAR was abolished by blockade of fast synaptic transmission. Both AICAR and low glucose activated a current with a reversal potential near -50 mV, suggesting a nonspecific cation current. These studies indicate that glucosensing is one mechanism by which GnRH neurons sense fuel availability and point to a novel role for AMPK in the central regulation of fertility.
Collapse
Affiliation(s)
- Alison V Roland
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
12
|
Acosta-Martínez M. PI3K: An Attractive Candidate for the Central Integration of Metabolism and Reproduction. Front Endocrinol (Lausanne) 2011; 2:110. [PMID: 22654843 PMCID: PMC3356143 DOI: 10.3389/fendo.2011.00110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/13/2011] [Indexed: 12/19/2022] Open
Abstract
In neurons, as in a variety of other cell types, the enzyme phosphatidylinositol-3-kinase (PI3K) is a key intermediate that is common to the signaling pathways of a number of peripheral metabolic cues, including insulin and leptin, which are well known to regulate both metabolic and reproductive functions. This review article will explore the possibility that PI3K is a key integrator of metabolic and neural signals regulating gonadotropin releasing hormone (GnRH)/luteinizing hormone (LH) release and explore the hypothesis that this enzyme is pivotal in many disorders where gonadotropin release is at risk. Although the mechanisms mediating the influence of metabolism and nutrition on fertility are currently unclear, the strong association between metabolic disorders and infertility is undeniable. For example, women suffering from anorectic disorders experience amenorrhea as a consequence of malnutrition-induced impairment of LH release, and at the other extreme, obesity is also commonly co-morbid with menstrual dysfunction and infertility. Impaired hypothalamic insulin and leptin receptor signaling is thought to be at the core of reproductive disorders associated with metabolic dysfunction. While low levels of leptin and insulin characterize states of negative energy balance, prolonged nutrient excess is associated with insulin and leptin resistance. Metabolic models known to alter GnRH/LH release such as diabetes, diet-induced obesity, and caloric restriction are also accompanied by impairment of PI3K signaling in insulin and leptin sensitive tissues including the hypothalamus. However, a clear link between this signaling pathway and the control of GnRH release by peripheral metabolic cues has not been established. Investigating the role of the signaling pathways shared by metabolic cues that are critical for a normal reproductive state can help identify possible targets in the treatment of metabolic and reproductive disorders such as polycystic ovarian syndrome.
Collapse
Affiliation(s)
- Maricedes Acosta-Martínez
- Department of Physiology and Biophysics, Medical Center, Stony Brook UniversityStony Brook, NY, USA
- *Correspondence: Maricedes Acosta-Martínez, Department of Physiology and Biophysics, Medical Center, Stony Brook University, Stony Brook, NY 11794-8661, USA. e-mail:
| |
Collapse
|
13
|
Belgardt BF, Okamura T, Brüning JC. Hormone and glucose signalling in POMC and AgRP neurons. J Physiol 2009; 587:5305-14. [PMID: 19770186 DOI: 10.1113/jphysiol.2009.179192] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the wake of the obesity pandemic, increased research efforts are under way to define how peripheral hormones and metabolites regulate energy homeostasis. The melanocortin system, comprising anorexigenic proopiomelanocortin (POMC) expressing neurons and orexigenic agouti-related protein (AgRP)/neuropeptide Y (NPY) coexpressing neurons in the arcuate nucleus of the hypothalamus are crucial for normal energy homeostasis both in rodents and humans. They are regulated by peripheral hormones such as leptin and insulin, as well as nutrients such as glucose, amino acids and fatty acids. Although much progress has been made, recent reports continue to underline how restricted our understanding of POMC and AgRP/NPY neuron regulation by these signals is. Importantly, ATP-dependent potassium (K(ATP)) channels are regulated both by ATP (from glucose metabolism) and by leptin and insulin, and directly control electrical excitability of both POMC and AgRP neurons. Thus, this review attempts to offer an integrative overview about how peripheral signals, particularly leptin, insulin and glucose, converge on a molecular level in POMC and AgRP neurons of the arcuate nucleus of the hypothalamus to control energy homeostasis.
Collapse
Affiliation(s)
- Bengt F Belgardt
- Institute for Genetics, Department of Mouse Genetics and Metabolism, Center for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 2nd Department for Internal Medicine University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
14
|
|
15
|
McDevitt MA, Thorsness RJ, Levine JE. A role for ATP-sensitive potassium channels in male sexual behavior. Horm Behav 2009; 55:366-74. [PMID: 18950632 DOI: 10.1016/j.yhbeh.2008.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 08/27/2008] [Accepted: 08/29/2008] [Indexed: 11/24/2022]
Abstract
ATP-sensitive potassium (K(+)(ATP)) channels regulate cell excitability and are expressed in steroid-responsive brain regions involved in sexual behavior, such as the preoptic area (POA) and medial basal hypothalamus (MBH). We hypothesized that K(+)(ATP) channels serve as a mechanism by which testosterone can control the electrical activity of neurons and consequently elicit male sexual responsiveness. RT-PCR analysis indicated that castration induces, while testosterone inhibits, mRNA expression of the K(+)(ATP) channel subunit Kir6.2 in both the POA and MBH of adult male rats. Intracerebral infusion of the pharmacological K(+)(ATP) channel inhibitor tolbutamide increased the proportion of long-term castrates displaying sexual behavior and restored mount frequency, intromission frequency, and copulatory efficacy to values observed in testes-intact animals. Infusions of tolbutamide, but not vehicle, also decreased latencies to mount and intromit in castrated males. Unilateral tolbutamide infusion directly into the POA significantly reduced mount latency of castrates; however, it did not affect other copulatory measures, suggesting that blockade of K(+)(ATP) channels in additional brain regions may be necessary to recover the full range of sexual behavior. These data indicate that blockade of K(+)(ATP) channels is sufficient to elicit the male sexual response in the absence of testosterone. Our observations are consistent with the hypothesis that testosterone modulates male sexual behavior by regulating K(+)(ATP) channels in the brain. Decreased channel expression or channel blockade may increase the excitability of androgen-target neurons, rendering them more sensitive to the hormonal, chemical, and somatosensory inputs they receive, and potentially increase secretion of neurotransmitters that facilitate sexual behavior.
Collapse
Affiliation(s)
- Melissa A McDevitt
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
16
|
Huang W, Acosta-Martínez M, Horton TH, Levine JE. Fasting-induced suppression of LH secretion does not require activation of ATP-sensitive potassium channels. Am J Physiol Endocrinol Metab 2008; 295:E1439-46. [PMID: 18840760 PMCID: PMC2603549 DOI: 10.1152/ajpendo.90615.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reproductive hormone secretions are inhibited by fasting and restored by feeding. Metabolic signals mediating these effects include fluctuations in serum glucose, insulin, and leptin. Because ATP-sensitive potassium (K(ATP)) channels mediate glucose sensing and many actions of insulin and leptin in neurons, we assessed their role in suppressing LH secretion during food restriction. Vehicle or a K(ATP) channel blocker, tolbutamide, was infused into the lateral cerebroventricle in ovariectomized mice that were either fed or fasted for 48 h. Tolbutamide infusion resulted in a twofold increase in LH concentrations in both fed and fasted mice compared with both fed and fasted vehicle-treated mice. However, tolbutamide did not reverse the suppression of LH in the majority of fasted animals. In sulfonylurea (SUR)1-null mutant (SUR1(-/-)) mice, which are deficient in K(ATP) channels, and their wild-type (WT) littermates, a 48-h fast was found to reduce serum LH concentrations in both WT and SUR(-/-) mice. The present study demonstrates that 1) blockade of K(ATP) channels elevates LH secretion regardless of energy balance and 2) acute fasting suppresses LH secretion in both SUR1(-/-) and WT mice. These findings support the hypothesis that K(ATP) channels are linked to the regulation of gonadotropin-releasing hormone (GnRH) release but are not obligatory for mediating the effects of fasting on GnRH/LH secretion. Thus it is unlikely that the modulation of K(ATP) channels either as part of the classical glucose-sensing mechanism or as a component of insulin or leptin signaling plays a major role in the suppression of GnRH and LH secretion during food restriction.
Collapse
Affiliation(s)
- Wenyu Huang
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, USA
| | | | | | | |
Collapse
|