1
|
Zhang R, Ren Y, Ju Y, Zhang Y, Zhang Y, Wang Y. FAM20C: A key protein kinase in multiple diseases. Genes Dis 2025; 12:101179. [PMID: 39790934 PMCID: PMC11714710 DOI: 10.1016/j.gendis.2023.101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/23/2023] [Accepted: 10/31/2023] [Indexed: 01/12/2025] Open
Abstract
Family with sequence similarity 20 C (FAM20C) is a Golgi protein kinase that phosphorylates the serine residue in the S-x-E/pS motif of target proteins. FAM20C phosphorylates most secreted proteins, which play important roles in multiple biological processes, including cancer progression, biomineralization, and lipid homeostasis. Numerous studies have documented the potential contribution of FAM20C to the growth, invasion, and metastasis of glioma, breast cancer, and other cancers, as well as to the mineralization process of teeth and bone. In addition, FAM20C has been found to be associated with the occurrence and development of certain cardiovascular diseases and endocrine metabolism disorders. It raises hopes that understanding the disease-specific mechanisms of FAM20C may hold the key to developing new strategies for these diseases. This review comprehensively covers the existing literature to provide a summary of the structure and biological functions of FAM20C, with a particular focus on its roles in the disease context.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanming Ren
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Ju
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuekang Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Jin J, Zandieh-Doulabi B. Low, but Not High, Pulsating Fluid Shear Stress Affects Matrix Extracellular Phosphoglycoprotein Expression, Mainly via Integrin β Subunits in Pre-Osteoblasts. Curr Issues Mol Biol 2024; 46:12428-12441. [PMID: 39590332 PMCID: PMC11593251 DOI: 10.3390/cimb46110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Matrix extracellular phosphoglycoprotein (Mepe), present in bone and dentin, plays important multifunctional roles in cell signaling, bone mineralization, and phosphate homeostasis. Mepe expression in bone cells changes in response to pulsating fluid shear stress (PFSS), which is transmitted into cells through integrin-based adhesion sites, i.e., α and β subunits. Whether and to what extent PFSS influences Mepe expression through the modulation of integrin α and/or β subunit expression in pre-osteoblasts is uncertain. Therefore, we aimed to test whether low and/or high PFSS affects Mepe expression via modulation of integrin α and/or β subunit expression. MC3T3-E1 pre-osteoblasts were treated with ± 1 h PFSS (magnitude: 0.3 Pa (low PFSS) or 0.7 Pa (high PFSS); frequency: 1 Hz). Single integrin fluorescence intensity in pre-osteoblasts was increased, but single integrin area was decreased by low and high PFSS. Expression of two integrin α subunit-related genes (Itga1 and Itga5 2) was increased by low PFSS, and one (Itga5 2) by high PFSS. Expression of five integrin β subunit genes (Itgb1, Itgb3, Itgb5, Itgb5 13, and Itgb5 123) was increased by low PFSS, and three (Itgb5, Itgb5 13, and Itgb5 123) by high PFSS. Interestingly, Mepe expression in pre-osteoblasts was only modulated by low, but not high, PFSS. In conclusion, both low and high PFSS affected integrin α and β subunit expression in pre-osteoblasts, while integrin β subunit expression was more altered by low PFSS. Importantly, Mepe gene expression was only affected by low PFSS. These results might explain the different ways that Mepe-induced changes in pre-osteoblast mechanosensitivity may drive signaling pathways of bone cell function at low or high impact loading. These findings might have physiological and biomedical implications and require future research specifically addressing the precise role of integrin α or β subunits and Mepe during dynamic loading in bone health and disease.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands;
| | | |
Collapse
|
3
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
4
|
Akyer SP, Karagur ER, Ata MT, Toprak EK, Donmez AC, Donmez BO. Verbascoside Inhibits/Repairs the Damage of LPS-Induced Inflammation by Regulating Apoptosis, Oxidative Stress, and Bone Remodeling. Curr Issues Mol Biol 2023; 45:8755-8766. [PMID: 37998727 PMCID: PMC10670241 DOI: 10.3390/cimb45110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Osteocytes play an important role as regulators of both osteoclasts and osteoblasts, and some proteins that are secreted from them play a role in bone remodeling and modeling. LPS affects bone structure because it is an inflammatory factor, despite verbascoside's potential for bone preservation and healing. Osteocytes may also be involved in the control of the bone's response to immunological changes in inflammatory situations. MLO-Y4 cells were cultured in either supplemented -MEM alone with a low serum to inhibit cell growth or media with LPS (10 ng/mL) and/or verbascoside (50 g/mL) to show the LPS effect. In our research, LPS treatment increased RANKL levels while decreasing OPG and RUNX2 expression. Treatment with verbascoside reduced RANKL expression. In our work, verbascoside increased the expression of OPG and RUNX2. In MLO-Y4 cells exposed to verbascoside, SOD, CAT, and GSH activities as well as the expression levels of bone mineralization proteins like PHEX, RUNX2, and OPG were all elevated.
Collapse
Affiliation(s)
- Sahika Pinar Akyer
- Department of Anatomy, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey;
| | - Ege Rıza Karagur
- Department of Medical Genetics, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey;
| | - Melek Tunc Ata
- Department of Physiology, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey; (M.T.A.); (E.K.T.)
| | - Emine Kilic Toprak
- Department of Physiology, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey; (M.T.A.); (E.K.T.)
| | - Aysegul Cort Donmez
- Department of Medical Biochemistry, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey;
| | - Baris Ozgur Donmez
- Department of Anatomy, School of Medicine, Pamukkale University, Kinikli, Str. No. 11, 20160 Denizli, Turkey;
| |
Collapse
|
5
|
Ozturk S, Cuneyit I, Altuntas F, Karagur ER, Donmez AC, Ocak M, Unal M, Sarikanat M, Donmez BO. Resveratrol prevents ovariectomy-induced bone quality deterioration by improving the microarchitectural and biophysicochemical properties of bone. J Bone Miner Metab 2023:10.1007/s00774-023-01416-z. [PMID: 37031330 DOI: 10.1007/s00774-023-01416-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/01/2023] [Indexed: 04/10/2023]
Abstract
INTRODUCTION Osteoporosis is a major health problem that is very common worldwide and is characterized by both low bone density and deterioration in bone quality. New treatment options without side effects have become an active area of research in recent years. This study was designed to investigate the preventive effects of resveratrol on bone quality deterioration caused by ovariectomy. MATERIALS AND METHODS Sixty rats were randomly divided into five groups (12 animals per group): Control, Sham-operated (SHAM), ovariectomized (OVX), OVX + Resveratrol-40 mg/kg/day (OVX + Res40), OVX + Resveratrol-80 mg/kg/day (OVX + Res80). Resveratrol was administered by oral gavage (40 and 80 mg/kg/day) for ten weeks. Micro-CT measurements, biomechanical testing, Raman spectroscopy analysis, and RT-PCR analysis were performed. ALP, OCN, TAS, and TOS levels were also measured from blood serum. RESULTS Bone strength, bone volume/total volume, trabecular volume, and trabecular thickness were higher in the OVX + RES-80 group than in the OVX group. Resveratrol increased osteogenic differentiation, as the expression of osteogenic markers ALP, Col1A1, Runx2, OPG, OCN increased in both OVX + RES-80 and OVX + RES-40 groups compared to the OVX group. 80 mg/kg/day resveratrol administration decreased the levels of ALP, OCN and TOS in ovariectomized rats. Raman spectroscopy findings showed a preventive effect of resveratrol administration against ovariectomy-induced deterioration in biophysiochemical properties of bone tissue. CONCLUSION This study revealed that administration of different doses of 80 mg/kg/day and 40 mg/kg/day of resveratrol had protective effects on bone quality deterioration caused by ovariectomy.
Collapse
Affiliation(s)
- Sevval Ozturk
- School of Medicine, Department of Anatomy, Pamukkale University, 20070, Denizli, Turkey
| | - Ibrahim Cuneyit
- School of Medicine, Department of Anatomy, Pamukkale University, 20070, Denizli, Turkey
| | - Fatih Altuntas
- School of Medicine, Department of Physiology, Pamukkale University, 20070, Denizli, Turkey
| | - Ege Riza Karagur
- School of Medicine, Department of Medical Genetics, Pamukkale University, 20070, Denizli, Turkey
| | - Aysegul Cort Donmez
- School of Medicine, Department of Medical Biochemistry, Pamukkale University, 20070, Denizli, Turkey
| | - Mert Ocak
- School of Dentistry, Department of Anatomy, Ankara University, 06650, Ankara, Turkey
| | - Mustafa Unal
- School of Medicine, Department of Biophysics, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
- Faculty of Engineering, Department of Bioengineering, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
| | - Mehmet Sarikanat
- Faculty of Engineering, Department of Mechanical Engineering, Ege University, 35040, Izmir, Turkey
| | - Baris Ozgur Donmez
- School of Medicine, Department of Anatomy, Pamukkale University, 20070, Denizli, Turkey.
| |
Collapse
|
6
|
Rowe PS, McCarthy EM, Yu AL, Stubbs JR. Correction of Vascular Calcification and Hyperphosphatemia in CKD Rats Treated with ASARM Peptide. KIDNEY360 2022; 3:1683-1698. [PMID: 36514737 PMCID: PMC9717652 DOI: 10.34067/kid.0002782022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Background Abnormalities in calcium, phosphorus, PTH, vitamin D metabolism, bone, and vascular calcification occur in chronic kidney disease mineral bone disorder (CKD-MBD). Calciphylaxis, involving painful, ulcerative skin lesions, is also a major problem associated with CKD-MBD. There are no quality medical interventions to address these clinical issues. Bone ASARM peptides are strong inhibitors of mineralization and induce hypophosphatemia by inhibiting phosphate uptake from the gut. We hypothesize treatment of CKD-MBD rats with ASARM peptides will reverse hyperphosphatemia, reduce soft-tissue calcification, and prevent calciphylaxis. Methods To test our hypothesis, we assessed the effects of synthetic ASARM peptide in rats that had undergone a subtotal 5/6th nephrectomy (56NEPHREX), a rodent model of CKD-MBD. All rats were fed a high phosphate diet (2% Pi) to worsen mineral metabolism defects. Changes in serum potassium, phosphate, BUN, creatinine, PTH, FGF23, and calcium were assessed in response to 28 days of ASARM peptide infusion. Also, changes in bone quality, soft-tissue calcification, and expression of gut Npt2b (Slc34a2) were studied following ASARM peptide treatment. Results Rats that had undergone 56NEPHREX treated with ASARM peptide showed major improvements in hyperphosphatemia, blood urea nitrogen (BUN), and bone quality compared with vehicle controls. Also, ASARM-infused 56NEPHREX rats displayed improved renal, brain, and cardiovascular calcification. Notably, ASARM peptide infusion prevented the genesis of subdermal medial blood vessel calcification and calciphylaxis-like lesions in 56NEPHREX rats compared with vehicle controls. Conclusions ASARM peptide infusion corrects hyperphosphatemia and improves vascular calcification, renal calcification, brain calcification, bone quality, renal function, and skin mineralization abnormalities in 56NEPHREX rats. These findings confirm our hypothesis and support the utility of ASARM peptide treatment in patients with CKD-MBD.
Collapse
Affiliation(s)
- Peter S. Rowe
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ellen M. McCarthy
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan L. Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason R. Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
7
|
Eller OC, Stair RN, Neal C, Rowe PS, Nelson-Brantley J, Young EE, Baumbauer KM. Comprehensive phenotyping of cutaneous afferents reveals early-onset alterations in nociceptor response properties, release of CGRP, and hindpaw edema following spinal cord injury. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100097. [PMID: 35756343 PMCID: PMC9218836 DOI: 10.1016/j.ynpai.2022.100097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a complex syndrome that has profound effects on patient well-being, including the development of medically-resistant chronic pain. The mechanisms underlying SCI pain have been the subject of thorough investigation but remain poorly understood. While the majority of the research has focused on changes occurring within and surrounding the site of injury in the spinal cord, there is now a consensus that alterations within the peripheral nervous system, namely sensitization of nociceptors, contribute to the development and maintenance of chronic SCI pain. Using an ex vivo skin/nerve/DRG/spinal cord preparation to characterize afferent response properties following SCI, we found that SCI increased mechanical and thermal responding, as well as the incidence of spontaneous activity (SA) and afterdischarge (AD), in below-level C-fiber nociceptors 24 hr following injury relative to naïve controls. Interestingly, the distribution of nociceptors that exhibit SA and AD are not identical, and the development of SA was observed more frequently in nociceptors with low heat thresholds, while AD was found more frequently in nociceptors with high heat thresholds. We also found that SCI resulted in hindpaw edema and elevated cutaneous calcitonin gene-related peptide (CGRP) concentration that were not observed in naïve mice. These results suggest that SCI causes a rapidly developing nociceptor sensitization and peripheral inflammation that may contribute to the early emergence and persistence of chronic SCI pain.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rena N. Stair
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Christopher Neal
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Peter S.N. Rowe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- The Kidney Institute & Division of Nephrology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer Nelson-Brantley
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Kyle M. Baumbauer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| |
Collapse
|
8
|
El Hakam C, Parenté A, Baraige F, Magnol L, Forestier L, Di Meo F, Blanquet V. PHEX L222P Mutation Increases Phex Expression in a New ENU Mouse Model for XLH Disease. Genes (Basel) 2022; 13:1356. [PMID: 36011266 PMCID: PMC9407253 DOI: 10.3390/genes13081356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023] Open
Abstract
PhexL222P mouse is a new ENU mouse model for XLH disease due to Leu to Pro amino acid modification at position 222. PhexL222P mouse is characterized by growth retardation, hypophosphatemia, hypocalcemia, reduced body bone length, and increased epiphyseal growth plate thickness and femur diameter despite the increase in PHEXL222P expression. Actually, PhexL222P mice show an increase in Fgf23, Dmp1, and Mepe and Slc34a1 (Na-Pi IIa cotransporter) mRNA expression similar to those observed in Hyp mice. Femoral osteocalcin and sclerostin and Slc34a1 do not show any significant variation in PhexL222P mice. Molecular dynamics simulations support the experimental data. P222 might locally break the E217-Q224 β-sheet, which in turn might disrupt inter-β-sheet interactions. We can thus expect local protein misfolding, which might be responsible for the experimentally observed PHEXL222P loss of function. This model could be a valuable addition to the existing XLH model for further comprehension of the disease occurrence and testing of new therapies.
Collapse
Affiliation(s)
- Carole El Hakam
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Alexis Parenté
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Fabienne Baraige
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Laetitia Magnol
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Lionel Forestier
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Florent Di Meo
- INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France;
| | - Véronique Blanquet
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| |
Collapse
|
9
|
Riddle HAL, Zhang S, Qian F, Williams JC, Stubbs JR, Rowe PSN, Parnell SC. Kidney stone formation in a novel murine model of polycystic kidney disease. Am J Physiol Renal Physiol 2022; 323:F59-F68. [PMID: 35343849 PMCID: PMC9236864 DOI: 10.1152/ajprenal.00165.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
Individuals with autosomal dominant polycystic kidney disease have a higher incidence of stone formation than the general population. However, there are no cystic animal models known to develop stones. Cystic mice compound heterozygous for hypomorphic Pkd1V and Pkd1RC alleles develop cystic kidneys within a few weeks of birth but live beyond 20 wk of age, allowing for the study of cystic comorbidities including stone formation. Cystic Pkd1V/RC mice were euthanized at 3, 13, or 26 wk of age, and their kidneys were analyzed by microcomputed tomography (µCT) for stone formation. Mice had occasional mineral aggregates that could be detected by µCT analysis at 3 wk of age. At 13 or 26 wk of age, numerous white masses were visible beneath the kidney surface. µCT analysis confirmed the masses to be large mineral stone deposits throughout the renal cortex, with mineral content increasing with age. Staining of histological sections with alizarin red and von Kossa suggested that the stone deposits were composed primarily of calcium and phosphate. Microdissection confirmed stones localized within cyst lumens. Analysis of individual stones by µCT and infrared spectroscopy confirmed apatite mineral composition. Urinalysis revealed elevated levels of phosphate and citrate at 3 wk of age and lower pH and elevated levels of calcium and citrate at 13 wk of age, suggesting altered phosphate and calcium homeostasis as a potential cause of mineralization and renal stone formation. This is the first animal model exhibiting overt kidney stone formation in the context of cystic kidney disease.NEW & NOTEWORTHY Compound heterozygous Pkd1V/RC mice were found to form calcium phosphate-containing stones within cysts of the renal cortex by 13 wk of age. This is the first polycystic kidney disease animal model exhibiting spontaneous stone formation. A growing body of evidence suggests a link between renal stone formation and cystic kidney disease. This mouse model may be useful for studying the interplay between stone and cyst formation and the functional role of polycystins in mineral homeostasis.
Collapse
Affiliation(s)
- Heather A L Riddle
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Shiqin Zhang
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - James C Williams
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jason R Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Peter Stanley N Rowe
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Stephen C Parnell
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
10
|
Kang H, Aryal AC S, Barnes AM, Martin A, David V, Crawford SE, Marini JC. Antagonism Between PEDF and TGF-β Contributes to Type VI Osteogenesis Imperfecta Bone and Vascular Pathogenesis. J Bone Miner Res 2022; 37:925-937. [PMID: 35258129 PMCID: PMC11152058 DOI: 10.1002/jbmr.4540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder of bone and connective tissue, also known as brittle bone disease. Null mutations in SERPINF1, which encodes pigment epithelium-derived factor (PEDF), cause severe type VI OI, characterized by accumulation of unmineralized osteoid and a fish-scale pattern of bone lamellae. Although the potent anti-angiogenic activity of PEDF has been extensively studied, the disease mechanism of type VI OI is not well understood. Using Serpinf1(-/-) mice and primary osteoblasts, we demonstrate that loss of PEDF delays osteoblast maturation as well as extracellular matrix (ECM) mineralization. Barium sulfate perfusion reveals significantly increased vessel density in the tibial periosteum of Serpinf1(-/-) mouse compared with wild-type littermates. The increased bone vascularization in Serpinf1(-/-) mice correlated with increased number of CD31(+)/Endomucin(+) endothelial cells, which are involved in the coupling angiogenesis and osteogenesis. Global transcriptome analysis by RNA-Seq of Serpinf1(-/-) mouse osteoblasts reveals osteogenesis and angiogenesis as the biological processes most impacted by loss of PEDF. Intriguingly, TGF-β signaling is activated in type VI OI cells, and Serpinf1(-/-) osteoblasts are more sensitive to TGF-β stimulation than wild-type osteoblasts. TGF-β stimulation and PEDF deficiency showed additive effects on transcription suppression of osteogenic markers and stimulation of pro-angiogenic factors. Furthermore, PEDF attenuated TGF-β-induced expression of pro-angiogenic factors. These data suggest that functional antagonism between PEDF and TGF-β pathways controls osteogenesis and bone vascularization and is implicated in type VI OI pathogenesis. This antagonism may be exploited in developing therapeutics for type VI OI utilizing PEDF and TGF-β antibody. © 2022 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Smriti Aryal AC
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Aileen M Barnes
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| | - Aline Martin
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Valentin David
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan E Crawford
- Department of Surgery, NorthShore University HealthSystem Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, NIH, Bethesda, MD, USA
| |
Collapse
|
11
|
Li T, Cao S, Liao X, Shao Y, Zhang L, Lu L, Liu Z, Luo X. The Effects of Inorganic Phosphorus Levels on Phosphorus Utilization, Local Bone-Derived Regulators, and BMP/MAPK Pathway in Primary Cultured Osteoblasts of Broiler Chicks. Front Vet Sci 2022; 9:855405. [PMID: 35392115 PMCID: PMC8983115 DOI: 10.3389/fvets.2022.855405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding the underlying mechanisms that regulate the bone phosphorus (P) utilization would be helpful for developing feasible strategies to improve utilization efficiency of P in poultry. We aimed to investigate the effects of inorganic P levels on P utilization, local bone-derived regulators and bone morphogenetic protein/mitogen-activated protein kinase (BMP/MAPK) pathway in primary cultured osteoblasts of broiler chicks in order to address whether local bone-derived regulators or BMP/MAPK pathway was involved in regulating the bone P utilization of broilers using an in vitro model. The primary cultured tibial osteoblasts of broiler chicks were randomly divided into one of five treatments with six replicates for each treatment. Then, cells were respectively incubated with 0.0, 0.5, 1.0, 1.5, or 2.0 mmol/L of added P as NaH2PO4 for 24 days. The results showed that as added P levels increased, tibial osteoblastic P retention rate, number and area of mineralized nodules, the mRNA expressions of endopeptidases on the X chromosome (PHEX), dentin matrix protein 1 (DMP1), bone morphogenetic protein 2 (BMP2), and the mRNA and protein expressions of matrix extracellular phosphoglycoprotein (MEPE) increased linearly (p < 0.001) or quadratically (p < 0.04), while extracellular signal-regulated kinase 1 (ERK1) mRNA expression and c-Jun N-terminal kinase 1 (JNK1) phosphorylated level decreased linearly (p < 0.02) or quadratically (p < 0.01). Correlation analyses showed that tibial osteoblastic P retention rate was positively correlated (r = 0.452–0.564, p < 0.03) with MEPE and BMP2 mRNA expressions. Furthermore, both number and area of mineralized nodules were positively correlated (r = 0.414–0.612, p < 0.03) with PHEX, DMP1, MEPE, and BMP2 mRNA expressions but negatively correlated (r = −0.566 to −0.414, p < 0.04) with the ERK1 mRNA expression and JNK1 phosphorylated level. These results suggested that P utilization in primary cultured tibial osteoblasts of broiler chicks might be partly regulated by PHEX, DMP1, MEPE, BMP2, ERK1, and JNK1.
Collapse
Affiliation(s)
- Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Sumei Cao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxin Shao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Xugang Luo
| |
Collapse
|
12
|
Muhammad AI, Dalia AM, Loh TC, Akit H, Samsudin AA. Effect of organic and inorganic dietary selenium supplementation on gene expression in oviduct tissues and Selenoproteins gene expression in Lohman Brown-classic laying hens. BMC Vet Res 2021; 17:281. [PMID: 34419016 PMCID: PMC8380377 DOI: 10.1186/s12917-021-02964-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background The oviduct of a hen provides a conducive environment for egg formation, which needs a large amount of mineral elements from the blood via trans-epithelial permeability. Eggshell is the calcified layer on the outside of an egg that provides protection and is critical for egg quality. However, little is known about the genes or proteins involved in eggshell formation, and their relationship to dietary microminerals. We hypothesized that dietary selenium supplementation in chickens will influence genes involved in eggshell biomineralization, and improve laying hen antioxidant capacity. The objective of this research was to investigate how organic and inorganic dietary selenium supplementation affected mRNA expression of shell gland genes involved in eggshell biomineralization, and selenoproteins gene expression in Lohman Brown-Classic laying hens. Results Shell gland (Uterus) and liver tissue samples were collected from hens during the active growth phase of calcification (15–20 h post-ovulation) for RT-PCR analysis. In the oviduct (shell gland and magnum) and liver of laying hens, the relative expression of functional eggshell and hepatic selenoproteins genes was investigated. Results of qPCR confirmed the higher (p < 0.05) mRNA expression of OC-17 and OC-116 in shell gland of organic Se hen compared to inorganic and basal diet treatments. Similarly, dietary Se treatments affected the mRNA expression of OCX-32 and OCX-36 in the shell gland of laying hens. In the magnum, mRNA expression of OC-17 was significantly (p < 0.05) higher in hens fed-bacterial organic, while OC-116 mRNA expression was down-regulated in dietary Se supplemented groups compared to non-Se supplemented hens. Moreover, when compared to sodium selenite, only ADS18 bacterial Se showed significantly (p < 0.05) higher mRNA levels in GPX1, GPX4, DIO1, DIO2 and SELW1, while Se-yeast showed significantly (p < 0.05) higher mRNA levels in TXNRD1 than the non-Se group. Conclusions Dietary Se supplementation especially that from a bacterial organic source, improved shell gland and hepatic selenoproteins gene expression in laying hens, indicating that it could be used as a viable alternative source of Se in laying hens. The findings could suggest that organic Se upregulation of shell gland genes and hepatic selenoproteins in laying hens is efficient.
Collapse
Affiliation(s)
- A I Muhammad
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Animal Science, Faculty of Agriculture, Federal University Dutse, P.M.B. 7156, Dutse, Jigawa State, Nigeria
| | - A M Dalia
- Department of Animal Nutrition, Faculty of Animal Production, University of Khartoum, P.O. Box 321, Khartoum, Sudan
| | - T C Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - H Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - A A Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
13
|
FAM20C Overview: Classic and Novel Targets, Pathogenic Variants and Raine Syndrome Phenotypes. Int J Mol Sci 2021; 22:ijms22158039. [PMID: 34360805 PMCID: PMC8348777 DOI: 10.3390/ijms22158039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/24/2022] Open
Abstract
FAM20C is a gene coding for a protein kinase that targets S-X-E/pS motifs on different phosphoproteins belonging to diverse tissues. Pathogenic variants of FAM20C are responsible for Raine syndrome (RS), initially described as a lethal and congenital osteosclerotic dysplasia characterized by generalized atherosclerosis with periosteal bone formation, characteristic facial dysmorphisms and intracerebral calcifications. The aim of this review is to give an overview of targets and variants of FAM20C as well as RS aspects. We performed a wide phenotypic review focusing on clinical aspects and differences between all lethal (LRS) and non-lethal (NLRS) reported cases, besides the FAM20C pathogenic variant description for each. As new targets of FAM20C kinase have been identified, we reviewed FAM20C targets and their functions in bone and other tissues, with emphasis on novel targets not previously considered. We found the classic lethal and milder non-lethal phenotypes. The milder phenotype is defined by a large spectrum ranging from osteonecrosis to osteosclerosis with additional congenital defects or intellectual disability in some cases. We discuss our current understanding of FAM20C deficiency, its mechanism in RS through classic FAM20C targets in bone tissue and its potential biological relevance through novel targets in non-bone tissues.
Collapse
|
14
|
Minamizaki T, Sakurai K, Hayashi I, Toshishige M, Yoshioka H, Kozai K, Yoshiko Y. Active sites of human MEPE-ASARM regulating bone matrix mineralization. Mol Cell Endocrinol 2020; 517:110931. [PMID: 32712387 DOI: 10.1016/j.mce.2020.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 11/25/2022]
Abstract
The proteolytic fragment ASARM (acidic serine- and aspartate-rich motif) of MEPE (matrix extracellular phosphoglycoprotein) (MEPE-ASARM) may act as an endogenous anti-mineralization factor involved in X-linked hypophosphatemic rickets/osteomalacia (XLH). We synthesized MEPE-ASARM peptides and relevant peptide fragments with or without phosphorylated Ser residues (pSer) to determine the active site(s) of MEPE-ASARM in a rat calvaria cell culture model. None of the synthetic peptides elicited changes in cell death, proliferation or differentiation, but the peptide (pASARM) with three pSer residues inhibited mineralization without causing changes in gene expression of osteoblast markers tested. The anti-mineralization effect was maintained in peptides in which any one of three pSer residues was deleted. Polyclonal antibodies recognizing pASARM but not ASARM abolished the pASARM effect. Deletion of six N-terminal residues but leaving the recognition sites for PHEX (phosphate regulating endopeptidase homolog, X-linked), a membrane endopeptidase responsible for XLH, intact and two C-terminal amino acid residues did not alter the anti-mineralization activity of pASARM. Our results strengthen understanding of the active sites of MEPE-pASARM and allowed us to identify a shorter more stable sequence with fewer pSer residues still exhibiting hypomineralization activity, reducing peptide synthesis cost and increasing reliability for exploring biological and potential therapeutic effects.
Collapse
Affiliation(s)
- Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kaoru Sakurai
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ikue Hayashi
- Research Facility, Hiroshima University School of Dentistry, Hiroshima, Japan
| | - Masaaki Toshishige
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirotaka Yoshioka
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
15
|
Surakka I, Fritsche LG, Zhou W, Backman J, Kosmicki JA, Lu H, Brumpton B, Nielsen JB, Gabrielsen ME, Skogholt AH, Wolford B, Graham SE, Chen YE, Lee S, Kang HM, Langhammer A, Forsmo S, Åsvold BO, Styrkarsdottir U, Holm H, Gudbjartsson D, Stefansson K, Baras A, Abecasis GR, Hveem K, Willer CJ. MEPE loss-of-function variant associates with decreased bone mineral density and increased fracture risk. Nat Commun 2020; 11:4093. [PMID: 33097703 PMCID: PMC7585430 DOI: 10.1038/s41467-020-17315-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/26/2020] [Indexed: 01/28/2023] Open
Abstract
A major challenge in genetic association studies is that most associated variants fall in the non-coding part of the human genome. We searched for variants associated with bone mineral density (BMD) after enriching the discovery cohort for loss-of-function (LoF) mutations by sequencing a subset of the Nord-Trøndelag Health Study, followed by imputation in the remaining sample (N = 19,705), and identified ten known BMD loci. However, one previously unreported variant, LoF mutation in MEPE, p.(Lys70IlefsTer26, minor allele frequency [MAF] = 0.8%), was associated with decreased ultradistal forearm BMD (P-value = 2.1 × 10−18), and increased osteoporosis (P-value = 4.2 × 10−5) and fracture risk (P-value = 1.6 × 10−5). The MEPE LoF association with BMD and fractures was further evaluated in 279,435 UK (MAF = 0.05%, heel bone estimated BMD P-value = 1.2 × 10−16, any fracture P-value = 0.05) and 375,984 Icelandic samples (MAF = 0.03%, arm BMD P-value = 0.12, forearm fracture P-value = 0.005). Screening for the MEPE LoF mutations before adulthood could potentially prevent osteoporosis and fractures due to the lifelong effect on BMD observed in the study. A key implication for precision medicine is that high-impact functional variants missing from the publicly available cosmopolitan panels could be clinically more relevant than polygenic risk scores. Bone mineral density (BMD) is associated with fracture risk and many genetic loci with small effect sizes have been discovered by genome-wide association studies (GWAS). Here, the authors discover a large-effect rare loss-of-function genetic variant for BMD in the MEPE gene in the Norwegian HUNT study which replicates in the UK Biobank.
Collapse
Affiliation(s)
- Ida Surakka
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Lars G Fritsche
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.,Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, 1415 Washington Heights, 1700 SPH I, Ann Arbor, MI, 48109, USA
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA, 02142, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Joshua Backman
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Jack A Kosmicki
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Haocheng Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Ben Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.,MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.,Clinic of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, 7030, Trondheim, Norway
| | - Jonas B Nielsen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Brooke Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA
| | - Sarah E Graham
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Seunggeun Lee
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, 1415 Washington Heights, 1700 SPH I, Ann Arbor, MI, 48109, USA
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, 1415 Washington Heights, 1700 SPH I, Ann Arbor, MI, 48109, USA
| | - Arnulf Langhammer
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Postboks 8905, N-7491, Levanger, Norway
| | - Siri Forsmo
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Postboks 8905, N-7491, Levanger, Norway
| | - Bjørn O Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.,HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Postboks 8905, N-7491, Levanger, Norway.,Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, 7030, Trondheim, Norway
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Sturlugata 8, 101, Reykjavik, Iceland
| | - Daniel Gudbjartsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, 101, Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Sturlugata 7, 101, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Sturlugata 8, 101, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavik, Iceland
| | - Aris Baras
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | | | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, 1415 Washington Heights, 1700 SPH I, Ann Arbor, MI, 48109, USA.,Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway. .,HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Postboks 8905, N-7491, Levanger, Norway.
| | - Cristen J Willer
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA. .,Department of Computational Medicine and Bioinformatics, University of Michigan, Palmer Commons, 100 Washtenaw Avenue, Ann Arbor, MI, 48109, USA. .,K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway. .,Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 E. Catherine St, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
16
|
Remodeling process in bone of aged rats in response to resistance training. Life Sci 2020; 256:118008. [DOI: 10.1016/j.lfs.2020.118008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
|
17
|
Ozsen A, Furman A, Guran T, Bereket A, Turan S. Fibroblast Growth Factor-23 and Matrix Extracellular Phosphoglycoprotein Levels in Healthy Children and, Pregnant and Puerperal Women. Horm Res Paediatr 2020; 92:302-310. [PMID: 32187608 DOI: 10.1159/000506477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/12/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Fibroblast growth factor (FGF-23) and matrix extracellular phosphoglycoprotein (MEPE) are bone-related factors and their role in physiologic conditions and in different life stages are unknown. We aimed to evaluate age- and pregnancy-related changes in MEPE and FGF-23 levels and their correlations with calcium (Ca)-phosphate (PO4) metabolism. METHODS The study population included 96 healthy children (50 females) and 31 women (11 healthy, 10 pregnant, and 10 lactating). Intact FGF-23 (iFGF-23), MEPE, ferritin, parathyroid hormone (PTH), 25-OH vitamin D, alkaline phosphatase (ALP), IGF-I, IGFBP-3 and, Ca, PO4 and creatine (Cre) in serum (S) and urine (U) samples were determined. The renal phosphate threshold (TmPO4/GFR) and z-scores for the parameters that show age-related changes were calculated. RESULTS Serum iFGF-23 concentrations showed nonsignificant changes with age; however, MEPE decreased with age, reaching the lowest levels after 7 years. Additionally, higher serum MEPE concentrations were observed during pregnancy. Other than ALP, all other examined parameters demonstrated age-related changes. ALP, BUN, S-Cre, and U-Ca/Cre showed puerperal and pregnancy related changes together with MEPE. iFGF-23 was positively correlated with S-PO4 and TmPO4/GFR. MEPE was positively correlated with S-Ca, S-PO4 and TmPO4/GFR and negatively correlated with PTH, IGF-1, and IGFBP-3. CONCLUSION Not iFGF-23 but MEPE showed age-dependent changes and was affected by pregnancy. Although, MEPE and iFGF-23 did not correlate with each other, they seem to affect serum and urinary phosphate in the same direction. Additionally, we found evidence that ferritin and growth factors might have a role in serum calcium and phosphate regulation.
Collapse
Affiliation(s)
- Ahu Ozsen
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Andrzej Furman
- Institute of Environmental Sciences, Bogazici University, Istanbul, Turkey
| | - Tulay Guran
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Serap Turan
- Division of Pediatric Endocrinology, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey,
| |
Collapse
|
18
|
Hernández-Zavala A, Cortés-Camacho F, Palma-Lara I, Godínez-Aguilar R, Espinosa AM, Pérez-Durán J, Villanueva-Ocampo P, Ugarte-Briones C, Serrano-Bello CA, Sánchez-Santiago PJ, Bonilla-Delgado J, Yáñez-López MA, Victoria-Acosta G, López-Ornelas A, García Alonso-Themann P, Moreno J, Palacios-Reyes C. Two Novel FAM20C Variants in A Family with Raine Syndrome. Genes (Basel) 2020; 11:genes11020222. [PMID: 32093234 PMCID: PMC7073523 DOI: 10.3390/genes11020222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Two siblings from a Mexican family who carried lethal Raine syndrome are presented. A newborn term male (case 1) and his 21 gestational week brother (case 2), with a similar osteosclerotic pattern: generalized osteosclerosis, which is more evident in facial bones and cranial base. Prenatal findings at 21 weeks and histopathological features for case 2 are described. A novel combination of biallelic FAM20C pathogenic variants were detected, a maternal cytosine duplication at position 456 and a paternal deletion of a cytosine in position 474 in exon 1, which change the reading frame with a premature termination at codon 207 and 185 respectively. These changes are in concordance with a negative detection of the protein in liver and kidney as shown in case 2. Necropsy showed absence of pancreatic Langerhans Islets, which are reported here for the first time. Corpus callosum absence is added to the few reported cases of brain defects in Raine syndrome. This report shows two new FAM20C variants not described previously, and negative protein detection in the liver and the kidney. We highlight that lethal Raine syndrome is well defined as early as 21 weeks, including mineralization defects and craniofacial features. Pancreas and brain defects found here in FAM20C deficiency extend the functional spectrum of this protein to previously unknown organs.
Collapse
Affiliation(s)
- Araceli Hernández-Zavala
- Laboratory of Cellular and Molecular Morphology, Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico; (A.H.-Z.); (F.C.-C.); (I.P.-L.)
| | - Fernando Cortés-Camacho
- Laboratory of Cellular and Molecular Morphology, Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico; (A.H.-Z.); (F.C.-C.); (I.P.-L.)
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Icela Palma-Lara
- Laboratory of Cellular and Molecular Morphology, Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico; (A.H.-Z.); (F.C.-C.); (I.P.-L.)
| | - Ricardo Godínez-Aguilar
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Ana María Espinosa
- Service of Clinical Pharmacology, Hospital General de México, Dr. Balmis 148, Doctores, Cuauhtémoc, Mexico City 06720, Mexico;
| | - Javier Pérez-Durán
- National Institute of Perinatology, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Section, Miguel Hidalgo, Mexico City 11000, Mexico; (J.P.-D.); (P.G.A.-T.)
| | - Patricia Villanueva-Ocampo
- Deparment of Ginecology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico;
| | - Carlos Ugarte-Briones
- Department of Pathology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (C.U.-B.); (C.A.S.-B.); (P.J.S.-S.)
| | - Carlos Alberto Serrano-Bello
- Department of Pathology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (C.U.-B.); (C.A.S.-B.); (P.J.S.-S.)
| | - Paula Jesús Sánchez-Santiago
- Department of Pathology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (C.U.-B.); (C.A.S.-B.); (P.J.S.-S.)
| | - José Bonilla-Delgado
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Marco Antonio Yáñez-López
- Department of Radiology & Imagenology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico;
| | - Georgina Victoria-Acosta
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Adolfo López-Ornelas
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Patricia García Alonso-Themann
- National Institute of Perinatology, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Section, Miguel Hidalgo, Mexico City 11000, Mexico; (J.P.-D.); (P.G.A.-T.)
| | - José Moreno
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Carmen Palacios-Reyes
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
- Correspondence:
| |
Collapse
|
19
|
Shavadia JS, Granger CB, Alemayehu W, Westerhout CM, Povsic TJ, Brener SJ, van Diepen S, Defilippi C, Armstrong PW. High-throughput targeted proteomics discovery approach and spontaneous reperfusion in ST-segment elevation myocardial infarction. Am Heart J 2020; 220:137-144. [PMID: 31812755 DOI: 10.1016/j.ahj.2019.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although spontaneous reperfusion (SR) prior to primary percutaneous coronary intervention (pPCI) is associated with improved outcomes, its pathophysiology remains unclear. The objective of the study was to explore associations between SR in ST-segment elevation myocardial infarction (STEMI) using a multimarker cardiovascular proteins strategy METHODS: We evaluated STEMI patients from the Assessment of Pexelizumab in Acute Myocardial Infarction trial treated with pPCI within 6 hours from symptom onset. SR was core laboratory-defined as pre-PCI Thrombolysis in Myocardial Infarction flow 2 or 3. Ninety-one cardiovascular disease-related serum biomarkers drawn prior to PCI were analyzed using a high-throughput "targeted discovery" panel. Expression levels for individual biomarkers were compared between patients with/without SR. A hierarchical clustering method of biomarkers identified clusters of biomarkers that differentiated the 2 groups. Associations between individual biomarkers and clusters with SR were further evaluated by multivariable logistic regression. RESULTS Of 683 patients studied, 290 had spontaneous reperfusion; those with compared to without SR were more likely noninferior STEMI and had lower clinical acuity and lower baseline levels of troponin and creatine kinase. SR was associated with a lower occurrence of 90-day composite of death, heart failure, or cardiogenic shock. Fifty-two of 91 individual biomarkers were significantly univariably associated with SR. Forty-five remained significant with adjustment for false discovery rate. Using cluster analysis, 26 biomarkers clusters were identified, explaining 72% of total covariance, and 13 biomarker clusters were significantly associated with SR after multivariable adjustment. SR was associated with higher mean expression levels of proteins in all 13 clusters. The cluster most strongly associated with SR consisted of novel proteins across various distinct, yet interlinked, pathobiological processes (kallikrein-6, matrix extracellular phosphoglycoprotein, matrix mettaloproteinaise-3, and elafin). CONCLUSIONS Spontaneous reperfusion prior to pPCI in STEMI was associated with a lower risk of adverse clinical events. These exploratory data from a targeted discovery proteomics platform identifies novel proteins across diverse, yet complementary, pathobiological axes that show promise in providing mechanistic insights into spontaneous reperfusion in STEMI. CONDENSED ABSTRACT Spontaneous reperfusion has been established with improved STEMI outcomes, yet its pathobiology is unclear and appears to involve diverse physiological processes. Using a 91-biomarker high-throughput proteomics platform, we studied 683 STEMI patients in the APEX AMI trial (290 had core laboratory-adjudicated pre-PCI TIMI 2/3 flow) and identified 52 proteins that univariably associate with spontaneous reperfusion. Cluster analysis identified 26 biomarker clusters (explaining 72% of total variance), 13 of which, after multivariable adjustment, were significantly associated with spontaneous reperfusion. Four proteins (kallikrein-6, matrix extracellular phosphoglycoprotein, matrix mettaloproteinaise-3, and elafin) across diverse, yet complementary, pathways appear to be associated most strongly with spontaneous reperfusion.
Collapse
Affiliation(s)
- Jay S Shavadia
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Duke Clinical Research Institute, Durham, NC, USA.
| | | | | | | | | | - Sorin J Brener
- Department of Medicine, Cardiac Catheterization Laboratory, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, USA
| | - Sean van Diepen
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Paul W Armstrong
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Wang N, Niger C, Li N, Richards GO, Skerry TM. Cross-Species RNA-Seq Study Comparing Transcriptomes of Enriched Osteocyte Populations in the Tibia and Skull. Front Endocrinol (Lausanne) 2020; 11:581002. [PMID: 33071985 PMCID: PMC7543096 DOI: 10.3389/fendo.2020.581002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Local site-specific differences between bones in different regions of the skeleton account for their different properties and functions. To identify mechanisms behind these differences, we have performed a cross-species study comparing RNA transcriptomes of cranial and tibial osteocytes, from bones with very different primary functions and physiological responses, collected from the same individual mouse, rat, and rhesus macaque. Bioinformatic analysis was performed to identify 32 genes changed in the same direction between sites and shared across all three species. Several well-established key genes in bone growth and remodeling were upregulated in the tibias of all three species (BMP7, DKK1, FGF1, FRZB, SOST). Many of them associate or crosstalk with the Wnt signaling pathway. These results suggest Wnt signaling-related candidates for different control of regulatory mechanisms in bone homeostasis in the skull and tibia and indicate a different balance between genetically determined structure and feedback mechanisms to strains induced by mechanical loading at the different sites.
Collapse
Affiliation(s)
- Ning Wang
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
| | - Corinne Niger
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
| | - Nan Li
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Gareth O. Richards
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
| | - Tim M. Skerry
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Tim M. Skerry
| |
Collapse
|
21
|
Pathak JL, Bravenboer N, Klein-Nulend J. The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases. Front Endocrinol (Lausanne) 2020; 11:405. [PMID: 32733380 PMCID: PMC7360678 DOI: 10.3389/fendo.2020.00405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023] Open
Abstract
Osteocytes are the most abundant (~95%) cells in bone with the longest half-life (~25 years) in humans. In the past osteocytes have been regarded as vestigial cells in bone, since they are buried inside the tough bone matrix. However, during the last 30 years it has become clear that osteocytes are as important as bone forming osteoblasts and bone resorbing osteoclasts in maintaining bone homeostasis. The osteocyte cell body and dendritic processes reside in bone in a complex lacuno-canalicular system, which allows the direct networking of osteocytes to their neighboring osteocytes, osteoblasts, osteoclasts, bone marrow, blood vessels, and nerves. Mechanosensing of osteocytes translates the applied mechanical force on bone to cellular signaling and regulation of bone adaptation. The osteocyte lacuno-canalicular system is highly efficient in transferring external mechanical force on bone to the osteocyte cell body and dendritic processes via displacement of fluid in the lacuno-canalicular space. Osteocyte mechanotransduction regulates the formation and function of the osteoblasts and osteoclasts to maintain bone homeostasis. Osteocytes produce a variety of proteins and signaling molecules such as sclerostin, cathepsin K, Wnts, DKK1, DMP1, IGF1, and RANKL/OPG to regulate osteoblast and osteoclast activity. Various genetic abnormality-associated rare bone diseases are related to disrupted osteocyte functions, including sclerosteosis, van Buchem disease, hypophosphatemic rickets, and WNT1 and plastin3 mutation-related disorders. Meticulous studies during the last 15 years on disrupted osteocyte function in rare bone diseases guided for the development of various novel therapeutic agents to treat bone diseases. Studies on genetic, molecular, and cellular mechanisms of sclerosteosis and van Buchem disease revealed a role for sclerostin in bone homeostasis, which led to the development of the sclerostin antibody to treat osteoporosis and other bone degenerative diseases. The mechanism of many other rare bone diseases and the role of the osteocyte in the development of such conditions still needs to be investigated. In this review, we mainly discuss the knowledge obtained during the last 30 years on the role of the osteocyte in rare bone diseases. We speculate about future research directions to develop novel therapeutic drugs targeting osteocyte functions to treat both common and rare bone diseases.
Collapse
Affiliation(s)
- Janak L. Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jenneke Klein-Nulend
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Jenneke Klein-Nulend
| |
Collapse
|
22
|
Li F, Cain JD, Tombran-Tink J, Niyibizi C. Pigment epithelium-derived factor (PEDF) reduced expression and synthesis of SOST/sclerostin in bone explant cultures: implication of PEDF-osteocyte gene regulation in vivo. J Bone Miner Metab 2019; 37:773-779. [PMID: 30607618 DOI: 10.1007/s00774-018-0982-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Abstract
Mutations in Serpinf1 gene which encodes pigment epithelium-derived factor (PEDF) lead to osteogenesis imperfecta type VI whose hallmark is defective matrix mineralization. We reported previously that PEDF reduced expression and synthesis of Sost/Sclerostin as well as other osteocytes genes encoding proteins that regulate matrix mineralization [1]. To determine whether PEDF had an effect on osteocyte gene expression in bone, we used bone explant cultures. First, osteocytes were isolated from surgical waste of bone fragments obtained from patients undergoing elective foot surgeries under approved IRB protocol by Penn State College of Medicine IRB committee. Primary osteocytes treated with PEDF reduced expression and synthesis of Sost/Sclerostin and matrix phosphoglycoprotein (MEPE) as well as dentin matrix protein (DMP-1). On the whole, PEDF reduced osteocyte protein synthesis by 50% and by 75% on mRNA levels. For bone explants, following collagenase digestion, bone fragments were incubated in alpha-MEM supplemented with 250 ng/ml of PEDF or BSA. After 7 days of incubation in a medium supplemented with PEDF, analysis of mRNA by PCR and protein by western blotting of encoded osteocyte proteins showed reduced Sclerostin synthesis by 39% and MEPE by 27% when compared to fragments incubated in medium supplemented with BSA. mRNA expression levels of osteocytes in bone fragments treated with PEDF were reduced by 50% for both SOST and MEPE when compared to BSA-treated bone fragments. Taken together, the data indicate that PEDF has an effect on osteocyte gene expression in bone and encourage further studies to examine effect of PEDF on bone formation indices in animal models and its effect on osteocyte gene expression in vivo following PEDF administration.
Collapse
Affiliation(s)
- Feng Li
- Department of Orthopaedics and Rehabilitation H089, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Jarrett D Cain
- Department of Orthopaedics and Rehabilitation H089, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Joyce Tombran-Tink
- Department of Orthopaedics and Rehabilitation H089, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Christopher Niyibizi
- Department of Orthopaedics and Rehabilitation H089, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
23
|
Bouleftour W, Juignet L, Verdière L, Machuca-Gayet I, Thomas M, Laroche N, Vanden-Bossche A, Farlay D, Thomas C, Gineyts E, Concordet JP, Renaud JB, Aubert D, Teixeira M, Peyruchaud O, Vico L, Lafage-Proust MH, Follet H, Malaval L. Deletion of OPN in BSP knockout mice does not correct bone hypomineralization but results in high bone turnover. Bone 2019; 120:411-422. [PMID: 30529011 DOI: 10.1016/j.bone.2018.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022]
Abstract
The two SIBLING (Small Integrin Binding Ligand N-linked Glycoproteins), bone sialoprotein (BSP) and osteopontin (OPN) are expressed in osteoblasts and osteoclasts. In mature BSP knockout (KO, -/-) mice, both bone formation and resorption as well as mineralization are impaired. OPN-/- mice display impaired resorption, and OPN is described as an inhibitor of mineralization. However, OPN is overexpressed in BSP-/- mice, complicating the understanding of their phenotype. We have generated and characterized mice with a double KO (DKO) of OPN and BSP, to try and unravel their respective contributions. Despite the absence of OPN, DKO bones are still hypomineralized. The SIBLING, matrix extracellular phosphoglycoprotein with ASARM motif (MEPE) is highly overexpressed in both BSP-/- and DKO and may impair mineralization through liberation of its ASARM (Acidic Serine-Aspartate Rich MEPE associated) peptides. DKO mice also display evidence of active formation of trabecular, secondary bone as well as primary bone in the marrow-ablation repair model. A higher number of osteoclasts form in DKO marrow cultures, with higher resorption activity, and DKO long bones display a localized and conspicuous cortical macroporosity. High bone formation and resorption parameters, and high cortical porosity in DKO mice suggest an active bone modeling/remodeling, in the absence of two key regulators of bone cell performance. This first double KO of SIBLING proteins thus results in a singular, non-trivial phenotype leading to reconsider the interpretation of each single KO, concerning in particular matrix mineralization and the regulation of bone cell activity.
Collapse
Affiliation(s)
- W Bouleftour
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - L Juignet
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - L Verdière
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | | | - M Thomas
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - N Laroche
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - A Vanden-Bossche
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - D Farlay
- Inserm U1033-Lyos, Université de Lyon, F69372 Lyon, France
| | - C Thomas
- Inserm U1033-Lyos, Université de Lyon, F69372 Lyon, France
| | - E Gineyts
- Inserm U1033-Lyos, Université de Lyon, F69372 Lyon, France
| | - J P Concordet
- Inserm U1154/Cnrs UMR7196/Muséum National d'Histoire Naturelle, F75231 Paris, France
| | - J B Renaud
- Inserm U1154/Cnrs UMR7196/Muséum National d'Histoire Naturelle, F75231 Paris, France
| | - D Aubert
- AniRa PBES, Gerland, F69007 Lyon Sud, France
| | - M Teixeira
- AniRa PBES, Gerland, F69007 Lyon Sud, France
| | - O Peyruchaud
- Inserm U1033-Lyos, Université de Lyon, F69372 Lyon, France
| | - L Vico
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - M H Lafage-Proust
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France
| | - H Follet
- Inserm U1033-Lyos, Université de Lyon, F69372 Lyon, France
| | - L Malaval
- Inserm U1059-Sainbiose, Université de Lyon, F 42270 Saint Priest en Jarez, France.
| |
Collapse
|
24
|
Brankovic M, Martijn Akkerhuis K, Mouthaan H, Constantinescu A, Caliskan K, van Ramshorst J, Germans T, Umans V, Kardys I. Utility of temporal profiles of new cardio-renal and pulmonary candidate biomarkers in chronic heart failure. Int J Cardiol 2019; 276:157-165. [DOI: 10.1016/j.ijcard.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/03/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
|
25
|
RNA sequencing-based analysis of the laying hen uterus revealed the novel genes and biological pathways involved in the eggshell biomineralization. Sci Rep 2018; 8:16853. [PMID: 30443032 PMCID: PMC6237962 DOI: 10.1038/s41598-018-35203-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/01/2018] [Indexed: 01/04/2023] Open
Abstract
Eggshell is the outermost calcified covering of an egg that protects it from microbial invasion and physical damage, and is critical for egg quality. However, understanding of the genes/proteins and the biological pathways regulating the eggshell formation is still obscure. We hypothesized that the transcriptomic analysis of the chicken uteri using RNA-sequencing may reveal novel genes and biological pathways involved in the eggshell biomineralization. RNA-sequence analysis using uteri of laying hens at 15–20 h post-ovulation (layers, n = 3) and non-laying (non-layers, n = 3) hens was carried out. About 229 differentially expressed genes (DEGs) were up-regulated in the layers compared to the non-layers. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Ingenuity Pathway Analysis (IPA) revealed more than ten novel genes and biological pathways related to calcium transport and mineralization in the uterus. Based on the enriched pathways and molecular function analysis, 12 DEGs related to eggshell mineralization were further analyzed in the uteri of layers (3 h and 15–20 h post-ovulation), non-layers and molters using qPCR. Expressions of OC-116 (regulator of mineralization), OTOP2 (modulator of cellular calcium influx), CALCB (intracellular release of Ca-ions), STC2 (increases alkaline phosphatase activity), and ATP2C2 (cellular import of Ca-ions) were significantly higher in the uteri of laying hen at 15–20 h post-ovulation. This study identified the involvement of novel genes and their proposed biological pathways in the regulation of eggshell formation.
Collapse
|
26
|
Li F, Cain JD, Tombran-Tink J, Niyibizi C. Pigment epithelium derived factor regulates human Sost/Sclerostin and other osteocyte gene expression via the receptor and induction of Erk/GSK-3beta/beta-catenin signaling. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3449-3458. [PMID: 30076958 DOI: 10.1016/j.bbadis.2018.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
Mutations in Serpinf1 gene which encodes pigment epithelium derived factor (PEDF) lead to osteogenesis imperfecta type VI whose hallmark is defective mineralization. We reported that PEDF suppressed expression of Sost/Sclerostin and other osteocyte related genes in mineralizing osteoblast cultures and suggested that this could be part of the mechanisms by which PEDF regulates matrix mineralization (Li et al. J Cellular Phys. 2014). We have used a long-term differentiated mineralizing osteoblast culture (LTD) to define mechanisms by which PEDF regulates osteocyte gene expression. LTD cultures were established by culturing human osteoblasts in an osteogenic medium for 4 months followed by analysis of osteocytes related genes and encoded proteins. LTD cells synthesized Sclerostin, matrix extracellular phosphoglycoprotein (MEPE) and dentin matrix protein (DMP-1) and their synthesis was reduced by treatment with PEDF. Treatment of the cultures with PEDF induced phosphorylation of Erk and glycogen synthase kinase 3-beta (GSK-3β), and accumulation of nonphosphorylated β-catenin. Inhibition of Erk activation and neutralizing antibodies to the pigment epithelium derived receptor (PEDF-R) suppressed GSK-3β phosphorylation and accumulation of nonphosphorylated β-catenin in presence of PEDF. Topflash assays demonstrated that PEDF activated luciferase reporter activity and this activity was inhibited by treatment with Erk inhibitor or neutralizing antibodies to PEDF-R. Dickkopf-related protein 1 treatment of the cells in presence of PEDF had minimal effect suggesting that GSK-3β phosphorylation and accumulation of nonphosphorylayted β-catenin may not involve LRP5/6 in osteocytes. Taken together, the data demonstrate that PEDF regulates osteocyte gene expression through its receptor and possible involvement of Erk/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Feng Li
- Penn State College of Medicine, Department of Orthopaedics and Rehabilitation, Hershey, PA, USA
| | - Jarret D Cain
- Penn State College of Medicine, Department of Orthopaedics and Rehabilitation, Hershey, PA, USA
| | - Joyce Tombran-Tink
- Penn State College of Medicine, Department of Orthopaedics and Rehabilitation, Hershey, PA, USA; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Christopher Niyibizi
- Penn State College of Medicine, Department of Orthopaedics and Rehabilitation, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, Penn State college of Medicine, Hershey, PA, USA.
| |
Collapse
|
27
|
Thomas L, Bettoni C, Knöpfel T, Hernando N, Biber J, Wagner CA. Acute Adaption to Oral or Intravenous Phosphate Requires Parathyroid Hormone. J Am Soc Nephrol 2016; 28:903-914. [PMID: 28246304 DOI: 10.1681/asn.2016010082] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022] Open
Abstract
Phosphate (Pi) homeostasis is regulated by renal, intestinal, and endocrine mechanisms through which Pi intake stimulates parathyroid hormone (PTH) and fibroblast growth factor-23 secretion, increasing phosphaturia. Mechanisms underlying the early adaptive phase and the role of the intestine, however, remain ill defined. We investigated mineral, endocrine, and renal responses during the first 4 hours after intravenous and intragastric Pi loading in rats. Intravenous Pi loading (0.5 mmol) caused a transient rise in plasma Pi levels and creatinine clearance and an increase in phosphaturia within 10 minutes. Plasma calcium levels fell and PTH levels increased within 10 minutes and remained low or high, respectively. Fibroblast growth factor-23, 1,25-(OH)2-vitamin D3, and insulin concentrations did not respond, but plasma dopamine levels increased by 4 hours. In comparison, gastric Pi loading elicited similar but delayed phosphaturia and endocrine responses but did not affect plasma mineral levels. Either intravenous or gastric loading led to decreased expression and activity of renal Pi transporters after 4 hours. In parathyroidectomized rats, however, only intravenous Pi loading caused phosphaturia, which was blunted and transient compared with that in intact rats. Intravenous but not gastric Pi loading in parathyroidectomized rats also led to higher creatinine clearance and lower plasma calcium levels but did not reduce the expression or activity of Pi transporters. This evidence suggests that an intravenous or intestinal Pi bolus causes rapid phosphaturia through mechanisms requiring PTH and downregulation of renal Pi transporters but does not support a role of the intestine in stimulating renal clearance of Pi.
Collapse
Affiliation(s)
- Linto Thomas
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland
| | - Thomas Knöpfel
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland
| | - Jürg Biber
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland
| |
Collapse
|
28
|
Bouleftour W, Granito RN, Vanden-Bossche A, Sabido O, Roche B, Thomas M, Linossier MT, Aubin JE, Lafage-Proust MH, Vico L, Malaval L. Bone Shaft Revascularization After Marrow Ablation Is Dramatically Accelerated in BSP-/- Mice, Along With Faster Hematopoietic Recolonization. J Cell Physiol 2016; 232:2528-2537. [PMID: 27704558 DOI: 10.1002/jcp.25630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022]
Abstract
The bone organ integrates the activity of bone tissue, bone marrow, and blood vessels and the factors ensuring this coordination remain ill defined. Bone sialoprotein (BSP) is with osteopontin (OPN) a member of the small integrin binding ligand N-linked glycoprotein (SIBLING) family, involved in bone formation, hematopoiesis and angiogenesis. In rodents, bone marrow ablation induces a rapid formation of medullary bone which peaks by ∼8 days (d8) and is blunted in BSP-/- mice. We investigated the coordinate hematopoietic and vascular recolonization of the bone shaft after marrow ablation of 2 month old BSP+/+ and BSP-/- mice. At d3, the ablated area in BSP-/- femurs showed higher vessel density (×4) and vascular volume (×7) than BSP+/+. Vessel numbers in the shaft of ablated BSP+/+ mice reached BSP-/- values only by d8, but with a vascular volume which was twice the value in BSP-/-, reflecting smaller vessel size in ablated mutants. At d6, a much higher number of Lin- (×3) as well as LSK (Lin- IL-7Rα- Sca-1hi c-Kithi , ×2) and hematopoietic stem cells (HSC: Flt3- LSK, ×2) were counted in BSP-/- marrow, indicating a faster recolonization. However, the proportion of LSK and HSC within the Lin- was lower in BSP-/- and more differentiated stages were more abundant, as also observed in unablated bone, suggesting that hematopoietic differentiation is favored in the absence of BSP. Interestingly, unablated BSP-/- femur marrow also contains more blood vessels than BSP+/+, and in both intact and ablated shafts expression of VEGF and OPN are higher, and DMP1 lower in the mutants. In conclusion, bone marrow ablation in BSP-/- mice is followed by a faster vascular and hematopoietic recolonization, along with lower medullary bone formation. Thus, lack of BSP affects the interplay between hematopoiesis, angiogenesis, and osteogenesis, maybe in part through higher expression of VEGF and the angiogenic SIBLING, OPN. J. Cell. Physiol. 232: 2528-2537, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Laboratoire de Biologie des Tissus Ostéoarticulaires, INSERM, U1059 Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, Saint-Étienne, France
| | - Renata Neves Granito
- Laboratoire de Biologie des Tissus Ostéoarticulaires, INSERM, U1059 Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, Saint-Étienne, France
| | - Arnaud Vanden-Bossche
- Laboratoire de Biologie des Tissus Ostéoarticulaires, INSERM, U1059 Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, Saint-Étienne, France
| | - Odile Sabido
- Laboratoire de Biologie des Tissus Ostéoarticulaires, INSERM, U1059 Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, Saint-Étienne, France.,Flow Cytometry Facility, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, Saint-Étienne, France
| | - Bernard Roche
- Laboratoire de Biologie des Tissus Ostéoarticulaires, INSERM, U1059 Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, Saint-Étienne, France
| | - Mireille Thomas
- Laboratoire de Biologie des Tissus Ostéoarticulaires, INSERM, U1059 Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, Saint-Étienne, France
| | - Marie Thérèse Linossier
- Laboratoire de Biologie des Tissus Ostéoarticulaires, INSERM, U1059 Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, Saint-Étienne, France
| | - Jane E Aubin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marie-Hélène Lafage-Proust
- Laboratoire de Biologie des Tissus Ostéoarticulaires, INSERM, U1059 Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, Saint-Étienne, France
| | - Laurence Vico
- Laboratoire de Biologie des Tissus Ostéoarticulaires, INSERM, U1059 Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, Saint-Étienne, France
| | - Luc Malaval
- Laboratoire de Biologie des Tissus Ostéoarticulaires, INSERM, U1059 Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, Saint-Étienne, France
| |
Collapse
|
29
|
Gullard A, Gluhak-Heinrich J, Papagerakis S, Sohn P, Unterbrink A, Chen S, MacDougall M. MEPE Localization in the Craniofacial Complex and Function in Tooth Dentin Formation. J Histochem Cytochem 2016; 64:224-36. [PMID: 26927967 DOI: 10.1369/0022155416635569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 01/05/2023] Open
Abstract
Matrix extracellular phosphoglycoprotein (MEPE) is an extracellular matrix protein found in dental and skeletal tissues. Although information regarding the role of MEPE in bone and disorders of phosphate metabolism is emerging, the role of MEPE in dental tissues remains unclear. We performed RNA in situ hybridization and immunohistochemistry analyses to delineate the expression pattern of MEPE during embryonic and postnatal development in craniofacial mineralizing tissues. Mepe RNA expression was seen within teeth from cap through root formation in association with odontoblasts and cellular cementoblasts. More intense expression was seen in the alveolar bone within the osteoblasts and osteocytes. MEPE immunohistochemistry showed biphasic dentin staining in incisors and more intense staining in alveolar bone matrix and in forming cartilage. Analysis of Mepe null mouse molars showed overall mineralized tooth volume and density of enamel and dentin comparable with that of wild-type samples. However, Mepe(-/-) molars exhibited increased thickness of predentin, dentin, and enamel over controls and decreased gene expression of Enam, Bsp, Dmp1, Dspp, and Opnby RT-PCR. In vitro Mepe overexpression in odontoblasts led to significant reductions in Dspp reporter activity. These data suggest MEPE may be instrumental in craniofacial and dental matrix maturation, potentially functioning in the maintenance of non-mineralized matrix.
Collapse
Affiliation(s)
- Angela Gullard
- Institute of Oral Health Research, Dental School, University of Alabama at Birmingham, Birmingham, Alabama (AG, PS, MM),Pathology Graduate Program, University of Alabama at Birmingham, Birmingham, Alabama (AG)
| | - Jelica Gluhak-Heinrich
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX (JGH)
| | - Silvana Papagerakis
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, Michigan (SP)
| | - Philip Sohn
- Institute of Oral Health Research, Dental School, University of Alabama at Birmingham, Birmingham, Alabama (AG, PS, MM)
| | - Aaron Unterbrink
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX (AU)
| | - Shuo Chen
- Department of Pediatric Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX (SC)
| | - Mary MacDougall
- Institute of Oral Health Research, Dental School, University of Alabama at Birmingham, Birmingham, Alabama (AG, PS, MM)
| |
Collapse
|
30
|
Chapurlat RD, Confavreux CB. Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology (Oxford) 2016; 55:1714-25. [DOI: 10.1093/rheumatology/kev410] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 12/14/2022] Open
|
31
|
Bouleftour W, Juignet L, Bouet G, Granito RN, Vanden-Bossche A, Laroche N, Aubin JE, Lafage-Proust MH, Vico L, Malaval L. The role of the SIBLING, Bone Sialoprotein in skeletal biology - Contribution of mouse experimental genetics. Matrix Biol 2016; 52-54:60-77. [PMID: 26763578 DOI: 10.1016/j.matbio.2015.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022]
Abstract
Bone Sialoprotein (BSP) is a member of the "Small Integrin-Binding Ligand N-linked Glycoproteins" (SIBLING) extracellular matrix protein family of mineralized tissues. BSP has been less studied than other SIBLING proteins such as Osteopontin (OPN), which is coexpressed with it in several skeletal cell types. Here we review the contribution of genetically engineered mice (BSP gene knockout and overexpression) to the understanding of the role of BSP in the bone organ. The studies made so far highlight the role of BSP in skeletal mineralization, as well as its importance for proper osteoblast and osteoclast differentiation and activity, most prominently in primary/repair bone. The absence of BSP also affects the local environment of the bone tissue, in particular hematopoiesis and vascularization. Interestingly, lack of BSP induces an overexpression of OPN, and the cognate protein could be responsible for some aspects of the BSP gene knockout skeletal phenotype, while replacing BSP for some of its functions. Such interplay between the partly overlapping functions of SIBLING proteins, as well as the network of cross-regulations in which they are involved should now be the focus of further work.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Laura Juignet
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Guenaelle Bouet
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, UK
| | | | - Arnaud Vanden-Bossche
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Norbert Laroche
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Jane E Aubin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marie-Hélène Lafage-Proust
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Laurence Vico
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France
| | - Luc Malaval
- Université de Lyon - Université Jean Monnet, INSERM U1059-LBTO/IFRESIS, Faculté de Médecine, 10 Chemin de la Marandière, St Priest en Jarez F42270, France.
| |
Collapse
|
32
|
Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int 2016; 89:135-46. [PMID: 26535997 PMCID: PMC4854810 DOI: 10.1038/ki.2015.290] [Citation(s) in RCA: 372] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022]
Abstract
Circulating levels of fibroblast growth factor 23 (FGF23) are elevated in patients with chronic kidney disease (CKD), but the mechanisms are poorly understood. Here we tested whether inflammation and iron deficiency regulate FGF23. In wild-type mice, acute inflammation induced by single injections of heat-killed Brucella abortus or interleukin-1β (IL-1β) decreased serum iron within 6 h, and was accompanied by significant increases in osseous Fgf23 mRNA expression and serum levels of C-terminal FGF23, but no changes in intact FGF23. Chronic inflammation induced by repeated bacteria or IL-1β injections decreased serum iron, increased osseous Fgf23 mRNA, and serum C-terminal FGF23, but modestly increased biologically active, intact FGF23 serum levels. Chronic iron deficiency mimicked chronic inflammation. Increased osseous FGF23 cleavage rather than a prolonged half-life of C-terminal FGF23 fragments accounted for the elevated C-terminal FGF23 but near-normal intact FGF23 levels in inflammation. IL-1β injection increased Fgf23 mRNA and C-terminal FGF23 levels similarly in wildtype and Col4a3(ko) mice with CKD but markedly increased intact FGF23 levels only in the CKD mice. Inflammation increased Fgf23 transcription by activating Hif1α signaling. Thus, inflammation and iron deficiency stimulate FGF23 production. Simultaneous upregulation of FGF23 cleavage in osteocytes maintains near-normal levels of biologically active, intact circulating FGF23, whereas downregulated or impaired FGF23 cleavage may contribute to elevated intact serum FGF23 in CKD.
Collapse
|
33
|
Ramchandani D, Weber GF. Interactions between osteopontin and vascular endothelial growth factor: Implications for skeletal disorders. Bone 2015; 81:7-15. [PMID: 26123594 DOI: 10.1016/j.bone.2015.05.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/09/2015] [Accepted: 05/08/2015] [Indexed: 11/28/2022]
Abstract
Osteopontin (OPN) and vascular endothelial growth factor (VEGF) are characterized by a convergence in function for maintaining the homeostasis of the skeletal and renal systems (the bone-renal-vascular axis regulates bone metabolism). The two cytokines contribute to bone remodeling, dental healing, kidney function, and the adjustment to microgravity. Often, they are co-expressed or one molecule induces the other, however, in some settings OPN-associated pathways and VEGF-associated pathways are distinct. In bone remodeling, OPN and VEGF are regulated under the influence of growth factors and hormones, hypoxia and inflammation, the micro-environment, and various physical forces. Their abundance can be affected by drug treatment. OPN and VEGF are variably associated with kidney disease. Their balanced levels are critical for restoring endothelial cell function and ameliorating the adverse effects of microgravity. Here, we review the relevant 83 papers of 257 articles published, and listed in PubMed under the key words OPN and VEGF.
Collapse
Affiliation(s)
| | - Georg F Weber
- James L. Winkle College of Pharmacy, University of Cincinnati, USA.
| |
Collapse
|
34
|
Zhang X, Wang P, Wang Y. Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss. LIFE SCIENCES IN SPACE RESEARCH 2015; 7:53-56. [PMID: 26553637 PMCID: PMC4869895 DOI: 10.1016/j.lssr.2015.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
Bone density loss in astronauts on long-term space missions is a chief medical concern. Microgravity in space is the major cause of bone density loss (osteopenia), and it is believed that high linear energy transfer (LET) radiation in space exacerbates microgravity-induced bone density loss; however, the mechanism remains unclear. It is known that acidic serine- and aspartate-rich motif (ASARM) as a small peptide released by matrix extracellular phosphoglycoprotein (MEPE) promotes osteopenia. We previously discovered that MEPE interacted with checkpoint kinase 1 (CHK1) to protect CHK1 from ionizing radiation promoted degradation. In this study, we addressed whether the CHK1-MEPE pathway activated by radiation contributes to the effects of microgravity on bone density loss. We examined the CHK1, MEPE and secreted MEPE/ASARM levels in irradiated (1 Gy of X-ray) and rotated cultured human osteoblast cells. The results showed that radiation activated CHK1, decreased the levels of CHK1 and MEPE in human osteoblast cells and increased the release of MEPE/ASARM. These results suggest that the radiation-activated CHK1/MEPE pathway exacerbates the effects of microgravity on bone density loss, which may provide a novel targeting factor/pathway for a future countermeasure design that could contribute to reducing osteopenia in astronauts.
Collapse
Affiliation(s)
- Xiangming Zhang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Ping Wang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Ya Wang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
35
|
Zelenchuk LV, Hedge AM, Rowe PSN. Age dependent regulation of bone-mass and renal function by the MEPE ASARM-motif. Bone 2015; 79:131-42. [PMID: 26051469 PMCID: PMC4501877 DOI: 10.1016/j.bone.2015.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/07/2015] [Accepted: 05/22/2015] [Indexed: 11/28/2022]
Abstract
CONTEXT Mice with null mutations in matrix extracellular phosphoglycoprotein (MEPE) have increased bone mass, increased trabecular density and abnormal cancellous bone (MN-mice). These defects worsen with age and MEPE overexpression induces opposite effects. Also, genome wide association studies show that MEPE plays a major role in bone mass. We hypothesized that the conserved C-terminal MEPE ASARM-motif is chiefly responsible for regulating bone mass and trabecular structure. DESIGN To test our theory we overexpressed C-terminal ASARM-peptide in MN-mice using the Col1α1 promoter (MNAt-mice). We then compared the bone and renal phenotypes of the MNAt-mouse with the MN-mouse and the X-linked hypophosphatemic rickets mouse (HYP). The HYP mouse overexpresses ASARM-peptides and is defective for the PHEX gene. RESULTS The MN-mouse developed increased bone mass, bone strength and trabecular abnormalities that worsened markedly with age. Defects in bone formation were chiefly responsible with suppressed sclerostin and increased active β-catenin. Increased uric acid levels also suggested that abnormalities in purine-metabolism and a reduced fractional excretion of uric acid signaled additional renal transport changes. The MN mouse developed a worsening hyperphosphatemia and reduced FGF23 with age. An increase in the fractional excretion of phosphate (FEP) despite the hyperphosphatemia confirms an imbalance in kidney-intestinal phosphate regulation. Also, the MN mice showed an increased creatinine clearance suggesting hyperfiltration. A reversal of the MN bone-renal phenotype changes occurred with the MNAt mice including the apparent hyperfiltration. The MNAt mice also developed localized hypomineralization, hypophosphatemia and increased FGF23. CONCLUSIONS The C-terminal ASARM-motif plays a major role in regulating bone-mass and cancellous structure as mice age. In healthy mice, the processing and release of free ASARM-peptide are chiefly responsible for preserving normal bone and renal function. Free ASARM-peptide also affects renal mineral phosphate handling by influencing FGF23 expression. These findings have implications for understanding age-dependent osteoporosis, unraveling drug-targets and developing treatments.
Collapse
Affiliation(s)
- Lesya V Zelenchuk
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Anne-Marie Hedge
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Peter S N Rowe
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA.
| |
Collapse
|
36
|
Fujikawa K, Yokohama-Tamaki T, Morita T, Baba O, Qin C, Shibata S. An in situ hybridization study of perlecan, DMP1, and MEPE in developing condylar cartilage of the fetal mouse mandible and limb bud cartilage. Eur J Histochem 2015; 59:2553. [PMID: 26428891 PMCID: PMC4598603 DOI: 10.4081/ejh.2015.2553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 11/23/2022] Open
Abstract
The main purpose of this in situ hybridization study was to investigate mRNA expression of three bone/cartilage matrix components (perlecan, DMP1, and MEPE) in developing primary (tibial) and secondary (condylar) cartilage. Perlecan mRNA expression was first detected in newly formed chondrocytes in tibial cartilage at E13.0, but this expression decreased in hypertrophic chondrocytes at E14.0. In contrast, at E15.0, perlecan mRNA was first detected in the newly formed chondrocytes of condylar cartilage; these chondrocytes had characteristics of hypertrophic chondrocytes, which confirmed the previous observation that progenitor cells of developing secondary cartilage rapidly differentiate into hypertrophic chondrocytes. DMP1 mRNA was detected in many chondrocytes within the lower hypertrophic cell zone in tibial cartilage at E14.0. In contrast, DMP1 mRNA expression was only transiently detected in a few chondrocytes of condylar cartilage at E15.0. Thus, DMP1 may be less important in the developing condylar cartilage than in the tibial cartilage. Another purpose of this study was to test the hypothesis that MEPE may be a useful marker molecule for cartilage. MEPE mRNA was not detected in any chondrocytes in either tibial or condylar cartilage; however, MEPE immunoreactivity was detected throughout the cartilage matrix. Western immunoblot analysis demonstrated that MEPE antibody recognized two bands, one of 67 kDa and another of 59 kDa, in cartilage-derived samples. Thus MEPE protein may gradually accumulate in the cartilage, even though mRNA expression levels were below the limits of detection of in situ hybridization. Ultimately, we could not designate MEPE as a marker molecule for cartilage, and would modify our original hypothesis.
Collapse
|
37
|
Rowe PSN, Zelenchuk LV, Laurence JS, Lee P, Brooks WM, McCarthy ET. Do ASARM peptides play a role in nephrogenic systemic fibrosis? Am J Physiol Renal Physiol 2015; 309:F764-9. [PMID: 26336161 DOI: 10.1152/ajprenal.00201.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/30/2015] [Indexed: 11/22/2022] Open
Abstract
Nephrogenic systemic fibrosis (NSF) is a devastating condition associated with gadolinium (Gd3+)-based contrast agents (GBCAs) in patients with kidney disease. The release of toxic Gd3+ from GBCAs likely plays a major role in NSF pathophysiology. The cause and etiology of Gd3+ release from GBCAs is unknown. Increased Acidic Serine Aspartate Rich MEPE-associated peptides (ASARM peptides) induce bone mineralization abnormalities and contribute to renal phosphate-handling defects in inherited hypophosphatemic rickets and tumor-induced osteomalacia. The proteolytic cleavage of related bone matrix proteins with ASARM motifs results in release of ASARM peptide into bone and circulation. ASARM peptides are acidic, reactive, phosphorylated inhibitors of mineralization that bind Ca2+ and hydroxyapatite. Since the ionic radius of Gd3+ is close to that of Ca2+, we hypothesized that ASARM peptides increase the risk of NSF by inducing release of Gd3+ from GBCAs. Here, we show 1) ASARM peptides bind and induce release of Gd3+ from GBCAs in vitro and in vivo; 2) A bioengineered peptide (SPR4) stabilizes the Gd3+-GBCA complex by specifically binding to ASARM peptide in vitro and in vivo; and 3) SPR4 peptide infusion prevents GBCA-induced NSF-like pathology in a murine model with increased ASARM peptide (Hyp mouse). We conclude ASARM peptides may play a role in NSF and SPR4 peptide is a candidate adjuvant for preventing or reducing risk of disease.
Collapse
Affiliation(s)
- Peter S N Rowe
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas;
| | - Lesya V Zelenchuk
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer S Laurence
- Pharmaceutical Chemistry, University of Kansas, Kansas City, Lawrence, Kansas
| | - Phil Lee
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - William M Brooks
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas; Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
| | - Ellen T McCarthy
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
38
|
A unified model for bone-renal mineral and energy metabolism. Curr Opin Pharmacol 2015; 22:64-71. [PMID: 25880364 DOI: 10.1016/j.coph.2015.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 01/09/2023]
Abstract
The beginning of the millennium saw the discovery of a new bone-matrix protein, Matrix Extracellular PhosphoglycoprotEin (MEPE) and an associated C-terminal motif called ASARM. This motif and other distinguishing features occur in a group of proteins called SIBLINGs. These proteins include dentin matrix protein 1 (DMP1), osteopontin, dentin-sialophosphoprotein (DSPP), statherin, bone sialoprotein (BSP) and MEPE. MEPE, DMP1 and ASARM-motifs regulate expression of a phosphate regulating cytokine FGF23. Further, a trimeric interaction between phosphate regulating endopeptidase homolog X-linked (PHEX), DMP1, and α5β3-integrin that occurs on the plasma-membrane of the osteocyte mediates FGF23 regulation (FAP pathway). ASARM-peptides competitively inhibit the trimeric complex and increase FGF23. A second pathway involves specialized structures, matrix vesicles pathway (MVP). This review will discuss the FAP and MVP pathways and present a unified model for mineral and energy metabolism.
Collapse
|
39
|
Abstract
Recent developments in endocrinology, made possible by the combination of mouse genetics, integrative physiology and clinical observations have resulted in rapid and unanticipated advances in the field of skeletal biology. Indeed, the skeleton, classically viewed as a structural scaffold necessary for mobility, and regulator of calcium-phosphorus homoeostasis and maintenance of the haematopoietic niche has now been identified as an important regulator of male fertility and whole-body glucose metabolism, in addition to the classical insulin target tissues. These seminal findings confirm bone to be a true endocrine organ. This review is intended to detail the key events commencing from the elucidation of osteocalcin (OC) in bone metabolism to identification of new and emerging candidates that may regulate energy metabolism independently of OC.
Collapse
Affiliation(s)
- K J Oldknow
- Developmental BiologyThe Roslin Institute, Edinburgh, UK
| | - V E MacRae
- Developmental BiologyThe Roslin Institute, Edinburgh, UK
| | - C Farquharson
- Developmental BiologyThe Roslin Institute, Edinburgh, UK
| |
Collapse
|
40
|
Zelenchuk LV, Hedge AM, Rowe PSN. SPR4-peptide alters bone metabolism of normal and HYP mice. Bone 2015; 72:23-33. [PMID: 25460577 PMCID: PMC4342984 DOI: 10.1016/j.bone.2014.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 11/13/2022]
Abstract
CONTEXT ASARM-peptides are substrates and ligands for PHEX, the gene responsible for X-linked hypophosphatemic rickets (HYP). PHEX binds to the DMP1-ASARM-motif to form a trimeric-complex with α5β3-integrin on the osteocyte surface and this suppresses FGF23 expression. ASARM-peptide disruption of this complex increases FGF23 expression. We used a 4.2kDa peptide (SPR4) that binds to ASARM-peptide and ASARM-motif to study DMP1-PHEX interactions and to assess SPR4 for treating inherited hypophosphatemic rickets. DESIGN Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle into wild-type mice (WT) and HYP-mice for 4 weeks. RESULTS Asymmetrically distributed mineralization defects occurred with WT-SPR4 femurs. Specifically, SPR4 induced negative effects on trabecular bone and increased bone volume and mineralization in cortical-bone. Markedly increased sclerostin and reduced active β-catenin occurred with HYP mice. SPR4-infusion suppressed sclerostin and increased active β-catenin in WT and HYP mice and improved HYP-mice trabecular mineralization defects but not cortical mineralization defects. CONCLUSIONS SPR4-peptide has bimodal activity and acts by: (1) preventing DMP1 binding to PHEX and (2) sequestering an inhibitor of DMP1-PHEX binding, ASARM-peptide. In PHEX defective HYP-mice the second pathway predominates. Although SPR4-peptide improved trabecular calcification defects, decreased sclerostin and increased active β-catenin it did not correct HYP-mice cortical mineralization defects on a normal phosphate diet. Thus, for inherited hypophosphatemic rickets patients on a normal phosphate diet, SPR4-peptide is not a useful therapeutic.
Collapse
Affiliation(s)
- Lesya V Zelenchuk
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Anne-Marie Hedge
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA
| | - Peter S N Rowe
- The Kidney Institute, Kansas University Medical Center, Kansas City, KS, USA.
| |
Collapse
|
41
|
Ramchandani D, Weber GF. Interactions between osteopontin and vascular endothelial growth factor: Implications for cancer. Biochim Biophys Acta Rev Cancer 2015; 1855:202-22. [PMID: 25732057 DOI: 10.1016/j.bbcan.2015.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/10/2015] [Accepted: 02/22/2015] [Indexed: 12/12/2022]
Abstract
For this comprehensive review, 257 publications with the keywords "osteopontin" or "OPN" and "vascular endothelial growth factor" or "VEGF" in PubMed were screened (time frame from year 1996 to year 2014). 37 articles were excluded because they were not focused on the interactions between these molecules, and papers relevant for transformation-related phenomena were selected. Osteopontin (OPN) and vascular endothelial growth factor (VEGF) are characterized by a convergence in function for regulating cell motility and angiogenesis, the response to hypoxia, and apoptosis. Often, they are co-expressed or one molecule induces the other, however, in some settings OPN-associated pathways and VEGF-associated pathways are distinct. Their relationships affect the pathogenesis in cancer, where they contribute to progression and angiogenesis and serve as markers for poor prognosis. The inhibition of OPN may reduce VEGF levels and suppress tumor progression. In vascular pathologies, these two cytokines mediate remodeling, but may also perpetuate inflammation and narrowing of the arteries. OPN and VEGF are elevated and contribute to vascularization in inflammatory diseases.
Collapse
Affiliation(s)
| | - Georg F Weber
- James L. Winkle College of Pharmacy, University of Cincinnati, USA.
| |
Collapse
|
42
|
Abstract
The increased awareness of the potential role played by mineral and bone disorder in the appearance of cardiovascular disease in renal patients has produced research efforts aimed at discovering possible pathogenic links. Accordingly, the diagnostic significance of the classic bone markers of mineral disorders and of the new markers in the setting of chronic kidney disease-mineral and bone disorders (CKD-MBD) needs to be re-evaluated along with increasing information. In this article we include classic markers of bone metabolism and some of the noncollagenous bone proteins that are gaining experimental and clinical significance in CKD-MBD. Among classic markers of secondary hyperparathyroidism and of renal osteodystrophy, we analyzed parathyroid hormone, alkaline phosphatase, tartrate-resistant acid phosphatase, and bone collagen-derived peptides. We underlined, for each, the relevance of parent proteins (peptides or isoforms) that affect assay methods and, eventually, the diagnostic or prognostic significance. Also, we considered their relationship with cardiovascular mortality. Among the numerous noncollagenous bone proteins, we examined matrix Gla protein (MGP), osteocalcin (OC), osteoprotegerin, and the small integrin-binding ligand N-linked glycoprotein family. For MGP and OC we report the relevant involvement with the process of calcification (MGP) and with glucose and energy metabolism (OC). Both of these proteins require vitamin K to become active and this is a specific problem in renal patients who frequently are deficient of this vitamin. Finally, recent acquisitions on the fascinating family of the small integrin-binding ligand N-linked glycoprotein proteins are recapitulated briefly to underline their potential clinical interest and their complex involvement with all aspects of CKD-MBD. Their diagnostic role in clinical practice awaits further studies.
Collapse
Affiliation(s)
- Sandro Mazzaferro
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy.
| | - Lida Tartaglione
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Silverio Rotondi
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Jordi Bover
- Department of Nephrology, Fundaciò Puigvert, IIB Sant Pau, REDinREN, Barcelona, Spain
| | - David Goldsmith
- King's Health Partners, Academic Health Science Centre, London, United Kingdom
| | - Marzia Pasquali
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
Zelenchuk LV, Hedge AM, Rowe PSN. PHEX mimetic (SPR4-peptide) corrects and improves HYP and wild type mice energy-metabolism. PLoS One 2014; 9:e97326. [PMID: 24839967 PMCID: PMC4026222 DOI: 10.1371/journal.pone.0097326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/17/2014] [Indexed: 12/19/2022] Open
Abstract
CONTEXT PHEX or DMP1 mutations cause hypophosphatemic-rickets and altered energy metabolism. PHEX binds to DMP1-ASARM-motif to form a complex with α5β3 integrin that suppresses FGF23 expression. ASARM-peptides increase FGF23 by disrupting the PHEX-DMP1-Integrin complex. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide/motif to study the DMP1-PHEX interaction and to assess SPR4 for the treatment of energy metabolism defects in HYP and potentially other bone-mineral disorders. DESIGN Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle (VE) into wild-type mice (WT) and HYP-mice (PHEX mutation) for 4 weeks. RESULTS SPR4 partially corrected HYP mice hypophosphatemia and increased serum 1.25(OH)2D3. Serum FGF23 remained high and PTH was unaffected. WT-SPR4 mice developed hypophosphatemia and hypercalcemia with increased PTH, FGF23 and 1.25(OH)2D3. SPR4 increased GAPDH HYP-bone expression 60× and corrected HYP-mice hyperglycemia and hypoinsulinemia. HYP-VE serum uric-acid (UA) levels were reduced and SPR4 infusion suppressed UA levels in WT-mice but not HYP-mice. SPR4 altered leptin, adiponectin, and sympathetic-tone and increased the fat mass/weight ratio for HYP and WT mice. Expression of perlipin-2 a gene involved in obesity was reduced in HYP-VE and WT-SPR4 mice but increased in HYP-SPR4 mice. Also, increased expression of two genes that inhibit insulin-signaling, ENPP1 and ESP, occurred with HYP-VE mice. In contrast, SPR4 reduced expression of both ENPP1 and ESP in WT mice and suppressed ENPP1 in HYP mice. Increased expression of FAM20C and sclerostin occurred with HYP-VE mice. SPR4 suppressed expression of FAM20C and sclerostin in HYP and WT mice. CONCLUSIONS ASARM peptides and motifs are physiological substrates for PHEX and modulate osteocyte PHEX-DMP1-α5β3-integrin interactions and thereby FGF23 expression. These interactions also provide a nexus that regulates bone and energy metabolism. SPR4 suppression of sclerostin and/or sequestration of ASARM-peptides improves energy metabolism and may have utility for treating familial rickets, osteoporosis, obesity and diabetes.
Collapse
Affiliation(s)
- Lesya V. Zelenchuk
- Internal Medicine, The Kidney Institute, Kansas University Medical Center (KUMC), Kansas City, Kansas, United States of America
| | - Anne-Marie Hedge
- Internal Medicine, The Kidney Institute, Kansas University Medical Center (KUMC), Kansas City, Kansas, United States of America
| | - Peter S. N. Rowe
- Internal Medicine, The Kidney Institute, Kansas University Medical Center (KUMC), Kansas City, Kansas, United States of America
| |
Collapse
|
44
|
Yuan Q, Jiang Y, Zhao X, Sato T, Densmore M, Schüler C, Erben RG, McKee MD, Lanske B. Increased osteopontin contributes to inhibition of bone mineralization in FGF23-deficient mice. J Bone Miner Res 2014; 29:693-704. [PMID: 24038141 PMCID: PMC3937302 DOI: 10.1002/jbmr.2079] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/08/2013] [Accepted: 08/20/2013] [Indexed: 02/05/2023]
Abstract
Excessive FGF23 has been identified as a pivotal phosphaturic factor leading to renal phosphate-wasting and the subsequent development of rickets and osteomalacia. In contrast, loss of FGF23 in mice (Fgf23(-/-) ) leads to high serum phosphate, calcium, and 1,25-vitamin D levels, resulting in early lethality attributable to severe ectopic soft-tissue calcifications and organ failure. Paradoxically, Fgf23(-/-) mice exhibit a severe defect in skeletal mineralization despite high levels of systemic mineral ions and abundant ectopic mineralization, an abnormality that remains largely unexplained. Through use of in situ hybridization, immunohistochemistry, and immunogold labeling coupled with electron microscopy of bone samples, we discovered that expression and accumulation of osteopontin (Opn/OPN) was markedly increased in Fgf23(-/-) mice. These results were confirmed by qPCR analyses of Fgf23(-/-) bones and ELISA measurements of serum OPN. To investigate whether elevated OPN levels were contributing to the bone mineralization defect in Fgf23(-/-) mice, we generated Fgf23(-/-) /Opn(-/-) double-knockout mice (DKO). Biochemical analyses showed that the hypercalcemia and hyperphosphatemia observed in Fgf23(-/-) mice remained unchanged in DKO mice; however, micro-computed tomography (µCT) and histomorphometric analyses showed a significant improvement in total mineralized bone volume. The severe osteoidosis was markedly reduced and a normal mineral apposition rate was present in DKO mice, indicating that increased OPN levels in Fgf23(-/-) mice are at least in part responsible for the osteomalacia. Moreover, the increased OPN levels were significantly decreased upon lowering serum phosphate by feeding a low-phosphate diet or after deletion of NaPi2a, indicating that phosphate levels contribute in part to the high OPN levels in Fgf23(-/-) mice. In summary, our results suggest that increased OPN is an important pathogenic factor mediating the mineralization defect and the alterations in bone metabolism observed in Fgf23(-/-) bones.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Reijnders CMA, van Essen HW, van Rens BTTM, van Beek JHGM, Ylstra B, Blankenstein MA, Lips P, Bravenboer N. Increased expression of matrix extracellular phosphoglycoprotein (MEPE) in cortical bone of the rat tibia after mechanical loading: identification by oligonucleotide microarray. PLoS One 2013; 8:e79672. [PMID: 24255709 PMCID: PMC3821845 DOI: 10.1371/journal.pone.0079672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Skeletal integrity in humans and animals is maintained by daily mechanical loading. It has been widely accepted that osteocytes function as mechanosensors. Many biochemical signaling molecules are involved in the response of osteocytes to mechanical stimulation. The aim of this study was to identify genes involved in the translation of mechanical stimuli into bone formation. The four-point bending model was used to induce a single period of mechanical loading on the right tibia, while the contra lateral left tibia served as control. Six hours after loading, the effects of mechanical loading on gene-expression were determined with microarray analysis. Protein expression of differentially regulated genes was evaluated with immunohistochemistry. Nine genes were found to exhibit a significant differential gene expression in LOAD compared to control. MEPE, Garnl1, V2R2B, and QFG-TN1 olfactory receptor were up-regulated, and creatine kinase (muscle form), fibrinogen-B beta-polypeptide, monoamine oxidase A, troponin-C and kinesin light chain-C were down-regulated. Validation with real-time RT-PCR analysis confirmed the up-regulation of MEPE and the down-regulation of creatine kinase (muscle form) and troponin-C in the loaded tibia. Immunohistochemistry showed that the increase of MEPE protein expression was already detectable six hours after mechanical loading. In conclusion, these genes probably play a role during translation of mechanical stimuli six hours after mechanical loading. The modulation of MEPE expression may indicate a connection between bone mineralization and bone formation after mechanical stimulation.
Collapse
Affiliation(s)
- Christianne M. A. Reijnders
- Department of Internal Medicine, Endocrine Section, VU University Medical Center, Amsterdam, The Netherlands
| | - Huib W. van Essen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Birgitte T. T. M. van Rens
- Department of Internal Medicine, Endocrine Section, VU University Medical Center, Amsterdam, The Netherlands
- Faculty of Human Movement Sciences, VU University, Amsterdam, The Netherlands
| | - Johannes H. G. M. van Beek
- Department of Clinical Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Research Institute MOVE, Amsterdam, The Netherlands
| | | | - Paul Lips
- Department of Internal Medicine, Endocrine Section, VU University Medical Center, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
46
|
McKee MD, Hoac B, Addison WN, Barros NM, Millán JL, Chaussain C. Extracellular matrix mineralization in periodontal tissues: Noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and X-linked hypophosphatemia. Periodontol 2000 2013; 63:102-22. [PMID: 23931057 PMCID: PMC3766584 DOI: 10.1111/prd.12029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 12/26/2022]
Abstract
As broadly demonstrated for the formation of a functional skeleton, proper mineralization of periodontal alveolar bone and teeth - where calcium phosphate crystals are deposited and grow within an extracellular matrix - is essential for dental function. Mineralization defects in tooth dentin and cementum of the periodontium invariably lead to a weak (soft or brittle) dentition in which teeth become loose and prone to infection and are lost prematurely. Mineralization of the extremities of periodontal ligament fibers (Sharpey's fibers) where they insert into tooth cementum and alveolar bone is also essential for the function of the tooth-suspensory apparatus in occlusion and mastication. Molecular determinants of mineralization in these tissues include mineral ion concentrations (phosphate and calcium), pyrophosphate, small integrin-binding ligand N-linked glycoproteins and matrix vesicles. Amongst the enzymes important in regulating these mineralization determinants, two are discussed at length here, with clinical examples given, namely tissue-nonspecific alkaline phosphatase and phosphate-regulating gene with homologies to endopeptidases on the X chromosome. Inactivating mutations in these enzymes in humans and in mouse models lead to the soft bones and teeth characteristic of hypophosphatasia and X-linked hypophosphatemia, respectively, where the levels of local and systemic circulating mineralization determinants are perturbed. In X-linked hypophosphatemia, in addition to renal phosphate wasting causing low circulating phosphate levels, phosphorylated mineralization-regulating small integrin-binding ligand N-linked glycoproteins, such as matrix extracellular phosphoglycoprotein and osteopontin, and the phosphorylated peptides proteolytically released from them, such as the acidic serine- and aspartate-rich-motif peptide, may accumulate locally to impair mineralization in this disease.
Collapse
Affiliation(s)
- Marc D. McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - William N. Addison
- Department of Oral Medicine, Infection and Immunity, Harvard University School of Dental Medicine, Boston, MA, USA
| | - Nilana M.T. Barros
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brasil, and Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Catherine Chaussain
- EA 2496, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité; AP-HP: Odontology Department Bretonneau, Paris and Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium, Kremlin Bicêtre, France
| |
Collapse
|
47
|
Abstract
Few investigators think of bone as an endocrine gland, even after the discovery that osteocytes produce circulating fibroblast growth factor 23 that targets the kidney and potentially other organs. In fact, until the last few years, osteocytes were perceived by many as passive, metabolically inactive cells. However, exciting recent discoveries have shown that osteocytes encased within mineralized bone matrix are actually multifunctional cells with many key regulatory roles in bone and mineral homeostasis. In addition to serving as endocrine cells and regulators of phosphate homeostasis, these cells control bone remodeling through regulation of both osteoclasts and osteoblasts, are mechanosensory cells that coordinate adaptive responses of the skeleton to mechanical loading, and also serve as a manager of the bone's reservoir of calcium. Osteocytes must survive for decades within the bone matrix, making them one of the longest lived cells in the body. Viability and survival are therefore extremely important to ensure optimal function of the osteocyte network. As we continue to search for new therapeutics, in addition to the osteoclast and the osteoblast, the osteocyte should be considered in new strategies to prevent and treat bone disease.
Collapse
Affiliation(s)
- Sarah L Dallas
- PhD, Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 East 25th Street, Kansas City, Missouri 64108.
| | | | | |
Collapse
|
48
|
Yang W, Guo D, Harris MA, Cui Y, Gluhak-Heinrich J, Wu J, Chen XD, Skinner C, Nyman JS, Edwards JR, Mundy GR, Lichtler A, Kream BE, Rowe DW, Kalajzic I, David V, Quarles DL, Villareal D, Scott G, Ray M, Liu S, Martin JF, Mishina Y, Harris SE. Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells. J Cell Sci 2013; 126:4085-98. [PMID: 23843612 DOI: 10.1242/jcs.118596] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKO(ob)) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKO(ob) mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKO(ob) osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (α-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in α-SMA(+) MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells.
Collapse
Affiliation(s)
- Wuchen Yang
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The phosphate transporter NaPi-IIa determines the rapid renal adaptation to dietary phosphate intake in mouse irrespective of persistently high FGF23 levels. Pflugers Arch 2013; 465:1557-72. [PMID: 23708836 DOI: 10.1007/s00424-013-1298-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 05/03/2013] [Accepted: 05/13/2013] [Indexed: 01/13/2023]
Abstract
Renal reabsorption of inorganic phosphate (Pi) is mediated by the phosphate transporters NaPi-IIa, NaPi-IIc, and Pit-2 in the proximal tubule brush border membrane (BBM). Dietary Pi intake regulates these transporters; however, the contribution of the specific isoforms to the rapid and slow phase is not fully clarified. Moreover, the regulation of PTH and FGF23, two major phosphaturic hormones, during the adaptive phase has not been correlated. C57/BL6 and NaPi-IIa(-/-) mice received 5 days either 1.2 % (HPD) or 0.1 % (LPD) Pi-containing diets. Thereafter, some mice were acutely switched to LPD or HPD. Plasma Pi concentrations were similar under chronic diets, but lower when mice were acutely switched to LPD. Urinary Pi excretion was similar in C57/BL6 and NaPi-IIa(-/-) mice under HPD. During chronic LPD, NaPi-IIa(-/-) mice lost phosphate in urine compensated by higher intestinal Pi absorption. During the acute HPD-to-LPD switch, NaPi-IIa(-/-) mice exhibited a delayed decrease in urinary Pi excretion. PTH was acutely regulated by low dietary Pi intake. FGF23 did not respond to low Pi intake within 8 h whereas the phospho-adaptator protein FRS2α necessary for FGF-receptor cell signaling was downregulated. BBM Pi transport activity and NaPi-IIa but not NaPi-IIc and Pit-2 abundance acutely adapted to diets in C57/BL6 mice. In NaPi-IIa(-/-), Pi transport activity was low and did not adapt. Thus, NaPi-IIa mediates the fast adaptation to Pi intake and is upregulated during the adaptation to low Pi despite persistently high FGF23 levels. The sensitivity to FGF23 may be regulated by adapting FRS2α abundance and phosphorylation.
Collapse
|
50
|
Dietary phosphate restriction suppresses phosphaturia but does not prevent FGF23 elevation in a mouse model of chronic kidney disease. Kidney Int 2013; 84:713-21. [PMID: 23698235 PMCID: PMC3758787 DOI: 10.1038/ki.2013.194] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 02/25/2013] [Accepted: 03/07/2013] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone that in end-stage renal disease is markedly increased in serum; however, the mechanisms responsible for this increase are unclear. Here, we tested whether phosphate retention in chronic kidney disease (CKD) is responsible for the elevation of FGF23 in serum using Col4α3 knockout mice, a murine model of Alport disease exhibiting CKD. We found a significant elevation in serum FGF23 in progressively azotemic 8 and 12 week-old CKD mice along with an increased fractional excretion of phosphorus. Both moderate and severe phosphate restriction reduced fractional excretion of phosphorus by 8 weeks, yet serum FGF23 levels remained strikingly elevated. By 12 weeks, FGF23 levels were further increased with moderate phosphate restriction, while severe phosphate restriction led to severe bone mineralization defects and decreased FGF23 production in bone. CKD mice on a control diet had low serum 1,25(OH)2D levels and 3-fold higher renal Cyp24α1 gene expression compared to wild-type mice. Severe phosphate restriction increased 1,25(OH)2D levels in CKD mice by 8 weeks and lowered renal Cyp24α1 gene expression despite persistently elevated serum FGF23. Renal klotho gene expression declined in CKD mice on a control diet, but improved with severe phosphate restriction. Thus, dietary phosphate restriction reduces the fractional excretion of phosphorus independent of serum FGF23 levels in mice with CKD.
Collapse
|