1
|
Flannery JC, Tirrell PS, Baumgartner NE, Daniel JM. Neuroestrogens, the hippocampus, and female cognitive aging. Horm Behav 2025; 170:105710. [PMID: 40036999 DOI: 10.1016/j.yhbeh.2025.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/30/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Research conducted over the last several decades implicates ovarian estrogens as important modulators of hippocampal function. More recently however, the importance of estrogens synthesized in the brain de novo for hippocampal function has been recognized. These brain-derived neuroestrogens act in the hippocampus to regulate dendritic spine dynamics and synaptic plasticity as well as hippocampus-dependent memory. The current report provides an overview of research conducted in model systems elucidating the actions of neuroestrogens in the hippocampus and the subsequent consequences for cognition. We highlight the relationship between ovarian estrogens and brain-derived estrogens and discuss implications for female cognitive aging of the putative decline in hippocampal levels of neuroestrogens following loss of ovarian function. Finally, we propose a model of menopause in which a short-term period of midlife estradiol treatment changes the trajectory of hippocampal neuroestrogen production long-term, resulting in sustained interactions of neuroestrogens, insulin-like growth factor-1, and estrogen receptor signaling in the hippocampus, interactions that support successful brain and cognitive aging.
Collapse
Affiliation(s)
- Jill C Flannery
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America
| | - Parker S Tirrell
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America
| | - Nina E Baumgartner
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, United States of America
| | - Jill M Daniel
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America; Department of Psychology, Tulane University, New Orleans, LA, 70118, United States of America.
| |
Collapse
|
2
|
Olajide OJ, Batallán Burrowes AA, da Silva IF, Bergdahl A, Chapman CA. Reduced 17β-estradiol following ovariectomy induces mitochondrial dysfunction and degradation of synaptic proteins in the entorhinal cortex. Neuroscience 2025; 565:479-486. [PMID: 39617168 DOI: 10.1016/j.neuroscience.2024.11.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Reductions in circulating estrogens can contribute to cognitive decline, in part by impairing mitochondrial function within the hippocampal region. The entorhinal cortex provides the hippocampus with its main cortical inputs. To assess the impact of estrogen deficiency on mitochondrial respiration and synaptic proteins in the entorhinal cortex, female wildtype rats received either sham surgery, bilateral ovariectomy, or ovariectomy with implantation of a subdermal capsule to maintain low levels of circulating 17β-estradiol (E2). Mitochondrial respiration in the entorhinal cortex was not significantly affected two weeks following ovariectomy, but there was a reduction in oxygen consumption four weeks after ovariectomy that was prevented by E2 supplementation. The expression of mitochondrial membrane integrity element voltage-dependent anion channel protein (VDAC1) was also reduced four weeks after ovariectomy, suggesting that respiration was reduced due to a decline in mitochondrial density. Ovariectomy also increased mitochondrial and cytoplasmic cytochrome c and upregulated superoxide dismutase 2 (SOD2) both two and four weeks after ovariectomy, reflecting mitochondrial electron leakage and oxidative redox imbalance. Further, the ovariectomy-induced changes in mitochondrial proteins were associated with reductions in postsynaptic density protein 95 (PSD95) and the presynaptic protein synaptophysin. There were no changes in mitochondrial or synaptic proteins in ovariectomized animals that received E2 supplementation. Our findings indicate that reductions in circulating 17β-estradiol induced by ovariectomy disrupt mitochondrial functions in the entorhinal cortex, and suggest that a resulting increase in oxidative stress contributes to the degradation in synaptic proteins that may affect cognitive functions mediated by the hippocampal region.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Department of Psychology, Concordia University, Montreal, Canada; Division of Neurobiology, Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Igor Ferraz da Silva
- Department of Psychology, Concordia University, Montreal, Canada; Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Andreas Bergdahl
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
| | - C Andrew Chapman
- Department of Psychology, Concordia University, Montreal, Canada.
| |
Collapse
|
3
|
Maroteaux MJ, Noccioli CT, Daniel JM, Schrader LA. Rapid and local neuroestrogen synthesis supports long-term potentiation of hippocampal Schaffer collaterals-cornu ammonis 1 synapse in ovariectomized mice. J Neuroendocrinol 2024; 36:e13450. [PMID: 39351868 DOI: 10.1111/jne.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024]
Abstract
In aging women, cognitive decline and increased risk of dementia have been associated with the cessation of ovarian hormones production at menopause. In the brain, presence of the key enzyme aromatase required for the synthesis of 17-β-estradiol (E2) allows for local production of E2 in absence of functional ovaries. Understanding how aromatase activity is regulated could help alleviate the cognitive symptoms. In female rodents, genetic or pharmacological reduction of aromatase activity over extended periods of time impair memory formation, decreases spine density, and hinders long-term potentiation (LTP) in the hippocampus. Conversely, increased excitatory neurotransmission resulting in rapid N-methyl-d-aspartic acid (NMDA) receptor activation rapidly promotes neuroestrogen synthesis. This rapid modulation of aromatase activity led us to address the hypothesis that acute neuroestrogens synthesis is necessary for LTP at the Schaffer collateral-cornu ammonis 1 (CA1) synapse in absence of circulating ovarian estrogens. To test this hypothesis, we did electrophysiological recordings of field excitatory postsynaptic potential (fEPSPs) in hippocampal slices obtained from ovariectomized mice. To assess the impact of neuroestrogens synthesis on LTP, we applied the specific aromatase inhibitor, letrozole, before the induction of LTP with a theta burst stimulation protocol. We found that blocking aromatase activity prevented LTP. Interestingly, exogenous E2 application, while blocking aromatase activity, was not sufficient to recover LTP in our model. Our results indicate the critical importance of rapid, activity-dependent local neuroestrogens synthesis, independent of circulating hormones for hippocampal synaptic plasticity in female rodents.
Collapse
Affiliation(s)
- Matthieu J Maroteaux
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Claire T Noccioli
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jill M Daniel
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Laura A Schrader
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
4
|
Brill J, Linden DJ. Chronic Aromatase Inhibition Attenuates Synaptic Plasticity in Ovariectomized Mice. eNeuro 2024; 11:ENEURO.0346-24.2024. [PMID: 39592220 PMCID: PMC11594935 DOI: 10.1523/eneuro.0346-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Brain-derived estrogen (17β-estradiol, E2) is a neuromodulator that plays important roles in neural plasticity and network excitability. Chronic inhibition of estrogen synthesis is used in adjuvant breast cancer therapy for estrogen receptor-positive tumors and may have been associated with cognitive and affective side effects. Here, we have developed a model of adjuvant therapy in female ovariectomized mice in which the E2 biosynthetic enzyme aromatase is inhibited by letrozole (1 mg/kg/day, i.p., for up to 3 weeks), Using two-photon longitudinal in vivo imaging in Thy1-GFP-M mice, we found that spine density in the apical dendrites of neocortical layer 5 pyramidal cells was unaffected by letrozole treatment but spine turnover was reduced. LTP in layer 4 to layer 2/3 synapses in the somatosensory cortex was also reduced in slices from letrozole-treated mice, showing deficits in structural and functional plasticity resulting from aromatase inhibition. Ovariectomized mice performed worse than intact control mice in the novel object recognition test but, surprisingly, letrozole treatment rescued this deficit.
Collapse
Affiliation(s)
- Julia Brill
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21210
| | - David J Linden
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21210
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21210
| |
Collapse
|
5
|
Rehel S, Duivon M, Doidy F, Champetier P, Clochon P, Grellard JM, Segura-Djezzar C, Geffrelot J, Emile G, Allouache D, Levy C, Viader F, Eustache F, Joly F, Giffard B, Perrier J. Sleep oscillations related to memory consolidation during aromatases inhibitors for breast cancer. Sleep Med 2024; 121:210-218. [PMID: 39004011 DOI: 10.1016/j.sleep.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Aromatase inhibitors (AIs) are associated with sleep difficulties in breast cancer (BC) patients. Sleep is known to favor memory consolidation through the occurrence of specific oscillations, i.e., slow waves (SW) and sleep spindles, allowing a dialogue between prefrontal cortex and the hippocampus. Interestingly, neuroimaging studies in BC patients have consistently shown structural and functional modifications in these two brain regions. With the aim to evaluate sleep oscillations related to memory consolidation during AIs, we collected polysomnography data in BC patients treated (AI+, n = 17) or not (AI-, n = 17) with AIs compared to healthy controls (HC, n = 21). None of the patients had received chemotherapy and radiotherapy was finished since at least 6 months, that limit the confounding effects of other treatments than AIs. Fast and slow spindles were detected during sleep stage 2 at centro-parietal and frontal electrodes respectively. SW were detected at frontal electrodes during stage 3. Here, we show lower frontal SW densities in AI + patients compared to HC. These results concord with previous reports about frontal cortical alterations in cancer following AIs administration. Moreover, AI + patients tended to have lower spindle density at C4 electrode. Regression analyses showed that, in both patient groups, spindle density at C4 electrode explained a large variance of memory performances. Slow spindle characteristics did not differ between groups and sleep oscillations characteristics of AI- patients did not differ significantly from those of both AI + patients and HC. Overall, our results add to the compelling evidence of the systemic effects of AIs previously reported in animals, with deleterious effects on cortical activity during sleep and associated memory consolidation in the current study. There is thus a need to further investigate sleep modifications during AIs administration. Longitudinal studies are needed to confirm these findings and investigation in other cancers on this topic should be conducted.
Collapse
Affiliation(s)
- S Rehel
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France.
| | - M Duivon
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - F Doidy
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - P Champetier
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - P Clochon
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - J M Grellard
- Clinical Research Department, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - C Segura-Djezzar
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - J Geffrelot
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - G Emile
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - D Allouache
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - C Levy
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - F Viader
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - F Eustache
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - F Joly
- Clinical Research Department, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France; Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France; INSERM, Normandie Univ, UNICAEN, U1086 ANTICIPE, Caen, France; Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, 14076, Caen, France
| | - B Giffard
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France; Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, 14076, Caen, France
| | - J Perrier
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France.
| |
Collapse
|
6
|
Machado GDB, Schnitzler AL, Fleischer AW, Beamish SB, Frick KM. G protein-coupled estrogen receptor (GPER) in the dorsal hippocampus regulates memory consolidation in gonadectomized male mice, likely via different signaling mechanisms than in female mice. Horm Behav 2024; 161:105516. [PMID: 38428223 PMCID: PMC11065565 DOI: 10.1016/j.yhbeh.2024.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Studies in ovariectomized (OVX) female rodents suggest that G protein-coupled estrogen receptor (GPER) is a key regulator of memory, yet little is known about its importance to memory in males or the cellular mechanisms underlying its mnemonic effects in either sex. In OVX mice, bilateral infusion of the GPER agonist G-1 into the dorsal hippocampus (DH) enhances object recognition and spatial memory consolidation in a manner dependent on rapid activation of c-Jun N-terminal kinase (JNK) signaling, cofilin phosphorylation, and actin polymerization in the DH. However, the effects of GPER on memory consolidation and DH cell signaling in males are unknown. Thus, the present study first assessed effects of DH infusion of G-1 or the GPER antagonist G-15 on object recognition and spatial memory consolidation in gonadectomized (GDX) male mice. As in OVX mice, immediate post-training bilateral DH infusion of G-1 enhanced, whereas G-15 impaired, memory consolidation in the object recognition and object placement tasks. However, G-1 did not increase levels of phosphorylated JNK (p46, p54) or cofilin in the DH 5, 15, or 30 min after infusion, nor did it affect phosphorylation of ERK (p42, p44), PI3K, or Akt. Levels of phospho-cAMP-responsive element binding protein (CREB) were elevated in the DH 30 min following G-1 infusion, indicating that GPER in males activates a yet unknown signaling mechanism that triggers CREB-mediated gene transcription. Our findings show for the first time that GPER in the DH regulates memory consolidation in males and suggests sex differences in underlying signaling mechanisms.
Collapse
Affiliation(s)
- Gustavo D B Machado
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Alexis L Schnitzler
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Aaron W Fleischer
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Sarah B Beamish
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America
| | - Karyn M Frick
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI 53211, United States of America.
| |
Collapse
|
7
|
Latorre-Leal M, Rodriguez-Rodriguez P, Franchini L, Nikolidakis O, Daniilidou M, Delac L, Varshney MK, Arroyo-García LE, Eroli F, Winblad B, Blennow K, Zetterberg H, Kivipelto M, Pacciarini M, Wang Y, Griffiths WJ, Björkhem I, Matton A, Nalvarte I, Merino-Serrais P, Cedazo-Minguez A, Maioli S. CYP46A1-mediated cholesterol turnover induces sex-specific changes in cognition and counteracts memory loss in ovariectomized mice. SCIENCE ADVANCES 2024; 10:eadj1354. [PMID: 38266095 PMCID: PMC10807813 DOI: 10.1126/sciadv.adj1354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The brain-specific enzyme CYP46A1 controls cholesterol turnover by converting cholesterol into 24S-hydroxycholesterol (24OH). Dysregulation of brain cholesterol turnover and reduced CYP46A1 levels are observed in Alzheimer's disease (AD). In this study, we report that CYP46A1 overexpression in aged female mice leads to enhanced estrogen signaling in the hippocampus and improved cognitive functions. In contrast, age-matched CYP46A1 overexpressing males show anxiety-like behavior, worsened memory, and elevated levels of 5α-dihydrotestosterone in the hippocampus. We report that, in neurons, 24OH contributes to these divergent effects by activating sex hormone signaling, including estrogen receptors. CYP46A1 overexpression in female mice protects from memory impairments induced by ovariectomy while having no effects in gonadectomized males. Last, we measured cerebrospinal fluid levels of 24OH in a clinical cohort of patients with AD and found that 24OH negatively correlates with neurodegeneration markers only in women. We suggest that CYP46A1 activation is a valuable pharmacological target for enhancing estrogen signaling in women at risk of developing neurodegenerative diseases.
Collapse
Affiliation(s)
- María Latorre-Leal
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Luca Franchini
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Orestis Nikolidakis
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Makrina Daniilidou
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ljerka Delac
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Mukesh K. Varshney
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Luis E. Arroyo-García
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Eroli
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Winblad
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Miia Kivipelto
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | | | - Yuqin Wang
- Swansea University Medical School, SA2 8PP Swansea, UK
| | | | - Ingemar Björkhem
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna Matton
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Paula Merino-Serrais
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, Madrid, Spain
| | - Angel Cedazo-Minguez
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Maioli
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Boyd HM, Frick KM, Kwapis JL. Connecting the Dots: Potential Interactions Between Sex Hormones and the Circadian System During Memory Consolidation. J Biol Rhythms 2023; 38:537-555. [PMID: 37464775 PMCID: PMC10615791 DOI: 10.1177/07487304231184761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Both the circadian clock and sex hormone signaling can strongly influence brain function, yet little is known about how these 2 powerful modulatory systems might interact during complex neural processes like memory consolidation. Individually, the molecular components and action of each of these systems have been fairly well-characterized, but there is a fundamental lack of information about how these systems cooperate. In the circadian system, clock genes function as timekeeping molecules that convey time-of-day information on a well-stereotyped cycle that is governed by the suprachiasmatic nucleus. Keeping time is particularly important to synchronize various physiological processes across the brain and body, including those that regulate memory consolidation. Similarly, sex hormones are powerful modulators of memory, with androgens, estrogens, and progestins, all influencing memory consolidation within memory-relevant brain regions like the hippocampus. Despite clear evidence that each system can influence memory individually, exactly how the circadian and hormonal systems might interact to impact memory consolidation remains unclear. Research investigating either sex hormone action or circadian gene function within memory-relevant brain regions has unveiled several notable places in which the two systems could interact to control memory. Here, we bring attention to known interactions between the circadian clock and sex hormone signaling. We then review sex hormone-mediated control of memory consolidation, highlighting potential nodes through which the circadian system might interact during memory formation. We suggest that the bidirectional relationship between these two systems is essential for proper control of memory formation based on an animal's hormonal and circadian state.
Collapse
Affiliation(s)
- Hannah M. Boyd
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| | - Karyn M. Frick
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin
| | - Janine L. Kwapis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
9
|
Garcia-Segura LM, Méndez P, Arevalo MA, Azcoitia I. Neuroestradiol and neuronal development: Not an exclusive male tale anymore. Front Neuroendocrinol 2023; 71:101102. [PMID: 37689249 DOI: 10.1016/j.yfrne.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The brain synthesizes a variety of neurosteroids, including neuroestradiol. Inhibition of neuroestradiol synthesis results in alterations in basic neurodevelopmental processes, such as neurogenesis, neuroblast migration, neuritogenesis and synaptogenesis. Although the neurodevelopmental actions of neuroestradiol are exerted in both sexes, some of them are sex-specific, such as the well characterized effects of neuroestradiol derived from the metabolism of testicular testosterone during critical periods of male brain development. In addition, recent findings have shown sex-specific actions of neuroestradiol on neuroblast migration, neuritic growth and synaptogenesis in females. Among other factors, the epigenetic regulation exerted by X linked genes, such as Kdm6a/Utx, may determine sex-specific actions of neuroestradiol in the female brain. This review evidences the impact of neuroestradiol on brain formation in both sexes and highlights the interaction of neural steriodogenesis, hormones and sex chromosomes in sex-specific brain development.
Collapse
Affiliation(s)
- Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Pablo Méndez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - M Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Iñigo Azcoitia
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain; Department of Cell Biology, Universidad Complutense de Madrid, C José Antonio Nováis 12, 28040 Madrid, Spain
| |
Collapse
|
10
|
Prengel TM, Brunne B, Habiballa M, Rune GM. Sexually differentiated microglia and CA1 hippocampal synaptic connectivity. J Neuroendocrinol 2023; 35:e13276. [PMID: 37170708 DOI: 10.1111/jne.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023]
Abstract
Microglia have been shown to sculpt postnatal circuitry from birth up to adulthood due to their role in both synapse formation, synaptic pruning, and the elimination of weak, redundant synapses. Microglia are differentiated in a sex-dependent manner. In this study, we tested whether sexual differentiation of microglia results in sex-dependent postnatal reorganization of CA1 synaptic connectivity in the hippocampus. The stereological counting of synapses in mice using electron microscopy showed a continuous rise in synapse density until the fourth week, followed by a plateau phase and loss of synapses from the eighth week onwards, with no difference between sexes. This course of alteration in synapse numbers did not differ between sexes. However, selectively, on postnatal day (P) 14 the density of synapses was significantly higher in the female than in the male hippocampus. Higher synapse density in females was paralleled by higher activity of microglia, as indicated by morphological changes, CD68 expression, and proximity of microglia to synaptic sites. In Thy1-GFP mice, consistent with increased synapse numbers, bouton density was also clearly increased in females at P14. At this time point, CD47 expression, the "don't eat me" signal of neurons, was similar in males and females. The decrease in bouton density thereafter in conjunction with increased synapse numbers argues for a role of microglia in the formation of multispine boutons (MSB). Our data in females at P14 support the regulatory role of microglia in synapse density. Sexual differentiation of microglia, however, does not substantially affect long-term synaptic reorganization in the hippocampus.
Collapse
Affiliation(s)
- Tim M Prengel
- Institute of Neuroanatomy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Bianka Brunne
- Institute of Neuroanatomy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Moataz Habiballa
- Institute of Neuroanatomy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Gabriele M Rune
- Institute of Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Gender and Neurosteroids: Implications for Brain Function, Neuroplasticity and Rehabilitation. Int J Mol Sci 2023; 24:ijms24054758. [PMID: 36902197 PMCID: PMC10003563 DOI: 10.3390/ijms24054758] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Neurosteroids are synthesized de novo in the nervous system; they mainly moderate neuronal excitability, and reach target cells via the extracellular pathway. The synthesis of neurosteroids occurs in peripheral tissues such as gonads tissues, liver, and skin; then, because of their high lipophilia, they cross the blood-brain barrier and are stored in the brain structure. Neurosteroidogenesis occurs in brain regions such as the cortex, hippocampus, and amygdala by enzymes necessary for the in situ synthesis of progesterone from cholesterol. Neurosteroids could be considered the main players in both sexual steroid-induced hippocampal synaptic plasticity and normal transmission in the hippocampus. Moreover, they show a double function of increasing spine density and enhancing long term potentiation, and have been related to the memory-enhancing effects of sexual steroids. Estrogen and progesterone affect neuronal plasticity differently in males and females, especially regarding changes in the structure and function of neurons in different regions of the brain. Estradiol administration in postmenopausal women allowed for improving cognitive performance, and the combination with aerobic motor exercise seems to enhance this effect. The paired association between rehabilitation and neurosteroids treatment could provide a boosting effect in order to promote neuroplasticity and therefore functional recovery in neurological patients. The aim of this review is to investigate the mechanisms of action of neurosteroids as well as their sex-dependent differences in brain function and their role in neuroplasticity and rehabilitation.
Collapse
|
12
|
Klotho Regulated by Estrogen Plays a Key Role in Sex Differences in Stress Resilience in Rats. Int J Mol Sci 2023; 24:ijms24021206. [PMID: 36674721 PMCID: PMC9862442 DOI: 10.3390/ijms24021206] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Klotho (KL) is a glycosyl hydrolase and aging-suppressor gene. Stress is a risk factor for depression and anxiety, which are highly comorbid with each other. The aim of this study is to determine whether KL is regulated by estrogen and plays an important role in sex differences in stress resilience. Our results showed that KL is regulated by estrogen in rat hippocampal neurons in vivo and in vitro and is essential for the estrogen-mediated increase in the number of presynaptic vesicular glutamate transporter 1 (Vglut1)-positive clusters on the dendrites of hippocampal neurons. The role of KL in sex differences in stress response was examined in rats using 3-week chronic unpredictable mild stress (CUMS). CUMS produced a deficit in spatial learning and memory, anhedonic-like behaviors, and anxiety-like behaviors in male but not female rats, which was accompanied by a reduction in KL protein levels in the hippocampus of male but not female rats. This demonstrated the resilience of female rats to CUMS. Interestingly, the knockdown of KL protein levels in the rat hippocampus of both sexes caused a decrease in stress resilience in both sexes, especially in female rats. These results suggest that the regulation of KL by estrogen plays an important role in estrogen-mediated synapse formation and that KL plays a critical role in the sex differences in cognitive deficit, anhedonic-like behaviors, and anxiety-like behaviors induced by chronic stress in rats, highlighting an important role of KL in sex differences in stress resilience.
Collapse
|
13
|
Edwards M, Lam S, Ranjan R, Pereira M, Babbitt C, Lacreuse A. Letrozole treatment alters hippocampal gene expression in common marmosets (Callithrix jacchus). Horm Behav 2023; 147:105281. [PMID: 36434852 PMCID: PMC9839488 DOI: 10.1016/j.yhbeh.2022.105281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
Aromatase inhibitors (AIs) are a class of drugs commonly given to patients with estrogen receptor (ER)-dependent breast cancers to reduce estrogenic stimulation. However, AIs like Letrozole are associated with negative side effects such as cognitive deficits, sleep disturbances and hot flashes. We have previously shown that these negative effects can be recapitulated in common marmosets (Callithrix jacchus) treated with Letrozole (20 μg daily) for 4 weeks and that marmosets treated with Letrozole show increased levels of estradiol in the hippocampus (Gervais et al., 2019). In order to better understand the mechanisms through which AIs affect cognitive function and increase steroid levels in the hippocampus, we used bulk, paired-end RNA-sequencing to examine differentially expressed genes among Letrozole-treated (LET; n = 8) and vehicle-treated (VEH; n = 8) male and female animals. Gene ontology results show significant reduction across hundreds of categories, some of the most significant being inflammatory response, stress response, MHC Class II protein complex binding, T-cell activation, carbohydrate binding and signaling receptor binding in LET animals. GSEA results indicate that LET females, but not LET males, show enrichment for hormonal gene sets. Based on the transcriptional changes observed, we conclude that AIs may differentially affect the sexes in part due to processes mediated by the CYP-450 superfamily. Ongoing studies will further investigate the longitudinal effects of AIs on behavior and whether AIs increase the risk of stress-induced neurodegeneration.
Collapse
Affiliation(s)
- Mélise Edwards
- University of Massachusetts Amherst, Department of Psychological & Brain Sciences, Amherst, MA 01003, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Sam Lam
- University of Massachusetts Amherst, Department of Psychological & Brain Sciences, Amherst, MA 01003, USA
| | - Ravi Ranjan
- University of Massachusetts Amherst, Department of Psychological & Brain Sciences, Amherst, MA 01003, USA; Genomics Resource Laboratory, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Mariana Pereira
- University of Massachusetts Amherst, Department of Psychological & Brain Sciences, Amherst, MA 01003, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Courtney Babbitt
- University of Massachusetts Amherst, Department of Psychological & Brain Sciences, Amherst, MA 01003, USA; University of Massachusetts Amherst, Department of Biology, Amherst, MA 01003, USA
| | - Agnès Lacreuse
- University of Massachusetts Amherst, Department of Psychological & Brain Sciences, Amherst, MA 01003, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Hokenson RE, Alam YH, Short AK, Jung S, Jang C, Baram TZ. Sex-dependent effects of multiple acute concurrent stresses on memory: a role for hippocampal estrogens. Front Behav Neurosci 2022; 16:984494. [PMID: 36160685 PMCID: PMC9492881 DOI: 10.3389/fnbeh.2022.984494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Memory disruption commonly follows chronic stress, whereas acute stressors are generally benign. However, acute traumas such as mass shootings or natural disasters—lasting minutes to hours and consisting of simultaneous physical, social, and emotional stresses—are increasingly recognized as significant risk factors for memory problems and PTSD. Our prior work has revealed that these complex stresses (concurrent multiple acute stresses: MAS) disrupt hippocampus-dependent memory in male rodents. In females, the impacts of MAS are estrous cycle-dependent: MAS impairs memory during early proestrus (high estrogens phase), whereas the memory of female mice stressed during estrus (low estrogens phase) is protected. Female memory impairments limited to high estrogens phases suggest that higher levels of estrogens are necessary for MAS to disrupt memory, supported by evidence that males have higher hippocampal estradiol than estrous females. To test the role of estrogens in stress-induced memory deficits, we blocked estrogen production using aromatase inhibitors. A week of blockade protected male and female mice from MAS-induced memory disturbances, suggesting that high levels of estrogens are required for stress-provoked memory impairments in both males and females. To directly quantify 17β-estradiol in murine hippocampus we employed both ELISA and mass spectrometry and identified significant confounders in both procedures. Taken together, the cross-cycle and aromatase studies in males and females support the role for high hippocampal estrogens in mediating the effect of complex acute stress on memory. Future studies focus on the receptors involved, the longevity of these effects, and their relation to PTSD-like behaviors in experimental models.
Collapse
Affiliation(s)
- Rachael E. Hokenson
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Rachael E. Hokenson
| | - Yasmine H. Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Annabel K. Short
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA =, United States
| | - Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z. Baram
- Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA =, United States
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
15
|
Hernández-Vivanco A, Cano-Adamuz N, Sánchez-Aguilera A, González-Alonso A, Rodríguez-Fernández A, Azcoitia Í, de la Prida LM, Méndez P. Sex-specific regulation of inhibition and network activity by local aromatase in the mouse hippocampus. Nat Commun 2022; 13:3913. [PMID: 35798748 PMCID: PMC9262915 DOI: 10.1038/s41467-022-31635-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Cognitive function relies on a balanced interplay between excitatory and inhibitory neurons (INs), but the impact of estradiol on IN function is not fully understood. Here, we characterize the regulation of hippocampal INs by aromatase, the enzyme responsible for estradiol synthesis, using a combination of molecular, genetic, functional and behavioral tools. The results show that CA1 parvalbumin-expressing INs (PV-INs) contribute to brain estradiol synthesis. Brain aromatase regulates synaptic inhibition through a mechanism that involves modification of perineuronal nets enwrapping PV-INs. In the female brain, aromatase modulates PV-INs activity, the dynamics of network oscillations and hippocampal-dependent memory. Aromatase regulation of PV-INs and inhibitory synapses is determined by the gonads and independent of sex chromosomes. These results suggest PV-INs are mediators of estrogenic regulation of behaviorally-relevant activity. Using a combination of molecular, genetic, functional and behavioural tools, this study describes the impact of brain synthesized estrogen in inhibitory neuronal function, network oscillations and hippocampal dependent memory.
Collapse
Affiliation(s)
| | | | - Alberto Sánchez-Aguilera
- Instituto Cajal (CSIC), Av Dr. Arce 37, 28002, Madrid, Spain.,Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid IdISSC, Avda Complutense s/n, 28040, Madrid, Spain
| | | | | | - Íñigo Azcoitia
- Department of Cell Biology, Universidad Complutense de Madrid, C José Antonio Nováis 12, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Pablo Méndez
- Instituto Cajal (CSIC), Av Dr. Arce 37, 28002, Madrid, Spain.
| |
Collapse
|
16
|
Eroğlu İ, Eroğlu BÇ. Potential role of tryptophan catabolism in cancer-related cognitive impairment. Nutrition 2022; 103-104:111765. [PMID: 35908496 DOI: 10.1016/j.nut.2022.111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/31/2022] [Indexed: 12/24/2022]
Abstract
Oncology may be the most rapidly expanding field in medicine, with several innovative diagnostic and therapeutic procedures appearing daily. Advances in oncology have improved the survival rate for patients with cancer and promoting quality of life is now one of the goals in the care of these patients. Patients face a variety of disease- and treatment-related side effects, including anorexia, nausea, vomiting, recurring infections, and sleep difficulties. Cancer-related cognitive impairment (CRCI) is an overlooked clinical condition found in oncologic practice, particularly in patients with breast cancer. Although several potential mechanisms for CRCI have been hypothesized, to our knowledge, the exact mechanism is still unknown. Alterations in the tryptophan kynurenine pathway have been shown to impair cognitive skills in several mental illnesses. However, its possible function in CRCI has yet to be investigated. The aim of this was to examine the possible interactions between tryptophan catabolism and CRCI.
Collapse
Affiliation(s)
- İmdat Eroğlu
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Ankara, Turkey.
| | - Burcu Çelik Eroğlu
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Ankara, Turkey
| |
Collapse
|
17
|
Enhancing Cytotoxicity of Tamoxifen Using Geranium Oil. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8091339. [PMID: 35341137 PMCID: PMC8942665 DOI: 10.1155/2022/8091339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/19/2022] [Indexed: 11/18/2022]
Abstract
Aromatherapy and plant-based essential oils are widely used as complementary and alternative therapies for various symptoms, including anxiety, mild mood disorders, and cancer-related pain. In a previous study, we developed an in vitro assay using immortalized hypothalamic neuronal cells (GT1-7 cells). In this study, we used this assay to investigate the effects of Geranium oil on the cytotoxicity of the oestrogen receptor (ER) antagonist: tamoxifen (TMX). The results showed that Geranium oil augmented TMX-induced cell death in a dose-dependent manner without directly reducing the viability of GT1-7 cells. Cotreatment with Geranium oil and ER agonist β-estradiol (E2) attenuated the inhibition of GT1-7 cell growth. Moreover, Geranium oil and geraniol, a major constituent of Geranium oil, showed weak agonist activity on ERα and ERβ with geraniol augmenting TMX-induced cell death similar to that observed in Geranium oil. Both compounds impair E2 activity. These data indicate that geraniol is an essential constituent of Geranium oil.
Collapse
|
18
|
Uhl M, Schmeisser MJ, Schumann S. The Sexual Dimorphic Synapse: From Spine Density to Molecular Composition. Front Mol Neurosci 2022; 15:818390. [PMID: 35250477 PMCID: PMC8894598 DOI: 10.3389/fnmol.2022.818390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
A synaptic sexual dimorphism is relevant in the context of multiple neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Many of these disorders show a different prevalence and progression in woman and man. A similar variance is also present in corresponding animal models. To understand and characterize this dimorphism in pathologies it is important to first understand sex differences in unaffected individuals. Therefore, sexual differences have been studied since 1788, first focusing on brain weight, size, and volume. But as these measures are not directly related to brain function, the investigation of sexual dimorphism also expanded to other organizational levels of the brain. This review is focused on sexual dimorphism at the synaptic level, as these specialized structures are the smallest functional units of the brain, determining cell communication, connectivity, and plasticity. Multiple differences between males and females can be found on the levels of spine density, synaptic morphology, and molecular synapse composition. These differences support the importance of sex-disaggregated data. The specificity of changes to a particular brain region or circuit might support the idea of a mosaic brain, in which each tile individually lies on a continuum from masculinization to feminization. Moreover, synapses can be seen as the smallest tiles of the mosaic determining the classification of larger areas.
Collapse
Affiliation(s)
- Mara Uhl
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael J. Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- *Correspondence: Michael J. Schmeisser,
| | - Sven Schumann
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Sven Schumann,
| |
Collapse
|
19
|
Maksimovic S, Useinovic N, Quillinan N, Covey DF, Todorovic SM, Jevtovic-Todorovic V. General Anesthesia and the Young Brain: The Importance of Novel Strategies with Alternate Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23031889. [PMID: 35163810 PMCID: PMC8836828 DOI: 10.3390/ijms23031889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past three decades, we have been grappling with rapidly accumulating evidence that general anesthetics (GAs) may not be as innocuous for the young brain as we previously believed. The growing realization comes from hundreds of animal studies in numerous species, from nematodes to higher mammals. These studies argue that early exposure to commonly used GAs causes widespread apoptotic neurodegeneration in brain regions critical to cognition and socio-emotional development, kills a substantial number of neurons in the young brain, and, importantly, results in lasting disturbances in neuronal synaptic communication within the remaining neuronal networks. Notably, these outcomes are often associated with long-term impairments in multiple cognitive-affective domains. Not only do preclinical studies clearly demonstrate GA-induced neurotoxicity when the exposures occur in early life, but there is a growing body of clinical literature reporting similar cognitive-affective abnormalities in young children who require GAs. The need to consider alternative GAs led us to focus on synthetic neuroactive steroid analogues that have emerged as effective hypnotics, and analgesics that are apparently devoid of neurotoxic effects and long-term cognitive impairments. This would suggest that certain steroid analogues with different cellular targets and mechanisms of action may be safe alternatives to currently used GAs. Herein we summarize our current knowledge of neuroactive steroids as promising novel GAs.
Collapse
Affiliation(s)
- Stefan Maksimovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Correspondence:
| | - Nemanja Useinovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
| | - Nidia Quillinan
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Neuronal Injury and Plasticity Program, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Slobodan M. Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
20
|
Manzella FM, Covey DF, Jevtovic-Todorovic V, Todorovic SM. Synthetic neuroactive steroids as new sedatives and anaesthetics: Back to the future. J Neuroendocrinol 2022; 34:e13086. [PMID: 35014105 PMCID: PMC8866223 DOI: 10.1111/jne.13086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023]
Abstract
Since the 1990s, there has been waning interest in researching general anaesthetics (anaesthetics). Although currently used anaesthetics are mostly safe and effective, they are not without fault. In paediatric populations and neonatal animal models, they are associated with learning impairments and neurotoxicity. In an effort to research safer anaesthetics, we have gone back to re-examine neuroactive steroids as anaesthetics. Neuroactive steroids are steroids that have direct, local effects in the central nervous system. Since the discovery of their anaesthetic effects, neuroactive steroids have been consistently used in human or veterinary clinics as preferred anaesthetic agents. Although briefly abandoned for clinical use due to unwanted vehicle side effects, there has since been renewed interest in their therapeutic value. Neuroactive steroids are safe sedative/hypnotic and anaesthetic agents across various animal species. Importantly, unlike traditional anaesthetics, they do not cause extensive neurotoxicity in the developing rodent brain. Similar to traditional anaesthetics, neuroactive steroids are modulators of synaptic and extrasynaptic γ-aminobutyric acid type A (GABAA ) receptors and their interactions at the GABAA receptor are stereo- and enantioselective. Recent work has also shown that these agents act on other ion channels, such as high- and low-voltage-activated calcium channels. Through these mechanisms of action, neuroactive steroids modulate neuronal excitability, which results in characteristic burst suppression of the electroencephalogram, and a surgical plane of anaesthesia. However, in addition to their interactions with voltage and ligand gated ions channels, neuroactive steroids interact with membrane bound metabotropic receptors and xenobiotic receptors to facilitate signaling of prosurvival, antiapoptotic pathways. These pathways play a role in their neuroprotective effects in neuronal injury and may also prevent extensive apoptosis in the developing brain during anaesthesia. The current review explores the history of neuroactive steroids as anaesthetics in humans and animal models, their diverse mechanisms of action, and their neuroprotective properties.
Collapse
Affiliation(s)
- Francesca M Manzella
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
21
|
Feng Y, Shi R, Hu J, Lou S. Effects of neural-derived estradiol on actin polymerization and synaptic plasticity-related proteins in prefrontal and hippocampal cells of mice. Steroids 2022; 177:108935. [PMID: 34715132 DOI: 10.1016/j.steroids.2021.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Neural-derived 17β-estradiol (E2) plays an important role in the synaptic plasticity of the hippocampus and prefrontal cortex, but the mechanism is not well defined. This study was designed to explore the effect and mechanism of neural-derived E2 on synaptic plasticity of the hippocampus and prefrontal cortex. Primary cultured hippocampal and prefrontal cells in mice were randomly divided into the DMSO (D), aromatase (Rate-limiting enzymes for E2 synthesizes) inhibitor letrozole (L), and ERs antagonist (MPG) treated groups. After intervention for 48 h, the cell was collected, and then, the expressions of AMPA-receptor subunit GluR1 (GluR1), synaptophysin (SYN), p-21-Activated kinase (PAK) phosphorylation, Rho kinase (ROCK), p-Cofilin, F-actin, and G-actin proteins were detected. Letrozole or ER antagonists inhibited the expression of GluR1, F-actin/G-actin, p-PAK and p-Cofilin proteins in prefrontal cells significantly. And the expressions of GluR1 and F-actin/G-actin proteins were declined in hippocampal cells markedly after adding letrozole or ERs antagonists. In conclusion, neural-derived E2 and ERs regulated the synaptic plasticity, possibly due to promoting actin polymerization in prefrontal and hippocampal cells. The regional specificity in the effect of neural-derived E2 and ERs on the actin polymerization-related pathway may provide a theoretical basis for the functional differences between the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Yu Feng
- Shanghai University of Sport, Kinesiology, Shanghai, China
| | - Rengfei Shi
- Shanghai University of Sport, Kinesiology, Shanghai, China
| | - Jingyun Hu
- Shanghai University of Sport, Kinesiology, Shanghai, China
| | - Shujie Lou
- Shanghai University of Sport, Kinesiology, Shanghai, China.
| |
Collapse
|
22
|
The form, function, and evolutionary significance of neural aromatization. Front Neuroendocrinol 2022; 64:100967. [PMID: 34808232 DOI: 10.1016/j.yfrne.2021.100967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022]
Abstract
Songbirds have emerged as exceptional research subjects for helping us appreciate and understand estrogen synthesis and function in brain. In the context of recognizing the vertebrate-wide importance of brain aromatase expression, in this review we highlight where we believe studies of songbirds have provided clarification and conceptual insight. We follow by focusing on more recent studies of aromatase and neuroestrogen function in the hippocampus and the pallial auditory processing region NCM of songbirds. With perspectives drawn from this body of work, we speculate that the evolution of enhanced neural estrogen signaling, including in the mediation of social behaviors, may have given songbirds the resilience to radiate into one of the most successful vertebrate groups on the planet.
Collapse
|
23
|
Brann DW, Lu Y, Wang J, Sareddy GR, Pratap UP, Zhang Q, Tekmal RR, Vadlamudi RK. Neuron-Derived Estrogen-A Key Neuromodulator in Synaptic Function and Memory. Int J Mol Sci 2021; 22:ijms222413242. [PMID: 34948039 PMCID: PMC8706511 DOI: 10.3390/ijms222413242] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 01/31/2023] Open
Abstract
In addition to being a steroid hormone, 17β-estradiol (E2) is also a neurosteroid produced in neurons in various regions of the brain of many species, including humans. Neuron-derived E2 (NDE2) is synthesized from androgen precursors via the action of the biosynthetic enzyme aromatase, which is located at synapses and in presynaptic terminals in neurons in both the male and female brain. In this review, we discuss evidence supporting a key role for NDE2 as a neuromodulator that regulates synaptic plasticity and memory. Evidence supporting an important neuromodulatory role of NDE2 in the brain has come from studies using aromatase inhibitors, aromatase overexpression in neurons, global aromatase knockout mice, and the recent development of conditional forebrain neuron-specific knockout mice. Collectively, these studies demonstrate a key role of NDE2 in the regulation of synapse and spine density, efficacy of excitatory synaptic transmission and long-term potentiation, and regulation of hippocampal-dependent recognition memory, spatial reference memory, and contextual fear memory. NDE2 is suggested to achieve these effects through estrogen receptor-mediated regulation of rapid kinase signaling and CREB-BDNF signaling pathways, which regulate actin remodeling, as well as transcription, translation, and transport of synaptic proteins critical for synaptic plasticity and function.
Collapse
Affiliation(s)
- Darrell W. Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Correspondence:
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA; (G.R.S.); (U.P.P.); (R.R.T.); (R.K.V.)
| | - Uday P. Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA; (G.R.S.); (U.P.P.); (R.R.T.); (R.K.V.)
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA;
| | - Rajeshwar R. Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA; (G.R.S.); (U.P.P.); (R.R.T.); (R.K.V.)
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA; (G.R.S.); (U.P.P.); (R.R.T.); (R.K.V.)
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| |
Collapse
|
24
|
Brann DW, Lu Y, Wang J, Zhang Q, Thakkar R, Sareddy GR, Pratap UP, Tekmal RR, Vadlamudi RK. Brain-derived estrogen and neural function. Neurosci Biobehav Rev 2021; 132:793-817. [PMID: 34823913 PMCID: PMC8816863 DOI: 10.1016/j.neubiorev.2021.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Although classically known as an endocrine signal produced by the ovary, 17β-estradiol (E2) is also a neurosteroid produced in neurons and astrocytes in the brain of many different species. In this review, we provide a comprehensive overview of the localization, regulation, sex differences, and physiological/pathological roles of brain-derived E2 (BDE2). Much of what we know regarding the functional roles of BDE2 has come from studies using specific inhibitors of the E2 synthesis enzyme, aromatase, as well as the recent development of conditional forebrain neuron-specific and astrocyte-specific aromatase knockout mouse models. The evidence from these studies support a critical role for neuron-derived E2 (NDE2) in the regulation of synaptic plasticity, memory, socio-sexual behavior, sexual differentiation, reproduction, injury-induced reactive gliosis, and neuroprotection. Furthermore, we review evidence that astrocyte-derived E2 (ADE2) is induced following brain injury/ischemia, and plays a key role in reactive gliosis, neuroprotection, and cognitive preservation. Finally, we conclude by discussing the key controversies and challenges in this area, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Roshni Thakkar
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA; Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
25
|
Brandt N, Vierk R, Fester L, Anstötz M, Zhou L, Heilmann LF, Kind S, Steffen P, Rune GM. Sex-specific Difference of Hippocampal Synaptic Plasticity in Response to Sex Neurosteroids. Cereb Cortex 2021; 30:2627-2641. [PMID: 31800024 DOI: 10.1093/cercor/bhz265] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Numerous studies provide increasing evidence, which supports the ideas that every cell in the brain of males may differ from those in females due to differences in sex chromosome complement as well as in response to hormonal effects. In this study, we address the question as to whether actions of neurosteroids, thus steroids, which are synthesized and function within the brain, contribute to sex-specific hippocampal synaptic plasticity. We have previously shown that predominantly in the female hippocampus, does inhibition of the conversion of testosterone to estradiol affect synaptic transmission. In this study, we show that testosterone and its metabolite dihydrotestosterone are essential for hippocampal synaptic transmission specifically in males. This also holds true for the density of mushroom spines and of spine synapses. We obtained similar sex-dependent results using primary hippocampal cultures of male and female animals. Since these cultures originated from perinatal animals, our findings argue for sex-dependent differentiation of hippocampal neurons regarding their responsiveness to sex neurosteroids up to birth, which persist during adulthood. Hence, our in vitro findings may point to a developmental effect either directly induced by sex chromosomes or indirectly by fetal testosterone secretion during the perinatal critical period, when developmental sexual priming takes place.
Collapse
Affiliation(s)
- Nicola Brandt
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ricardo Vierk
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lars Fester
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Max Anstötz
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lepu Zhou
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lukas F Heilmann
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Simon Kind
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Paul Steffen
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
26
|
Ghosh MK, Chen KHE, Dill-Garlow R, Ma LJ, Yonezawa T, Itoh Y, Rivera L, Radecki KC, Wu QP, Arnold AP, Muller HK, Walker AM. Sex Differences in the Immune System Become Evident in the Perinatal Period in the Four Core Genotypes Mouse. Front Endocrinol (Lausanne) 2021; 12:582614. [PMID: 34122327 PMCID: PMC8191418 DOI: 10.3389/fendo.2021.582614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
We have used the four core genotypes (FCG) mouse model, which allows a distinction between effects of gonadal secretions and chromosomal complement, to determine when sex differences in the immune system first appear and what influences their development. Using splenic T cell number as a measure that could be applied to neonates with as yet immature immune responses, we found no differences among the four genotypes at postnatal day 1, but by day 7, clear sex differences were observed. These sex differences were unexpectedly independent of chromosomal complement and similar in degree to gonadectomized FCG adults: both neonatal and gonadectomized adult females (XX and XY) showed 2-fold the number of CD4+ and 7-fold the number of CD8+ T cells versus their male (XX and XY) counterparts. Appearance of this long-lived sex difference between days 1 and 7 suggested a role for the male-specific perinatal surge of testicular testosterone. Interference with the testosterone surge significantly de-masculinized the male CD4+, but not CD8+ splenic profile. Treatment of neonates demonstrated elevated testosterone limited mature cell egress from the thymus, whereas estradiol reduced splenic T cell seeding in females. Neonatal male splenic epithelium/stroma expressed aromatase mRNA, suggesting capacity for splenic conversion of perinatal testosterone into estradiol in males, which, similar to administration of estradiol in females, would result in reduced splenic T cell seeding. These sex steroid effects affected both CD4+ and CD8+ cells and yet interference with the testosterone surge only significantly de-masculinized the splenic content of CD4+ cells. For CD8+ cells, male cells in the thymus were also found to express one third the density of sphingosine-1-phosphate thymic egress receptors per cell compared to female, a male characteristic most likely an indirect result of Sry expression. Interestingly, the data also support a previously unrecognized role for non-gonadal estradiol in the promotion of intra-thymic cell proliferation in neonates of both sexes. Microarray analysis suggested the thymic epithelium/stroma as the source of this hormone. We conclude that some immune sex differences appear long before puberty and more than one mechanism contributes to differential numbers and distribution of T cells.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Kuan-hui E. Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Riva Dill-Garlow
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Lisa J. Ma
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Tomohiro Yonezawa
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Yuichiro Itoh
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lorena Rivera
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Kelly C. Radecki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Quiming P. Wu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Arthur P. Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - H. Konrad Muller
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Ameae M. Walker
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
27
|
Sex neurosteroids: Hormones made by the brain for the brain. Neurosci Lett 2021; 753:135849. [PMID: 33775739 DOI: 10.1016/j.neulet.2021.135849] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022]
Abstract
In general, hippocampal neurons are capable of synthesizing sex steroids de novo from cholesterol, since the brain is equipped with all the enzymes required for the synthesis of estradiol and testosterone, the end products of sex steroidogenesis. Regarding estradiol, its synthesis in hippocampal neurons is homeostatically controlled by Ca2+ transients and is regulated by GnRH. Locally synthesized estradiol and testosterone maintain synaptic transmission and synaptic connectivity. Remarkably, the neurosteroid estradiol is effective in females, but not in males, and vice versa dihydrotestosterone (DHT) is effective in males, but not in females. Experimentally induced inhibition of estradiol synthesis in females and DHT synthesis in males resp. results in synapse loss, impaired LTP, and downregulation of synaptic proteins. GnRH-induced increase in estradiol synthesis appears to provide a link between the hypothalamus and the hippocampus, which may underlie estrous cyclicity of spine density in the female hippocampus. Hippocampal neurons are sex-dependently differentiated with respect to the responsiveness of hippocampal neurons to sex neurosteroids.
Collapse
|
28
|
Fels JA, Casalena GA, Manfredi G. Sex and oestrogen receptor β have modest effects on gene expression in the mouse brain posterior cortex. Endocrinol Diabetes Metab 2021; 4:e00191. [PMID: 33532622 PMCID: PMC7831211 DOI: 10.1002/edm2.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Sex differences in brain cortical function affect cognition, behaviour and susceptibility to neural diseases, but the molecular basis of sexual dimorphism in cortical function is still largely unknown. Oestrogen and oestrogen receptors (ERs), specifically ERβ, the most abundant ER in the cortex, may play a role in determining sex differences in gene expression, which could underlie functional sex differences. However, further investigation is needed to address brain region specificity of the effects of sex and ERβ on gene expression. The goal of this study was to investigate sex differences in gene expression in the mouse posterior cortex, where sex differences in transcription have never been examined, and to determine how genetic ablation of ERβ affects transcription. Methods In this study, we performed unbiased transcriptomics on RNA from the posterior cortex of adult wild-type and ERβ knockout mice (n = 4/sex/genotype). We used unbiased clustering to analyse whole-transcriptome changes between the groups. We also performed differential expression analysis on the data using DESeq2 to identify specific changes in gene expression. Results We found only 27 significantly differentially expressed genes (DEGs) in wild-type (WT) males vs females, of which 17 were autosomal genes. Interestingly, in ERβKO males vs females all the autosomal DEGs were lost. Gene Ontology analysis of the subset of DEGs with sex differences only in the WT cortex revealed a significant enrichment of genes annotated with the function 'cation channel activity'. Moreover, within each sex we found only a few DEGs in ERβKO vs WT mice (8 and 5 in males and females, respectively). Conclusions Overall, our results suggest that in the adult mouse posterior cortex there are surprisingly few sex differences in gene expression, and those that exist are mainly related to cation channel activity. Additionally, they indicate that brain region-specific functional effects of ERβ may be largely post-transcriptional.
Collapse
Affiliation(s)
- Jasmine A. Fels
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | | | - Giovanni Manfredi
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
29
|
Taxier LR, Gross KS, Frick KM. Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci 2020; 21:535-550. [PMID: 32879508 PMCID: PMC8302223 DOI: 10.1038/s41583-020-0362-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
Abstract
Although hormones such as glucocorticoids have been broadly accepted in recent decades as general neuromodulators of memory processes, sex steroid hormones such as the potent oestrogen 17β-oestradiol have been less well recognized by the scientific community in this capacity. The predominance of females in studies of oestradiol and memory and the general (but erroneous) perception that oestrogens are 'female' hormones have probably prevented oestradiol from being more widely considered as a key memory modulator in both sexes. Indeed, although considerable evidence supports a crucial role for oestradiol in regulating learning and memory in females, a growing body of literature indicates a similar role in males. This Review discusses the mechanisms of oestradiol signalling and provides an overview of the effects of oestradiol on spatial, object recognition, social and fear memories. Although the primary focus is on data collected in females, effects of oestradiol on memory in males will be discussed, as will sex differences in the molecular mechanisms that regulate oestrogenic modulation of memory, which may have important implications for the development of future cognitive therapeutics.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
30
|
Marbouti L, Zahmatkesh M, Riahi E, Sadr SS. Inhibition of brain 17β-estradiol synthesis by letrozole induces cognitive decline in male and female rats. Neurobiol Learn Mem 2020; 175:107300. [PMID: 32882397 DOI: 10.1016/j.nlm.2020.107300] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Hippocampal aromatase is responsible for local synthesis of 17β-estradiol (E2) that has much higher concentrations than serum levels in males and females. Letrozole, an aromatase inhibitor, passes through the brain barriers, distributes to the brain, and affects local E2 synthesis. Here, the effects of intra-cerebroventricular (ICV) letrozole administration in the presence and absence of gonads were examined on the cognitive abilities of male and female rats. METHOD Animals received intra-ICV injection of letrozole or vehicle for 14 consecutive days. Spatial working memory, novel object recognition memory, and anxiety-related behavior, were evaluated using Y-maze, object recognition test, and elevated plus maze, respectively. The E2 levels in the serum and hippocampal tissue were measured by the ELISA technique. RT-PCR was performed to assess the hippocampal estrogen receptors (ER) expression. Moreover, letrozole effect on neuronal activity of CA1 pyramidal neurons was studied by in vivo single-unit recording. RESULTS Letrozole (0.2, 0.4, and 0.8 µg) significantly decreased the hippocampal E2 levels compared to the vehicle group. Letrozole caused cognitive impairments in a dose-dependent manner in male and female rats in the presence or absence of gonads. Dose-response analysis revealed that the minimum effective dose of letrozole on the behavioral measures was 0.4 μg. Letrozole also caused an up-regulation of ERα and ERβ and a down-regulation of GPR30 gene expression. The firing rate of pyramidal neurons was reduced by letrozole in gonadal-intact animals. CONCLUSION The detrimental effects of letrozole treatment on cognitive abilities in the presence and absence of gonads indicate that local E2 synthesis in the hippocampus is a crucial factor in normal cognitive performance. The suppressive effect of letrozole on hippocampal neuronal firing might alter synaptic plasticity that is critical for memory formation. These data potentially suggest that memory deficits following letrozole administration should be monitored.
Collapse
Affiliation(s)
- Ladan Marbouti
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Neuroscience and Addiction Studies Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zahmatkesh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Neuroscience and Addiction Studies Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cognitive and Behavioral Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Esmail Riahi
- Physiology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Physiology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Gholaminejad A, Gholamipour-Badie H, Nasehi M, Naghdi N. Prelimbic of Medial Prefrontal Cortex GABA Modulation through Testosterone on Spatial Learning and Memory. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1429-1444. [PMID: 32641952 PMCID: PMC6934985 DOI: 10.22037/ijpr.2019.1100745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prefrontal cortex (PFC) is involved in multiple functions including attentional processes, spatial orientation, short-term memory, and long-term memory. Our previous study indicated that microinjection of testosterone in CA1 impaired spatial learning and memory. Some evidence suggests that impairment effect of testosterone is mediated by GABAergic system. In the present study, we investigated the interaction of testosterone (androgenic receptor agonist) and bicuculline (GABAA receptor antagonist) on spatial learning and memory performance in the prelimbic (PL) of male Wistar rats. Cannulae were bilaterally implanted into the PL region of PFC and drugs were daily microinjected for two minutes in each side. There are 4 experiments. In the first experiment, three sham groups were operated (solvent of testosterone, bicuculline, testosterone plus bicuculline). In the second experiment, different doses of testosterone (40, 80 μg /0.5 μL DMSO/each side) were injected into the PL before each session. In the third experiment, intra PL injections of bicuculline (2, 4 μg/0.5 μL DMSO/each side) were given before every session. In the last experiment, testosterone (80μg/0.5 μL DMSO/each side) along with bicuculline (2 μg/0.5 μL DMSO/each side) was injected into the PL. The results showed there is no difference between control group and sham operated group. Testosterone 80 μg and bicuculline 2 μg, each given separately, and also in combination increased escape latency to find the platform compared to the sham operated and cause to impaired spatial learning and memory. It is shown that intra PL microinjection of bicuculline after testosterone treatment could not rescue the spatial learning and memory impaired induced by testosterone.
Collapse
Affiliation(s)
- Azadeh Gholaminejad
- Department of Physiology and Pharmacology, Pasteur Institute of Iran (IPI), Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Mohammad Nasehi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and neuroscience research center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran (IPI), Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
32
|
Brandt N, Löffler T, Fester L, Rune GM. Sex-specific features of spine densities in the hippocampus. Sci Rep 2020; 10:11405. [PMID: 32647191 PMCID: PMC7347548 DOI: 10.1038/s41598-020-68371-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/18/2020] [Indexed: 01/27/2023] Open
Abstract
Previously, we found that in dissociated hippocampal cultures the proportion of large spines (head diameter ≥ 0.6 μm) was larger in cultures from female than from male animals. In order to rule out that this result is an in vitro phenomenon, we analyzed the density of large spines in fixed hippocampal vibratome sections of Thy1-GFP mice, in which GFP is expressed only in subpopulations of neurons. We compared spine numbers of the four estrus cycle stages in females with those of male mice. Remarkably, total spine numbers did not vary during the estrus cycle, while estrus cyclicity was evident regarding the number of large spines and was highest during diestrus, when estradiol levels start to rise. The average total spine number in females was identical with the spine number in male animals. The density of large spines, however, was significantly lower in male than in female animals in each stage of the estrus cycle. Interestingly, the number of spine apparatuses, a typical feature of large spines, did not differ between the sexes. Accordingly, NMDA-R1 and NMDA-R2A/B expression were lower in the hippocampus and in postsynaptic density fractions of adult male animals than in those of female animals. This difference could already be observed at birth for NMDA-R1, but not for NMDA-R2A/B expression. In dissociated embryonic hippocampal cultures, no difference was seen after 21 days in culture, while the difference was evident in postnatal cultures. Our data indicate that hippocampal neurons are differentiated in a sex-dependent manner, this differentiation being likely to develop during the perinatal period.
Collapse
Affiliation(s)
- Nicola Brandt
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,Department of Human Medicine, Division of Anatomy, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Tobias Löffler
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Lars Fester
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Krankenhausstr. 9, 91054, Erlangen, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
33
|
Brandt N, Fester L, Rune GM. Neural sex steroids and hippocampal synaptic plasticity. VITAMINS AND HORMONES 2020; 114:125-143. [PMID: 32723541 DOI: 10.1016/bs.vh.2020.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It was a widely held belief that sex steroids, namely testosterone and 17β-estradiol (E2) of gonadal origin, control synaptic plasticity in the hippocampus. A new paradigm emerged when it was shown that these sex steroids are synthesized in the hippocampus. The inhibition of sex steroids in the hippocampus impairs synaptic plasticity sex-dependently in this region of the brain. In gonadectomized animals and in hippocampal cultures, inhibition of estradiol synthesis in female animals and in cultures from female animals, and inhibition of dihydrotestosterone synthesis in male animals and in cultures of male animals, cause synapse loss and impair LTP in the hippocampus, but not vice versa. Since the hippocampal cultures originated from perinatal animals, and due to the similarity of in vivo and in vitro findings, it appears that hippocampal neurons are differentiated in a sex-specific manner during the perinatal period when sexual imprinting takes place.
Collapse
Affiliation(s)
- N Brandt
- Center of Experimental Medicine, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L Fester
- Center of Experimental Medicine, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - G M Rune
- Center of Experimental Medicine, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
34
|
Dieni CV, Contemori S, Biscarini A, Panichi R. De Novo Synthesized Estradiol: A Role in Modulating the Cerebellar Function. Int J Mol Sci 2020; 21:ijms21093316. [PMID: 32392845 PMCID: PMC7247543 DOI: 10.3390/ijms21093316] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022] Open
Abstract
The estrogen estradiol is a potent neuroactive steroid that may regulate brain structure and function. Although the effects of estradiol have been historically associated with gonadal secretion, the discovery that this steroid may be synthesized within the brain has expanded this traditional concept. Indeed, it is accepted that de novo synthesized estradiol in the nervous system (nE2) may modulate several aspects of neuronal physiology, including synaptic transmission and plasticity, thereby influencing a variety of behaviors. These modulations may be on a time scale of minutes via non-classical and often membrane-initiated mechanisms or hours and days by classical actions on gene transcription. Besides the high level, recent investigations in the cerebellum indicate that even a low aromatase expression can be related to the fast nE2 effect on brain functioning. These pieces of evidence point to the importance of an on-demand and localized nE2 synthesis to rapidly contribute to regulating the synaptic transmission. This review is geared at exploring a new scenario for the impact of estradiol on brain processes as it emerges from the nE2 action on cerebellar neurotransmission and cerebellum-dependent learning.
Collapse
Affiliation(s)
- Cristina V. Dieni
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (C.V.D.); (R.P.); Tel.: +1-(205)-996-8660 (C.V.D.); +39-075-5858205 (R.P.)
| | - Samuele Contemori
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane 4072, Australia;
| | - Andrea Biscarini
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06129 Perugia, Italy;
| | - Roberto Panichi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06129 Perugia, Italy;
- Correspondence: (C.V.D.); (R.P.); Tel.: +1-(205)-996-8660 (C.V.D.); +39-075-5858205 (R.P.)
| |
Collapse
|
35
|
Abstract
This review highlights fifty years of progress in research on estradiol's role in regulating behavior(s). It was initially thought that estradiol was only involved in regulating estrus/menstrual cycles and concomitant sexual behavior, but it is now clear that estradiol also influences the higher order neural function of cognition. We provide a brief overview of estradiol's regulation of memory and some mechanisms which underlie its effects. Given systemically or directly into the hippocampus, to ovariectomized female rodents, estradiol or specific agonists, enhance learning and/or memory in a variety of rodent cognitive tasks. Acute (within minutes) or chronic (days) treatments enhance cognitive functions. Under the same treatment conditions, dendritic spine density on pyramidal neurons in the CA1 area of the hippocampus and medial prefrontal cortex increase which suggests that these changes are an important component of estrogen's ability to impact memory processes. Noradrenergic, dopaminergic and serotoninergic activity are also altered in these areas following estrogen treatments. Memory enhancements and increased spine density by estrogens are not limited to females but are also present in castrate males. In the next fifty years, neuroscientists need to determine how currently described neural changes mediate improved memory, how interactions among areas important for memory promote memory and the potential significance of neurally derived estrogens in normal cognitive processing. Answering these questions may provide significant advances for treatment of dementias as well as age and neuro-degenerative disease related memory loss.
Collapse
Affiliation(s)
- Victoria Luine
- Department of Psychology, Hunter College of CUNY, New York, NY, USA.
| | - Maya Frankfurt
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
36
|
Peukert X, Steindorf K, Schagen SB, Runz A, Meyer P, Zimmer P. Hippocampus-Related Cognitive and Affective Impairments in Patients With Breast Cancer-A Systematic Review. Front Oncol 2020; 10:147. [PMID: 32154164 PMCID: PMC7046686 DOI: 10.3389/fonc.2020.00147] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
Background: Although improvements in medical treatment lead to a steadily rising survival rate of breast cancer patients (BCP), it is associated with a decrease in cognitive and affective function. The hippocampus, a brain region with a high influence on both cognitive and affective function, is increasingly becoming the focus of current research because of its high vulnerability to adverse direct (chemotherapeutic agents, endocrine therapeutic agents, and radiation) or indirect (stress and other psycho-social factors) treatment-related effects. Methods: This systematic review analyses current data from literature combining hippocampus-related brain changes due to breast cancer treatment with associated cancer-related cognitive and affective impairments (CRCI/CRAI). The seven studies that met the inclusion criteria consisted of six cross-sectional studies and one longitudinal study. Results: The study results indicate hippocampal differences across all types of treatment. Those differences include volume loss, deformation, and changes in functional connectivity. They are associated with CRCI, revealing executive function as well as working memory, episodic memory, and prospective memory as the most affected domains. Although an interaction between hippocampus-related brain changes, CRCI, and CRAI can be hypothesized, CRAI are less reflected in current research. Discussion: More research including longitudinal assessments with better overall methodology is needed to fully understand the interaction between hippocampal alterations and both CRCI and CRAI due to breast cancer treatment.
Collapse
Affiliation(s)
- Xenia Peukert
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,SRH Hochschule Heidelberg, Heidelberg, Germany
| | - Karen Steindorf
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center of Tumor Diseases, Heidelberg, Germany
| | - Sanne B Schagen
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Adrian Runz
- SRH Hochschule Heidelberg, Heidelberg, Germany
| | | | - Philipp Zimmer
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Performance and Health (Sports Medicine), Institute for Sports and Sport Science, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
37
|
17α Estradiol promotes plasticity of spared inputs in the adult amblyopic visual cortex. Sci Rep 2019; 9:19040. [PMID: 31836739 PMCID: PMC6910995 DOI: 10.1038/s41598-019-55158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
The promotion of structural and functional plasticity by estrogens is a promising approach to enhance central nervous system function in the aged. However, how the sensitivity to estrogens is regulated across brain regions, age and experience is poorly understood. To ask if estradiol treatment impacts structural and functional plasticity in sensory cortices, we examined the acute effect of 17α-Estradiol in adult Long Evans rats following chronic monocular deprivation, a manipulation that reduces the strength and selectivity of deprived eye vision. Chronic monocular deprivation decreased thalamic input from the deprived eye to the binocular visual cortex and accelerated short-term depression of the deprived eye pathway, but did not change the density of excitatory synapses in primary visual cortex. Importantly, we found that the classical estrogen receptors ERα and ERβ were robustly expressed in the adult visual cortex, and that a single dose of 17α-Estradiol reduced the expression of the calcium-binding protein parvalbumin, decreased the integrity of the extracellular matrix and increased the size of excitatory postsynaptic densities. Furthermore, 17α-Estradiol enhanced experience-dependent plasticity in the amblyopic visual cortex, by promoting response potentiation of the pathway served by the non-deprived eye. The promotion of plasticity at synapses serving the non-deprived eye may reflect selectivity for synapses with an initially low probability of neurotransmitter release, and may inform strategies to remap spared inputs around a scotoma or a cortical infarct.
Collapse
|
38
|
Kelicen-Ugur P, Cincioğlu-Palabıyık M, Çelik H, Karahan H. Interactions of Aromatase and Seladin-1: A Neurosteroidogenic and Gender Perspective. Transl Neurosci 2019; 10:264-279. [PMID: 31737354 PMCID: PMC6843488 DOI: 10.1515/tnsci-2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022] Open
Abstract
Aromatase and seladin-1 are enzymes that have major roles in estrogen synthesis and are important in both brain physiology and pathology. Aromatase is the key enzyme that catalyzes estrogen biosynthesis from androgen precursors and regulates the brain’s neurosteroidogenic activity. Seladin-1 is the enzyme that catalyzes the last step in the biosynthesis of cholesterol, the precursor of all hormones, from desmosterol. Studies indicated that seladin-1 is a downstream mediator of the neuroprotective activity of estrogen. Recently, we also showed that there is an interaction between aromatase and seladin-1 in the brain. Therefore, the expression of local brain aromatase and seladin-1 is important, as they produce neuroactive steroids in the brain for the protection of neuronal damage. Increasing steroid biosynthesis specifically in the central nervous system (CNS) without affecting peripheral hormone levels may be possible by manipulating brain-specific promoters of steroidogenic enzymes. This review emphasizes that local estrogen, rather than plasma estrogen, may be responsible for estrogens’ protective effects in the brain. Therefore, the roles of aromatase and seladin-1 and their interactions in neurodegenerative events such as Alzheimer’s disease (AD), ischemia/reperfusion injury (stroke), and epilepsy are also discussed in this review.
Collapse
Affiliation(s)
- Pelin Kelicen-Ugur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Mehtap Cincioğlu-Palabıyık
- Turkish Medicines and Medical Devices Agency (TITCK), Department of Regulatory Affairs, Division of Pharmacological Assessment, Ankara, Turkey
| | - Hande Çelik
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
39
|
Herrera-Morales WV, Herrera-Solís A, Núñez-Jaramillo L. Sexual Behavior and Synaptic Plasticity. ARCHIVES OF SEXUAL BEHAVIOR 2019; 48:2617-2631. [PMID: 31270644 DOI: 10.1007/s10508-019-01483-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Although sex drive is present in many animal species, sexual behavior is not static and, like many other behaviors, can be modified by experience. This modification relies on synaptic plasticity, a sophisticated mechanism through which neurons change how they process a given stimulus, and the neurophysiological basis of learning. This review addresses the main plastic effects of steroid sex hormones in the central nervous system (CNS) and the effects of sexual experience on the CNS, including effects on neurogenesis, intracellular signaling, gene expression, and changes in dendritic spines, as well as behavioral changes.
Collapse
Affiliation(s)
- Wendy Verónica Herrera-Morales
- División de Ciencias de la Salud, Universidad de Quintana Roo, Av. Erick Paolo Martínez S/N esquina Av 4 de marzo. Colonia Magisterial, 77039, Chetumal, Quintana Roo, Mexico
| | - Andrea Herrera-Solís
- Laboratorio Efectos Terapéuticos de los Canabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico
| | - Luis Núñez-Jaramillo
- División de Ciencias de la Salud, Universidad de Quintana Roo, Av. Erick Paolo Martínez S/N esquina Av 4 de marzo. Colonia Magisterial, 77039, Chetumal, Quintana Roo, Mexico.
| |
Collapse
|
40
|
Baumgartner NE, Grissom EM, Pollard KJ, McQuillen SM, Daniel JM. Neuroestrogen-Dependent Transcriptional Activity in the Brains of ERE-Luciferase Reporter Mice following Short- and Long-Term Ovariectomy. eNeuro 2019; 6:ENEURO.0275-19.2019. [PMID: 31575604 PMCID: PMC6795557 DOI: 10.1523/eneuro.0275-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/22/2019] [Indexed: 12/22/2022] Open
Abstract
Previous work has demonstrated that estrogen receptors are transcriptionally active in the absence of ovarian estrogens. The current work aims to determine whether brain-derived estrogens influence estrogen receptor-dependent transcription after short- or long-term loss of ovarian function. Experiments were conducted using estrogen response element (ERE)-Luciferase reporter mice, which express the gene for luciferase driven by consensus ERE, allowing for the quantification of ERE-dependent transcription. Brain regions examined were hippocampus, cortex, and hypothalamus. In Experiment 1, short-term (10 d) ovariectomy had no impact on ERE-dependent transcription across brain regions compared with sham surgery. In Experiment 2, chronic intracerebroventricular administration of the aromatase inhibitor letrozole significantly decreased transcriptional activity in 10-d-old ovariectomized mice across brain regions, indicating that the sustained transcription in short-term ovariectomized mice is mediated at least in part via actions of neuroestrogens. Additionally, intracerebroventricular administration of estrogen receptor antagonist ICI-182,780 blocked transcription in 10-d-old ovariectomized mice across brain regions, providing evidence that sustained transcription in ovariectomized mice is estrogen receptor dependent. In Experiment 3, long-term (70 d) ovariectomy significantly decreased ERE-dependent transcription across brain regions, though some residual activity remained. In Experiment 4, chronic intracerebroventricular letrozole administration had no impact on transcription in 70 d ovariectomized mice across brain regions, indicating that the residual ERE-dependent transcription in long-term ovariectomized mice is not mediated by neuroestrogens. Overall, the results indicate that ERE-dependent transcription in the brain continues after ovariectomy and that the actions of neuroestrogens contribute to the maintenance of ERE-dependent transcription in the brain following short-term, but not long-term, loss of ovarian function.
Collapse
Affiliation(s)
| | - Elin M Grissom
- Neuroscience Program
- Department of Psychology, Tulane University, New Orleans, Louisiana 70118
| | | | | | - Jill M Daniel
- Neuroscience Program
- Tulane Brain Institute
- Department of Psychology, Tulane University, New Orleans, Louisiana 70118
| |
Collapse
|
41
|
Hillerer KM, Slattery DA, Pletzer B. Neurobiological mechanisms underlying sex-related differences in stress-related disorders: Effects of neuroactive steroids on the hippocampus. Front Neuroendocrinol 2019; 55:100796. [PMID: 31580837 PMCID: PMC7115954 DOI: 10.1016/j.yfrne.2019.100796] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
Men and women differ in their vulnerability to a variety of stress-related illnesses, but the underlying neurobiological mechanisms are not well understood. This is likely due to a comparative dearth of neurobiological studies that assess male and female rodents at the same time, while human neuroimaging studies often don't model sex as a variable of interest. These sex differences are often attributed to the actions of sex hormones, i.e. estrogens, progestogens and androgens. In this review, we summarize the results on sex hormone actions in the hippocampus and seek to bridge the gap between animal models and findings in humans. However, while effects of sex hormones on the hippocampus are largely consistent in animals and humans, methodological differences challenge the comparability of animal and human studies on stress effects. We summarise our current understanding of the neurobiological mechanisms that underlie sex-related differences in behavior and discuss implications for stress-related illnesses.
Collapse
Affiliation(s)
- Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University (PMU), Clinical Research Center Salzburg (CRCS), Salzburg, Austria.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
42
|
Brandt N, Rune GM. Sex-dependency of oestrogen-induced structural synaptic plasticity: Inhibition of aromatase versus application of estradiol in rodents. Eur J Neurosci 2019; 52:2548-2559. [PMID: 31403726 DOI: 10.1111/ejn.14541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Abstract
Sex-dependent differences in learning and memory formation in humans have been frequently shown. The mechanisms underlying the formation and retention of memories are assumed to involve synaptic plasticity in the hippocampus. Estradiol was shown to effect synaptic plasticity in the hippocampus of rodents. The effects after exogenous application of estradiol to animals frequently produce inconsistent results, in particular, if sex is not considered in the studies. Recently we provided evidence that locally synthesized estradiol plays an essential role on synaptic connectivity in the hippocampus of females but not of male mice. In females, inhibition of local estradiol synthesis leads to synapse loss, which results from impairment of long-term potentiation and dephosphorylation of cofilin, and thereby the destabilization of postsynaptic dendritic spines. This sex-dependency was also seen in the classical aromatase knock-out mouse. Intriguingly, no differences between sexes have been found in a conditional forebrain-specific aromatase knock-out mouse. Altogether, the findings underscore the necessity of including 'Sex as a Biological Variable' in studies of sex steroid-induced synaptic plasticity.
Collapse
Affiliation(s)
- Nicola Brandt
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Brocca ME, Garcia-Segura LM. Non-reproductive Functions of Aromatase in the Central Nervous System Under Physiological and Pathological Conditions. Cell Mol Neurobiol 2019; 39:473-481. [PMID: 30084008 PMCID: PMC11469900 DOI: 10.1007/s10571-018-0607-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
The modulation of brain function and behavior by steroid hormones was classically associated with their secretion by peripheral endocrine glands. The discovery that the brain expresses the enzyme aromatase, which produces estradiol from testosterone, expanded this traditional concept. One of the best-studied roles of brain estradiol synthesis is the control of reproductive behavior. In addition, there is increasing evidence that estradiol from neural origin is also involved in a variety of non-reproductive functions. These include the regulation of neurogenesis, neuronal development, synaptic transmission, and plasticity in brain regions not directly related with the control of reproduction. Central aromatase is also involved in the modulation of cognition, mood, and non-reproductive behaviors. Furthermore, under pathological conditions aromatase is upregulated in the central nervous system. This upregulation represents a neuroprotective and likely also a reparative response by increasing local estradiol levels in order to maintain the homeostasis of the neural tissue. In this paper, we review the non-reproductive functions of neural aromatase and neural-derived estradiol under physiological and pathological conditions. We also consider the existence of sex differences in the role of the enzyme in both contexts.
Collapse
Affiliation(s)
- Maria Elvira Brocca
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
44
|
Koss WA, Frick KM. Activation of androgen receptors protects intact male mice from memory impairments caused by aromatase inhibition. Horm Behav 2019; 111:96-104. [PMID: 30653980 PMCID: PMC6527464 DOI: 10.1016/j.yhbeh.2019.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022]
Abstract
Although 17β-estradiol (E2) is known to regulate hippocampal function, the specific contributions of hippocampally-synthesized E2 remain unclear. Infusion of the aromatase inhibitor letrozole into the dorsal hippocampus (DH) of ovariectomized mice disrupts object recognition and object placement memory consolidation, suggesting that DH-synthesized E2 is essential for memory. However, the role of DH-synthesized E2 in memory among male rodents is unknown. Here, we examined effects of aromatase inhibition on memory consolidation in male mice. Intact and gonadectomized mice were infused with vehicle or letrozole into the DH immediately post-training in object placement and object recognition tasks. Letrozole blocked memory in both tasks among gonadectomized males only, suggesting that circulating androgens, or a rise in hippocampal androgens due to aromatase inhibition, may support memory consolidation in intact males. To test this hypothesis, intact males were infused with the androgen receptor antagonist flutamide into the DH after object training. A dose-dependent impairment was observed in both tasks, indicating that blocking androgen signaling can impair memory consolidation. To test if hippocampal androgen receptor activation protected intact males from the impairing effects of letrozole, a non-impairing dose of flutamide was co-infused with letrozole. Co-administration of both drugs blocked object placement and object recognition memory consolidation, demonstrating that letrozole impairs memory in intact males only if androgen receptors are blocked. Together, these data suggest that DH-synthesized E2 and androgen receptor activation may work in concert to mediate memory consolidation in intact males, such that androgen receptor activation protects against memory impairments caused by aromatase inhibition.
Collapse
Affiliation(s)
- Wendy A Koss
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States of America.
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States of America.
| |
Collapse
|
45
|
Estrogen-Dependent Functional Spine Dynamics in Neocortical Pyramidal Neurons of the Mouse. J Neurosci 2019; 39:4874-4888. [PMID: 30992373 DOI: 10.1523/jneurosci.2772-18.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/21/2022] Open
Abstract
Surgical ovariectomy has been shown to reduce spine density in hippocampal CA1 pyramidal cells of rodents, and this reduction is reversed by 17β-estradiol (E2) treatment in a model of human estrogen replacement therapy. Here, we report reduction of spine density in apical dendrites of layer 5 pyramidal neurons of several neocortical regions that is reversed by subsequent E2 treatment in ovariectomized (OVX) female Thy1M-EGFP mice. We also found that OVX-associated reduction of spine density in somatosensory cortex was accompanied by a reduction in miniature EPSC (mEPSC) frequency (but not mIPSC frequency), indicating a change in functional synapses. OVX-associated spine loss in somatosensory cortex was also rescued by an agonist of the G-protein-linked estrogen receptor (GPER) but not by agonists of the classic estrogen receptors ERα/ERβ, whereas the opposite selectivity was found in area CA1. Acute treatment of neocortical slices with E2 also rescued the OVX-associated reduction in mEPSC frequency, which could be mimicked by a GPER agonist and abolished by a GPER antagonist. Time-lapse in vivo two-photon imaging showed that OVX-associated reduction in spine density is achieved by both an increase in spine loss rate and a decrease in spine gain rate and that subsequent rescue by E2 reversed both of these processes. Crucially, the spines added after E2 rescue were no more likely to reappear at or nearby the sites of pre-OVX spines than those in control mice treated with vehicle. Thus, a model of estrogen replacement therapy, although restoring spine density and dynamics, does not entirely restore functional connectivity.SIGNIFICANCE STATEMENT Estrogen replacement therapy following menopause or surgical removal of the ovaries is a widespread medical practice, yet little is known about the consequences of such treatment for cells in the brain. Here, we show that estrogen replacement reverses some of the effects of surgical removal of the ovaries on the structure and function of brain cells in the mouse. Yet, importantly, the fine wiring of the brain is not returned to the presurgery state by estrogen treatment, suggesting lasting functional consequences.
Collapse
|
46
|
Contreras-Zárate MJ, Day NL, Ormond DR, Borges VF, Tobet S, Gril B, Steeg PS, Cittelly DM. Estradiol induces BDNF/TrkB signaling in triple-negative breast cancer to promote brain metastases. Oncogene 2019; 38:4685-4699. [PMID: 30796353 PMCID: PMC6565485 DOI: 10.1038/s41388-019-0756-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer brain metastases (BM) affect younger women disproportionally, including those lacking estrogen receptor (ER), progesterone receptor, and HER2 (known as triple-negative breast cancer; TNBC). Previous studies in preclinical models showed that pre-menopausal levels of estradiol (E2) promote TNBC-BM through incompletely understood mechanisms involving reactive astrocytes. Herein, a novel mechanism involving E2-dependent upregulation of brain-derived neurotrophic factor (BDNF) in astrocytes, and subsequent activation of tumor cell tropomyosin kinase receptor B (TrkB), is identified. E2 increased experimental BM of TNBC 4T1BR5 and E0771 cells by 21 and 3.6 fold, respectively, compared to E2-depleted mice. ERα+ reactive astrocytes were found at early and late stages of BM, and E2 upregulated BDNF in ER+ reactive astrocytes in vitro and in vivo. TrkB was expressed in TNBC brain-trophic cell lines, BM-patient-derived xenografts, and breast cancer BM. Conditioned media from E2-treated astrocytes (CM-E2) activated TrkB and downstream AKT, ERK, and PLC-γ signaling in TNBC cells, increasing their invasiveness and tumor-initiating capability in vitro. The promotion of BM by E2-activated astrocytes was found to be more complex, involving feedback loops and other receptor tyrosine kinases. In 4T1BR5 cells, there was a positive feedback loop whereby astrocytic BDNF induced cancer cell BDNF translation. Upregulation of cancer cell BDNF was required to promote full invasiveness of 4T1BR5 in response to CM-E2, and was observed in brain metastatic cells in E2-treated mice in vivo. Moreover, the non-competitive BDNF/TrkB inhibitor ANA-12 reduced E2-induced 4T1BR5 BM to levels similar to OVX mice. BDNF also activated EGFR in TrkB+EGFR+ TNBC cells, suggesting that E2 action through astrocytes activates redundant pathways promoting BM. These findings have important therapeutic implications, as they provide a rationale to use E2-depletion therapies or TrkB inhibitors to prevent or delay development of BM in younger women.
Collapse
Affiliation(s)
- Maria J Contreras-Zárate
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nicole L Day
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Stuart Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Brunilde Gril
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Patricia S Steeg
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Diana M Cittelly
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
47
|
Gölz C, Kirchhoff FP, Westerhorstmann J, Schmidt M, Hirnet T, Rune GM, Bender RA, Schäfer MKE. Sex hormones modulate pathogenic processes in experimental traumatic brain injury. J Neurochem 2019; 150:173-187. [PMID: 30790293 DOI: 10.1111/jnc.14678] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/26/2022]
Abstract
Clinical and animal studies have revealed sex-specific differences in histopathological and neurological outcome after traumatic brain injury (TBI). The impact of perioperative administration of sex steroid inhibitors on TBI is still elusive. Here, we subjected male and female C57Bl/6N mice to the controlled cortical impact (CCI) model of TBI and applied pharmacological inhibitors of steroid hormone synthesis, that is, letrozole (LET, inhibiting estradiol synthesis by aromatase) and finasteride (FIN, inhibiting dihydrotestosterone synthesis by 5α-reductase), respectively, starting 72 h prior CCI, and continuing for a further 48 h after CCI. Initial gene expression analyses showed that androgen (Ar) and estrogen receptors (Esr1) were sex-specifically altered 72 h after CCI. When examining brain lesion size, we found larger lesions in male than in female mice, but did not observe effects of FIN or LET treatment. However, LET treatment exacerbated neurological deficits 24 and 72 h after CCI. On the molecular level, FIN administration reduced calpain-dependent spectrin breakdown products, a proxy of excitotoxicity and disturbed Ca2+ homeostasis, specifically in males, whereas LET increased the reactive astrocyte marker glial fibrillary acid protein specifically in females. Examination of neurotrophins (brain-derived neurotrophic factor, neuronal growth factor, NT-3) and their receptors (p75NTR , TrkA, TrkB, TrkC) revealed CCI-induced down-regulation of TrkB and TrkC protein expression, which was reduced by LET in both sexes. Interestingly, FIN decreased neuronal growth factor mRNA expression and protein levels of its receptor TrkA only in males. Taken together, our data suggest a sex-specific impact on pathogenic processes in the injured brain after TBI. Sex hormones may thus modulate pathogenic processes in experimental TBI.
Collapse
Affiliation(s)
- Christina Gölz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Florian Paul Kirchhoff
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | | - Matthias Schmidt
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Tobias Hirnet
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Roland A Bender
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Focus Program Translational Neurosciences, Mainz, Germany.,Research Center for Immunotherapy (FZI), Mainz, Germany
| |
Collapse
|
48
|
Neuron-Derived Estrogen Regulates Synaptic Plasticity and Memory. J Neurosci 2019; 39:2792-2809. [PMID: 30728170 PMCID: PMC6462452 DOI: 10.1523/jneurosci.1970-18.2019] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/28/2018] [Accepted: 01/18/2019] [Indexed: 01/27/2023] Open
Abstract
17β-estradiol (E2) is produced from androgens via the action of the enzyme aromatase. E2 is known to be made in neurons in the brain, but its precise functions in the brain are unclear. Here, we used a forebrain-neuron-specific aromatase knock-out (FBN-ARO-KO) mouse model to deplete neuron-derived E2 in the forebrain of mice and thereby elucidate its functions. FBN-ARO-KO mice showed a 70–80% decrease in aromatase and forebrain E2 levels compared with FLOX controls. Male and female FBN-ARO-KO mice exhibited significant deficits in forebrain spine and synaptic density, as well as hippocampal-dependent spatial reference memory, recognition memory, and contextual fear memory, but had normal locomotor function and anxiety levels. Reinstating forebrain E2 levels via exogenous in vivo E2 administration was able to rescue both the molecular and behavioral defects in FBN-ARO-KO mice. Furthermore, in vitro studies using FBN-ARO-KO hippocampal slices revealed that, whereas induction of long-term potentiation (LTP) was normal, the amplitude was significantly decreased. Intriguingly, the LTP defect could be fully rescued by acute E2 treatment in vitro. Mechanistic studies revealed that FBN-ARO-KO mice had compromised rapid kinase (AKT, ERK) and CREB-BDNF signaling in the hippocampus and cerebral cortex. In addition, acute E2 rescue of LTP in hippocampal FBN-ARO-KO slices could be blocked by administration of a MEK/ERK inhibitor, further suggesting a key role for rapid ERK signaling in neuronal E2 effects. In conclusion, the findings provide evidence of a critical role for neuron-derived E2 in regulating synaptic plasticity and cognitive function in the male and female brain. SIGNIFICANCE STATEMENT The steroid hormone 17β-estradiol (E2) is well known to be produced in the ovaries in females. Intriguingly, forebrain neurons also express aromatase, the E2 biosynthetic enzyme, but the precise functions of neuron-derived E2 is unclear. Using a novel forebrain-neuron-specific aromatase knock-out mouse model to deplete neuron-derived E2, the current study provides direct genetic evidence of a critical role for neuron-derived E2 in the regulation of rapid AKT-ERK and CREB-BDNF signaling in the mouse forebrain and demonstrates that neuron-derived E2 is essential for normal expression of LTP, synaptic plasticity, and cognitive function in both the male and female brain. These findings suggest that neuron-derived E2 functions as a novel neuromodulator in the forebrain to control synaptic plasticity and cognitive function.
Collapse
|
49
|
Adverse Effects of Aromatase Inhibition on the Brain and Behavior in a Nonhuman Primate. J Neurosci 2018; 39:918-928. [PMID: 30587540 PMCID: PMC6382974 DOI: 10.1523/jneurosci.0353-18.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 01/12/2023] Open
Abstract
Breast cancer patients using aromatase inhibitors (AIs) as an adjuvant therapy often report side effects, including hot flashes, mood changes, and cognitive impairment. Despite long-term use in humans, little is known about the effects of continuous AI administration on the brain and cognition. We used a primate model of human cognitive aging, the common marmoset, to examine the effects of a 4-week daily administration of the AI letrozole (20 μg, p.o.) on cognition, anxiety, thermoregulation, brain estrogen content, and hippocampal pyramidal cell physiology. Letrozole treatment was administered to both male and female marmosets and reduced peripheral levels of estradiol (E2), but unexpectedly increased E2 levels in the hippocampus. Spatial working memory and intrinsic excitability of hippocampal neurons were negatively affected by the treatment possibly due to increased hippocampal E2. While no changes in hypothalamic E2 were observed, thermoregulation was disrupted by letrozole in females only, indicating some impact on hypothalamic activity. These findings suggest adverse effects of AIs on the primate brain and call for new therapies that effectively prevent breast cancer recurrence while minimizing side effects that further compromise quality of life.SIGNIFICANCE STATEMENT Aromatase inhibitors (AIs) are used as an adjuvant therapy for estrogen-receptor-positive breast cancer and are associated with side effects, including hot flashes, depression/anxiety, and memory deficits severe enough for many women to discontinue this life-saving treatment. AIs are also used by men, yet sex differences in the reported side effects have not been systematically studied. We show that AI-treated male and female marmosets exhibit behavioral changes consistent with these CNS symptoms, as well as elevated hippocampal estradiol and compromised hippocampal physiology. These findings illustrate the need for (1) a greater understanding of the precise mechanisms by which AIs impact brain function and (2) the development of new treatment approaches for breast cancer patients that minimize adverse effects on the brain.
Collapse
|
50
|
Munk AJL, Zoeller AC, Hennig J. Fluctuations of estradiol during women's menstrual cycle: Influences on reactivity towards erotic stimuli in the late positive potential. Psychoneuroendocrinology 2018. [PMID: 29518692 DOI: 10.1016/j.psyneuen.2018.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND While several studies examined the reactivity towards negative emotional stimuli across women's menstrual cycle, only few investigated responses to positive emotional cues in association with sexual hormones on a neural level. Therefore, the aim of the current EEG-experiment was to study the differential reactivity towards positive (erotic) words during the menstrual cycle (i.e. with fluctuations in the steroids estradiol and progesterone) in the late positive potential (LPP). Regarding reactivity towards erotic stimuli, the LPP is seen as the most relevant ERP-component, as more positive amplitudes in the LPP reflect larger incentive salience and higher arousal. The LPP towards erotic words was expected to be more pronounced during fertile phases of the menstrual cycle (around ovulation). Furthermore, associations with hormonal concentrations of estradiol and progesterone were investigated. METHOD 19 young, free cycling women were tested in an Erotic Stroop paradigm during the follicular phase, ovulation, and the luteal phase in a balanced cross-over design, while electroencephalogram (EEG) was recorded. RESULTS LPPs in reaction to erotic compared to neutral words were larger in every phase. During the follicular phase and ovulation, higher estradiol-concentrations were associated with more positive LPP-amplitudes towards erotic- than to neutral words. No effects of progesterone, as well as no effects of cycle phase, were evident. Results are being discussed regarding implications for further research.
Collapse
Affiliation(s)
- Aisha J L Munk
- Department of Differential and Biological Psychology, University of Giessen, Germany.
| | - Aaron C Zoeller
- Department of General Psychology, University of Giessen, Germany
| | - Juergen Hennig
- Department of Differential and Biological Psychology, University of Giessen, Germany
| |
Collapse
|