1
|
Theodorakis N, Kreouzi M, Hitas C, Anagnostou D, Nikolaou M. Adipokines and Cardiometabolic Heart Failure with Preserved Ejection Fraction: A State-of-the-Art Review. Diagnostics (Basel) 2024; 14:2677. [PMID: 39682585 PMCID: PMC11640255 DOI: 10.3390/diagnostics14232677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Cardiometabolic heart failure with preserved ejection fraction (HFpEF) is largely driven by obesity-related factors, including adipokines and bioactive peptides primarily secreted by the adipose tissue, such as leptin, adiponectin, and resistin. These molecules link metabolic dysregulation to cardiovascular dysfunction, influencing HFpEF progression and patient outcomes Methods: A comprehensive literature search was conducted in PubMed up to 20 November 2024, using keywords and MeSH terms, such as "HFpEF", "adipokines", "leptin", "adiponectin", and "resistin", yielding 723 results. Boolean operators refined the search, and reference lists of key studies were reviewed. After screening for duplicates and irrelevant studies, 103 articles were included, providing data on adipokines' roles in HFpEF pathophysiology, biomarkers, and therapeutic implications. RESULTS Both preclinical and clinical studies have demonstrated that adipokines play a role in modulating cardiovascular function, thereby contributing to the development of cardiometabolic HFpEF. Leptin promotes myocardial hypertrophy, fibrosis, endothelial dysfunction, and inflammation, though contradictory evidence suggests potential cardioprotective roles in subgroups like obese African American women. Adiponectin generally offers protective effects but presents a paradox, where elevated levels may correlate with worse outcomes, which may reflect either a compensatory response to cardiac dysfunction or a maladaptive state characterized by adiponectin resistance. Resistin is associated with increased cardiovascular risk through pro-inflammatory and pro-fibrotic effects, though its role in HFpEF requires further clarification. Other adipokines, like retinol-binding protein 4 and omentin-1, have emerged as potential contributors. Despite growing insights, clinical translation remains limited, underscoring a significant gap between experimental evidence and therapeutic application. CONCLUSIONS Future research should focus on targeted interventions that modulate adipokine pathways to potentially improve HFpEF outcomes. Innovative treatment strategies addressing underlying metabolic disturbances and adipokine dysregulation are essential for advancing the management of this challenging condition.
Collapse
Affiliation(s)
- Nikolaos Theodorakis
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece;
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece; (C.H.); (D.A.)
| | - Magdalini Kreouzi
- Department of Internal Medicine, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece;
| | - Christos Hitas
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece; (C.H.); (D.A.)
| | - Dimitrios Anagnostou
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece; (C.H.); (D.A.)
| | - Maria Nikolaou
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece; (C.H.); (D.A.)
| |
Collapse
|
2
|
Fukuta H, Goto T, Kamiya T. Association of epicardial fat with cardiac structure and function and exercise capacity in heart failure with preserved ejection fraction: A systematic review and meta-analysis. IJC HEART & VASCULATURE 2024; 54:101444. [PMID: 39415965 PMCID: PMC11481611 DOI: 10.1016/j.ijcha.2024.101444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 06/08/2024] [Indexed: 10/19/2024]
Abstract
Background Studies have reported the association of epicardial adipose tissue (EAT) with cardiac structure and function as well as exercise capacity in patients with heart failure with preserved ejection fraction (HFpEF), yielding inconsistent results. We aimed to conduct a meta-analysis of studies on the association of EAT with cardiac structure and function and exercise capacity in HFpEF patients. Methods and Results We searched studies examining the association of EAT quantified by echocardiography, computed tomography, or magnetic resonance imaging (MRI) with cardiac structure and function or exercise capacity in HFpEF patients through PubMed, Web of Science, and Scopus. In cases of significant heterogeneity (I2 > 50 %), data were pooled using a random-effects model; otherwise, a fixed-effects model was used. We identified five echocardiography studies (n = 825) and six MRI studies (n = 562), but found no computed tomography studies. In the echocardiography studies, EAT thickness correlated positively with left ventricular (LV) mass (P random < 0.01) and negatively with LV global longitudinal strain (P random < 0.01) and peak exercise oxygen uptake (P fix < 0.001). In the MRI studies, EAT volume correlated positively with LV mass (P fix < 0.01), left atrial volume (P fix < 0.001), and the ratio of LV early diastolic mitral inflow to early diastolic mitral annular velocity (E/e'; P random < 0.01) and negatively with LV ejection fraction (P fix < 0.01) and LV global longitudinal strain (P fix < 0.001). Conclusion Our meta-analysis indicates a potential association of increased EAT with altered cardiac structure and function and exercise intolerance in HFpEF patients. However, our meta-analysis included only two or three studies for each outcome and thus further studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- Hidekatsu Fukuta
- Core Laboratory, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshihiko Goto
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Kamiya
- Department of Medical Innovation, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
3
|
Vrabie AM, Totolici S, Delcea C, Badila E. Biomarkers in Heart Failure with Preserved Ejection Fraction: A Perpetually Evolving Frontier. J Clin Med 2024; 13:4627. [PMID: 39200768 PMCID: PMC11355893 DOI: 10.3390/jcm13164627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a complex clinical syndrome, often very difficult to diagnose using the available tools. As the global burden of this disease is constantly growing, surpassing the prevalence of heart failure with reduced ejection fraction, during the last few years, efforts have focused on optimizing the diagnostic and prognostic pathways using an immense panel of circulating biomarkers. After the paradigm of HFpEF development emerged more than 10 years ago, suggesting the impact of multiple comorbidities on myocardial structure and function, several phenotypes of HFpEF have been characterized, with an attempt to find an ideal biomarker for each distinct pathophysiological pathway. Acknowledging the limitations of natriuretic peptides, hundreds of potential biomarkers have been evaluated, some of them demonstrating encouraging results. Among these, soluble suppression of tumorigenesis-2 reflecting myocardial remodeling, growth differentiation factor 15 as a marker of inflammation and albuminuria as a result of kidney dysfunction or, more recently, several circulating microRNAs have proved their incremental value. As the number of emerging biomarkers in HFpEF is rapidly expanding, in this review, we aim to explore the most promising available biomarkers linked to key pathophysiological mechanisms in HFpEF, outlining their utility for diagnosis, risk stratification and population screening, as well as their limitations.
Collapse
Affiliation(s)
- Ana-Maria Vrabie
- Cardio-Thoracic Pathology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.T.); (C.D.); (E.B.)
- Cardiology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Stefan Totolici
- Cardio-Thoracic Pathology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.T.); (C.D.); (E.B.)
- Cardiology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Caterina Delcea
- Cardio-Thoracic Pathology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.T.); (C.D.); (E.B.)
- Cardiology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Elisabeta Badila
- Cardio-Thoracic Pathology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.T.); (C.D.); (E.B.)
- Cardiology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
4
|
Liang D, Shi G, Xu M, Yin J, Liu Y, Yang J, Xu L. The correlation between serum asprosin and left ventricular diastolic dysfunction in elderly patients with type 2 diabetes mellitus in the community. J Diabetes Investig 2024; 15:608-613. [PMID: 38363189 PMCID: PMC11060158 DOI: 10.1111/jdi.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
AIMS/INTRODUCTION Serum asprosin is expected to become a screening indicator in early-stage diabetic heart disease. The relationship between serum asprosin and left ventricular diastolic dysfunction (LVDD) was studied in elderly patients with type 2 diabetes mellitus in the community. MATERIALS AND METHODS A total of 252 elderly patients with type 2 diabetes mellitus were recruited from Zhuoma Community Care Station and Chengbei West Street Community Care Service Center in Changzhi City of Shanxi Province from November 2019 to July 2021. Patients were divided into the LVDD group (n = 195) and the non-LVDD group (n = 57). The t-test, Mann-Whitney U test, and χ2 test were used to compare indicators between the LVDD group and the non-LVDD group. Pearson or Spearman correlation analysis was adopted to evaluate the correlation between serum asprosin and other clinical data. Multivariate logistic regression analysis was applied to analyze the influencing factors on LVDD. RESULTS Compared with patients without LVDD, patients with LVDD had a higher level of low-density lipoprotein cholesterol (LDL-C), fasting blood glucose (FPG), and asprosin, but a lower level of early diastolic movement speed (A) to diastolic movement velocity (E) (E/A). Asprosin was positively associated with waist circumference (WC), body mass index (BMI), creatinine, triglycerides (P < 0.05), and negatively associated with E/A and high density lipoprotein cholesterol HDL-C (P < 0.05). The risk of LVDD increased with elevated asprosin levels after adjustment for age, systolic blood pressure (SBP), BMI, FPG, and LDL-C. Compared with patients in the lowest tertile of serum asprosin (<275.25 pg/mL), a serum level of asprosin between 275.25-355.08 pg/mL [OR (95% CI) is 2.368 (1.169-4.796), P < 0.05] and asprosin >355.08 pg/mL [OR (95% CI) is 2.549 (1.275-5.095), P < 0.05] patients have a higher risk of left ventricular diastolic dysfunction. CONCLUSIONS Serum asprosin was positively associated with left ventricular diastolic dysfunction, and the risk of LVDD increased significantly with increased serum levels of asprosin.
Collapse
Affiliation(s)
- Dong Liang
- First Clinical Medical CollegeShanxi Medical UniversityTaiyuanChina
- Department of EndocrinologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Guoliang Shi
- Department of EndocrinologyChangzhi Second People's HospitalChangzhiChina
| | - Mingang Xu
- Department of EndocrinologyChangzhi Second People's HospitalChangzhiChina
| | - Jianhong Yin
- Department of EndocrinologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Yunfeng Liu
- First Clinical Medical CollegeShanxi Medical UniversityTaiyuanChina
- Department of EndocrinologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Jing Yang
- First Clinical Medical CollegeShanxi Medical UniversityTaiyuanChina
- Department of EndocrinologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Linxin Xu
- First Clinical Medical CollegeShanxi Medical UniversityTaiyuanChina
- Department of EndocrinologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
5
|
Cho S, Dadson K, Sung HK, Ayansola O, Mirzaesmaeili A, Noskovicova N, Zhao Y, Cheung K, Radisic M, Hinz B, Sater AAA, Hsu HH, Lopaschuk GD, Sweeney G. Cardioprotection by the adiponectin receptor agonist ALY688 in a preclinical mouse model of heart failure with reduced ejection fraction (HFrEF). Biomed Pharmacother 2024; 171:116119. [PMID: 38181714 DOI: 10.1016/j.biopha.2023.116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
AIMS Adiponectin has been shown to mediate cardioprotective effects and levels are typically reduced in patients with cardiometabolic disease. Hence, there has been intense interest in developing adiponectin-based therapeutics. The aim of this translational research study was to examine the functional significance of targeting adiponectin signaling with the adiponectin receptor agonist ALY688 in a mouse model of heart failure with reduced ejection fraction (HFrEF), and the mechanisms of cardiac remodeling leading to cardioprotection. METHODS AND RESULTS Wild-type mice were subjected to transverse aortic constriction (TAC) to induce left ventricular pressure overload (PO), or sham surgery, with or without daily subcutaneous ALY688-SR administration. Temporal analysis of cardiac function was conducted via weekly echocardiography for 5 weeks and we observed that ALY688 attenuated the PO-induced dysfunction. ALY688 also reduced cardiac hypertrophic remodeling, assessed via LV mass, heart weight to body weight ratio, cardiomyocyte cross sectional area, ANP and BNP levels. ALY688 also attenuated PO-induced changes in myosin light and heavy chain expression. Collagen content and myofibroblast profile indicated that fibrosis was attenuated by ALY688 with TIMP1 and scleraxis/periostin identified as potential mechanistic contributors. ALY688 reduced PO-induced elevation in circulating cytokines including IL-5, IL-13 and IL-17, and the chemoattractants MCP-1, MIP-1β, MIP-1alpha and MIP-3α. Assessment of myocardial transcript levels indicated that ALY688 suppressed PO-induced elevations in IL-6, TLR-4 and IL-1β, collectively indicating anti-inflammatory effects. Targeted metabolomic profiling indicated that ALY688 increased fatty acid mobilization and oxidation, increased betaine and putrescine plus decreased sphingomyelin and lysophospholipids, a profile indicative of improved insulin sensitivity. CONCLUSION These results indicate that the adiponectin mimetic peptide ALY688 reduced PO-induced fibrosis, hypertrophy, inflammation and metabolic dysfunction and represents a promising therapeutic approach for treating HFrEF in a clinical setting.
Collapse
Affiliation(s)
- Sungji Cho
- Department of Biology, York University, Toronto, ON, Canada
| | - Keith Dadson
- Department of Biology, York University, Toronto, ON, Canada
| | | | | | - Ali Mirzaesmaeili
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Nina Noskovicova
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S3E2, Canada
| | - Yimu Zhao
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Krisco Cheung
- Department of Chemical Engineering and Applied Chemistry; University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Milica Radisic
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry; University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S3E2, Canada; Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Ali A Abdul Sater
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Henry H Hsu
- Allysta Pharmaceuticals Inc. Bellevue, WA, USA
| | - Gary D Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
6
|
Yang H, Song S, Li J, Li Y, Feng J, Sun Q, Qiu X, Chen Z, Bai X, Liu X, Lian H, Liu L, Bai Y, Zhang G, Nie Y. Omentin-1 drives cardiomyocyte cell cycle arrest and metabolic maturation by interacting with BMP7. Cell Mol Life Sci 2023; 80:186. [PMID: 37344704 PMCID: PMC11071824 DOI: 10.1007/s00018-023-04829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/05/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Mammalian cardiomyocytes (CMs) undergo maturation during postnatal heart development to meet the increased demands of growth. Here, we found that omentin-1, an adipokine, facilitates CM cell cycle arrest and metabolic maturation. Deletion of omentin-1 causes mouse heart enlargement and dysfunction in adulthood and CM maturation retardation in juveniles, including delayed cell cycle arrest and reduced fatty acid oxidation. Through RNA sequencing, molecular docking analysis, and proximity ligation assays, we found that omentin-1 regulates CM maturation by interacting directly with bone morphogenetic protein 7 (BMP7). Omentin-1 prevents BMP7 from binding to activin type II receptor B (ActRIIB), subsequently decreasing the downstream pathways mothers against DPP homolog 1 (SMAD1)/Yes-associated protein (YAP) and p38 mitogen-activated protein kinase (p38 MAPK). In addition, omentin-1 is required and sufficient for the maturation of human embryonic stem cell-derived CMs. Together, our findings reveal that omentin-1 is a pro-maturation factor for CMs that is essential for postnatal heart development and cardiac function maintenance.
Collapse
Affiliation(s)
- Huijun Yang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
- Department of Cardiovascular Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jiacheng Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Yandong Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jie Feng
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Quan Sun
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China
| | - Xueting Qiu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China
| | - Ziwei Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xue Bai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xinchang Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Lihui Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yongping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China.
| | - Guogang Zhang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China.
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Marstein HS, Witczak BN, Godang K, Olarescu NC, Schwartz T, Flatø B, Molberg Ø, Bollerslev J, Sjaastad I, Sanner H. Adipokine profile in long-term juvenile dermatomyositis, and associations with adipose tissue distribution and cardiac function: a cross-sectional study. RMD Open 2023; 9:rmdopen-2022-002815. [PMID: 36828644 PMCID: PMC9972436 DOI: 10.1136/rmdopen-2022-002815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
OBJECTIVES In long-term juvenile dermatomyositis (JDM), altered adipose tissue distribution and subclinical cardiac dysfunction have been described. Our aims were to compare adipokine levels in patients with JDM after long-term disease with controls, and explore associations between adipokines and (1) adipose tissue distribution and (2) cardiac function. METHODS The study cohort included 59 patients with JDM (60% female, mean age 25.2 years, mean disease duration 16.9 years), and 59 age/sex-matched controls. Updated Pediatric Rheumatology International Trials Organization criteria for clinically inactive JDM were used to stratify patients into active (JDM-active) or inactive (JDM-inactive) disease groups. Lipodystrophy was clinically assessed in all patients. In all study participants, we measured adipose tissue distribution by dual-energy X-ray absorptiometry and cardiac function by echocardiography. Serum adipokines (adiponectin, apelin-12, lipocalin-2, leptin, visfatin and resistin) were analysed using ELISA. RESULTS Patients with JDM had higher leptin levels compared with controls (p≤0.01). In JDM-active, apelin-12 and visfatin were higher compared with JDM-inactive (p≤0.05). In JDM-total and JDM-active, lower adiponectin correlated with lipodystrophy and total fat mass. Also, systolic dysfunction correlated with: lower adiponectin in JDM-total, JDM-inactive and JDM-active, and with lower apelin-12 in JDM-total and JDM-active and resistin in JDM-active (all p≤0.05). Lower adiponectin correlated with diastolic dysfunction in JDM-total and JDM-active. CONCLUSION After long-term disease, leptin levels were unfavourably regulated in patients with JDM compared with controls, and apelin-12 and visfatin in JDM-active versus JDM-inactive. We found associations between adipokines and both adipose tissue distribution and cardiac systolic function in all patients with JDM, which was most prominent in patients with active disease.
Collapse
Affiliation(s)
- Henriette Schermacher Marstein
- Institute of Experimental Medical Research, Oslo University Hospital Ullevaal, Oslo, Norway .,Department of Health Sciences, Oslo New University College, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo University Hospital, Oslo, Norway
| | - Birgit Nomeland Witczak
- Institute of Experimental Medical Research, Oslo University Hospital Ullevaal, Oslo, Norway,KG Jebsen Center for Cardiac Research, Oslo University Hospital, Oslo, Norway
| | - Kristin Godang
- Section of Specialized Endocrinology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Medical Clinic, Oslo University Hospital, Oslo, Norway
| | - Nicoleta Christina Olarescu
- Section of Specialized Endocrinology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Medical Clinic, Oslo University Hospital, Oslo, Norway,Institute for Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway
| | - Thomas Schwartz
- Institute of Experimental Medical Research, Oslo University Hospital Ullevaal, Oslo, Norway,KG Jebsen Center for Cardiac Research, Oslo University Hospital, Oslo, Norway
| | - Berit Flatø
- Institute for Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway,Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| | - Øyvind Molberg
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Bollerslev
- Section of Specialized Endocrinology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Medical Clinic, Oslo University Hospital, Oslo, Norway,Institute for Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute of Experimental Medical Research, Oslo University Hospital Ullevaal, Oslo, Norway,KG Jebsen Center for Cardiac Research, Oslo University Hospital, Oslo, Norway,Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Helga Sanner
- Department of Health Sciences, Oslo New University College, Oslo, Norway,Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Saito T, Mizobuchi M, Kato T, Ogata H, Koiwa F, Honda H. Fibroblast Growth Factor 23 Exacerbates Cardiac Fibrosis in Deoxycorticosterone Acetate-Salt Mice With Hypertension. J Transl Med 2023; 103:100003. [PMID: 36748187 DOI: 10.1016/j.labinv.2022.100003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 01/18/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is associated with cardiovascular disease in patients with chronic kidney disease; however, the mechanisms underlying the effect of FGF23 on cardiac function remain to be investigated. Herein, we studied the effect of continuous intravenous (CIV) FGF23 loading in a deoxycorticosterone acetate (DOCA)-salt mouse model with mild chronic kidney disease and hypertension as well as heart failure with a preserved ejection fraction. Wild-type male mice were randomly allocated to 4 groups: normal control, vehicle-treated DOCA-salt mice, FGF23-treated DOCA-salt mice, and FGF23- and calcitriol-treated DOCA-salt mice. The DOCA-salt mice received the agents via the CIV route for 10 days using an infusion minipump. DOCA-salt mice that received FGF23 showed a marked increase in the serum FGF23 level, and echocardiography in these mice revealed heart failure with a preserved ejection fraction. These mice also showed exacerbation of myocardial fibrosis, concomitant with an inverse and significant correlation with Cyp27b1 expression. Calcitriol treatment attenuated FGF23-induced cardiac fibrosis and improved diastolic function via inhibition of transforming growth factor-β signaling. This effect was independent of the systemic and local levels of FGF23. These results suggest that CIV FGF23 loading exacerbates cardiac fibrosis and that locally abnormal vitamin D metabolism is involved in this mechanism. Calcitriol attenuates this exacerbation by mediating transforming growth factor-β signaling independently of the FGF23 levels.
Collapse
Affiliation(s)
- Tomohiro Saito
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masahide Mizobuchi
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | - Tadashi Kato
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroaki Ogata
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Fumihiko Koiwa
- Division of Nephrology, Department of Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Ferroptosis: The Potential Target in Heart Failure with Preserved Ejection Fraction. Cells 2022; 11:cells11182842. [PMID: 36139417 PMCID: PMC9496758 DOI: 10.3390/cells11182842] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Ferroptosis is a recently identified cell death characterized by an excessive accumulation of iron-dependent reactive oxygen species (ROS) and lipid peroxides. Intracellular iron overload can not only cause damage to macrophages, endothelial cells, and cardiomyocytes through responses such as lipid peroxidation, oxidative stress, and inflammation, but can also affect cardiomyocyte Ca2+ handling, impair excitation–contraction coupling, and play an important role in the pathological process of heart failure with preserved ejection fraction (HFpEF). However, the mechanisms through which ferroptosis initiates the development and progression of HFpEF have not been established. This review explains the possible correlations between HFpEF and ferroptosis and provides a reliable theoretical basis for future studies on its mechanism.
Collapse
|
10
|
Smith AN, Altara R, Amin G, Habeichi NJ, Thomas DG, Jun S, Kaplan A, Booz GW, Zouein FA. Genomic, Proteomic, and Metabolic Comparisons of Small Animal Models of Heart Failure With Preserved Ejection Fraction: A Tale of Mice, Rats, and Cats. J Am Heart Assoc 2022; 11:e026071. [PMID: 35904190 PMCID: PMC9375492 DOI: 10.1161/jaha.122.026071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a medical anomaly that baffles researchers and physicians alike. The overall phenotypical changes of diastolic function and left ventricular hypertrophy observed in HFpEF are definable; however, the metabolic and molecular alterations that ultimately produce these changes are not well established. Comorbidities such as obesity, hypertension, and diabetes, as well as general aging, play crucial roles in its development and progression. Various animal models have recently been developed to better understand the pathophysiological and metabolic developments in HFpEF and to illuminate novel avenues for pharmacotherapy. These models include multi‐hit rodents and feline aortic constriction animals. Recently, genomic, proteomic, and metabolomic approaches have been used to define altered signaling pathways in the heart associated with HFpEF, including those involved in inflammation, cGMP‐related, Ca2+ handling, mitochondrial respiration, and the unfolded protein response in endoplasmic reticulum stress. This article aims to present an overview of what has been learnt by these studies, focusing mainly on the findings in common while highlighting unresolved issues. The knowledge gained from these research models will not simply be of benefit for treating HFpEF but will undoubtedly provide new insights into the mechanisms by which the heart deals with external stresses and how the processes involved can fail.
Collapse
Affiliation(s)
- Alex N Smith
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Raffaele Altara
- Department of Pathology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Laboratory of Signaling and Cardiovascular Pathophysiology, Inserm Unit UMR-S 1180, Faculty of Pharmacy Paris-Saclay University Châtenay-Malabry France
| | - Daniel G Thomas
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Seungho Jun
- Division of Cardiology The Johns Hopkins Medical Institutions Baltimore MD
| | - Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Cardiology Clinic Rumeli Hospital Istanbul Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS.,Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Laboratory of Signaling and Cardiovascular Pathophysiology, Inserm Unit UMR-S 1180, Faculty of Pharmacy Paris-Saclay University Châtenay-Malabry France.,The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
11
|
Jasińska-Stroschein M. Searching for an experimental rodent model of heart failure with preserved ejection fraction: Re-visited. Biomed Pharmacother 2022; 152:113251. [PMID: 35714511 DOI: 10.1016/j.biopha.2022.113251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) currently accounts for over 50% of all heart failure cases. It displays a large number of comorbidities, and the pathophysiological mechanisms underlying the disease remain uncertain and treatment options are limited. The heterogeneity and complexity of the disease, and its specific comorbidities, can limit the number of animal models that could ideally mimic it. The current study describes and compares the efficacy of the most popular approaches from a quantitative point of view. A review and meta-analysis of more than 500 experimental protocols was performed with special attention to these models created to induce heart failure by the most common comorbidities associated with human HFpEF, e.g., hypertension, diabetes, obesity and aging. The analysis included a wide spectrum of outcomes (alterations in body weight, lung and left ventricle weights, laboratory, hemodynamic, echocardiographic, and histopathological data as well as animal mortality) and possible covariates that could determine the utility of the particular model, such as animal age, species, experimental period and genetic modification. A wide range of systemic hypertension as well as diabetes (obesity) - related animal models are used for pre-clinical studies on heart failure, but some of them fail to replicate HFpEF. Future studies should include an evaluation of other features besides diastolic dysfunction that confirm that this is an HFpEF model, or the potential to progress to heart failure with reduced ejection fraction (HFrEF).
Collapse
|
12
|
Roh J, Hill JA, Singh A, Valero-Muñoz M, Sam F. Heart Failure With Preserved Ejection Fraction: Heterogeneous Syndrome, Diverse Preclinical Models. Circ Res 2022; 130:1906-1925. [PMID: 35679364 PMCID: PMC10035274 DOI: 10.1161/circresaha.122.320257] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents one of the greatest challenges facing cardiovascular medicine today. Despite being the most common form of heart failure worldwide, there has been limited success in developing therapeutics for this syndrome. This is largely due to our incomplete understanding of the biology driving its systemic pathophysiology and the heterogeneity of clinical phenotypes, which are increasingly being recognized as distinct HFpEF phenogroups. Development of efficacious therapeutics fundamentally relies on robust preclinical models that not only faithfully recapitulate key features of the clinical syndrome but also enable rigorous investigation of putative mechanisms of disease in the context of clinically relevant phenotypes. In this review, we propose a preclinical research strategy that is conceptually grounded in model diversification and aims to better align with our evolving understanding of the heterogeneity of clinical HFpEF. Although heterogeneity is often viewed as a major obstacle in preclinical HFpEF research, we challenge this notion and argue that embracing it may be the key to demystifying its pathobiology. Here, we first provide an overarching guideline for developing HFpEF models through a stepwise approach of comprehensive cardiac and extra-cardiac phenotyping. We then present an overview of currently available models, focused on the 3 leading phenogroups, which are primarily based on aging, cardiometabolic stress, and chronic hypertension. We discuss how well these models reflect their clinically relevant phenogroup and highlight some of the more recent mechanistic insights they are providing into the complex pathophysiology underlying HFpEF.
Collapse
Affiliation(s)
- Jason Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology) (J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Department of Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Abhilasha Singh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| |
Collapse
|
13
|
de Alencar AKN, Wang H, de Oliveira GMM, Sun X, Zapata-Sudo G, Groban L. Crossroads between Estrogen Loss, Obesity, and Heart Failure with Preserved Ejection Fraction. Arq Bras Cardiol 2021; 117:1191-1201. [PMID: 34644788 PMCID: PMC8757160 DOI: 10.36660/abc.20200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/16/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity and heart failure with preserved ejection fraction (HFpEF) increases significantly in postmenopausal women. Although obesity is a risk factor for left ventricular diastolic dysfunction (LVDD), the mechanisms that link the cessation of ovarian hormone production, and particularly estrogens, to the development of obesity, LVDD, and HFpEF in aging females are unclear. Clinical, and epidemiologic studies show that postmenopausal women with abdominal obesity (defined by waist circumference) are at greater risk for developing HFpEF than men or women without abdominal obesity. The study presents a review of clinical data that support a mechanistic link between estrogen loss plus obesity and left ventricular remodeling with LVDD. It also seeks to discuss potential cell and molecular mechanisms for estrogen-mediated protection against adverse adipocyte cell types, tissue depots, function, and metabolism that may contribute to LVDD and HFpEF.
Collapse
Affiliation(s)
| | - Hao Wang
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
- Wake Forest School of MedicineWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Internal Medicine-Section of Molecular Medicine, Winston-Salem, North Carolina - Estados Unidos da América
| | - Gláucia Maria Moraes de Oliveira
- Universidade Federal do Rio de JaneiroDepartamento de Clínica MédicaFaculdade de MedicinaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Departamento de Clínica Médica, Faculdade de Medicina, Rio de Janeiro, RJ - Brasil
| | - Xuming Sun
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
| | - Gisele Zapata-Sudo
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Instituto de Ciências Biomédicas, Rio de Janeiro, RJ - Brasil
- Universidade Federal do Rio de JaneiroInstituto de Cardiologia Edson SaadFaculdade de MedicinaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Instituto de Cardiologia Edson Saad, Faculdade de Medicina, Rio de Janeiro, RJ - Brasil
| | - Leanne Groban
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
- Wake Forest School of MedicineWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Internal Medicine-Section of Molecular Medicine, Winston-Salem, North Carolina - Estados Unidos da América
| |
Collapse
|
14
|
Valero-Muñoz M, Oh A, Faudoa E, Bretón-Romero R, El Adili F, Bujor A, Sam F. Endothelial-Mesenchymal Transition in Heart Failure With a Preserved Ejection Fraction: Insights Into the Cardiorenal Syndrome. Circ Heart Fail 2021; 14:e008372. [PMID: 34407636 DOI: 10.1161/circheartfailure.121.008372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The management of clinical heart failure with a preserved ejection fraction (HFpEF) is often complicated by concurrent renal dysfunction, known as the cardiorenal syndrome. This, combined with the notable lack of evidence-based therapies for HFpEF, highlights the importance of examining mechanisms and targetable pathways in HFpEF with the cardiorenal syndrome. METHODS HFpEF was induced in mice by uninephrectomy, infusion of d-aldosterone (HFpEF; N=10) or saline (Sham; N=8), and given 1% NaCl drinking water for 4 weeks. Renal fibrosis and endothelial-mesenchymal transition (endo-MT) were evident once HFpEF developed. Human aortic endothelial cells were treated for 4 days with 10% serum obtained from patients with chronically stable HFpEF with the cardiorenal syndrome (N=12) and compared with serum-treated human aortic endothelial cells from control subjects (no cardiac/renal disease; N=12) to recapitulate the in vivo findings. RESULTS Kidneys from HFpEF mice demonstrated hypertrophy, interstitial fibrosis (1.9-fold increase; P<0.05) with increased expression of endo-MT transcripts, including pdgfrβ (platelet-derived growth factor receptor β), snail, fibronectin, fsp1 (fibroblast-specific protein 1), and vimentin by 1.7- (P=0.004), 1.7- (P=0.05), 1.8- (P=0.005), 2.6- (P=0.001), and 2.0-fold (P=0.001) versus Sham. Immunostaining demonstrated co-localization of CD31 and ACTA2 (actin α2) in kidney sections suggesting evidence of endo-MT. Similar to the findings in HFpEF mice, comparable endo-MT markers were also significantly elevated in human aortic endothelial cells treated with serum from patients with HFpEF compared with human aortic endothelial cells treated with serum from control subjects. CONCLUSIONS These translational findings demonstrate a plausible role for endo-MT in HFpEF with cardiorenal syndrome and may have therapeutic implications in drug development for patients with HFpEF and concomitant renal dysfunction.
Collapse
Affiliation(s)
- María Valero-Muñoz
- Department of Medicine, Whitaker Cardiovascular Institute (M.V.-M., A.O., E.F., R.B.-R., F.S.), Boston University School of Medicine, MA
| | - Albin Oh
- Department of Medicine, Whitaker Cardiovascular Institute (M.V.-M., A.O., E.F., R.B.-R., F.S.), Boston University School of Medicine, MA
| | - Elizabeth Faudoa
- Department of Medicine, Whitaker Cardiovascular Institute (M.V.-M., A.O., E.F., R.B.-R., F.S.), Boston University School of Medicine, MA
| | - Rosa Bretón-Romero
- Department of Medicine, Whitaker Cardiovascular Institute (M.V.-M., A.O., E.F., R.B.-R., F.S.), Boston University School of Medicine, MA
| | - Fatima El Adili
- Department of Rheumatology, Arthritis and Autoimmune Diseases Research Center (F.E.A., A.B.), Boston University School of Medicine, MA
| | - Andreea Bujor
- Department of Rheumatology, Arthritis and Autoimmune Diseases Research Center (F.E.A., A.B.), Boston University School of Medicine, MA
| | - Flora Sam
- Department of Medicine, Whitaker Cardiovascular Institute (M.V.-M., A.O., E.F., R.B.-R., F.S.), Boston University School of Medicine, MA
| |
Collapse
|
15
|
Obesity-associated cardiovascular risk in women: hypertension and heart failure. Clin Sci (Lond) 2021; 135:1523-1544. [PMID: 34160010 DOI: 10.1042/cs20210384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
The pathogenesis of obesity-associated cardiovascular diseases begins long prior to the presentation of a cardiovascular event. In both men and women, cardiovascular events, and their associated hospitalizations and mortality, are often clinically predisposed by the presentation of a chronic cardiovascular risk factor. Obesity increases the risk of cardiovascular diseases in both sexes, however, the clinical prevalence of obesity, as well as its contribution to crucial cardiovascular risk factors is dependent on sex. The mechanisms via which obesity leads to cardiovascular risk is also discrepant in women between their premenopausal, pregnancy and postmenopausal phases of life. Emerging data indicate that at all reproductive statuses and ages, the presentation of a cardiovascular event in obese women is strongly associated with hypertension and its subsequent chronic risk factor, heart failure with preserved ejection fraction (HFpEF). In addition, emerging evidence indicates that obesity increases the risk of both hypertension and heart failure in pregnancy. This review will summarize clinical and experimental data on the female-specific prevalence and mechanisms of hypertension and heart failure in women across reproductive stages and highlight the particular risks in pregnancy as well as emerging data in a high-risk ethnicity in women of African ancestry (AA).
Collapse
|
16
|
Jang AY, Scherer PE, Kim JY, Lim S, Koh KK. Adiponectin and cardiometabolic trait and mortality: where do we go? Cardiovasc Res 2021; 118:2074-2084. [PMID: 34117867 DOI: 10.1093/cvr/cvab199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Adiponectin is an adipocyte-derived cytokine known for its cardioprotective effects in preclinical studies. Early epidemiologic studies replicated these findings and drew great interest. Subsequent large-scale prospective cohorts, however, showed that adiponectin levels seemed not to relate to incident coronary artery disease (CAD). Even more surprisingly, a paradoxical increase of all-cause and cardiovascular (CV) mortality with increased adiponectin levels was reported. The adiponectin-mortality paradox has been explained by some groups asserting that adiponectin secretion is promoted by elevated natriuretic peptides (NP). Other groups have proposed that adiponectin is elevated due to adiponectin resistance in subjects with metabolic syndrome or heart failure (HF). However, there is no unifying theory that can clearly explain this paradox. In patients with HF with reduced ejection fraction (HFrEF), stretched cardiomyocytes secrete NPs, which further promote release of adiponectin from adipose tissue, leading to adiponectin resistance. On the other hand, adiponectin biology may differ in patients with heart failure with preserved ejection fraction (HFpEF), which constitutes 50% of all of HF. Most HFpEF patients are obese, which exerts inflammation and myocardial stiffness, that is likely to prevent myocardial stretch and subsequent NP release. This segment of the patient population may display a different adiponectin biology from its HFrEF counterpart. Dissecting the adiponectin-mortality relation in terms of different HF subtypes may help to comprehensively understand this paradox. Mendelian Randomization (MR) analyses claimed that adiponectin levels are not causally related to CAD or metabolic syndrome. Results from MR studies, however, should be interpreted with great caution because the underlying history of CAD or CHF were not taken into account in these analyses, an issue that may substantially confound the results. Here, we discuss many aspects of adiponectin; cardiometabolic traits, therapeutic interventions, and the ongoing debate about the adiponectin paradox, which were recently described in basic, epidemiologic, and clinical studies.
Collapse
Affiliation(s)
- Albert Youngwoo Jang
- Division of Cardiovascular Disease, Gachon University Gil Hospital, Incheon, Korea, Gachon Cardiovascular Research Institute, Incheon, Korea
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, ., Dallas, TX, 75390-8549, USA
| | - Jang Young Kim
- Department of Internal Medicine, Yonsei University, Wonju College of Medicine, Wonju, Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwang Kon Koh
- Division of Cardiovascular Disease, Gachon University Gil Hospital, Incheon, Korea, Gachon Cardiovascular Research Institute, Incheon, Korea
| |
Collapse
|
17
|
Caldwell JT, Jones KMD, Park H, Pinto JR, Ghosh P, Reid-Foley EC, Ulrich B, Delp MD, Behnke BJ, Muller-Delp JM. Aerobic exercise training reduces cardiac function and coronary flow-induced vasodilation in mice lacking adiponectin. Am J Physiol Heart Circ Physiol 2021; 321:H1-H14. [PMID: 33989084 DOI: 10.1152/ajpheart.00885.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that adiponectin deficiency attenuates cardiac and coronary microvascular function and prevents exercise training-induced adaptations of the myocardium and the coronary microvasculature in adult mice. Adult wild-type (WT) or adiponectin knockout (adiponectin KO) mice underwent treadmill exercise training or remained sedentary for 8-10 wk. Systolic and diastolic functions were assessed before and after exercise training or cage confinement. Vasoreactivity of coronary resistance arteries was assessed at the end of exercise training or cage confinement. Before exercise training, ejection fraction and fractional shortening were similar in adiponectin KO and WT mice, but isovolumic contraction time was significantly lengthened in adiponectin KO mice. Exercise training increased ejection fraction (12%) and fractional shortening (20%) with no change in isovolumic contraction time in WT mice. In adiponectin KO mice, both ejection fraction (-9%) and fractional shortening (-12%) were reduced after exercise training and these decreases were coupled to a further increase in isovolumic contraction time (20%). In sedentary mice, endothelium-dependent dilation to flow was higher in arterioles from adiponectin KO mice as compared with WT mice. Exercise training enhanced dilation to flow in WT mice but decreased flow-induced dilation in adiponectin KO mice. These data suggest that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice lacking adiponectin; however, in the absence of adiponectin, cardiac and coronary microvascular adaptations to exercise training are compromised.NEW & NOTEWORTHY We report that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice in which adiponectin has been deleted; however, when mice lacking adiponectin are subjected to the physiological stress of exercise training, beneficial coronary microvascular and cardiac adaptations are compromised or absent.
Collapse
Affiliation(s)
- Jacob T Caldwell
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | | | - Hyerim Park
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Payal Ghosh
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida
| | - Emily C Reid-Foley
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Brody Ulrich
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Science, Florida State University, Tallahassee, Florida
| | - Brad J Behnke
- Department of Kinesiology, Johnson Cancer Research Center, Kansas State University, Manhattan, Kansas
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| |
Collapse
|
18
|
Krebber MM, van Dijk CGM, Vernooij RWM, Brandt MM, Emter CA, Rau CD, Fledderus JO, Duncker DJ, Verhaar MC, Cheng C, Joles JA. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Extracellular Matrix Remodeling during Left Ventricular Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction: A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:ijms21186742. [PMID: 32937927 PMCID: PMC7555240 DOI: 10.3390/ijms21186742] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are pivotal regulators of extracellular matrix (ECM) composition and could, due to their dynamic activity, function as prognostic tools for fibrosis and cardiac function in left ventricular diastolic dysfunction (LVDD) and heart failure with preserved ejection fraction (HFpEF). We conducted a systematic review on experimental animal models of LVDD and HFpEF published in MEDLINE or Embase. Twenty-three studies were included with a total of 36 comparisons that reported established LVDD, quantification of cardiac fibrosis and cardiac MMP or TIMP expression or activity. LVDD/HFpEF models were divided based on underlying pathology: hemodynamic overload (17 comparisons), metabolic alteration (16 comparisons) or ageing (3 comparisons). Meta-analysis showed that echocardiographic parameters were not consistently altered in LVDD/HFpEF with invasive hemodynamic measurements better representing LVDD. Increased myocardial fibrotic area indicated comparable characteristics between hemodynamic and metabolic models. Regarding MMPs and TIMPs; MMP2 and MMP9 activity and protein and TIMP1 protein levels were mainly enhanced in hemodynamic models. In most cases only mRNA was assessed and there were no correlations between cardiac tissue and plasma levels. Female gender, a known risk factor for LVDD and HFpEF, was underrepresented. Novel studies should detail relevant model characteristics and focus on MMP and TIMP protein expression and activity to identify predictive circulating markers in cardiac ECM remodeling.
Collapse
Affiliation(s)
- Merle M. Krebber
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Christian G. M. van Dijk
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Robin W. M. Vernooij
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Maarten M. Brandt
- Experimental Cardiology, Department of Cardiology, Thorax center, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.M.B.); (D.J.D.)
| | - Craig A. Emter
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA;
| | - Christoph D. Rau
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA;
| | - Joost O. Fledderus
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Dirk J. Duncker
- Experimental Cardiology, Department of Cardiology, Thorax center, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.M.B.); (D.J.D.)
| | - Marianne C. Verhaar
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Caroline Cheng
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Jaap A. Joles
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
- Correspondence:
| |
Collapse
|
19
|
Shuai W, Wen J, Li X, Wang D, Li Y, Xiang J. High-Choline Diet Exacerbates Cardiac Dysfunction, Fibrosis, and Inflammation in a Mouse Model of Heart Failure With Preserved Ejection Fraction. J Card Fail 2020; 26:694-702. [PMID: 32417378 DOI: 10.1016/j.cardfail.2020.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Trimethylamine N-oxide, a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients, has been associated with a poor prognosis for patients with cardiovascular disease. However, the role and underlying mechanisms of trimethylamine N-oxide in the cardiac function of patients with heart failure with preserved ejection fraction (HFpEF) have not been elucidated. METHODS AND RESULTS C57BL/6 mice were fed a normal diet, high-choline (1.2%) diet, and/or 3-dimethyl-1-butanol diet 3 weeks before the operation (uninephrectomy followed by a continuous saline or aldosterone infusion). Mice were assessed for 4 weeks after the operation. Echocardiographic and hemodynamic measurements were performed. Blood samples were evaluated for choline, trimethylamine N-oxide, and inflammatory factor levels. Left ventricular tissues were collected to assess myocardial fibrosis and inflammation. Left ventricular hypertrophy, pulmonary congestion, and diastolic dysfunction were markedly exacerbated in HFpEF mice fed high-choline diets compared with mice fed the control diet. Myocardial fibrosis and inflammation were markedly increased in HFpEF mice fed high-choline diets compared with animals fed the control diet. Additionally, 3,3-dimethyl-1-butanol DMB markedly ameliorated cardiac diastolic dysfunction, myocardial fibrosis and inflammation in the choline-fed HFpEF mice. CONCLUSIONS A high-choline diet exacerbates cardiac dysfunction, myocardial fibrosis, and inflammation in HFpEF mice, and 3,3-dimethyl-1-butanol ameliorates the high-choline diet-induced cardiac remodeling.
Collapse
Affiliation(s)
- Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiuli Li
- From the (1)Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Dan Wang
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunde Li
- From the (1)Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian Xiang
- From the (1)Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Shuai W, Kong B, Yang H, Fu H, Huang H. Loss of myeloid differentiation protein 1 promotes atrial fibrillation in heart failure with preserved ejection fraction. ESC Heart Fail 2020; 7:626-638. [PMID: 31994333 PMCID: PMC7160510 DOI: 10.1002/ehf2.12620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
AIMS Myeloid differentiation protein 1 (MD1) is expressed in the mammalian heart and exerts an anti-arrhythmic effect. Atrial fibrillation (AF) is closely related to heart failure with preserved ejection fraction (HFpEF). The potential impact of MD1 on AF vulnerability in an HFpEF model is not clear. METHODS AND RESULTS MD1 knock-out and wild-type (WT) mice were subjected to uninephrectomy and continuous saline or d-aldosterone infusion and given 1% sodium chloride drinking water for 4 weeks. Echocardiographic and haemodynamic measurements, electrophysiological studies, Masson staining, and molecular analysis were performed. Aldosterone-infused WT mice develop HFpEF with left ventricular hypertrophy, moderate hypertension, pulmonary congestion, and diastolic dysfunction. Aldosterone infusion increased the vulnerability of WT mice to AF, as shown by a prolonged interatrial conduction time, shortened effective refractory period, and higher incidence of AF. In addition, aldosterone infusion increased myocardial fibrosis and inflammation, decreased sarcoplasmic reticulum Ca2+ -ATPase 2a protein expression and the phosphorylation of phospholamban at Thr17, and increased sodium/calcium exchanger 1 protein expression and the phosphorylation of ryanodine receptor 2 in WT mice. All of the above adverse effects of aldosterone infusion were further exacerbated in MD1 knock-out mice compare with WT mice. Mechanistically, MD1 deletion increased the activation of the toll-like receptor 4/calmodulin-dependent protein kinase II signalling pathway in in vivo and in vitro experiments. CONCLUSIONS MD1 deficiency increases the vulnerability of HFpEF mice to AF. This is mainly caused by aggravated maladaptive left atrial fibrosis and inflammation and worsened dysregulation of calcium handling, which is induced by the enhanced activation of the toll-like receptor 4/calmodulin-dependent protein kinase II signalling pathway.
Collapse
Affiliation(s)
- Wei Shuai
- Department of CardiologyRenmin Hospital of Wuhan University238 Jiefang RoadWuhanHubei430060China
- Cardiovascular Research Institute of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Bin Kong
- Department of CardiologyRenmin Hospital of Wuhan University238 Jiefang RoadWuhanHubei430060China
- Cardiovascular Research Institute of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Hongjie Yang
- Department of CardiologyRenmin Hospital of Wuhan University238 Jiefang RoadWuhanHubei430060China
- Cardiovascular Research Institute of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Hui Fu
- Department of CardiologyRenmin Hospital of Wuhan University238 Jiefang RoadWuhanHubei430060China
- Cardiovascular Research Institute of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - He Huang
- Department of CardiologyRenmin Hospital of Wuhan University238 Jiefang RoadWuhanHubei430060China
- Cardiovascular Research Institute of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
21
|
Morphological and Functional Characteristics of Animal Models of Myocardial Fibrosis Induced by Pressure Overload. Int J Hypertens 2020; 2020:3014693. [PMID: 32099670 PMCID: PMC7013318 DOI: 10.1155/2020/3014693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Myocardial fibrosis is characterized by excessive deposition of myocardial interstitial collagen, abnormal distribution, and excessive proliferation of fibroblasts. According to the researches in recent years, myocardial fibrosis, as the pathological basis of various cardiovascular diseases, has been proven to be a core determinant in ventricular remodeling. Pressure load is one of the causes of myocardial fibrosis. In experimental models of pressure-overload-induced myocardial fibrosis, significant increase in left ventricular parameters such as interventricular septal thickness and left ventricular posterior wall thickness and the decrease of ejection fraction are some of the manifestations of cardiac damage. These morphological and functional changes have a serious impact on the maintenance of physiological functions. Therefore, establishing a suitable myocardial fibrosis model is the basis of its pathogenesis research. This paper will discuss the methods of establishing myocardial fibrosis model and compare the advantages and disadvantages of the models in order to provide a strong basis for establishing a myocardial fibrosis model.
Collapse
|
22
|
Han X, Wang Y, Fu M, Song Y, Wang J, Cui X, Fan Y, Cao J, Luo J, Sun A, Zou Y, Hu K, Zhou J, Ge J. Effects of Adiponectin on Diastolic Function in Mice Underwent Transverse Aorta Constriction. J Cardiovasc Transl Res 2019; 13:225-237. [PMID: 31621035 PMCID: PMC7166206 DOI: 10.1007/s12265-019-09913-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Abstract
Diastolic dysfunction is common in various cardiovascular diseases, which could be affected by adiponectin (APN). Nevertheless, the effects of APN on diastolic dysfunction in pressure overload model induced by transverse aorta constriction (TAC) remain to be further elucidated. Here, we demonstrated that treatment of APN attenuated diastolic dysfunction and cardiac hypertrophy in TAC mice. Notably, APN also improved active relaxation of adult cardiomyocytes, increased N2BA/N2B ratios of titin isoform, and reduced collagen type I to type III ratio and lysyl oxidase (Lox) expressions in the myocardial tissue. Moreover, APN supplementation suppressed TAC-induced oxidative stress. In vitro, inhibition of AMPK by compound C (Cpc) abrogated the effect of APN on modulation of titin isoform shift and the anti-hypertrophic effect of APN on cardiomyocytes induced by AngII. In summary, our findings indicate that APN could attenuate diastolic dysfunction in TAC mice, which are at least partially mediated by AMPK pathway.
Collapse
Affiliation(s)
- Xueting Han
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanyan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingqiang Fu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Song
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingfeng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaotong Cui
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuyuan Fan
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Juan Cao
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jie Luo
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Aijun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingmin Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Oh A, Okazaki R, Sam F, Valero-Muñoz M. Heart Failure With Preserved Ejection Fraction and Adipose Tissue: A Story of Two Tales. Front Cardiovasc Med 2019; 6:110. [PMID: 31428620 PMCID: PMC6687767 DOI: 10.3389/fcvm.2019.00110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of heart failure in the presence of a normal left ventricular ejection fraction. Although it accounts for up to 50% of all clinical presentations of heart failure, there are no evidence-based therapies for HFpEF to reduce morbidity and mortality. Additionally there is a lack of mechanistic understanding about the pathogenesis of HFpEF. HFpEF is associated with many comorbidities (such as obesity, hypertension, type 2 diabetes, atrial fibrillation, etc.) and is coupled with both cardiac and extra-cardiac abnormalities. Large outcome trials and registries reveal that being obese is a major risk factor for HFpEF. There is increasing focus on investigating the link between obesity and HFpEF, and the role that the adipose tissue and the heart, and the circulating milieu play in development and pathogenesis of HFpEF. This review discusses features of the obese-HFpEF phenotype and highlights proposed mechanisms implicated in the inter-tissue communication between adipose tissue and the heart in obesity-associated HFpEF.
Collapse
Affiliation(s)
- Albin Oh
- Evans Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Ross Okazaki
- Boston University School of Medicine, Boston, MA, United States
| | - Flora Sam
- Evans Department of Medicine, Boston Medical Center, Boston, MA, United States
- Boston University School of Medicine, Boston, MA, United States
- Section of Cardiovascular Medicine, Boston Medical Center, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Maria Valero-Muñoz
- Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
24
|
Pulmonary Hypertension and Obesity: Focus on Adiponectin. Int J Mol Sci 2019; 20:ijms20040912. [PMID: 30791536 PMCID: PMC6412189 DOI: 10.3390/ijms20040912] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension is an umbrella term including many different disorders causing an increase of the mean pulmonary arterial pressure (mPAP) ≥ 25 mmHg. Recent data revealed a strong association between obesity and pulmonary hypertension. Adiponectin is a protein synthetized by the adipose tissue with pleiotropic effects on inflammation and cell proliferation, with a potential protective role on the pulmonary vasculature. Both in vivo and in vitro studies documented that adiponectin is an endogenous modulator of NO production and interferes with AMP-activated protein kinase (AMPK) activation, mammalian target of rapamycin (mTOR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κβ) signaling preventing endothelial dysfunction and proliferation. Furthermore, adiponectin ameliorates insulin resistance by mediating the biological effects of peroxisome proliferator-activated receptor-gamma (PPARγ). Therefore, adiponectin modulation emerged as a theoretical target for the treatment of pulmonary hypertension, currently under investigation. Recently, consistent data showed that hypoglycemic agents targeting PPARγ as well as renin–angiotensin system inhibitors and mineralocorticoid receptor blockers may influence pulmonary hemodynamics in different models of pulmonary hypertension.
Collapse
|
25
|
Jenke A, Schur R, Röger C, Karadeniz Z, Grüger M, Holzhauser L, Savvatis K, Poller W, Schultheiss HP, Landmesser U, Skurk C. Adiponectin attenuates profibrotic extracellular matrix remodeling following cardiac injury by up-regulating matrix metalloproteinase 9 expression in mice. Physiol Rep 2018; 5:5/24/e13523. [PMID: 29263115 PMCID: PMC5742698 DOI: 10.14814/phy2.13523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/05/2017] [Indexed: 01/25/2023] Open
Abstract
Adiponectin (APN) is a multifunctional adipocytokine that inhibits myocardial fibrosis, dilatation, and left ventricular (LV) dysfunction after myocardial infarction (MI). Coxsackievirus B3 (CVB3) myocarditis is associated with intense extracellular matrix (ECM) remodeling which might progress to dilated cardiomyopathy. Here, we investigated in experimental CVB3 myocarditis whether APN inhibits adverse ECM remodeling following cardiac injury by affecting matrix metalloproteinase (MMP) expression. Cardiac injury was induced by CVB3 infection in APN knockout (APN-KO) and wild-type (WT) mice. Expression and activity of MMPs was quantified by qRT-PCR and zymography, respectively. Activation of protein kinases was assessed by immunoblot. In cardiac myocytes and fibroblasts APN up-regulates MMP-9 expression via activation of 5' adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK)1/2 which function as master regulators of inflammation-induced MMP-9 expression. Correspondingly, APN further increased up-regulation of MMP-9 expression triggered by tumor necrosis factor (TNF)α, lipopolysaccharide (LPS) and R-848 in cardiac fibroblasts. In vivo, compared to WT mice cardiac MMP-9 activity and serum levels of carboxy-terminal telopeptide of type I collagen (ICTP) were attenuated in APN-KO mice in subacute (day 7 p.i.) CVB3 myocarditis. Moreover, on day 3 and day 7 post CVB3 infection splenic MMP-9 expression was diminished in APN-KO mice correlating with attenuated myocardial immune cell infiltration in subacute CVB3 myocarditis. These results indicate that APN attenuates adverse cardiac remodeling following cardiac injury by up-regulating MMP-9 expression in cardiac and immune cells. Thus, APN mediates intensified collagen cleavage that might explain inhibition of LV fibrosis and dysfunction.
Collapse
Affiliation(s)
- Alexander Jenke
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Robert Schur
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Carsten Röger
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Zehra Karadeniz
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Mathias Grüger
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Luise Holzhauser
- Department of Internal Medicine, Albert-Einstein College of Medicine, Bronx, New York
| | - Kostas Savvatis
- Department of Cardiology, Barts Heart Centre Barts Health NHS Trust, London, United Kingdom
| | - Wolfgang Poller
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Heinz-Peter Schultheiss
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
26
|
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX
| |
Collapse
|
27
|
Valero-Muñoz M, Backman W, Sam F. Murine Models of Heart Failure with Preserved Ejection Fraction: a "Fishing Expedition". JACC Basic Transl Sci 2017; 2:770-789. [PMID: 29333506 PMCID: PMC5764178 DOI: 10.1016/j.jacbts.2017.07.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of HF in the presence of a normal left ventricular (LV) ejection fraction (EF). Despite accounting for up to 50% of all clinical presentations of HF, the mechanisms implicated in HFpEF are poorly understood, thus precluding effective therapy. The pathophysiological heterogeneity in the HFpEF phenotype also contributes to this disease and likely to the absence of evidence-based therapies. Limited access to human samples and imperfect animal models that completely recapitulate the human HFpEF phenotype have impeded our understanding of the mechanistic underpinnings that exist in this disease. Aging and comorbidities such as atrial fibrillation, hypertension, diabetes and obesity, pulmonary hypertension and renal dysfunction are highly associated with HFpEF. Yet, the relationship and contribution between them remains ill-defined. This review discusses some of the distinctive clinical features of HFpEF in association with these comorbidities and highlights the advantages and disadvantage of commonly used murine models, used to study the HFpEF phenotype.
Collapse
Affiliation(s)
- Maria Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Warren Backman
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cardiovascular Section, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW With the intention to summarize the currently available evidence on the pathophysiological relevance of inflammation in heart failure, this review addresses the question whether inflammation is a cause or consequence of heart failure, or both. RECENT FINDINGS This review discusses the diversity (sterile, para-inflammation, chronic inflammation) and sources of inflammation and gives an overview of how inflammation (local versus systemic) can trigger heart failure. On the other hand, the review is outlined how heart failure-associated wall stress and signals released by stressed, malfunctioning, or dead cells (DAMPs: e.g., mitochondrial DNA, ATP, S100A8, matricellular proteins) induce cardiac sterile inflammation and how heart failure provokes inflammation in various peripheral tissues in a direct (inflammatory) and indirect (hemodynamic) manner. The crosstalk between the heart and peripheral organs (bone marrow, spleen, gut, adipose tissue) is outlined and the importance of neurohormonal mechanisms including the renin angiotensin aldosteron system and the ß-adrenergic nervous system in inflammation and heart failure is discussed. Inflammation and heart failure are strongly interconnected and mutually reinforce each other. This indicates the difficulty to counteract inflammation and heart failure once this chronic vicious circle has started and points out the need to control the inflammatory process at an early stage avoiding chronic inflammation and heart failure. The diversity of inflammation further addresses the need for a tailored characterization of inflammation enabling differentiation of inflammation and subsequent target-specific strategies. It is expected that the characterization of the systemic and/or cardiac immune profile will be part of precision medicine in the future of cardiology.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
29
|
Abstract
Adiponectin is the most abundant peptide secreted by adipocytes, whose reduction plays a central role in obesity-related diseases, including insulin resistance/type 2 diabetes and cardiovascular disease. In addition to adipocytes, other cell types, such as skeletal and cardiac myocytes and endothelial cells, can also produce this adipocytokine. Adiponectin effects are mediated by adiponectin receptors, which occur as two isoforms (AdipoR1 and AdipoR2). Adiponectin has direct actions in liver, skeletal muscle, and the vasculature.Adiponectin exists in the circulation as varying molecular weight forms, produced by multimerization. Several endoplasmic reticulum ER-associated proteins, including ER oxidoreductase 1-α (Ero1-α), ER resident protein 44 (ERp44), disulfide-bond A oxidoreductase-like protein (DsbA-L), and glucose-regulated protein 94 (GPR94), have recently been found to be involved in the assembly and secretion of higher-order adiponectin complexes. Recent data indicate that the high-molecular weight (HMW) complexes have the predominant action in metabolic tissues. Studies have shown that adiponectin administration in humans and rodents has insulin-sensitizing, anti-atherogenic, and anti-inflammatory effects, and, in certain settings, also decreases body weight. Therefore, adiponectin replacement therapy in humans may suggest potential versatile therapeutic targets in the treatment of obesity, insulin resistance/type 2 diabetes, and atherosclerosis. The current knowledge on regulation and function of adiponectin in obesity, insulin resistance, and cardiovascular disease is summarized in this review.
Collapse
|
30
|
Valero-Munoz M, Li S, Wilson RM, Boldbaatar B, Iglarz M, Sam F. Dual Endothelin-A/Endothelin-B Receptor Blockade and Cardiac Remodeling in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2017; 9:CIRCHEARTFAILURE.116.003381. [PMID: 27810862 DOI: 10.1161/circheartfailure.116.003381] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite the increasing prevalence of heart failure with preserved ejection fraction (HFpEF) in humans, there remains no evidence-based therapies for HFpEF. Endothelin-1 (ET-1) antagonists are a possibility because elevated ET-1 levels are associated with adverse cardiovascular effects, such as arterial and pulmonary vasoconstriction, impaired left ventricular (LV) relaxation, and stimulation of LV hypertrophy. LV hypertrophy is a common phenotype in HFpEF, particularly when associated with hypertension. METHODS AND RESULTS In the present study, we found that ET-1 levels were significantly elevated in patients with chronic stable HFpEF. We then sought to investigate the effects of chronic macitentan, a dual ET-A/ET-B receptor antagonist, on cardiac structure and function in a murine model of HFpEF induced by chronic aldosterone infusion. Macitentan caused LV hypertrophy regression independent of blood pressure changes in HFpEF. Although macitentan did not modulate diastolic dysfunction in HFpEF, it significantly reduced wall thickness and relative wall thickness after 2 weeks of therapy. In vitro studies showed that macitentan decreased the aldosterone-induced cardiomyocyte hypertrophy. These changes were mediated by a reduction in the expression of cardiac myocyte enhancer factor 2a. Moreover, macitentan improved adverse cardiac remodeling, by reducing the stiffer cardiac collagen I and titin n2b expression in the left ventricle of mice with HFpEF. CONCLUSIONS These findings indicate that dual ET-A/ET-B receptor inhibition improves HFpEF by abrogating adverse cardiac remodeling via antihypertrophic mechanisms and by reducing stiffness. Additional studies are needed to explore the role of dual ET-1 receptor antagonists in patients with HFpEF.
Collapse
Affiliation(s)
- Maria Valero-Munoz
- From the Whitaker Cardiovascular Institute (M.V.-M., S.L., R.M.W., B.B., F.S.) and Cardiovascular Section and Evans Department of Medicine (F.S.), Boston University School of Medicine, MA; and Actelion Pharmaceuticals Ltd., Allschwil, Switzerland (M.I.)
| | - Shanpeng Li
- From the Whitaker Cardiovascular Institute (M.V.-M., S.L., R.M.W., B.B., F.S.) and Cardiovascular Section and Evans Department of Medicine (F.S.), Boston University School of Medicine, MA; and Actelion Pharmaceuticals Ltd., Allschwil, Switzerland (M.I.)
| | - Richard M Wilson
- From the Whitaker Cardiovascular Institute (M.V.-M., S.L., R.M.W., B.B., F.S.) and Cardiovascular Section and Evans Department of Medicine (F.S.), Boston University School of Medicine, MA; and Actelion Pharmaceuticals Ltd., Allschwil, Switzerland (M.I.)
| | - Batbold Boldbaatar
- From the Whitaker Cardiovascular Institute (M.V.-M., S.L., R.M.W., B.B., F.S.) and Cardiovascular Section and Evans Department of Medicine (F.S.), Boston University School of Medicine, MA; and Actelion Pharmaceuticals Ltd., Allschwil, Switzerland (M.I.)
| | - Marc Iglarz
- From the Whitaker Cardiovascular Institute (M.V.-M., S.L., R.M.W., B.B., F.S.) and Cardiovascular Section and Evans Department of Medicine (F.S.), Boston University School of Medicine, MA; and Actelion Pharmaceuticals Ltd., Allschwil, Switzerland (M.I.)
| | - Flora Sam
- From the Whitaker Cardiovascular Institute (M.V.-M., S.L., R.M.W., B.B., F.S.) and Cardiovascular Section and Evans Department of Medicine (F.S.), Boston University School of Medicine, MA; and Actelion Pharmaceuticals Ltd., Allschwil, Switzerland (M.I.).
| |
Collapse
|
31
|
Norvik JV, Schirmer H, Ytrehus K, Jenssen TG, Zykova SN, Eggen AE, Eriksen BO, Solbu MD. Low adiponectin is associated with diastolic dysfunction in women: a cross-sectional study from the Tromsø Study. BMC Cardiovasc Disord 2017; 17:79. [PMID: 28292262 PMCID: PMC5351172 DOI: 10.1186/s12872-017-0509-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/04/2017] [Indexed: 12/01/2022] Open
Abstract
Background Heart failure with preserved ejection fraction is closely associated with diastolic dysfunction and related to obesity and female sex. We investigated whether adiponectin, an adipocyte-secreted protein hormone with cardioprotective effects, was associated with indices of diastolic dysfunction, and whether the association was sex dependent. Methods We conducted a cross-sectional study on 1165 women and 896 men without diabetes. We stratified the multivariable adjusted logistic regression analyses and the fractional polynomial regression analyses according to sex, with echocardiographic markers of diastolic dysfunction as dependent variables, and adiponectin as the independent variable of interest. Results Decreased adiponectin was associated with higher odds of average tissue Doppler e’ < 9 in women (odds ratio [OR] 1.17 per 1 μg/mL adiponectin decrease, 95% confidence interval [CI] 1.04–1.30), but not in men (p for interaction with sex 0.04). Women, but not men, had higher odds of E/e’ ratio ≥ 8 with lower adiponectin (OR 1.12 per 1 μg/mL adiponectin decrease, 95% CI 1.02–1.24, p for interaction with sex 0.04). Adiponectin in the lower sex-specific tertile was associated with increased odds of concentric left ventricular hypertrophy in women (OR 2.44, 95% CI 1.03–5.77), but with decreased odds in men (OR 0.32, 95% CI 0.11–0.88, p for interaction with sex 0.002), and decreased odds of eccentric hypertrophy in men only (OR 0.53, 95% CI 0.33–0.88, p for interaction with sex 0.02). Adiponectin in the lower sex-specific tertile was associated with moderately enlarged left atria in women only (OR 1.43, 95% CI 1.01–2.03, p for interaction with sex 0.04). Finally, adiponectin had a non-linear relationship with left ventricular mass in women only, with exponentially increasing left ventricular mass with lower adiponectin levels (p for interaction with sex 0.01). Conclusions Low adiponectin was associated with higher odds of indices of diastolic dysfunction in women, but lower odds of indices of diastolic dysfunction in men. Lower adiponectin was associated with increased left ventricular mass in women only.
Collapse
Affiliation(s)
- Jon V Norvik
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway. .,Cardiovascular Research Group IMB, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Henrik Schirmer
- Department of Cardiology, University Hospital of North Norway, N-9038, Tromsø, Norway.,Cardiovascular Research Group IKM, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Kirsti Ytrehus
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.,Cardiovascular Research Group IMB, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Trond G Jenssen
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.,Department of Transplant Medicine, Oslo University Hospital Rikshospitalet, N-0424, Oslo, Norway
| | - Svetlana N Zykova
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Anne E Eggen
- Department of Community Medicine, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Bjørn O Eriksen
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.,Section of Nephrology, University Hospital of North Norway, N-9038, Tromsø, Norway
| | - Marit D Solbu
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.,Section of Nephrology, University Hospital of North Norway, N-9038, Tromsø, Norway
| |
Collapse
|
32
|
Francisco C, Neves JS, Falcão-Pires I, Leite-Moreira A. Can Adiponectin Help us to Target Diastolic Dysfunction? Cardiovasc Drugs Ther 2017; 30:635-644. [PMID: 27757724 DOI: 10.1007/s10557-016-6694-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adiponectin is the most abundant adipokine and exhibits anti-inflammatory, antiatherogenic and antidiabetic properties. Unlike other adipokines, it inversely correlates with body weight and obesity-linked cardiovascular complications. Diastolic dysfunction is the main mechanism responsible for approximately half of all heart failure cases, the so-called heart failure with preserved ejection fraction (HFpEF), but therapeutic strategies specifically directed towards these patients are still lacking. In the last years, a link between adiponectin and diastolic dysfunction has been suggested. There are several mechanisms through which adiponectin may prevent most of the pathophysiologic mechanisms underlying diastolic dysfunction and HFpEF, including the prevention of myocardial hypertrophy, cardiac fibrosis, nitrative and oxidative stress, atherosclerosis and inflammation, while promoting angiogenesis. Thus, understanding the mechanisms underlying adiponectin-mediated improvement of diastolic function has become an exciting field of research, making adiponectin a promising therapeutic target. In this review, we explore the relevance of adiponectin signaling for the prevention of diastolic dysfunction and identify prospective therapeutic targets aiming at the treatment of this clinical condition.
Collapse
Affiliation(s)
- Catarina Francisco
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319, Porto, Portugal
| | - João Sérgio Neves
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar São João, Alameda Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
33
|
Affiliation(s)
- Maik Gollasch
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, and Experimental and Clinical Research Center, a joint cooperation of the Charité – University Medicine Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
| |
Collapse
|
34
|
Tanaka K, Valero-Muñoz M, Wilson RM, Essick EE, Fowler CT, Nakamura K, van den Hoff M, Ouchi N, Sam F. Follistatin like 1 Regulates Hypertrophy in Heart Failure with Preserved Ejection Fraction. JACC Basic Transl Sci 2016; 1:207-221. [PMID: 27430031 PMCID: PMC4944656 DOI: 10.1016/j.jacbts.2016.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for ∼50% of all clinical presentations of heart failure, (HF) and its prevalence is expected to increase. However, there are no evidence-based therapies for HFpEF; thus, HFpEF represents a major unmet need. Although hypertension is the single most important risk factor for HFpEF, with a prevalence of 60% to 89% from clinical trials and human HF registries, blood pressure therapy alone is insufficient to prevent and treat HFpEF. Follistatin-like 1 (Fstl1), a divergent member of the follistatin family of extracellular glycoproteins, has previously been shown to be elevated in HF with reduced ejection fraction and associated with increased left ventricular mass. In this study, blood levels of Fstl1 were increased in humans with HFpEF. This increase was also evident in mice with hypertension-induced HFpEF and adult rat ventricular myocytes stimulated with aldosterone. Treatment with recombinant Fstl1 abrogated aldosterone-induced cardiac myocyte hypertrophy, suggesting a role for Fstl1 in the regulation of hypertrophy in HFpEF. There was also a reduction in the E/A ratio, a measure of diastolic dysfunction. Furthermore, HFpEF induced in a mouse model that specifically ablates Fstl1 in cardiac myocytes (cardiac myocyte-specific Fstl1 knockout [cFstl1-KO]) showed exacerbation of HFpEF with worsened diastolic dysfunction. In addition, cFstl1-KO-HFpEF mice demonstrated more marked cardiac myocyte hypertrophy with increased molecular markers of atrial natriuretic peptide and brain natriuretic peptide expression. These findings indicate that Fstl1 exerts therapeutic effects by modulating cardiac hypertrophy in HFpEF. Fstl1, also known as transforming growth factor-β–stimulated clone 36, is an extra-cellular glycoprotein implicated in the pathophysiology of cardiac disease. Fstl1 acts in a noncanonical manner relative to other follistatin family members, but its functions remain poorly understood. Circulating Flst1 levels are increased in humans with chronic stable HFpEF. Fstl1 treatment modulates cardiomyocyte hypertrophy in vitro and in vivo. Cardiac myocyte deletion of Fstl1 worsens the HFpEF phenotype in mice. These studies indicate that Fstl1 may be therapeutically effective in HFpEF by modulating cardiac hypertrophy and improving parameters of diastolic dysfunction.
Collapse
Affiliation(s)
- Komei Tanaka
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Richard M Wilson
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Eric E Essick
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Conor T Fowler
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Kazuto Nakamura
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Maurice van den Hoff
- Academic Medical Center, Heart Failure Research Center, Department of Anatomy, Embryology & Physiology, Amsterdam, The Netherlands
| | - Noriyuki Ouchi
- Department of Molecular Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.,Cardiovascular Section and Evans Department of Medicine, Heart Failure Program, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
35
|
Hung CS, Chou CH, Liao CW, Lin YT, Wu XM, Chang YY, Chen YH, Wu VC, Su MJ, Ho YL, Chen MF, Wu KD, Lin YH. Aldosterone Induces Tissue Inhibitor of Metalloproteinases-1 Expression and Further Contributes to Collagen Accumulation. Hypertension 2016; 67:1309-20. [DOI: 10.1161/hypertensionaha.115.06768] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/07/2016] [Indexed: 11/16/2022]
Abstract
Aldosterone induces myocardial fibrosis. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a key factor of myocardial fibrosis. This study tested the hypothesis that aldosterone induces TIMP-1 expression and contributes to the fibrotic process. We prospectively enrolled 54 patients with primary aldosteronism, and measured plasma TIMP-1 and echocardiographic parameters. In the cell study, we investigated the possible molecular mechanism by which aldosterone induces TIMP-1 secretion and the effects on collagen accumulation. In the animal study, we measured serum TIMP-1 levels, cardiac TIMP-1 levels, and cardiac structure in an aldosterone infusion mouse model using implantation of aldosterone pellets. In patients with primary aldosteronism, plasma TIMP-1 was correlated with 24-hour urinary aldosterone, left ventricular mass, and impairment of left ventricular diastolic function. In human cardiac fibroblasts, TIMP-1 protein and mRNA expressions were significantly increased by aldosterone through the glucocorticoid receptor/PI3K/Akt/nuclear factor-κB pathway. TIMP-1 small-interfering RNA significantly reduced aldosterone-induced collagen accumulation, and aldosterone did not alter the levels of collagen1a1 or matrix metalloproteinase-1 mRNA. The aldosterone-induced TIMP-1 expression was inversely related to matrix metalloproteinase-1 activity. Furthermore, in the animal model, the serum and cardiac levels of TIMP-1 were significantly elevated in the mice that received aldosterone infusion. This elevation was blocked by RU-486 but not by eplerenone, suggesting that the effect was through glucocorticoid receptors. In a long-term aldosterone infusion model, serum TIMP-1 was associated with serum aldosterone level, cardiac structure, and fibrosis. In conclusion, aldosterone induced TIMP-1 expression in vivo and in vitro. This increased TIMP-1 expression resulted in enhanced collagen accumulation via the suppression of matrix metalloproteinase-1 activity.
Collapse
Affiliation(s)
- Chi-Sheng Hung
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Chia-Hung Chou
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Che-Wei Liao
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Yen-Tin Lin
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Xue-Ming Wu
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Yi-Yao Chang
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Ying-Hsien Chen
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Vin-Cent Wu
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Ming-Jai Su
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Yi-Lwun Ho
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Ming-Fong Chen
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Kwan-Dun Wu
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| | - Yen-Hung Lin
- From the Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan (C.-S.H., Y.-H.C., Y.-L.H.); Departments of Internal Medicine (C.-S.H., V.-C.W., Y.-L.H., M.-F.C., K.-D.W., Y.-H.L.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan (C.-W.L., Y.-T.L.); Department of Internal Medicine, Taoyuan
| |
Collapse
|
36
|
Sente T, Van Berendoncks AM, Hoymans VY, Vrints CJ. Adiponectin resistance in skeletal muscle: pathophysiological implications in chronic heart failure. J Cachexia Sarcopenia Muscle 2016; 7:261-74. [PMID: 27239409 PMCID: PMC4864225 DOI: 10.1002/jcsm.12086] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/25/2015] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle wasting is a common complication of chronic heart failure (CHF) and linked to poor patient prognosis. In recent years, adiponectin was postulated to be centrally involved in CHF-associated metabolic failure and muscle wasting. This review discusses current knowledge on the role of adiponectin in CHF. Particular emphasis will be given to the complex interaction mechanisms and the intracellular pathways underlying adiponectin resistance in skeletal muscle of CHF patients. In this review, we propose that the resistance process is multifactorial, integrating abnormalities emanating from insulin signalling, mitochondrial biogenesis, and ceramide metabolism.
Collapse
Affiliation(s)
- Tahnee Sente
- Laboratory for Cellular and Molecular Cardiology Antwerp University Hospital Edegem Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research University of Antwerp Wilrijk Belgium
| | - An M Van Berendoncks
- Laboratory for Cellular and Molecular Cardiology Antwerp University Hospital Edegem Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research University of Antwerp Wilrijk Belgium
| | - Vicky Y Hoymans
- Laboratory for Cellular and Molecular Cardiology Antwerp University Hospital Edegem Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research University of Antwerp Wilrijk Belgium
| | - Christiaan J Vrints
- Laboratory for Cellular and Molecular Cardiology Antwerp University Hospital Edegem Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research University of Antwerp Wilrijk Belgium
| |
Collapse
|
37
|
Valero-Muñoz M, Li S, Wilson RM, Hulsmans M, Aprahamian T, Fuster JJ, Nahrendorf M, Scherer PE, Sam F. Heart Failure With Preserved Ejection Fraction Induces Beiging in Adipose Tissue. Circ Heart Fail 2016; 9:e002724. [PMID: 26721917 DOI: 10.1161/circheartfailure.115.002724] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Despite the increasing prevalence of heart failure with preserved ejection fraction (HFpEF) in humans, there are no evidence-based therapies for HFpEF. Clinical studies suggest a relationship between obesity-associated dysfunctional adipose tissue (AT) and HFpEF. However, an apparent obesity paradox exists in some HF populations with a higher body mass index. We sought to determine whether HFpEF exerted effects on AT and investigated the involved mechanisms. METHODS AND RESULTS Mice underwent d-aldosterone infusion, uninephrectomy, and were given 1% saline for 4 weeks. HFpEF mice developed hypertension, left ventricular hypertrophy, and diastolic dysfunction and had higher myocardial natriuretic peptide expression. Although body weights were similar in HFpEF and sham-operated mice, white AT was significantly smaller in HFpEF than in sham (epididymal AT, 7.59 versus 10.67 mg/g; inguinal AT, 6.34 versus 8.38 mg/g). These changes were associated with smaller adipocyte size and increased beiging markers (ucp-1, cidea, and eva) in white AT. Similar findings were seen in HFpEF induced by transverse aortic constriction. Increased activation of natriuretic peptide signaling was seen in white AT of HFpEF mice. The ratio of the signaling receptor, natriuretic peptide receptor type A, to the clearance receptor, nprc, was increased as was p38 mitogen-activated protein kinase activation. However, HFpEF mice failed to regulate body temperature during cold temperature exposure. In HFpEF, despite a larger brown AT mass (5.96 versus 4.50 mg/g), brown AT showed reduced activity with decreased uncoupling protein 1 (ucp-1), cell death-inducing DFFA-like effector a (cidea), and epithelial V-like antigen (eva) expression and decreased expression of lipolytic enzymes (hormone-sensitive lipase, lipoprotein lipase, and fatty acid binding protein 4) versus sham. CONCLUSIONS These findings show that HFpEF is associated with beiging in white AT and with dysfunctional brown AT.
Collapse
Affiliation(s)
- María Valero-Muñoz
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Shanpeng Li
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Richard M Wilson
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Maarten Hulsmans
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Tamar Aprahamian
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - José J Fuster
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Matthias Nahrendorf
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Philipp E Scherer
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA
| | - Flora Sam
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., S.L., R.M.W., T.A., J.J.F., F.S.); Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (M.H., M.N.); Departments of Internal Medicine and Cell Biology, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (P.E.S.); and Cardiovascular Section (F.S.) and Evans Department of Internal Medicine (T.A., F.S.), Boston University School of Medicine, MA.
| |
Collapse
|
38
|
Abstract
Obesity, particularly excess visceral fat accumulation, is highly associated with the development of metabolic syndrome and atherosclerotic cardiovascular disease. Adipose tissue produces a variety of secreted proteins, referred to as adipocytokines, which directly affect nearby or remote organs. Dysregulation of adipocytokines caused by obese conditions contributes to the pathogenesis of various metabolic and cardiovascular disorders. This review focuses on the significance of several adipocytokines that potentially exert beneficial actions on obesity-related diseases, including atherosclerosis and ischemic heart disease.
Collapse
Affiliation(s)
- Noriyuki Ouchi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine
| |
Collapse
|
39
|
Wang LL, Miller D, Wanders D, Nanayakkara G, Amin R, Judd R, Morrison EE, Zhong JM. Adiponectin downregulation is associated with volume overload-induced myocyte dysfunction in rats. Acta Pharmacol Sin 2016; 37:187-95. [PMID: 26616727 DOI: 10.1038/aps.2015.84] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/26/2015] [Indexed: 12/13/2022]
Abstract
AIM Adiponectin has been reported to exert protective effects during pathological ventricular remodeling, but the role of adiponectin in volume overload-induced heart failure remains unclear. In this study we investigated the effect of adiponectin on cardiac myocyte contractile dysfunction following volume overload in rats. METHODS Volume overload was surgically induced in rats by infrarenal aorta-vena cava fistula. The rats were intravenously administered adenoviral adiponectin at 2-, 6- and 9-weeks following fistula. The protein expression of adiponectin, adiponectin receptors (AdipoR1/R2 and T-cadherin) and AMPK activity were measured using Western blot analyses. Isolated ventricular myocytes were prepared at 12 weeks post-fistula to examine the contractile performance of myocytes and intracellular Ca(2+) transient. RESULTS A-V fistula resulted in significant reductions in serum and myocardial adiponectin levels, myocardial adiponectin receptor (AdipoR1/R2 and T-cadherin) levels, as well as myocardial AMPK activity. Consistent with these changes, the isolated myocytes exhibited significant depression in cell shortening and intracellular Ca(2+) transient. Administration of adenoviral adiponectin significantly increased serum adiponectin levels and prevented myocyte contractile dysfunction in fistula rats. Furthermore, pretreatment of isolated myocytes with recombinant adiponectin (2.5 μg/mL) significantly improved their contractile performance in fistula rats, but had no effects in control or adenoviral adiponectin-administered rats. CONCLUSION These results demonstrate a positive correlation between adiponectin downregulation and volume overload-induced ventricular remodeling. Adiponectin plays a protective role in volume overload-induced heart failure.
Collapse
|
40
|
Renin-Angiotensin Activation and Oxidative Stress in Early Heart Failure with Preserved Ejection Fraction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:825027. [PMID: 26504834 PMCID: PMC4609374 DOI: 10.1155/2015/825027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/03/2015] [Accepted: 06/10/2015] [Indexed: 02/07/2023]
Abstract
Animal models have suggested a role of renin-angiotensin system (RAS) activation and subsequent cardiac oxidation in heart failure with preserved ejection fraction (HFpEF). Nevertheless, RAS blockade has failed to show efficacy in treatment of HFpEF. We evaluated the role of RAS activation and subsequent systemic oxidation in HFpEF. Oxidative stress markers were compared in 50 subjects with and without early HFpEF. Derivatives of reactive oxidative metabolites (DROMs), F2-isoprostanes (IsoPs), and ratios of oxidized to reduced glutathione (E h GSH) and cysteine (E h CyS) were measured. Angiotensin converting enzyme (ACE) levels and activity were measured. On univariate analysis, HFpEF was associated with male sex (p = 0.04), higher body mass index (BMI) (p = 0.003), less oxidized E h CyS (p = 0.001), lower DROMs (p = 0.02), and lower IsoP (p = 0.03). Higher BMI (OR: 1.3; 95% CI: 1.1-1.6) and less oxidized E h CyS (OR: 1.2; 95% CI: 1.1-1.4) maintained associations with HFpEF on multivariate analysis. Though ACE levels were higher in early HFpEF (OR: 1.09; 95% CI: 1.01-1.05), ACE activity was similar to that in controls. HFpEF is not associated with significant systemic RAS activation or oxidative stress. This may explain the failure of RAS inhibitors to alter outcomes in HFpEF.
Collapse
|
41
|
Zhang Y, Zhao J, Li R, Lau WB, Yuan YX, Liang B, Li R, Gao EH, Koch WJ, Ma XL, Wang YJ. AdipoRon, the first orally active adiponectin receptor activator, attenuates postischemic myocardial apoptosis through both AMPK-mediated and AMPK-independent signalings. Am J Physiol Endocrinol Metab 2015; 309:E275-82. [PMID: 26037251 PMCID: PMC4525114 DOI: 10.1152/ajpendo.00577.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/25/2015] [Indexed: 12/13/2022]
Abstract
Adiponectin (APN) is a cardioprotective molecule. Its reduction in diabetes exacerbates myocardial ischemia/reperfusion (MI/R) injury. Although APN administration in animals attenuates MI/R injury, multiple factors limit its clinical application. The current study investigated whether AdipoRon, the first orally active molecule that binds APN receptors, may protect the heart against MI/R injury, and if so, to delineate the involved mechanisms. Wild-type (WT), APN knockout (APN-KO), and cardiomyocyte specific-AMPK dominant negative (AMPK-DN) mice were treated with vehicle or AdipoRon (50 mg/kg, 10 min prior to MI) and subjected to MI/R (30 min/3-24 h). Compared with vehicle, oral administration of AdipoRon to WT mice significantly improved cardiac function and attenuated postischemic cardiomyocyte apoptosis, determined by DNA ladder formation, TUNEL staining, and caspase-3 activation (all P < 0.01). MI/R-induced apoptotic cell death was significantly enhanced in mice deficient in either APN (APN-KO) or AMPK (AMPK-DN). In APN-KO mice, AdipoRon attenuated MI/R injury to the same degree as observed in WT mice. In AMPK-DN mice, AdipoRon's antiapoptotic action was partially inhibited but not lost. Finally, AdipoRon significantly attenuated postischemic oxidative stress, as evidenced by reduced NADPH oxidase expression and superoxide production. Collectively, these results demonstrate for the first time that AdipoRon, an orally active APN receptor activator, effectively attenuated postischemic cardiac injury, supporting APN receptor agonists as a promising novel therapeutic approach treating cardiovascular complications caused by obesity-related disorders such as type 2 diabetes.
Collapse
Affiliation(s)
- Yanqing Zhang
- Department of Anesthesiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jianli Zhao
- Department of Anesthesiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Rui Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Yue-Xing Yuan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Bin Liang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Rong Li
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Er-He Gao
- Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania
| | - Walter J Koch
- Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Ya-Jing Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| |
Collapse
|
42
|
Vanella L, Canestraro M, Lee CR, Cao J, Zeldin DC, Schwartzman ML, Abraham NG. Soluble epoxide hydrolase null mice exhibit female and male differences in regulation of vascular homeostasis. Prostaglandins Other Lipid Mediat 2015; 120:139-47. [PMID: 25908301 DOI: 10.1016/j.prostaglandins.2015.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 02/09/2023]
Abstract
Increased CYP epoxygenase activity and consequently up regulation of epoxyeicosatrienoic acids (EETs) levels provides protection against metabolic syndrome and cardiovascular diseases. Conversion of arachidonic acid epoxides to diols by soluble epoxide hydrolase (sEH) diminishes the beneficial cardiovascular properties of these epoxyeicosanoids. We therefore examined the possible biochemical consequences of sEH deletion on vascular responses in male and female mice. Through the use of the sEH KO mouse, we provide evidence of differences in the compensatory response in the balance between nitric oxide (NO), carbon monoxide (CO), EETs and the vasoconstrictor 20-HETE in male and female KO mice. Serum levels of adiponectin, TNFα, IL-1b and MCP1 and protein expression in vascular tissue of p-AMPK, p-AKT and p-eNOS were measured. Deletion of sEH caused a significant (p<0.05) decrease in body weight, and an increase in adiponectin, pAMPK and pAKT levels in female KO mice compared to male KO mice. Gene deletion resulted in a higher production of renal EETs in female KO compared to male KO mice and, concomitantly, we observed an increase in renal 20-HETEs levels and superoxide anion production only in male KO mice. sEH deletion increased p-AKT and p-eNOS protein expression but decreased p-AMPK levels in female KO mice. Increased levels of p-eNOS at Thr-495 were observed only in KO male mice. While p-eNOS at 1177 were not significantly different between male and female. Nitric oxide production was unaltered in male KO mice. These results provide evidence of gender differences in the preservation of vascular homeostasis in response to sEH deletion which involves regulation of phosphorylation of eNOS at the 495 site.
Collapse
Affiliation(s)
- Luca Vanella
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA; Department of Drug Sciences, University of Catania, Catania, Italy
| | - Martina Canestraro
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Craig R Lee
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jian Cao
- Chinese PLA General Hospital, Beijing 100853, China
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA; Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA.
| |
Collapse
|
43
|
Kumar P, Smith T, Rahman K, Mells JE, Thorn NE, Saxena NK, Anania FA. Adiponectin modulates focal adhesion disassembly in activated hepatic stellate cells: implication for reversing hepatic fibrosis. FASEB J 2014; 28:5172-83. [PMID: 25154876 DOI: 10.1096/fj.14-253229] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Previous evidence indicates that adiponectin possesses antifibrogenic activity in inhibiting liver fibrosis. Therapeutic strategies, however, are limited by adiponectin quaternary structure and effective concentrations in circulation. Here we postulate a novel molecular mechanism, whereby adiponectin targets focal adhesion kinase (FAK) activity and disrupts key features of the fibrogenic response. Adiponectin-null (Ad(-/-)) mice and wild-type littermates were exposed to either saline or carbon tetrachloride (CCl4) for 6 wk. CCl4-gavaged mice were also injected with attenuated adenoviral adiponectin (Ad-Adn) or Ad-LacZ for 2 wk. Hepatic stellate cells (HSCs) were treated with or without adiponectin to elucidate signal transduction mechanisms. In vivo delivery of Ad-Adn markedly attenuates CCl4-induced expression of key integrin proteins and markers of HSC activation: αv, β3, β1, α2(I) collagen, and α-smooth muscle actin. Confocal experiments of liver tissues demonstrated that adiponectin delivery also suppressed vinculin and p-FAK activity in activated HSCs. In vitro, adiponectin induced dephosphorylation of FAK, mediated by a physical association with activated tyrosine phosphatase, Shp2. Conversely, Shp2 knockdown by siRNA significantly attenuated adiponectin-induced FAK deactivation, and expression of TIMP1 and α2(I) collagen was abolished in the presence of adiponectin and si-FAK. Finally, we documented that either adiponectin or the synthetic peptide with adiponectin properties, ADP355, suppressed p-FAK in synthetic matrices with stiffness measurements of 9 and 15 kPa, assessed by immunofluorescent imaging and quantitation. The in vivo and in vitro data presented indicate that disassembly of focal adhesion complexes in HSCs is pivotal for hepatic fibrosis therapy, now that small adiponectin-like peptides are available.
Collapse
Affiliation(s)
- Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Khalidur Rahman
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Jamie E Mells
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Natalie E Thorn
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Neeraj K Saxena
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| |
Collapse
|
44
|
Tanaka K, Wilson RM, Essick EE, Duffen JL, Scherer PE, Ouchi N, Sam F. Effects of adiponectin on calcium-handling proteins in heart failure with preserved ejection fraction. Circ Heart Fail 2014; 7:976-85. [PMID: 25149095 DOI: 10.1161/circheartfailure.114.001279] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Despite the increasing prevalence of heart failure with preserved ejection fraction (HFpEF) in humans, there remains no therapeutic options for HFpEF. Adiponectin, an adipocyte-derived cytokine, exerts cardioprotective actions, and its deficiency is implicated in the development of hypertension and HF with reduced ejection fraction. Similarly, adiponectin deficiency in HFpEF exacerbates left ventricular hypertrophy, diastolic dysfunction, and HF. However, the therapeutic effects of adiponectin in HFpEF remain unknown. We sought to test the hypothesis that chronic adiponectin overexpression protects against the progression of HF in a murine model of HFpEF. METHODS AND RESULTS Adiponectin transgenic and wild-type mice underwent uninephrectomy, a continuous saline or d-aldosterone infusion and given 1.0% sodium chloride drinking water for 4 weeks. Aldosterone-infused wild-type mice developed HFpEF with hypertension, left ventricular hypertrophy, and diastolic dysfunction. Aldosterone infusion increased myocardial oxidative stress and decreased sarcoplasmic reticulum Ca(2+)-ATPase protein expression in HFpEF. Although total phospholamban protein expression was unchanged, there was a decreased expression of protein kinase A-dependent phospholamban phosphorylation at Ser16 and CaMKII (Ca(2+)/calmodulin-dependent protein kinase II)-dependent phospholamban phosphorylation at Thr17. Adiponectin overexpression in aldosterone-infused mice ameliorated left ventricular hypertrophy, diastolic dysfunction, lung congestion, and myocardial oxidative stress without affecting blood pressure and left ventricular EF. This improvement in diastolic dysfunction parameters in aldosterone-infused adiponectin transgenic mice was accompanied by the preserved protein expression of protein kinase A-dependent phosphorylation of phospholamban at Ser16. Adiponectin replacement prevented the progression of aldosterone-induced HFpEF, independent of blood pressure, by improving diastolic dysfunction and by modulating cardiac hypertrophy. CONCLUSIONS These findings suggest that adiponectin may have therapeutic effects in patients with HFpEF.
Collapse
Affiliation(s)
- Komei Tanaka
- From the Whitaker Cardiovascular Institute (K.T., R.M.W., E.E.E., J.L.D., N.O., F.S.) and Cardiovascular Section and Evans Department of Medicine (F.S.), Boston University School of Medicine, MA; and Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (P.E.S.)
| | - Richard M Wilson
- From the Whitaker Cardiovascular Institute (K.T., R.M.W., E.E.E., J.L.D., N.O., F.S.) and Cardiovascular Section and Evans Department of Medicine (F.S.), Boston University School of Medicine, MA; and Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (P.E.S.)
| | - Eric E Essick
- From the Whitaker Cardiovascular Institute (K.T., R.M.W., E.E.E., J.L.D., N.O., F.S.) and Cardiovascular Section and Evans Department of Medicine (F.S.), Boston University School of Medicine, MA; and Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (P.E.S.)
| | - Jennifer L Duffen
- From the Whitaker Cardiovascular Institute (K.T., R.M.W., E.E.E., J.L.D., N.O., F.S.) and Cardiovascular Section and Evans Department of Medicine (F.S.), Boston University School of Medicine, MA; and Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (P.E.S.)
| | - Philipp E Scherer
- From the Whitaker Cardiovascular Institute (K.T., R.M.W., E.E.E., J.L.D., N.O., F.S.) and Cardiovascular Section and Evans Department of Medicine (F.S.), Boston University School of Medicine, MA; and Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (P.E.S.)
| | - Noriyuki Ouchi
- From the Whitaker Cardiovascular Institute (K.T., R.M.W., E.E.E., J.L.D., N.O., F.S.) and Cardiovascular Section and Evans Department of Medicine (F.S.), Boston University School of Medicine, MA; and Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (P.E.S.)
| | - Flora Sam
- From the Whitaker Cardiovascular Institute (K.T., R.M.W., E.E.E., J.L.D., N.O., F.S.) and Cardiovascular Section and Evans Department of Medicine (F.S.), Boston University School of Medicine, MA; and Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (P.E.S.).
| |
Collapse
|
45
|
Abstract
The increased prevalence of obesity has mandated extensive research focused on mechanisms responsible for associated clinical complications. Emerging from the focus on adipose tissue biology as a vitally important adipokine is adiponectin which is now believed to mediate anti-diabetic, anti-atherosclerotic, anti-inflammatory, cardioprotective and cancer modifying actions. Adiponectin mediates these primarily beneficial effects via direct signaling effects and via enhancing insulin sensitivity via crosstalk with insulin signaling pathways. Reduced adiponectin action is detrimental and occurs in obesity via decreased circulating levels of adiponectin action or development of adiponectin resistance. This review will focus on cellular mechanisms of adiponectin action, their crosstalk with insulin signaling and the resultant role of adiponectin in cardiovascular disease, diabetes and cancer and reviews data from in vitro cell based studies through animal models to clinical observations.
Collapse
Affiliation(s)
- Michael P Scheid
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | | |
Collapse
|
46
|
Yoshida S, Fuster JJ, Walsh K. Adiponectin attenuates abdominal aortic aneurysm formation in hyperlipidemic mice. Atherosclerosis 2014; 235:339-46. [PMID: 24911638 DOI: 10.1016/j.atherosclerosis.2014.05.923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysms (AAA) are age-associated, life-threatening inflammatory dilations of the abdominal aorta. Human population studies have shown an association between obesity and AAA formation, but the molecular mechanisms underlying this connection remain largely unexplored. Adiponectin is an anti-inflammatory adipokine that is downregulated in obesity. In this study we evaluated the role of adiponectin in a model of AAA using apolipoprotein E/adiponectin double-knockout (Apoe(-/-)Apn(-/-)) mice. APPROACH AND RESULTS Angiotensin II (Ang II)-infusion in male Apoe(-/-)Apn(-/-) mice led to a higher incidence of AAA and a significant increase of maximal aortic diameter compared with that of Apoe(-/-) mice (2.12 ± 0.07 mm vs. 1.67 ± 0.09 mm, respectively at 28 days). Adiponectin deficiency augmented the early infiltration of macrophages and increased the expression of pro-inflammatory factors in the dilated aortic wall. MMP-2 and MMP-9 activation was also augmented in the aorta of Apoe(-/-)Apn(-/-) mice compared to Apoe(-/-) mice. These data suggest that the downregulation of adiponectin could directly contribute to the elevated incidence of AAA observed in obese individuals. CONCLUSIONS Adiponectin attenuates Ang II-induced vascular inflammation and AAA formation in mice.
Collapse
Affiliation(s)
- Sumiko Yoshida
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, MA 02118, USA
| | - José Javier Fuster
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, MA 02118, USA
| | - Kenneth Walsh
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, MA 02118, USA.
| |
Collapse
|
47
|
Anagnostis P, Katsiki N, Athyros VG, Karagiannis A. Adiponectin and Aldosterone in Left Ventricular Hypertrophy: An Intriguing Interplay. Angiology 2014; 69:745-748. [PMID: 24687414 DOI: 10.1177/0003319714527785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Panagiotis Anagnostis
- 1 Division of Endocrinology, Police Medical Centre, Thessaloniki, Greece.,2 Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Niki Katsiki
- 2 Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Vasilios G Athyros
- 2 Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Asterios Karagiannis
- 2 Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
48
|
Nakamura K, Fuster JJ, Walsh K. Adipokines: a link between obesity and cardiovascular disease. J Cardiol 2014; 63:250-9. [PMID: 24355497 PMCID: PMC3989503 DOI: 10.1016/j.jjcc.2013.11.006] [Citation(s) in RCA: 364] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022]
Abstract
Obesity is a risk factor for various cardiovascular diseases including hypertension, atherosclerosis, and myocardial infarction. Recent studies aimed at understanding the microenvironment of adipose tissue and its impact on systemic metabolism have shed light on the pathogenesis of obesity-linked cardiovascular diseases. Adipose tissue functions as an endocrine organ by secreting multiple immune-modulatory proteins known as adipokines. Obesity leads to increased expression of pro-inflammatory adipokines and diminished expression of anti-inflammatory adipokines, resulting in the development of a chronic, low-grade inflammatory state. This adipokine imbalance is thought to be a key event in promoting both systemic metabolic dysfunction and cardiovascular disease. This review will focus on the adipose tissue microenvironment and the role of adipokines in modulating systemic inflammatory responses that contribute to cardiovascular disease.
Collapse
Affiliation(s)
- Kazuto Nakamura
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - José J Fuster
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Kenneth Walsh
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
49
|
Baudrand R, Lian CG, Lian BQ, Ricchiuti V, Yao TM, Li J, Williams GH, Adler GK. Long-term dietary sodium restriction increases adiponectin expression and ameliorates the proinflammatory adipokine profile in obesity. Nutr Metab Cardiovasc Dis 2014; 24:34-41. [PMID: 24418377 PMCID: PMC4405158 DOI: 10.1016/j.numecd.2013.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/08/2013] [Accepted: 07/25/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND/AIM Obesity is associated with changes in adiponectin and pro-inflammatory adipokines. Sodium intake can affect adipokine secretion suggesting a role in cardiovascular dysfunction. We tested if long-term dietary sodium restriction modifies the expression of adiponectin and ameliorates the pro-inflammatory profile of obese, diabetic mice. METHODS/RESULTS Db/db mice were randomized to high sodium (HS 1.6% Na+, n = 6) or low sodium (LS 0.03% Na+, n = 8) diet for 16 weeks and compared with lean, db/+ mice on HS diet (n = 8). Insulin levels were 50% lower in the db/db mice on LS diet when compared with HS db/db (p < 0.05). LS diet increased cardiac adiponectin mRNA levels in db/db mice by 5-fold when compared with db/db mice on HS diet and by 2-fold when compared with HS lean mice (both p < 0.01). LS diet increased adiponectin in adipose tissue compared with db/db mice on HS diet, achieving levels similar to those of lean mice. MCP-1, IL-6 and TNF-α expression were reduced more than 50% in adipose tissue of db/db mice on LS diet when compared with HS db/db mice (all p < 0.05), to levels observed in the HS lean mice. Further, LS db/db mice had significantly reduced circulating MCP-1 and IL-6 levels when compared with HS db/db mice (both p < 0.01). CONCLUSION In obese-diabetic mice, long-term LS diet increases adiponectin in heart and adipose tissue and reduces pro-inflammatory factors in adipose tissue and plasma. These additive mechanisms may contribute to the potential cardioprotective benefits of LS diet in obesity-related metabolic disorders.
Collapse
Affiliation(s)
- R Baudrand
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA; Department of Endocrinology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330074, Chile
| | - C G Lian
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA; Division of Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - B Q Lian
- Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA
| | - V Ricchiuti
- Department of Pathology and Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - T M Yao
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - J Li
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - G H Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - G K Adler
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Darstein F, König C, Hoppe-Lotichius M, Grimm D, Knapstein J, Mittler J, Zimmermann A, Otto G, Lang H, Galle PR, Zimmermann T. Preoperative left ventricular hypertrophy is associated with reduced patient survival after liver transplantation. Clin Transplant 2013; 28:236-42. [PMID: 24372847 DOI: 10.1111/ctr.12304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED Left ventricular hypertrophy (LVH) has been described in the context of cirrhotic cardiomyopathy. The influence of LVH on survival of liver transplant (LT) recipients has not been clarified. Therefore, we evaluated the effect of LVH on survival in LT recipients. In total, data from 352 LT patients were analyzed. LVH was diagnosed by echocardiographic measurement of left ventricular wall thickness before LT. Patients were followed up for a mean of 4.2 yr. LVH was diagnosed in 135 (38.4%) patients. Patients with LVH had significantly more frequently male gender (p = 0.046), diastolic dysfunction (p < 0.001), and hepatocellular carcinoma (HCC; p = 0.004). Furthermore, LVH patients were older (p < 0.001) and had a higher body mass index (BMI; p = 0.001). There was no difference in frequency of arterial hypertension, pre-transplant diabetes mellitus, or etiology of liver cirrhosis. Patients without LVH had a better survival (log rank: p = 0.05) compared with LVH patients. In a multivariate Cox regression LVH (p = 0.031), end-stage renal disease (ESRD; p = 0.003) and lack of arterial hypertension (p = 0.004) but not MELD score (p = 0.885) were associated with poorer survival. CONCLUSION LVH is frequently diagnosed in patients on the waiting list and influences survival after LT.
Collapse
Affiliation(s)
- F Darstein
- I. Medizinische Klinik der Universitätsmedizin Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|