1
|
Abderrezak K, Chakib F, Iyad F, Kahina A, Lyece Y, Mohamed M, Mohamed C, Youcef T, Lounas B, Amel DD, Fadila M, Mohamed A. Phthalate exposure profiles during baby delivery and their association with reproductive hormone changes and newborn outcomes. CHEMOSPHERE 2025; 374:144208. [PMID: 39970759 DOI: 10.1016/j.chemosphere.2025.144208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/26/2024] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Phthalates are organic compounds and emerging pollutants of health concern. Exposure to phthalates may have an impact on hormone physiology, especially during pregnancy, as it represents a period of heightened vulnerability to disruptions for the newborn. OBJECTIVE The aim of this study was to identify perinatal exposure profiles to phthalates in pregnant women living in Algiers and to explore associations between umbilical cord blood levels of phthalates and reproductive hormone concentrations. The aim also extends to explore the link that could exist between potential sources and the exposure profiles to phthalates. METHODS This descriptive study was carried out on 154 couples of women-newborns. After gathering necessary information, umbilical cord blood samples were collected. Reproductive hormones were measured by electrochemiluminescence, while phthalate metabolites were detected using LC-MS/MS. RESULTS The results showed that MEHP, MEP, and MnBP were detected in 97.4%, 74.7%, and 53.9% of samples. Mean concentrations were 18.680, 11.805, and 7.151 ng/mL for MEHP, MEP, and MnBP, respectively. High concentrations of MEP and MEHP were associated with low umbilical cord levels of testosterone, progesterone, and estradiol. A positive and meaningful association between MnBP and LH levels was found as well. The results indicated that MEHP was associated with changes in the anogenital distance (AGD) in both male and female newborns, as positive significant correlation has been found between MEHP levels and female AGD as well as an inverse correlation between the same metabolite and male AGD. The evaluation of exposure sources revealed a significant association between the consumption of bottled water and levels of MnBP. CONCLUSIONS In this study, phthalates were associated with altered levels of reproductive hormones in umbilical cord plasma. These changes may have adverse effects on children development. Results also suggest that the consumption of bottled water may impact the newborns' endocrine integrity.
Collapse
Affiliation(s)
- Khelfi Abderrezak
- University of Algiers, 1, 2 Didouche Mourad Street, Algiers, 16000, Algeria; National Center of Toxicology, Petit Staouali Street, Delly Brahim, Algiers, 16062, Algeria.
| | - Fesraoui Chakib
- University of Algiers, 1, 2 Didouche Mourad Street, Algiers, 16000, Algeria
| | - Fara Iyad
- University of Algiers, 1, 2 Didouche Mourad Street, Algiers, 16000, Algeria
| | - Aksas Kahina
- University of Algiers, 1, 2 Didouche Mourad Street, Algiers, 16000, Algeria; Central Laboratory, Bab-El-Oued University Hospital, Mohamed Lamine Debaghine Street, Algiers, 16009, Algeria
| | - Yargui Lyece
- University of Algiers, 1, 2 Didouche Mourad Street, Algiers, 16000, Algeria; Biochemistry Laboratory, Mustapha Bacha University Hospital, 1945 Pl. of May 1st, Sidi M'Hamed Street, Algiers, 16000, Algeria
| | - Makrelouf Mohamed
- University of Algiers, 1, 2 Didouche Mourad Street, Algiers, 16000, Algeria; Central Laboratory, Bab-El-Oued University Hospital, Mohamed Lamine Debaghine Street, Algiers, 16009, Algeria
| | - Cherifi Mohamed
- University of Algiers, 1, 2 Didouche Mourad Street, Algiers, 16000, Algeria; Central Laboratory, Ibn Ziri Hospital, Bainem, Algiers, 16000, Algeria
| | - Tayebi Youcef
- University of Blida, BP 270, Blida, 09000, Algeria; Obstetrics and Gynecology Department, Douera University Hospital, Halim Brothers Street, Douera, Algiers, 16000, Algeria
| | - Benghanem Lounas
- University of Algiers, 1, 2 Didouche Mourad Street, Algiers, 16000, Algeria; Obstetrics and Gynecology Department, Mustapha Bacha University Hospital, 1945 Pl. of May 1st, Sidi M'Hamed Street, Algiers, 16000, Algeria
| | - Dammene-Debbih Amel
- University of Algiers, 1, 2 Didouche Mourad Street, Algiers, 16000, Algeria; Obstetrics and Gynecology Department, Ibn Ziri Hospital, Bainem, 16000, Algiers, Algeria
| | - Madaci Fadila
- University of Algiers, 1, 2 Didouche Mourad Street, Algiers, 16000, Algeria; Obstetrics and Gynecology Department, Bab-El-Oued University Hospital, Mohamed Lamine Debaghine Street, Algiers, 16009, Algeria
| | - Azzouz Mohamed
- University of Algiers, 1, 2 Didouche Mourad Street, Algiers, 16000, Algeria
| |
Collapse
|
2
|
Elkin ER, Campbell KA, Lapehn S, Harris SM, Padmanabhan V, Bakulski KM, Paquette AG. Placental single cell transcriptomics: Opportunities for endocrine disrupting chemical toxicology. Mol Cell Endocrinol 2023; 578:112066. [PMID: 37690473 PMCID: PMC10591899 DOI: 10.1016/j.mce.2023.112066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
The placenta performs essential biologic functions for fetal development throughout pregnancy. Placental dysfunction is at the root of multiple adverse birth outcomes such as intrauterine growth restriction, preeclampsia, and preterm birth. Exposure to endocrine disrupting chemicals during pregnancy can cause placental dysfunction, and many prior human studies have examined molecular changes in bulk placental tissues. Placenta-specific cell types, including cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, and placental resident macrophage Hofbauer cells play unique roles in placental development, structure, and function. Toxicant-induced changes in relative abundance and/or impairment of these cell types likely contribute to placental pathogenesis. Although gene expression insights gained from bulk placental tissue RNA-sequencing data are useful, their interpretation is limited because bulk analysis can mask the effects of a chemical on individual populations of placental cells. Cutting-edge single cell RNA-sequencing technologies are enabling the investigation of placental cell-type specific responses to endocrine disrupting chemicals. Moreover, in situ bioinformatic cell deconvolution enables the estimation of cell type proportions in bulk placental tissue gene expression data. These emerging technologies have tremendous potential to provide novel mechanistic insights in a complex heterogeneous tissue with implications for toxicant contributions to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Elana R Elkin
- School of Public Health, San Diego State University, San Diego, CA, USA.
| | - Kyle A Campbell
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, Michigan Medicine, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alison G Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Sedha S, Lee H, Singh S, Kumar S, Jain S, Ahmad A, Bin Jardan YA, Sonwal S, Shukla S, Simal-Gandara J, Xiao J, Huh YS, Han YK, Bajpai VK. Reproductive toxic potential of phthalate compounds - State of art review. Pharmacol Res 2021; 167:105536. [PMID: 33677105 DOI: 10.1016/j.phrs.2021.105536] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023]
Abstract
Phthalates are pervasive compounds, and due to the ubiquitous usage of phthalates, humans or even children are widely exposed to them. Since phthalates are not chemically bound to the plastic matrix, they can easily leach out to contaminate the peripheral environment. Various animal and human studies have raised vital health concern including developmental and reproductive toxicity of phthalate exposure. The present review is based upon the available literature on phthalates with respect to their reproductive toxic potential. Common reproductive effects such as declined fertility, reduced testis weight, variations in accessory sex organs and several female reproductive disorders appeared to be largely associated with the transitional phthalates. Among the higher molecular weight phthalates (≥ C7), di-isononyl phthalate (DINP) produces some minor effects on development of male reproductive tract and among low molecular weight phthalates (≤C3), di-methyl (DMP) and di-isobutyl (DIBP) phthalate produce some adverse effects on male reproductive system. Whereas transitional phthalates such as di-butyl phthalate, benzyl butyl phthalate, and di-(2-ethylhexyl) phthalate have shown adverse effects on female reproductive system. Owing to these, non-toxic alternatives to phthalates may be developed and use of phthalates could be rationalized as an important issue where human reproduction system is involved. Though, more epidemiological studies are needed to substantiate the reported findings on phthalates.
Collapse
Affiliation(s)
- Sapna Sedha
- Department of Biotechnology, Dr Hari Singh Gour Vishwavidyalaya, Sagar 470003, MP, India
| | - Hoomin Lee
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Siddhartha Singh
- Government Girls P.G. College for Excellence, Sagar 470002, MP, India
| | - Sunil Kumar
- National Institute of Occupational Health - ICMR, Meghaninagar, Ahmedabad 380016, Gujarat, India
| | - Subodh Jain
- Department of Biotechnology, Dr Hari Singh Gour Vishwavidyalaya, Sagar 470003, MP, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Shruti Shukla
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense E-32004, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense E-32004, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, South Korea.
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, South Korea.
| |
Collapse
|
4
|
Baralić K, Jorgovanović D, Živančević K, Buha Djordjević A, Antonijević Miljaković E, Miljković M, Kotur-Stevuljević J, Antonijević B, Đukić-Ćosić D. Combining in vivo pathohistological and redox status analysis with in silico toxicogenomic study to explore the phthalates and bisphenol A mixture-induced testicular toxicity. CHEMOSPHERE 2021; 267:129296. [PMID: 33348264 DOI: 10.1016/j.chemosphere.2020.129296] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study was to: (i) determine and compare the capacity of bis (2 -ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), bisphenol A (BPA), and their mixture to produce testicular toxicity after the subacute exposure; (ii) explore the mechanisms behind the observed changes using in silico toxicogenomic approach. Male rats were randomly split into groups (n = 6): (1) Control (corn oil); (2) DEHP (50 mg/kg b.w./day); (3) DBP (50 mg/kg b.w./day); (4) BPA (25 mg/kg b.w./day); and (5) MIX (50 mg/kg b.w./day DEHP + 50 mg/kg b.w/day DBP + 25 mg/kg b.w./day BPA). Animals were sacrificed after 28 days of oral exposure, testes were extracted and prepared for histological assessments under the light microscope (haematoxylin and eosin staining) and redox status analysis. The Comparative Toxicogenomics Database (CTD; http://CTD.mdibl.org), Cytoscape software (https://cytoscape.org) and ToppGene Suite (https://toppgene.cchmc.org) were used for data-mining. Present pathohistological study has demonstrated more pronounced testicular toxicity of the MIX group (desquamated germinal epithelium cells, enlarged cells with hyperchromatic nuclei, multinucleated cell forms and intracytoplasmic vacuoles) in comparison with the single substances, while effects on redox status parameters were either more prominent, or present only in the MIX group. In silico investigation revealed 20 genes linked to male reproductive disorders, affected by all three investigated substances. Effects on metabolism, AhR pathway, apoptosis and oxidative stress could be singled out as the most probable mechanisms involved in the subacute DEHP, DBP and BPA mixture testicular toxicity, while the effect on oxidative stress parameters was confirmed by in vivo experiment.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Dragica Jorgovanović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Milica Miljković
- Department of Biochemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Jelena Kotur-Stevuljević
- Department of Biochemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
5
|
Wang Y, Ni C, Li X, Lin Z, Zhu Q, Li L, Ge RS. Phthalate-Induced Fetal Leydig Cell Dysfunction Mediates Male Reproductive Tract Anomalies. Front Pharmacol 2019; 10:1309. [PMID: 31780936 PMCID: PMC6851233 DOI: 10.3389/fphar.2019.01309] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Male fetal Leydig cells in the testis secrete androgen and insulin-like 3, determining the sexual differentiation. The abnormal development of fetal Leydig cells could lead to the reduction of androgen and insulin-like 3, thus causing the male reproductive tract anomalies in male neonates, including cryptorchidism and hypospadias. Environmental pollutants, such as phthalic acid esters (phthalates), can perturb the development and differentiated function of Leydig cells, thereby contributing to the reproductive toxicity in the male. Here, we review the epidemiological studies in humans and experimental investigations in rodents of various phthalates. Most of phthalates disturb the expression of various genes encoded for steroidogenesis-related proteins and insulin-like 3 in fetal Leydig cells and the dose-additive effects are exerted after exposure in a mixture.
Collapse
Affiliation(s)
- Yiyan Wang
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenkun Lin
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linxi Li
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Hu Y, Dong C, Chen M, Chen Y, Gu A, Xia Y, Sun H, Li Z, Wang Y. Effects of monobutyl phthalate on steroidogenesis through steroidogenic acute regulatory protein regulated by transcription factors in mouse Leydig tumor cells. J Endocrinol Invest 2015; 38:875-884. [PMID: 25903692 DOI: 10.1007/s40618-015-0279-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/17/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Dibutyl phthalate (DBP) is one of the most widely used phthalate esters, and it is ubiquitous in the environment. DBP and its major metabolite, monobutyl phthalate (MBP), change steroid biosynthesis and impair male reproductive function. However, the regulatory mechanism underlying the steroid biosynthesis disruption by MBP is still unclear. METHODS We analyzed the progesterone production, steroidogenic acute regulatory protein (StAR) mRNA, protein expression, and DNA-binding affinity of transcription factors (SF-1 and GATA-4). RESULTS Our results reveal that MBP inhibited progesterone production. At the same time, StAR mRNA and protein were decreased after MBP exposure. Furthermore, electrophoretic mobility shift assay showed that DNA-binding affinity of transcription factors (SF-1 and GATA-4) was decreased in a dose-dependent manner after MBP treatments. Western blot tests next confirmed that protein of SF-1 was decreased, but GATA-4 protein was unchanged. However, phosphorylated GATA-4 protein was decreased with 800 μM of MBP. CONCLUSIONS This study reveals an important and novel mechanism whereby SF-1 and GATA-4 may regulate StAR during MBP-induced steroidogenesis disruption.
Collapse
Affiliation(s)
- Y Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Vega A, Martinot E, Baptissart M, De Haze A, Saru JP, Baron S, Caira F, Schoonjans K, Lobaccaro JMA, Volle DH. Identification of the link between the hypothalamo-pituitary axis and the testicular orphan nuclear receptor NR0B2 in adult male mice. Endocrinology 2015; 156:660-9. [PMID: 25426871 DOI: 10.1210/en.2014-1418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The small heterodimer partner (SHP, nuclear receptor subfamily 0, group B, member 2; NR0B2) is an atypical nuclear receptor known mainly for its role in bile acid homeostasis in the enterohepatic tract. We previously showed that NR0B2 controls testicular functions such as testosterone synthesis. Moreover, NR0B2 mediates the deleterious testicular effects of estrogenic endocrine disruptors leading to infertility. The endocrine homeostasis is essential for health, because it controls many physiological functions. This is supported by a large number of studies demonstrating that alterations of steroid activity lead to several kinds of diseases such as obesity and infertility. Within the testis, the functions of the Leydig cells are mainly controlled by the hypothalamo-pituitary axis via LH/chorionic gonadotropin (CG). Here, we show that LH/CG represses Nr0b2 expression through the protein kinase A-AMP protein kinase pathway. Moreover, using a transgenic mouse model invalidated for Nr0b2, we point out that NR0B2 mediates the repression of testosterone synthesis and subsequent germ cell apoptosis induced by exposure to anti-GnRH compound. Together, our data demonstrate a new link between hypothalamo-pituitary axis and NR0B2 in testicular androgen metabolism, making NR0B2 a major actor of testicular physiology in case of alteration of LH/CG levels.
Collapse
Affiliation(s)
- Aurélie Vega
- Inserm Unit 1103 (A.V., E.M., M.B., A.D.H., J.-P.S., S.B., F.C., J.-M.A.L., D.H.V.), Génétique Reproduction et Développement (GReD), Boîte Postale 80026; Clermont Université (A.V., E.M., M.B., A.D.H., J.-P.S., S.B., F.C., J.-M.A.L., D.H.V.), Université Blaise Pascal, GReD; and Centre National de la Recherche Scientifique (A.V., E.M., M.B., A.D.H., J.-P.S., S.B., F.C., J.-M.A.L., D.H.V.), Unité Mixte de recherche 6293, GReD, F-63170 Aubière Cedex, France; Centre de Recherche en Nutrition Humaine d'Auvergne (A.V., E.M., M.B., A.D.H., J.-P.S., S.B., F.C., J.-M.A.L., D.H.V.), F-63000 Clermont-Ferrand Cedex, France; and Institute of Bioengineering (K.S.), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li EH, Liang SJ, Sun WL, Xu DL, Hong Y, Xia SJ, Jiang JT. Expression of the Shh/Bmp4 signaling pathway during the development of anorectal malformations in a male rat model of prenatal exposure to di(n-butyl) phthalate. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00095a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sonic hedgehog (Shh)/bone morphogenetic protein 4 (Bmp4) is an androgen-regulated signaling pathway that has been shown to be crucial for embryonic development.
Collapse
Affiliation(s)
- En-Hui Li
- Department of Urology
- Shanghai First People's Hospital affiliated to Shanghai Jiaotong University
- Shanghai 200080
- China
| | - Sheng-Jie Liang
- Department of Pediatric Urology
- Anhui Provincial Children's Hospital
- Hefei
- China
| | - Wen-Lan Sun
- Department of Geriatrics
- Shanghai First People's Hospital affiliated to Shanghai Jiaotong University
- Shanghai 200080
- China
| | - Dong-Liang Xu
- Department of Urology
- Shanghai First People's Hospital affiliated to Shanghai Jiaotong University
- Shanghai 200080
- China
| | - Yan Hong
- Department of Central Laboratory
- Shanghai First People's Hospital affiliated to Shanghai Jiaotong University
- Shanghai 200080
- China
| | - Shu-Jie Xia
- Department of Urology
- Shanghai First People's Hospital affiliated to Shanghai Jiaotong University
- Shanghai 200080
- China
| | - Jun-Tao Jiang
- Department of Urology
- Shanghai First People's Hospital affiliated to Shanghai Jiaotong University
- Shanghai 200080
- China
| |
Collapse
|
9
|
Kay VR, Bloom MS, Foster WG. Reproductive and developmental effects of phthalate diesters in males. Crit Rev Toxicol 2014; 44:467-98. [DOI: 10.3109/10408444.2013.875983] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Mortimer D, Barratt CLR, Björndahl L, de Jager C, Jequier AM, Muller CH. What should it take to describe a substance or product as 'sperm-safe'. Hum Reprod Update 2013; 19 Suppl 1:i1-45. [PMID: 23552271 DOI: 10.1093/humupd/dmt008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Male reproductive potential continues to be adversely affected by many environmental, industrial and pharmaceutical toxins. Pre-emptive testing for reproductive toxicological (side-)effects remains limited, or even non-existent. Many products that come into direct contact with spermatozoa lack adequate testing for the absence of adverse effects, and numerous products that are intended for exposure to spermatozoa have only a general assumption of safety based on the absence of evidence of actual harm. Such assumptions can have unfortunate adverse impacts on at-risk individuals (e.g. couples who are trying to conceive), illustrating a clear need for appropriate up-front testing to establish actual 'sperm safety'. METHODS After compiling a list of general areas within the review's scope, relevant literature and other information was obtained from the authors' personal professional libraries and archives, and supplemented as necessary using PubMed and Google searches. Review by co-authors identified and eliminated errors of omission or bias. RESULTS This review provides an overview of the broad range of substances, materials and products that can affect male fertility, especially through sperm fertilizing ability, along with a discussion of practical methods and bioassays for their evaluation. It is concluded that products can only be claimed to be 'sperm-safe' after performing objective, properly designed experimental studies; extrapolation from supposed predicate products or other assumptions cannot be trusted. CONCLUSIONS We call for adopting the precautionary principle, especially when exposure to a product might affect not only a couple's fertility potential but also the health of resulting offspring and perhaps future generations.
Collapse
Affiliation(s)
- David Mortimer
- Oozoa Biomedical Inc., Caulfeild Village, West Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
11
|
Hu Y, Dong C, Chen M, Lu J, Han X, Qiu L, Chen Y, Qin J, Li X, Gu A, Xia Y, Sun H, Li Z, Wang Y. Low-dose monobutyl phthalate stimulates steroidogenesis through steroidogenic acute regulatory protein regulated by SF-1, GATA-4 and C/EBP-beta in mouse Leydig tumor cells. Reprod Biol Endocrinol 2013; 11:72. [PMID: 23889939 PMCID: PMC3734203 DOI: 10.1186/1477-7827-11-72] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/16/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The ubiquitous use of dibutyl phthalate (DBP), one of the most widely used plasticizers, results in extensive exposure to humans and the environment. DBP and its major metabolite, monobutyl phthalate (MBP), may alter steroid biosynthesis and their exposure may lead to damage to male reproductive function. Low-doses of DBP/MBP may result in increased steroidogenesis in vitro and in vivo. However, the mechanisms of possible effects of low-dose MBP on steroidogenesis remain unclear. The aim of present study was to elaborate the role of transcription factors and steroidogenic acute regulatory protein in low-dose MBP-induced distruption of steroidogenesis in mouse Leydig tumor cells (MLTC-1 cells). METHODS In the present study, MLTC-1 cells were cultured in RPMI 1640 medium supplemented with 2 g/L sodium bicarbonate. Progesterone level was examined by I125-pregesterone Coat-A-Count radioimmunoassay (RIA) kits. mRNA and protein levels were assessed by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. DNA-binding of several transcription factors was examined by electrophoretic mobility shift assay (EMSA). RESULTS In this study, various doses of MBP (0, 10(-9), 10(-8), 10(-7), or 10(-6) M) were added to the medium followed by stimulation of MLTC-1 cells with human chorionic gonadotrophin (hCG). The results showed that MBP increased progesterone production and steroidogenic acute regulatory protein (StAR) mRNA and protein levels. However, the protein levels of cytochrome P450scc and 3 beta-hydroxy-steroid dehydrogenase (3 beta-HSD) were unchanged after MBP treatment. EMSA assay showed that DNA-binding of steroidogenic factors 1(SF-1), GATA-4 and CCAAT/enhancer binding protein-beta (C/EBP-beta) was increased in a dose-dependent manner after MBP exposure. Western blot tests were next employed and confirmed that the protein levels of SF-1, GATA-4 and C/EBP-beta were also increased. Additionally, western blot tests confirmed the expression of DAX-1, negative factor of SF-1, was dose-dependently down regulated after MBP exposure, which further confirmed the role of SF-1 in MBP-stimulated steroid biosynthesis. CONCLUSIONS In conclusion, we firstly delineated the regulation of StAR by transcription factors including SF-1, GATA-4 and C/EBP-beta maybe critical mechanism involved in low-dose MBP-stimulated steroidogenesis.
Collapse
Affiliation(s)
- Yanhui Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Congcong Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lianglin Qiu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yansu Chen
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaocheng Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hong Sun
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 211166, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yubang Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
12
|
Plummer SM, Dan D, Quinney J, Hallmark N, Phillips RD, Millar M, Macpherson S, Elcombe CR. Identification of transcription factors and coactivators affected by dibutylphthalate interactions in fetal rat testes. Toxicol Sci 2013; 132:443-57. [PMID: 23358192 DOI: 10.1093/toxsci/kft016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Previous analysis of in utero dibutylphthalate (DBP)-exposed fetal rat testes indicated that DBP's antiandrogenic effects were mediated, in part, by indirect inhibition of steroidogenic factor 1 (SF1), suggesting that peroxisome proliferator-activated receptor alpha (PPARα) might be involved through coactivator (CREB-binding protein [CBP]) sequestration. To test this hypothesis, we have performed chromatin immunoprecipitation (ChIP) microarray analysis to assess the DNA binding of PPARα, SF1, CBP, and RNA polymerase II in DBP-induced testicular maldevelopment target genes. Pathway analysis of expression array data in fetal rat testes examined at gestational day (GD) 15, 17, or 19 indicated that lipid metabolism genes regulated by SF1 and PPARα, respectively, were overrepresented, and the time dependency of changes to PPARα-regulated lipid metabolism genes correlated with DBP-mediated repression of SF1-regulated steroidogenesis genes. ChIP microarrays were used to investigate whether DBP-mediated repression of SF1-regulated genes was associated with changes in SF1 binding to genes involved in DBP-induced testicular maldevelopment. DBP treatment caused reductions in SF1 binding in CYP11a, StAR, and CYP17a. Follicle-stimulating hormone receptor (FSHR), regulated by SF1 but unaffected by DBP-treatment, also contained SF1-binding peaks, but DBP did not change this compared with control. GD15 and GD19 fetal testes contained PPARα protein-binding peaks in CYP11a, StAR, and CYP17a regulatory regions. In contrast to its repressive effect on SF1, DBP treatment caused increases in these peaks compared with control. PPARα-binding peaks in the FSHR promoter were not detected in GD15 samples. Hence, the repressive effect of DBP on SF1-regulated steroidogenic genes correlates with inhibition of SF1-DNA binding and increased PPARα-DNA binding. The data indicate that PPARα may act as an indirect transrepressor of SF1 on steroidogenic genes in fetal rat testes in response to DBP treatment.
Collapse
|
13
|
Johnson KJ, Heger NE, Boekelheide K. Of mice and men (and rats): phthalate-induced fetal testis endocrine disruption is species-dependent. Toxicol Sci 2012; 129:235-48. [PMID: 22700540 DOI: 10.1093/toxsci/kfs206] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
For over 15 years, reproductive toxicologists have explored the physiological outcomes and mechanism of fetal phthalate exposure to determine the risk posed to human male reproductive health. This review examines the fetal male reproductive system response to phthalate exposure across species including rat, mouse, and human, with emphasis on the testis. In the rat, in utero phthalate exposure causes male reproductive tract malformations, in large part, by targeting the testis and inhibiting fetal Leydig cell hormone production. Despite mouse phthalate pharmacokinetics being similar to the rat, inhibition of fetal Leydig cell hormone synthesis is not observed in the mouse. The species-specific differences in testicular response following in utero phthalate exposure and the discordant reaction of the rodent fetal testis when exposed to phthalates ex vivo versus in vivo have made determining risk to humans difficult, yet critically important. The recent use of fetal testis xenotransplants to study phthalate toxicity suggests that the human fetal testis responds like the mouse fetal testis; it appears refractory to phthalate-induced inhibition of testosterone production. Although this result is unfulfilling from the perspective of identifying environmental contributions to human reproductive maldevelopment, it has important implications for phthalate risk assessment.
Collapse
Affiliation(s)
- Kamin J Johnson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA.
| | | | | |
Collapse
|
14
|
Yao PL, Lin YC, Richburg JH. Transcriptional suppression of Sertoli cell Timp2 in rodents following mono-(2-ethylhexyl) phthalate exposure is regulated by CEBPA and MYC. Biol Reprod 2011; 85:1203-15. [PMID: 21832167 DOI: 10.1095/biolreprod.111.093484] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Our previous studies showed that the prototypical testicular toxic phthalate monoester, mono-(2-ethylhexyl) phthalate (MEHP), suppresses Sertoli cell TIMP2 levels and allows for the activation of MMP2 in seminiferous epithelium. Activation of MMP2 is important for triggering germ cell apoptosis and instigating germ cell detachment from Sertoli cells. These novel findings led us to examine the transcriptional regulation of the Timp2 gene that accounts for the decrease in Sertoli cell TIMP2 levels following MEHP exposure. Sequential deletion of the Timp2 5'-upstream activating sequence (1200 bp) was used to survey transcriptional activation in the Timp2 promoter region in response to MEHP. Results indicate that under control conditions in rat Sertoli cells, CCAAT enhancer-binding protein alpha (CEBPA) acts as a transactivator to initiate Timp2 gene transcription, and its action is deactivated by exposure to MEHP. By contrast, MYC protein acts as an inhibitor of Timp2 gene transcription, and its activity is increased after MEHP treatment. Addition of follicle-stimulating hormone (FSH) to cells causes translocation of CEBPA into the Sertoli cell nucleus and rescues MEHP-suppressed TIMP2 levels. Down-regulation of TIMP2 expression by MEHP exposure is blocked by forskolin (a cAMP-elevating agent), suggesting that the decrease in Sertoli cell TIMP2 expression following MEHP exposure is cAMP-dependent. Taken together, these data indicate that MEHP both disrupts the FSH-stimulated cAMP signaling pathway and activates the inhibitory signaling mediated by MYC protein, to ultimately account for the cellular mechanism underlying the decreased expression of TIMP2 in Sertoli cells.
Collapse
Affiliation(s)
- Pei-Li Yao
- Center for Molecular and Cellular Toxicology, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | | | | |
Collapse
|
15
|
Johnson KJ, McDowell EN, Viereck MP, Xia JQ. Species-specific dibutyl phthalate fetal testis endocrine disruption correlates with inhibition of SREBP2-dependent gene expression pathways. Toxicol Sci 2011; 120:460-74. [PMID: 21266533 DOI: 10.1093/toxsci/kfr020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fetal rat phthalate exposure produces a spectrum of male reproductive tract malformations downstream of reduced Leydig cell testosterone production, but the molecular mechanism of phthalate perturbation of Leydig cell function is not well understood. By bioinformatically examining fetal testis expression microarray data sets from susceptible (rat) and resistant (mouse) species after dibutyl phthalate (DBP) exposure, we identified decreased expression of several metabolic pathways in both species. However, lipid metabolism pathways transcriptionally regulated by sterol regulatory element-binding protein (SREBP) were inhibited in the rat but induced in the mouse, and this differential species response corresponded with repression of the steroidogenic pathway. In rats exposed to 100 or 500 mg/kg DBP from gestational days (GD) 16 to 20, a correlation was observed between GD20 testis steroidogenic inhibition and reductions of testis cholesterol synthesis endpoints including testis total cholesterol levels, Srebf2 gene expression, and cholesterol synthesis pathway gene expression. SREBP2 expression was detected in all fetal rat testis cells but was highest in Leydig cells. Quantification of SREBP2 immunostaining showed that 500 mg/kg DBP exposure significantly reduced SREBP2 expression in rat fetal Leydig cells but not in seminiferous cords. By Western analysis, total rat testis SREBP2 levels were not altered by DBP exposure. Together, these data suggest that phthalate-induced inhibition of fetal testis steroidogenesis is closely associated with reduced activity of several lipid metabolism pathways and SREBP2-dependent cholesterologenesis in Leydig cells.
Collapse
Affiliation(s)
- Kamin J Johnson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA.
| | | | | | | |
Collapse
|
16
|
Laguë E, Tremblay JJ. Antagonistic effects of testosterone and the endocrine disruptor mono-(2-ethylhexyl) phthalate on INSL3 transcription in Leydig cells. Endocrinology 2008; 149:4688-94. [PMID: 18499751 DOI: 10.1210/en.2008-0310] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like 3 (INSL3) is a small peptide produced by testicular Leydig cells throughout embryonic and postnatal life and by theca and luteal cells of the adult ovary. During fetal life, INSL3 regulates testicular descent in males, whereas in adults, it acts as an antiapoptotic factor for germ cells in males and as a follicle selection and survival factor in females. Despite its considerable roles in the reproductive system, the mechanisms that regulate Insl3 expression remain poorly understood. There is accumulating evidence suggesting that androgens might regulate Insl3 expression in Leydig cells, but transcriptional data are still lacking. We now report that testosterone does increase Insl3 mRNA levels in a Leydig cell line and primary Leydig cells. We also show that testosterone activates the activity of the Insl3 promoter from different species. In addition, the testosterone-stimulating effects on Insl3 mRNA levels and promoter activity require the androgen receptor. We have mapped the testosterone-responsive element to the proximal Insl3 promoter region. This region, however, lacks a consensus androgen response element, suggesting an indirect mechanism of action. Finally we show that mono-(2-ethylhexyl) phthalate, a widely distributed endocrine disruptor with antiandrogenic activity previously shown to inhibit Insl3 expression in vivo, represses Insl3 transcription, at least in part, by antagonizing testosterone/androgen receptor action. All together our data provide important new insights into the regulation of Insl3 transcription in Leydig cells and the mode of action of phthalates.
Collapse
Affiliation(s)
- Eric Laguë
- Department of Reproduction, Perinatal, and Child Health, Centre Hospitalier Universitaire of Québec Research Centre, CHUL Room T1-49, 2705 Laurier Boulevard, Québec City, Québec, Canada G1V 4G2
| | | |
Collapse
|