1
|
Schreckenberg R, Schulz R, Itani N, Ferdinandy P, Bencsik P, Szabados T, Rohrbach S, Niemann B, Schlüter KD. Inhibition of MMP2 activity mitigates N-omega-nitro-l-arginine-methyl ester (l-NAME)-induced right heart failure. Redox Biol 2024; 76:103308. [PMID: 39167912 PMCID: PMC11381879 DOI: 10.1016/j.redox.2024.103308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In rats decreased bioavailability of nitric oxide induces oxidative stress and right heart failure. Oxidative stress can activate matrix metalloproteinase-2 (MMP2). We addressed the question whether increasing oxidative defense by administration of the SOD mimetic Tempol or direct inhibition of MMP2 activity by SB-3CT mitigates right heart failure. Rats received l-NAME for four weeks and during week three and four treatment groups received either Tempol or SB-3CT in addition. After four weeks heart function was analyzed by echocardiography, organ weights and expression of NPPB and COL1A1 were analyzed, oxidative stress was monitored by DHE-staining and MMP2 activity was quantified by proteolytic auto-activation, zymography, and troponin I degradation. l-NAME induced oxidative stress and MMP2 activity stronger in the right ventricle than in the left ventricle. Troponin I, a MMP2 substrate, was degraded in right ventricles. Tempol reduced oxidative stress and preferentially affected the expression of fibrotic genes (i.e. COL1A1) and fibrosis. Tempol and SB-3CT mitigated right but not left ventricular hypertrophy. Neither SB-3CT nor Tempol alone strongly improved right ventricular function. In conclusion, both MMP2 activity and oxidative stress contribute to right ventricular failure but neither is MMP2 activation linked to oxidative stress nor does oxidative stress and MMP2 activity have common targets.
Collapse
Affiliation(s)
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, 35392, Giessen, Germany.
| | - Nadja Itani
- Institute of Physiology, JLU Giessen, 35392, Giessen, Germany.
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.
| | - Peter Bencsik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.
| | - Tamara Szabados
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.
| | | | - Bernd Niemann
- Universitätsklinikum Gießen, Klinik für Herz-, Kinderherz- und Gefäßchirurgie, 35392, Gießen, Germany.
| | | |
Collapse
|
2
|
Zhang YP, Ao S, Liu Y, Wang Y, Jia YM, Zhang H, Leng H. Identification of hub genes associated with postmenopausal osteoporosis by Gibbs sampling method. Exp Ther Med 2019; 17:2675-2681. [PMID: 30906457 PMCID: PMC6425251 DOI: 10.3892/etm.2019.7231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
Underlying pivotal pathways were identified to reveal potential key genes correlated with postmenopausal osteoporosis (PMOP). The pathways were enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) with genes intersection greater than 5 based on gene expression profile data, and the acquired pathways were then transformed to Markov chain (MC). Gibbs sampling was conducted to obtain a new MC. Moreover, the average probabilities of each pathway in normal and PMOP were computed via an MC Monte Carlo (MCMC) algorithm, and differential pathways were identified based on probabilities more than 0.7. In addition, frequencies of appearance of pathway genes were counted via MCMC and the hub genes were achieved with the probabilities of gene expression efficiencies in two states. Judging by the gene intersection more than 5, overall 280 pathways were determined. After Gibbs sampling, 2 differential pathways were obtained on the basis of probabilities more than 0.7. Moreover, the hub genes comprising TNNC1, MYL2, and TTN were achieved according to probabilities more than 0.7. The identified pathways and the three hub genes probably are useful for developing approaches for the diagnosis and treatment of PMOP in future preclinical and clinical applications.
Collapse
Affiliation(s)
- Ya-Peng Zhang
- Department of Orthopedics, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Shuang Ao
- Department of Orthopedics, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Yu Liu
- Department of Orthopedics, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Yu Wang
- Department of Orthopedics, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Yi-Ming Jia
- Department of Orthopedics, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Hao Zhang
- Department of Orthopedics, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| | - Hui Leng
- Department of Orthopedics, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, P.R. China
| |
Collapse
|
3
|
Wu GY, Wu T, Xu BD, Shi YC, Cheng ZY, Zhang X, Wang X, Zong GJ. Effect of parathyroid hormone on cardiac function in rats with cardiomyopathy. Exp Ther Med 2018; 16:2859-2866. [PMID: 30214507 PMCID: PMC6125823 DOI: 10.3892/etm.2018.6528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/29/2018] [Indexed: 02/02/2023] Open
Abstract
The present study investigated the role of parathyroid hormone (PTH) in non-ischemic cardiomyopathy (CM) and its underlying mechanism. A total of 30 Sprague-Dawley male rats were randomly divided into a control group (n=6) and an experimental group (n=24). To induce CM in the rats of the experimental group, 2 mg/kg Adriamycin (ADR) was administered intraperitoneally with 5 equal injections every third day followed by 5 weekly injections resulting in a cumulative dose of 20 mg/kg. Following establishment of the model, rats in the experimental group were subdivided into a PTH-untreated CM group that received daily normal saline subcutaneous injections for 7 days and three treated CM groups that received daily subcutaneous injections of 5, 10, or 20 µg/kg of recombinant PTH for 7 days. Rats in the control group accordingly received intraperitoneal and subcutaneous injections of normal saline. Blood sample analysis revealed that B-type natriuretic peptide (BNP), troponin T, C-reactive protein (CRP), creatinine and phosphorus concentrations were increased in the PTH-untreated CM group compared with that in the control group, whereas PTH and calcium concentrations were decreased. Administration of PTH dose-dependently decreased BNP, CRP, creatinine and phosphorus levels, and increased PTH and calcium levels. Notably, there were significant differences in PTH, BNP, troponin T, CRP, creatinine, calcium, and phosphorus levels among the rats in the five groups (P<0.01). Cardiac ultrasonography results indicated that the left ventricular ejection fraction (LVEF) was significantly decreased in rats treated with ADR compared with the rats from the control group (P<0.01). However, the LVEF gradually recovered with elevated PTH treatment doses. The overall differences of LVEF and left ventricular end-systolic volume in the five experimental groups were statistically significant (P<0.01). Furthermore, there were dose-dependent increases in LV mass and left ventricular end-diastolic volume in PTH-treated rats; however, the differences between any two groups did not reach statistical significance (P>0.05). Immunohistochemical staining and western blot analysis using an anti-PTH polyclonal antibody was performed to evaluate the protein expression levels of PTH in myocardial tissues. The mRNA expression levels of PTH and BNP were measured using reverse transcription-quantitative polymerase chain reaction. The results demonstrated that the mRNA and protein expression levels of PTH in myocardial tissues were significantly decreased in ADR-treated rats compared with the levels in the control group rats. Injection of recombinant PTH significantly increased PTH expression and reduced BNP expression in dose-dependent manners (P<0.05). These findings demonstrated that PTH can improve cardiac function in rats with ADR-induced CM, suggesting a potential therapeutic application for PTH in non-ischemic CM.
Collapse
Affiliation(s)
- Gang-Yong Wu
- Department of Cardiology, 101 Hospital of PLA, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Ting Wu
- Department of Cardiology, 101 Hospital of PLA, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Bai-Da Xu
- Department of Cardiology, 101 Hospital of PLA, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Yi-Cheng Shi
- Department of Cardiology, 101 Hospital of PLA, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Zhi-Yuan Cheng
- Department of Cardiology, 101 Hospital of PLA, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Xiao Zhang
- Department of Cardiology, 101 Hospital of PLA, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Xiao Wang
- Department of Cardiology, 101 Hospital of PLA, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Gang-Jun Zong
- Department of Cardiology, 101 Hospital of PLA, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
4
|
Braun K, Atmanspacher F, Schreckenberg R, Grgic I, Schlüter K. Effect of free running wheel exercise on renal expression of parathyroid hormone receptor type 1 in spontaneously hypertensive rats. Physiol Rep 2018; 6:e13842. [PMID: 30198211 PMCID: PMC6129773 DOI: 10.14814/phy2.13842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/01/2018] [Indexed: 01/11/2023] Open
Abstract
An active lifestyle is generally recommended for hypertensive patients to prevent subsequent end-organ damage. However, experimental data on long-term effects of exercise on hypertension are insufficient and underlying mechanisms are not well understood. This study was aimed to investigate the effect of exercise on renal expression of parathyroid hormone-related protein (PTHrP) and parathyroid hormone receptor type 1 (PTHR1) in spontaneously hypertensive rats (SHR). Twenty-four rats started free running wheel exercise at the age of 1.5 months (pre-hypertensive state) and proceeded for 1.5, 3.0, 6.0, and 10.0 months. Thirty rats kept under standard housing conditions were used as sedentary controls. Kidney function was assessed by measuring plasma creatinine levels and urine albumin-to-creatinine ratios. Renal expression of PTHrP and PTHR1 was analyzed by qRT-PCR and western blot. Renal expression of PTHR1 was markedly increased between the 6th and 10th months in sedentary rats and this increase was significantly lower in SHRs with high physical activity on mRNA (-30%) and protein level (-27%). At the same time, urine albumin-to-creatinine ratio increased (from 65 to 231 mg/g) but somehow lower in exercise performing SHRs (48-196 mg/g). Our data suggest that enhanced exercise, stimulated by allocation of a free running wheel, is associated with lower PTHR1 expression in SHRs and this may contribute to preserved kidney function.
Collapse
Affiliation(s)
- Katja Braun
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | | | | | - Ivica Grgic
- Klinik für Innere Medizin und NephrologiePhilipps‐Universität MarburgMarburgGermany
| | | |
Collapse
|
5
|
Brockhoff B, Schreckenberg R, Forst S, Heger J, Bencsik P, Kiss K, Ferdinandy P, Schulz R, Schlüter K. Effect of nitric oxide deficiency on the pulmonary PTHrP system. J Cell Mol Med 2017; 21:96-106. [PMID: 27581501 PMCID: PMC5192877 DOI: 10.1111/jcmm.12942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/04/2016] [Indexed: 01/20/2023] Open
Abstract
Nitric oxide (NO) deficiency is common in pulmonary diseases, but its effect on pulmonary remodelling is still controversial. As pulmonary parathyroid hormone-related protein (PTHrP) expression is a key regulator of pulmonary fibrosis and development, the effect of chronic NO deficiency on the pulmonary PTHrP system and its relationship with oxidative stress was addressed. NO bioavailability in adult rats was reduced by systemic administration of L-NAME via tap water. To clarify the role of NO synthase (NOS)-3-derived NO on pulmonary expression of PTHrP, NOS-3-deficient mice were used. Captopril and hydralazine were used to reduce the hypertensive effect of L-NAME treatment and to interfere with the pulmonary renin-angiotensin system (RAS). Quantitative RT-PCR and immunoblot techniques were used to characterize the expression of key proteins involved in pulmonary remodelling. L-NAME administration significantly reduced pulmonary NO concentration and caused oxidative stress as characterized by increased pulmonary nitrite concentration and increased expression of NOX2, p47phox and p67phox. Furthermore, L-NAME induced the pulmonary expression of PTHrP and of its corresponding receptor, PTH-1R. Expression of PTHrP and PTH-1R correlated with the expression of two well-established PTHrP downstream targets, ADRP and PPARγ, suggesting an activation of the pulmonary PTHrP system by NO deficiency. Captopril reduced the expression of PTHrP, profibrotic markers and ornithine decarboxylase, but neither that of PTH-1R nor that of ADRP and PPARγ. All transcriptional changes were confirmed in NOS-3-deficient mice. In conclusion, NOS-3-derived NO suppresses pulmonary PTHrP and PTH-1R expression, thereby modifying pulmonary remodelling.
Collapse
Affiliation(s)
- Bastian Brockhoff
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | | | - Svenja Forst
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | - Jacqueline Heger
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | - Péter Bencsik
- Pharmahungary GroupSzegedHungary
- Cardiovascular Research GroupDepartment of BiochemistryUniversity of SzegedSzegedHungary
| | - Krisztina Kiss
- Pharmahungary GroupSzegedHungary
- Cardiovascular Research GroupDepartment of BiochemistryUniversity of SzegedSzegedHungary
| | - Peter Ferdinandy
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Rainer Schulz
- Physiologisches InstitutJustus‐Liebig‐Universität GießenGießenGermany
| | | |
Collapse
|
6
|
Schreckenberg R, Rebelo M, Deten A, Weber M, Rohrbach S, Pipicz M, Csonka C, Ferdinandy P, Schulz R, Schlüter KD. Specific Mechanisms Underlying Right Heart Failure: The Missing Upregulation of Superoxide Dismutase-2 and Its Decisive Role in Antioxidative Defense. Antioxid Redox Signal 2015; 23:1220-32. [PMID: 25978844 PMCID: PMC4657518 DOI: 10.1089/ars.2014.6139] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS Research into right ventricular (RV) physiology and identification of pathomechanisms underlying RV failure have been neglected for many years, because function of the RV is often considered less important for overall hemodynamics and maintenance of blood circulation. In view of this, this study focuses on identifying specific adaptive mechanisms of the RV and left ventricle (LV) during a state of chronic nitric oxide (NO) deficiency, one of the main causes of cardiac failure. NO deficiency was induced in rats by L-NAME feeding over a 4 week period. The cardiac remodeling was then characterized separately for the RV/LV using quantitative real-time polymerase chain reaction, histology, and functional measurements. RESULTS Only the RV underwent remodeling that corresponded morphologically and functionally with the pattern of dilated cardiomyopathy. Symptoms in the LV were subtle and consisted primarily of moderate hypertrophy. A massive increase in reactive oxygen species (ROS) (+4.5±0.8-fold, vs. control) and a higher degree of oxidized tropomyosin (+46%±4% vs. control) and peroxynitrite (+32%±2% vs. control) could be identified as the cause of both RV fibrosis and contractile dysfunction. The expression of superoxide dismutase-2 was specifically increased in the LV by 51%±3% and prevented the ROS increase and the corresponding structural and functional remodeling. INNOVATION This study identified the inability of the RV to increase its antioxidant capacity as an important risk factor for developing RV failure. CONCLUSION Unlike the LV, the RV did not display the necessary adaptive mechanisms to cope with increased oxidative stress during a state of chronic NO deficiency.
Collapse
Affiliation(s)
- Rolf Schreckenberg
- 1 Physiologisches Institut , Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Manuel Rebelo
- 1 Physiologisches Institut , Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Alexander Deten
- 2 Fraunhofer-Institut für Zelltherapie und Immunologie , Leipzig, Germany
| | - Martin Weber
- 1 Physiologisches Institut , Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Susanne Rohrbach
- 1 Physiologisches Institut , Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Márton Pipicz
- 3 Pharmahungary Group , Szeged, Hungary .,4 Cardiovascular Research Group, Department of Biochemistry, University of Szeged , Szeged, Hungary
| | - Csaba Csonka
- 3 Pharmahungary Group , Szeged, Hungary .,4 Cardiovascular Research Group, Department of Biochemistry, University of Szeged , Szeged, Hungary
| | - Péter Ferdinandy
- 3 Pharmahungary Group , Szeged, Hungary .,5 Department of Pharmacology and Pharmacotherapy, Semmelweis University , Budapest, Hungary
| | - Rainer Schulz
- 1 Physiologisches Institut , Justus-Liebig-Universität Gießen, Giessen, Germany
| | | |
Collapse
|
7
|
|
8
|
Recent insights in the paracrine modulation of cardiomyocyte contractility by cardiac endothelial cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:923805. [PMID: 24745027 PMCID: PMC3972907 DOI: 10.1155/2014/923805] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/04/2023]
Abstract
The cardiac endothelium is formed by a continuous monolayer of cells that line the cavity of the heart (endocardial endothelial cells (EECs)) and the luminal surface of the myocardial blood vessels (intramyocardial capillary endothelial cells (IMCEs)). EECs and IMCEs can exercise substantial control over the contractility of cardiomyocytes by releasing various factors such as nitric oxide (NO) via a constitutive endothelial NO-synthase (eNOS), endothelin-1, prostaglandins, angiotensin II, peptide growth factors, and neuregulin-1. The purpose of the present paper is actually to shortly review recent new information concerning cardiomyocytes as effectors of endothelium paracrine signaling, focusing particularly on contractile function. The modes of action and the regulatory paracrine role of the main mediators delivered by cardiac endothelial cells upon cardiac contractility identified in cardiomyocytes are complex and not fully described. Thus, careful evaluation of new therapeutic approaches is required targeting important physiological signaling pathways, some of which have been until recently considered as deleterious, like reactive oxygen species. Future works in the field of cardiac endothelial cells and cardiac function will help to better understand the implication of these mediators in cardiac physiopathology.
Collapse
|
9
|
Hinrichs S, Heger J, Schreckenberg R, Wenzel S, Euler G, Arens C, Bader M, Rosenkranz S, Caglayan E, Schlüter KD. Controlling cardiomyocyte length: the role of renin and PPAR-{gamma}. Cardiovasc Res 2010; 89:344-52. [PMID: 20884641 DOI: 10.1093/cvr/cvq313] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIMS Renin and peroxisome proliferator-activated receptor (PPAR-γ) interact directly with cardiomyocytes and influence protein synthesis. We investigated their effects and interaction on the size of cardiomyocytes. METHODS AND RESULTS Effects of renin and PPAR-γ activation were studied in cultured adult rat ventricular cardiomyocytes, transgenic mice with a cardiomyocyte-restricted knockout of PPAR-γ, and transgenic rats overexpressing renin, TGR(mRen2)27. The length and width of cardiomyocytes were analysed 24 h after administration of factors. Renin caused an unexpected effect on the length of cardiomyocytes that was inhibited by mannose-6-phosphate and monensin, but not by administration of glucose-6-phosphate. Endothelin-1 used as a classical pro-hypertrophic agonist increased cell width but not cell length. Renin caused an activation of p38 and p42/44 mitogen-activated protein (MAP) kinases. The latter activation was impaired by mannose-6-phosphate. Inhibition of p42/44 but not of p38 MAP kinase activation attenuated the effect of renin on cell length. In contrast, activation of PPAR-γ reduced cell length. Feeding wild-type mice with pioglitazone, a PPAR-γ agonist, reduced cell length. Cardiomyocytes isolated from PPAR-γ knockout mice were longer, and their length was not affected by pioglitazone. Cardiomyocytes isolated from TGR(mRen2)27 rats were longer than those of non-transgenic littermates. Cell length was reduced by feeding these mice with pioglitazone. Pioglitazone affected cell length independent of blood pressure. CONCLUSION The length of cardiomyocytes is controlled by the activation of cardiac-specific mannose-6-phosphate/insulin-like growth factor II receptors and activation of PPAR-γ. This type of cell size modification differs from that of any other known pro-hypertrophic agonists.
Collapse
Affiliation(s)
- Söhnke Hinrichs
- Physiologisches Institut, Justus-Liebig Universität Giessen, Aulweg 149, 35392 Gießen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Jameel Iqbal
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|