1
|
Börchers S, Skibicka KP. GLP-1 and Its Analogs: Does Sex Matter? Endocrinology 2025; 166:bqae165. [PMID: 39715341 PMCID: PMC11733500 DOI: 10.1210/endocr/bqae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/22/2024] [Indexed: 12/25/2024]
Abstract
While obesity and diabetes are prevalent in both men and women, some aspects of these diseases differ by sex. A new blockbuster class of therapeutics, glucagon-like peptide 1 (GLP-1) analogs (eg, semaglutide), shows promise at curbing both diseases. This review addresses the topic of sex differences in the endogenous and therapeutic actions of GLP-1 and its analogs. Work on sex differences in human studies and animal research is reviewed. Preclinical data on the mechanisms of potential sex differences in the endogenous GLP-1 system as well as the therapeutic effect of GLP-1 analogs, focusing on the effects of the drugs on the brain and behavior relating to appetite and metabolism, are highlighted. Moreover, recent clinical evidence of sex differences in the therapeutic effects of GLP-1 analogs in obesity, diabetes, and cardiovascular disease are discussed. Lastly, we review evidence for the role of GLP-1 analogs in mood and reproductive function, with particular attention to sex differences. Overall, while we did not find evidence for many qualitative sex differences in the therapeutic effect of clinically approved GLP-1 analogs, a growing body of literature highlights quantitative sex differences in the response to GLP-1 and its analogs as well as an interaction of these therapeutics with estrogens. What also clearly emerges is the paucity of data in female animal models or women in very basic aspects of the science of GLP-1-gaps that should be urgently mended, given the growing popularity of these medications, especially in women.
Collapse
Affiliation(s)
- Stina Börchers
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Gothenburg, Sweden
- Nutritional Sciences Department, The Pennsylvania State University, University Park, PA 16803, USA
- Huck Institutes of Life Science, The Pennsylvania State University, University Park, PA 16803, USA
| |
Collapse
|
2
|
Stone BT, Rahamim OM, Katz DB, Lin JY. Changes in taste palatability across the estrous cycle are modulated by hypothalamic estradiol signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587593. [PMID: 38617267 PMCID: PMC11014520 DOI: 10.1101/2024.04.01.587593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Food intake varies across the stages of a rat's estrous cycle. It is reasonable to hypothesize that this cyclic fluctuation in consumption reflects an impact of hormones on taste palatability/preference, but evidence for this hypothesis has been mixed, and critical within-subject experiments in which rats sample multiple tastes during each of the four main estrous phases (metestrus, diestrus, proestrus, and estrus) have been scarce. Here, we assayed licking for pleasant (sucrose, NaCl, saccharin) and aversive (quinine-HCl, citric acid) tastes each day for 5-10 days while tracking rats' estrous cycles through vaginal cytology. Initial analyses confirmed the previously-described increased consumption of pleasant stimuli 24-48 hours following the time of high estradiol. A closer look, however, revealed this effect to reflect a general magnification of palatability-higher than normal preferences for pleasant tastes and lower than normal preferences for aversive tastes-during metestrus. We hypothesized that this phenomenon might be related to estradiol processing in the lateral hypothalamus (LH), and tested this hypothesis by inhibiting LH estrogen receptor activity with ICI 182,780 during tasting. Control infusions replicated the metestrus magnification of palatability pattern; ICI infusions blocked this effect as predicted, but failed to render preferences "cycle free," instead delaying the palatability magnification until diestrus. Clearly, estrous phase mediates details of taste palatability in a manner involving hypothalamic actions of estradiol; further work will be needed to explain the lack of a flat response across the cycle with hypothalamic estradiol binding inhibited, a result which perhaps suggests dynamic interplay between brain regions or hormones. Significance Statement Consummatory behaviors are impacted by many variables, including naturally circulating hormones. While it is clear that consumption is particularly high during the stages following the high-estradiol stage of the rodent's estrous (and human menstrual) cycle, it is as of yet unclear whether this phenomenon reflects cycle stage-specific palatability (i.e., whether pleasant tastes are particularly delicious, and aversive tastes particularly disgusting, at particular phases). Here we show that palatability is indeed modulated by estrous phase, and that this effect is governed, at least in part, by the action of estradiol within the lateral hypothalamus. These findings shed light on the mechanisms underlying the adverse impact on human welfare due to irregularities observed across the otherwise cyclic menstrual process.
Collapse
|
3
|
Burch KE, McCracken K, Buck DJ, Davis RL, Sloan DK, Curtis KS. Relationship Between Circulating Metabolic Hormones and Their Central Receptors During Ovariectomy-Induced Weight Gain in Rats. Front Physiol 2022; 12:800266. [PMID: 35069259 PMCID: PMC8766843 DOI: 10.3389/fphys.2021.800266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Although increasing research focuses on the phenomenon of body weight gain in women after menopause, the complexity of body weight regulation and the array of models used to investigate it has proven to be challenging. Here, we used ovariectomized (OVX) rats, which rapidly gain weight, to determine if receptors for ghrelin, insulin, or leptin in the dorsal vagal complex (DVC), arcuate nucleus (ARC), or paraventricular nucleus (PVN) change during post-ovariectomy weight gain. Female Sprague-Dawley rats with ad libitum access to standard laboratory chow were bilaterally OVX or sham OVX. Subgroups were weighed and then terminated on day 5, 33, or 54 post-operatively; blood and brains were collected. ELISA kits were used to measure receptors for ghrelin, insulin, and leptin in the DVC, ARC, and PVN, as well as plasma ghrelin, insulin, and leptin. As expected, body weight increased rapidly after ovariectomy. However, ghrelin receptors did not change in any of the areas for either group, nor did circulating ghrelin. Thus, the receptor:hormone ratio indicated comparable ghrelin signaling in these CNS areas for both groups. Insulin receptors in the DVC and PVN decreased in the OVX group over time, increased in the PVN of the Sham group, and were unchanged in the ARC. These changes were accompanied by elevated circulating insulin in the OVX group. Thus, the receptor:hormone ratio indicated reduced insulin signaling in the DVC and PVN of OVX rats. Leptin receptors were unchanged in the DVC and ARC, but increased over time in the PVN of the Sham group. These changes were accompanied by elevated circulating leptin in both groups that was more pronounced in the OVX group. Thus, the receptor:hormone ratio indicated reduced leptin signaling in the DVC and PVN of both groups, but only in the OVX group for the ARC. Together, these data suggest that weight gain that occurs after removal of ovarian hormones by ovariectomy is associated with selective changes in metabolic hormone signaling in the CNS. While these changes may reflect behavioral or physiological alterations, it remains to be determined whether they cause post-ovariectomy weight gain or result from it.
Collapse
Affiliation(s)
- Kaitlin E Burch
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Kelly McCracken
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Daniel J Buck
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Randall L Davis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Dusti K Sloan
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Kathleen S Curtis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| |
Collapse
|
4
|
Relationship of estrogen synthesis capacity in the brain with obesity and self-control in men and women. Proc Natl Acad Sci U S A 2020; 117:22962-22966. [PMID: 32868418 DOI: 10.1073/pnas.2006117117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gonadal hormones are linked to mechanisms that govern appetitive behavior and its suppression. Estrogens are synthesized from androgens by the enzyme aromatase, highly expressed in the ovaries of reproductive-aged women and in the brains of men and women of all ages. We measured aromatase availability in the amygdala using positron emission tomography (PET) with the aromatase inhibitor [11C]vorozole in a sample of 43 adult, normal-weight, overweight, or obese men and women. A subsample of 27 also completed personality measures to examine the relationship between aromatase and personality traits related to self-regulation and inhibitory control. Results indicated that aromatase availability in the amygdala was negatively associated with body mass index (BMI) (in kilograms per square meter) and positively correlated with scores of the personality trait constraint independent of sex or age. Individual variations in the brain's capacity to synthesize estrogen may influence the risk of obesity and self-control in men and women.
Collapse
|
5
|
Sloan DK, Spencer DS, Curtis KS. Estrogen effects on oxytocinergic pathways that regulate food intake. Horm Behav 2018; 105:128-137. [PMID: 30118729 DOI: 10.1016/j.yhbeh.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/24/2018] [Accepted: 08/12/2018] [Indexed: 01/26/2023]
Abstract
Multiple stimulatory and inhibitory neural circuits control eating, and these circuits are influenced by an array of hormonal, neuropeptide, and neurotransmitter signals. For example, estrogen and oxytocin (OT) both are known to decrease food intake, but the mechanisms by which these signal molecules influence eating are not fully understood. These studies investigated the interaction between estrogen and OT in the control of food intake. RT-qPCR studies revealed that 17β-estradiol benzoate (EB)-treated rats showed a two-fold increase in OT mRNA in the paraventricular nucleus of the hypothalamus (PVN) compared to Oil-treated controls. Increased OT mRNA expression may increase OT protein levels, and immunohistochemistry studies showed that EB-treated rats had more intense OT labeling in the nucleus of the solitary tract (NTS), a region known to integrate signals for food intake. Food intake measurements showed that EB treatment reduced food intake, as expected. EB-treated rats lost weight over the course of the experiment, as expected, and EB-treated rats that received the highest dose of OT lost more weight than EB-treated rats that did not receive OT. Finally, OT antagonist administered to EB-treated rats reversed the effect of EB on food intake, suggesting that estrogen effects to decrease food intake may involve the oxytocinergic pathway.
Collapse
Affiliation(s)
- Dusti K Sloan
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107, USA; Department of Science and Mathematics, Tulsa Community College, Tulsa, OK 74133, USA.
| | - Diana S Spencer
- Department of Science and Mathematics, Tulsa Community College, Tulsa, OK 74133, USA
| | - Kathleen S Curtis
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107, USA
| |
Collapse
|
6
|
Loutchanwoot P, Vortherms T. Effects of puerarin on estrogen-regulated gene expression in gonadotropin-releasing hormone pulse generator of ovariectomized rats. Steroids 2018; 135:54-62. [PMID: 29733861 DOI: 10.1016/j.steroids.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 11/28/2022]
Abstract
Effects of puerarin on the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator function is investigated, for the first time, in ovariectomized rats at the level of mRNA expression of estrogen-responsive genes, e.g., estrogen receptor (ER), GnRH and its receptor (GnRHR). Rats were treated orally for 90 days either with a soy-free diet containing two different doses of puerarin (low dose of 600 mg/kg and high dose of 3000 mg/kg) or estradiol benzoate (E2B) at either low dose (4.3 mg/kg) or high dose (17.3 mg/kg). Levels of mRNA expression in the medial preoptic area/anterior hypothalamus (MPOA/AH), mediobasal hypothalamus/median eminence (MBH/ME) and adenohypophysis were measured by quantitative TaqMan® real-time RT-PCR. Plasma levels of luteinizing hormone (LH) and prolactin (PRL) were measured by radioimmunoassay. In the MPOA/AH, both puerarin and E2B decreased ERα mRNA levels without any significant changes in ERβ and GnRH mRNA levels. Both puerarin and E2B did not significantly alter the expression levels of ERα, ERβ and GnRHR in the MBH/ME. E2B exerted significant effects on the down-regulation of adenohypophyseal GnRHR mRNA transcripts and serum LH levels. Puerarin did not cause significant changes in pituitary GnRHR mRNA transcripts and serum LH and PRL levels. This is the first study to demonstrate that in ovariectomized rat models of ovarian hormone deprivation, puerarin acted as a weak estrogen-active compound in the hypothalamic GnRH pulse generator through the downregulation of MPOA/AH ERα mRNA expression.
Collapse
Affiliation(s)
- Panida Loutchanwoot
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang Sub-district, Kantarawichai District, Mahasarakham Province 44150, Thailand.
| | - Tina Vortherms
- Department of Endocrinology, Faculty of Medicine, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| |
Collapse
|
7
|
Rivera HM, Stincic TL. Estradiol and the control of feeding behavior. Steroids 2018; 133:44-52. [PMID: 29180290 PMCID: PMC5864536 DOI: 10.1016/j.steroids.2017.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
This review lays out the evidence for the role of E2 in homeostatic and hedonic feeding across several species. While significant effort has been expended on homeostatic feeding research, more studies for hedonic feeding need to be conducted (i.e. are there increases in meal size and enhanced motivation to natural food rewards). By identifying the underlying neural circuitry involved, one can better delineate the mechanisms by which E2 influences feeding behavior. By utilizing more selective neural targeting techniques, such as optogenetics, significant progress can be made toward this goal. Together, behavioral and physiological techniques will help us to better understand neural deficits that can increase the risk for obesity in the absence of E2 (menopause) and aid in developing therapeutic strategies.
Collapse
Affiliation(s)
- H M Rivera
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - T L Stincic
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
8
|
Abstract
Physical inactivity and increased consumption of energy dense, high fat (HF) foods often leads to a state of positive energy balance. Regular exercise can facilitate the maintenance of a healthy body weight and mediate changes in dietary selection. Past studies using a two-diet choice (chow vs. HF) and voluntary wheel running paradigm found that when a novel HF diet and wheel running are simultaneously introduced, male rats show complete and persistent HF diet avoidance whereas the majority of females show HF diet avoidance for a few days, but then revert to HF diet preference. Ovariectomy (OVX) appears to decrease preference for the HF diet bringing it closer to that of males. Given that estradiol but not progesterone mediates changes in food intake and energy balance, we hypothesized that estradiol signaling is required for the reversal of HF diet avoidance in female rats. Accordingly, Experiment 1 compared the persistency of running-induced HF diet avoidance in males, sham-operated females, and OVX rats with replacement of oil vehicle, estradiol benzoate (E), progesterone (P), or both (E + P). The number of wheel running rats that either avoided or preferred the HF diet varied with hormone treatment. The reversal of HF diet avoidance in running females and OVX E + P rats occurred more rapidly and frequently than male running rats. E + P but not E or P replaced OVX wheel running rats significantly reversed HF diet avoidance. OVX oil rats avoided HF diet to the same extent as male rats for the first 11 days of diet choice and then rapidly increased HF diet intake and began preferring it. This incomplete elimination of sex differences suggests that developmental factors or androgens might play a role in sustaining running-induced HF diet avoidance. Subsequently, Experiment 2 aimed to determine the role of androgens in the persistency of running-associated HF diet avoidance with sham-operated and orchiectomized (GDX) male rats. Both intact and GDX male running rats persistently avoided the HF diet to the same extent. Taken together, these results suggest that activational effects of ovarian hormones play a role in female specific running-induced changes in diet choice patterns. Furthermore, the activational effects of androgens are not required for the expression of HF diet avoidance in males.
Collapse
Affiliation(s)
- Tiffany Y Yang
- Department of Psychology, University of Illinois-Urbana Champaign, 603 E. Daniel Street, M/C 716, Champaign, IL 61820, USA
| | - Nu-Chu Liang
- Department of Psychology, University of Illinois-Urbana Champaign, 603 E. Daniel Street, M/C 716, Champaign, IL 61820, USA; Neuroscience Program, University of Illinois-Urbana Champaign, 603 E. Daniel Street, M/C 716, Champaign, IL 61820, USA.
| |
Collapse
|
9
|
Yang T, Xu WJ, York H, Liang NC. Diet choice patterns in rodents depend on novelty of the diet, exercise, species, and sex. Physiol Behav 2017; 176:149-158. [DOI: 10.1016/j.physbeh.2017.02.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 11/29/2022]
|
10
|
Thammacharoen S, Kitchanukitwattana P, Suwanapaporn P, Chaiyabutr N. Effects of Hindbrain Infusion of an Estrogen Receptor Antagonist on Estrogenic Modulation of Eating Behavior. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9631-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Xu P, Zhu L, Saito K, Yang Y, Wang C, He Y, Yan X, Hyseni I, Tong Q, Xu Y. Melanocortin 4 receptor is not required for estrogenic regulations on energy homeostasis and reproduction. Metabolism 2017; 70:152-159. [PMID: 28403939 PMCID: PMC5407306 DOI: 10.1016/j.metabol.2016.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Brain estrogen receptor-α (ERα) is essential for estrogenic regulation of energy homeostasis and reproduction. We previously showed that ERα expressed by pro-opiomelanocortin (POMC) neurons mediates estrogen's effects on food intake, body weight, negative regulation of hypothalamic-pituitary-gonadal axis (HPG axis) and fertility. RESULTS AND CONCLUSIONS We report here that global deletion of a key downstream receptor for POMC peptide, the melanocortin 4 receptor (MC4R), did not affect normal negative feedback regulation of estrogen on the HPG axis, estrous cyclicity and female fertility. Furthermore, loss of the MC4R did not influence estrogenic regulation on food intake and body weight. These results indicate that the MC4R is not required for estrogen's effects on metabolic and reproductive functions.
Collapse
Affiliation(s)
- Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030.
| | - Liangru Zhu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Kenji Saito
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Xiaofeng Yan
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Ilirjana Hyseni
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030.
| |
Collapse
|
12
|
Richard JE, Anderberg RH, López-Ferreras L, Olandersson K, Skibicka KP. Sex and estrogens alter the action of glucagon-like peptide-1 on reward. Biol Sex Differ 2016; 7:6. [PMID: 26779332 PMCID: PMC4715328 DOI: 10.1186/s13293-016-0059-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/06/2016] [Indexed: 12/18/2022] Open
Abstract
Background Feeding behavior is regulated through an intricate array of anorexic and orexigenic hormones acting on the central nervous system (CNS). Some of these hormones may have differential effects in males and females, effects potentially attributed to actions of gonadal steroids, especially estrogens. Central stimulation of the glucagon-like peptide-1 (GLP-1) receptors reduces feeding and food-reward behavior by acting on CNS regions important for the anorexic actions of estrogens. Thus, we propose that the action of GLP-1 on food intake and reward may differ between sexes. Methods Male and female rats were centrally injected with the GLP-1 analog exendin-4 (Ex4) in a non-deprived or food-restricted state; reward behavior was measured in a progressive ratio operant conditioning task. Intake of chow and palatable food were also measured. To determine if sex differences in the actions of Ex4 are due to interactions with estrogens, Ex4 treatment was preceded by treatment with a nonselective estrogen receptor-α (ERα) and ERβ or ERα-selective antagonist. Results Central injection of Ex4 revealed increased reward behavior suppression in females, compared to males, in the operant conditioning task. This increase was present in both non-deprived and food-restricted animals with larger differences in the fed state. Intake of chow and palatable food, after Ex4, were similar in males and females. Food reward, but not food intake, effect of Ex4 was attenuated by pretreatment with ER antagonist in both sexes, suggesting that estrogens may modulate effects of Ex4 in both sexes. Furthermore, central pretreatment with ERα-selective antagonist was sufficient to attenuate effects of Ex4 on reward. Conclusions Collectively, these data reveal that females display much higher sensitivity to the food reward impact of central GLP-1 receptor activation. Surprisingly, they also demonstrate that central ERα signaling is necessary for the actions of GLP-1 on food-reward behavior in both sexes.
Collapse
Affiliation(s)
- Jennifer E Richard
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden
| | - Rozita H Anderberg
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden
| | - Lorena López-Ferreras
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden
| | - Kajsa Olandersson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
13
|
Khaksari M, Abbasloo E, Dehghan F, Soltani Z, Asadikaram G. The brain cytokine levels are modulated by estrogen following traumatic brain injury: Which estrogen receptor serves as modulator? Int Immunopharmacol 2015; 28:279-87. [PMID: 26112336 DOI: 10.1016/j.intimp.2015.05.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022]
Abstract
The present study was designed to explore whether administration of estrogen affects brain cytokine levels in TBI. We also sought determine which one of type of classical estrogen receptors (ERs) is involved. Ovariectomized female rats were divided in to eight groups. Estrogen or vehicle was administered following TBI (E2 and oil groups). Antagonist of ER(ICI 182, 780) or vehicle was also administered following TBI (ICI and DMSO groups). The ICI or vehicle was administered either before induction of TBI and administration of estrogen (ICI+E2 and DMSO+E2 groups). TBI was induced by Marmarou's method. In addition to brain water content, the levels of brain proinflammatory and anti-inflammatory cytokines were measured 24 hours post- TBI. Present results demonstrated that, estrogen reduced TBI- induced brain edema. The antiedema effect of estrogen was attenuated by ICI. The brain measures of IL-1β, IL-6 and TNF-α in TBI were also reduced by estrogen. The anti-inflammatory effect of estrogen was attenuated by ICI. The inhibition level of estrogen by ICI was 53.2%, 12.09% and 48.45% for IL-1β, IL-6 and TNF-α, respectively. Estrogen also elevated IL-10 in TBI. ICI inversely controlled the effect of estrogen on IL-10, by 33.84%. This effect was not observed once ICI was used alone. The estrogen administration following TBI probably results in proinflammatory cytokines reduction, and inversely enhancement of anti-inflammatory cytokines. In our study, the neuroprotective effect of estrogen is proposed to be mediated by both ERα and ERα, and accordingly the inhibition of neuroprotective effect of estrogen by ICI.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Abbasloo
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Dehghan
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Dept. of Biochemistry, Medical School of Afzalipour, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Mosquera L, Shepherd L, Torrado AI, Torres-Diaz YM, Miranda JD, Segarra AC. Comparison of Two Methods of Estradiol Replacement: their Physiological and Behavioral Outcomes. ACTA ACUST UNITED AC 2015; 6:276. [PMID: 26962471 DOI: 10.4172/2157-7579.1000276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fluctuating sex steroids during the estrous or menstrual cycle of mammalian females make it difficult to determine their role on behaviors and physiology. To avoid this, many investigators ovariectomize their animals and administer progesterone, estradiol or a combination of both. Several different strategies are used to administer estradiol, which confounds interpretation of results. This study compared two methods of estradiol replacement implants: Silastic tubes filled with crystalline estradiol benzoate (E2) and commercially available estradiol benzoate pellets. Implants were placed subcutaneously in adult ovariectomized (OVX) rats and blood samples obtained weekly. Control OVX rats received empty Silastic tubes or placebo pellets. Our data shows that E2 plasma levels from rats with Silastic implants peaked after one week and decreased slowly thereafter. In contrast, plasma E2 from commercial pellets peaked after two weeks, increasing and decreasing over time. To validate hormone release, body weight was monitored. All E2 treated animals maintained a similar body weight over the four weeks period whereas an increase in body weight over time was observed in the OVX group that received empty implants, confirming E2 release and supporting the role of E2 in the regulation of body weight. Furthermore, the effects of E2 on basal locomotor activity were assessed using animal activity cages. Results showed no difference between E2 and control group in several locomotor activities. These results indicate that Silastic implants achieve more stable plasma estradiol levels than pellets and thus are a better alternative for studies of estradiol on brain function and behavior.
Collapse
Affiliation(s)
- Laurivette Mosquera
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Luz Shepherd
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Aranza I Torrado
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Yvonne M Torres-Diaz
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Jorge D Miranda
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| | - Annabell C Segarra
- University of Puerto Rico School of Medicine, Department of Physiology, PO Box 365067, San Juan, Puerto Rico 00936-5067, USA
| |
Collapse
|
15
|
Litwak SA, Wilson JL, Chen W, Garcia-Rudaz C, Khaksari M, Cowley MA, Enriori PJ. Estradiol prevents fat accumulation and overcomes leptin resistance in female high-fat diet mice. Endocrinology 2014; 155:4447-60. [PMID: 25147981 DOI: 10.1210/en.2014-1342] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In premenopausal and menopausal women in particular, suboptimal estrogens have been linked to the development of the metabolic syndrome as major contributors to fat accumulation. At the same time, estrogens have been described to have a role in regulating body metabolic status. We evaluated how endogenous or administered estrogens impact on the changes associated with high-fat diet (HFD) consumption in 2 different paradigms; ovarian-intact and in ovariectomized mice. When estradiol (E2) was cyclically administered to ovarian-intact HFD-fed mice for 12 weeks, animals gained significantly less weight than ovarian-intact vehicle controls (P < .01). This difference was mainly due to a reduced caloric intake but not to an increase in energy expenditure or locomotor activity. This E2 treatment regime to mice exposed to HFD was overall able to avoid the increase of visceral fat content to levels of those found in mice fed a regular chow diet. In the ovariectomized model, the main body weight and fat content reducing action of E2 was not only through decreasing food intake but also by increasing the whole-body energy expenditure, locomotor activity, and by inducing fat oxidation. Importantly, these animals became responsive to the anorexigenic effects of leptin in contrast to the vehicle-treated and the pair-fed control groups (P < .01). Further, in vitro hypothalamic secretion experiments revealed that treatment of obese mice with E2 is able to modulate the secretion of appetite-regulating neuropeptides; namely, E2 increased the secretion of the anorectic neuropeptide α-melanocyte-stimulating hormone and decreased the secretion of the orexigenic neuropetides neuropeptide Y and Agouti-related peptide. In conclusion, differences in response to E2 treatment of HFD-fed animals depend on their endogenous estrogenic status. Overall, E2 administration overcomes arcuate leptin resistance and partially prevents fat accumulation on these mice.
Collapse
Affiliation(s)
- Sara A Litwak
- Monash Obesity and Diabetes Institute/Department of Physiology (S.A.L., J.L.W., W.C., M.A.C., P.J.E.), Monash University, 3800 Clayton, Victoria, Australia; Department of Paediatrics (C.G-R.), Faculty of Medicine, Nursing and Health Sciences, Monash University and Monash Children's Hospital, 3168 Clayton, Victoria, Australia; and Department of Physiology (M.K.), Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran 76169-1411
| | | | | | | | | | | | | |
Collapse
|
16
|
Effects of estrogen on food intake, serum leptin levels and leptin mRNA expression in adipose tissue of female rats. Lab Anim Res 2013; 29:168-73. [PMID: 24106512 PMCID: PMC3791351 DOI: 10.5625/lar.2013.29.3.168] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/29/2013] [Accepted: 08/20/2013] [Indexed: 11/21/2022] Open
Abstract
The integration of metabolism and reproduction involves complex interactions of hypothalamic neuropeptides with metabolic hormones, fuels, and sex steroids. Of these, estrogen influences food intake, body weight, and the accumulation and distribution of adipose tissue. In this study, the effects of estrogen on food intake, serum leptin levels, and leptin mRNA expression were evaluated in ovariectomized rats. Seven-week-old female Wistar-Imamichi rats were ovariectomized and divided into three treatment groups: group 1 (the control group) received sesame oil, group 2 was given 17β-estradiol benzoate, and group 3 received 17β-estradiol benzoate plus progesterone. The body weight and food consumption of each rat were determined daily. Serum leptin levels and leptin mRNA expression were measured by ELISA and quantitative RT-PCR, respectively. Food consumption in the control group was significantly higher (P<0.05) than that in groups 2 and 3, although body weight did not significantly differ among the three groups. The serum leptin concentration and leptin mRNA expression were significantly higher (P<0.05) in groups 2 and 3 than in group 1, but no significant difference existed between groups 2 and 3. In conclusion, estrogen influenced food intake via the modulation of leptin signaling pathway in ovariectomized rats.
Collapse
|
17
|
Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1215-67. [PMID: 23904103 DOI: 10.1152/ajpregu.00446.2012] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Veterinary Physiology and Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland; and
| | | |
Collapse
|
18
|
Siriphorn A, Dunham KA, Chompoopong S, Floyd CL. Postinjury administration of 17β-estradiol induces protection in the gray and white matter with associated functional recovery after cervical spinal cord injury in male rats. J Comp Neurol 2013; 520:2630-46. [PMID: 22684936 DOI: 10.1002/cne.23056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The majority of spinal cord injuries (SCIs) in the clinic occur at the lower cervical levels, resulting in both white and gray matter disruption. In contrast, most experimental models of SCI in rodents induce damage in the thoracic cord, resulting primarily in white matter disruption. To address this disparity, experimental cervical SCI models have been developed. Thus, we used a recently characterized model of cervical hemicontusion SCI in adult male rats to assess the potential therapeutic effect of post-SCI administration of 17β-estradiol. Rats received a hemicontusion at the level of the fifth cervical vertebra (C5) followed by administration of 17β-estradiol via a slow release pellet (0.5 or 5.0 mg/pellet) beginning at 30 minutes post-SCI. Behavioral evaluation of skilled and unskilled forelimb function and locomotor function were conducted for 7 weeks after SCI. Upon conclusion of the behavioral assessments, spinal cords were collected and histochemistry and stereology were conducted to evaluate the effect of treatment on the lesion characteristics. We found that post-SCI administration of 17β-estradiol decreased neuronal loss in the ventral horn, decreased reactive astrogliosis, decreased the immune response, and increased white mater sparing at the lesion epicenter. Additionally, post-SCI administration of 17β-estradiol improved skilled forelimb function and locomotor function. Taken together, these data suggest that post-SCI administration of 17β-estradiol protected both the gray and white matter in cervical SCI. Moreover, this treatment improved function on skilled motor tasks that involve both gray and white matter components, suggesting that this is likely a highly clinically relevant protective strategy.
Collapse
Affiliation(s)
- Akkradate Siriphorn
- Center for Glial Biology in Medicine and Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Alabama 35249, USA
| | | | | | | |
Collapse
|
19
|
Effect of hormone replacement therapy in matrix metalloproteinase expression and intimal hyperplasia development after vascular injury. Ann Vasc Surg 2012; 27:337-45. [PMID: 23088810 DOI: 10.1016/j.avsg.2012.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND Postmenopausal women taking hormone replacement therapy (HRT) require secondary intervention after vascular reconstruction more frequently than women not taking HRT, often due to increased development of intimal hyperplasia (IH). Matrix metalloproteinases (MMPs) play a role in IH by degradation and remodeling of components of the vascular basement membrane. The MMP pathway is regulated by a balance between MMPs, membrane-type MMPs (MT-MMPs), and tissue inhibitor of MMPs (TIMPs). We have recently provided evidence for unbalanced regulation of the MT1-MMP/MMP-2 pathway in vascular smooth muscle cells (VSMCs) exposed to hormones in vitro. Herein we study the role of HRT in the development of IH in a postmenopausal rodent model of vascular injury and in the modulation of this MMP regulatory pathway in vivo. METHODS Female rats were aged to 12 months. Animals were ovariectomized (OVX) and 4 weeks later hormones or placebo was delivered via a 90-day slow-release pellet. After 6 weeks of HRT each rat underwent balloon angioplasty of the left common carotid artery. At 14 days postinjury tissue samples were collected and stained with trichrome elastin and for isoform-specific MMPs. RESULTS After vascular injury, the intima:media (I:M) ratio was decreased in OVX rats receiving placebos as compared with non-OVX controls (P < 0.05). In OVX animals receiving HRT, estrogen with and without progesterone and progesterone alone slightly increased I:M ratio compared with placebo, although no significant difference was found in any HRT group. Injury-induced intimal expression of MMP-2 and -9 was decreased in OVX placebo animals compared with non-OVX controls (P < 0.05). MMP-2 and -9 levels were subsequently increased by each type of hormone therapy compared with placebo, with a significant increase in MMP-9 in response to estrogen with and without progesterone (P < 0.05). Conversely, TIMP-2 was decreased by estrogen compared with placebo (P < 0.05). There was no effect on intimal MT1-MMP in any group. CONCLUSIONS In this study we detected a statistically significant decrease in IH as a result of OVX. Subsequent HRT exposure resulted in increased I:M ratios compared with OVX animals given placebo, although significance was not reached with the doses given. Long-term exogenous exposure may have a more deleterious effect compared with acute exposure and should be examined further. We also demonstrated a significant reduction in MMP-2 and -9 and TIMP-2 in response to OVX. Subsequent hormone exposure resulted in the upregulation of MMP-2 and -9 without a counterregulatory increase in TIMP, indicating that HRT modulates the MMP regulatory pathway in vivo. The data suggest that the lack of hormones after OVX protects against pathologic remodeling in our aged model of disease and that exposure to both natural and exogenous hormones could be a negative risk factor resulting in an exaggerated vascular response to injury. Future studies should focus on in vivo manipulation of unbalanced MMP regulation for prevention of IH in response to HRT and in general. Furthermore, the age-associated difference in response to the presence of natural hormones in young vs aged models should be investigated.
Collapse
|
20
|
Rivera HM, Santollo J, Nikonova LV, Eckel LA. Estradiol increases the anorexia associated with increased 5-HT(2C) receptor activation in ovariectomized rats. Physiol Behav 2011; 105:188-94. [PMID: 21889523 DOI: 10.1016/j.physbeh.2011.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/20/2011] [Accepted: 08/17/2011] [Indexed: 11/24/2022]
Abstract
Estradiol's inhibitory effect on food intake is mediated, in part, by its ability to increase the activity of meal-related signals, including serotonin (5-HT), which hastens satiation. The important role that postsynaptic 5-HT(2C) receptors play in mediating 5-HT's anorexigenic effect prompted us to investigate whether a regimen of acute estradiol treatment increases the anorexia associated with increased 5-HT(2C) receptor activation in ovariectomized (OVX) rats. We demonstrated that intraperitoneal and intracerebroventricular (i.c.v.) administration of low doses of the 5-HT(2C) receptor agonist meta-chlorophenylpiperazine (mCPP) decreased 1-h dark-phase food intake in estradiol-treated, but not oil-treated, OVX rats. During a longer feeding test, we demonstrated that i.c.v. administration of mCPP decreased 22-h food intake in oil-treated and, to a greater extent, estradiol-treated OVX rats. In a second study, we demonstrated that estradiol increased 5-HT(2C) receptor protein content in the caudal brainstem, but not hypothalamus, of OVX rats. We conclude that a physiologically-relevant regimen of acute estradiol treatment increases sensitivity to mCPP's anorexigenic effect. Our demonstration that this same regimen of estradiol treatment increases 5-HT(2C) receptor protein content in the caudal hindbrain of OVX rats provides a possible mechanism to explain our behavioral findings.
Collapse
Affiliation(s)
- Heidi M Rivera
- Department of Psychology and program in Neuroscience, The Florida State University, Tallahassee, FL 32306-4301, USA
| | | | | | | |
Collapse
|
21
|
Alonso-Alonso M, Ziemke F, Magkos F, Barrios FA, Brinkoetter M, Boyd I, Rifkin-Graboi A, Yannakoulia M, Rojas R, Pascual-Leone A, Mantzoros CS. Brain responses to food images during the early and late follicular phase of the menstrual cycle in healthy young women: relation to fasting and feeding. Am J Clin Nutr 2011; 94:377-84. [PMID: 21593494 PMCID: PMC3142717 DOI: 10.3945/ajcn.110.010736] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Food intake fluctuates throughout the menstrual cycle; it is greater during the early follicular and luteal phases than in the late follicular (periovulatory) phase. Ovarian steroids can influence brain areas that process food-related information, but the specific contribution of individual hormones and the importance of the prandial state remain unknown. OBJECTIVE The objective was to examine whether brain activation during food visualization is affected by changes in estradiol concentration in the fasted and fed conditions. DESIGN Nine eumenorrheic, lean young women [mean (±SD) age: 26.2 ± 3.2 y; body mass index (in kg/m(2)): 22.4 ± 1.2] completed 2 visits, one in the early (low estradiol) and one in the late (high estradiol) follicular phase of their menstrual cycle. At each visit, subjects underwent functional magnetic resonance imaging while they viewed food and nonfood images, before and after a standardized meal. Region-of-interest analysis was used to examine the effect of follicular phase and prandial state on brain activation (food > nonfood contrast) and its association with estradiol concentration. RESULTS Differences were identified in the inferior frontal and fusiform gyri. In these areas, visualization of food elicited greater activation in the fed state than during fasting but only in the late follicular phase, when estradiol concentration was high. The change in estradiol concentration across the follicular phase (late minus early) was inversely correlated with the change in fusiform gyrus activation in the fasted state but not in the fed state. CONCLUSION Our findings suggest that estradiol may reduce food intake by decreasing sensitivity to food cues in the ventral visual pathway under conditions of energy deprivation. This trial was registered at clinicaltrials.gov as NCT00130117.
Collapse
Affiliation(s)
- Miguel Alonso-Alonso
- Division of Endocrinology, Diabetes and Metabolism, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Santollo J, Torregrossa AM, Eckel LA. Estradiol acts in the medial preoptic area, arcuate nucleus, and dorsal raphe nucleus to reduce food intake in ovariectomized rats. Horm Behav 2011; 60:86-93. [PMID: 21439964 PMCID: PMC3112293 DOI: 10.1016/j.yhbeh.2011.03.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/15/2011] [Accepted: 03/19/2011] [Indexed: 10/18/2022]
Abstract
Estradiol (E2) exerts an inhibitory effect on food intake in a variety of species. While compelling evidence indicates that central, rather than peripheral, estrogen receptors (ERs) mediate this effect, the exact brain regions involved have yet to be conclusively identified. In order to identify brain regions that are sufficient for E2's anorectic effect, food intake was monitored for 48 h following acute, unilateral, microinfusions of vehicle and two doses (0.25 and 2.5 μg) of a water-soluble form of E2 in multiple brain regions within the hypothalamus and midbrain of ovariectomized rats. Dose-related decreases in 24-h food intake were observed following E2 administration in the medial preoptic area (MPOA), arcuate nucleus (ARC), and dorsal raphe nucleus (DRN). Within the former two brain areas, the larger dose of E2 also decreased 4-h food intake. Food intake was not influenced, however, by similar E2 administration in the paraventricular nucleus, lateral hypothalamus, or ventromedial nucleus. These data suggest that E2-responsive neurons within the MPOA, ARC, and DRN participate in the estrogenic control of food intake and provide specific brain areas for future investigations of the cellular mechanism underlying estradiol's anorexigenic effect.
Collapse
Affiliation(s)
| | | | - Lisa A. Eckel
- Correspondence to: Lisa A. Eckel, Department of Psychology, Florida State University, Tallahassee, FL 32306, United States. Tel.: 850-644-3480; Fax: 850-644-7739;
| |
Collapse
|
23
|
Eckel LA. The ovarian hormone estradiol plays a crucial role in the control of food intake in females. Physiol Behav 2011; 104:517-24. [PMID: 21530561 DOI: 10.1016/j.physbeh.2011.04.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 01/05/2023]
Abstract
Despite a strong male bias in both basic and clinical research, it is becoming increasingly accepted that the ovarian hormone estradiol plays an important role in the control of food intake in females. Estradiol's feeding inhibitory effect occurs in a variety of species, including women, but the underlying mechanism has been studied most extensively in rats and mice. Accordingly, much of the data reviewed here is derived from the rodent literature. Adult female rats display a robust decrease in food intake during estrus and ovariectomy promotes hyperphagia and weight gain, both of which can be prevented by a physiological regimen of estradiol treatment. Behavioral analyses have demonstrated that the feeding inhibitory effect of estradiol is mediated entirely by a decrease in meal size. In rats, estradiol appears to exert this action indirectly via interactions with peptide and neurotransmitter systems implicated in the direct control of meal size. Here, I summarize research examining the neurobiological mechanism underlying estradiol's anorexigenic effect. Central estrogen receptors (ERs) have been implicated and activation of one ER subtype in particular, ERα, appears both sufficient and necessary for the estrogenic control of food intake. Future studies are necessary to identify the critical brain areas and intracellular signaling pathways responsible for estradiol's anorexigenic effect. A clearer understanding of the estrogenic control of food intake is prerequisite to elucidating the biological factors that contribute to obesity and eating disorders, both of which are more prevalent in women, compared to men.
Collapse
Affiliation(s)
- Lisa A Eckel
- Program in Neuroscience, Florida State University, 1107 West Call Street,Tallahassee, FL 32306-4301, USA.
| |
Collapse
|