1
|
Livingston GK, Ryan TL, Escalona MB, Foster AE, Balajee AS. Retrospective Evaluation of Cytogenetic Effects Induced by Internal Radioiodine Exposure: A 27-Year Follow-Up Study. Cytogenet Genome Res 2023; 163:154-162. [PMID: 37573786 DOI: 10.1159/000533396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
Radioiodine (131I) is widely used in the treatment of hyperthyroidism and as an effective ablative therapy for differentiated thyroid cancer. Radioiodine (131I) constitutes 90% of the currently used therapies in the field of nuclear medicine. Here, we report the cytogenetic findings of a long-term follow-up study of 27 years on a male patient who received two rounds of radioiodine treatment within a span of 26 months between 1992 and 1994 for his papillary thyroid cancer. A comprehensive cytogenetic follow-up study utilizing cytokinesis blocked micronucleus assay, dicentric chromosome assay, genome wide translocations and inversions was initiated on this patient since the first administration of radioiodine in 1992. Frequencies of micronuclei (0.006/cell) and dicentric chromosomes (0.008/cell) detected in the current study were grossly similar to that reported earlier in 2019. The mFISH analysis detected chromosome aberrations in 8.6% of the cells in the form of both unbalanced and balanced translocations. Additionally, a clonal translocation involving chromosomes 14p; 15q was observed in 2 of the 500 cells analyzed. Out of the 500 cells examined, one cell showed a complex translocation (involving chromosomes 9, 10, and 16) besides 5 other chromosome rearrangements. Collectively, our study indicates that the past radioiodine exposure results in long-lasting chromosome damage and that the persistence of translocations can be useful for both retrospective biodosimetry and for monitoring chromosome instability in the lymphocytes of radioiodine exposed individuals.
Collapse
Affiliation(s)
- Gordon K Livingston
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Terri L Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Maria B Escalona
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Alvis E Foster
- Indiana University Health, Ball Memorial Hospital, Muncie, Indiana, USA
| | - Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| |
Collapse
|
2
|
Chaulin AM, Grigorieva JV, Suvorova GN, Duplyakov DV. Experimental Modeling Of Hypothyroidism: Principles, Methods, Several Advanced Research Directions In Cardiology. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hypothyroidism is one of the most common pathological conditions in modern clinical practice. Due to the fact that the targets of thyroid hormones are virtually all organs and tissues, the morphological and clinical manifestations arising with a deficiency of thyroid hormones are quite diverse. Experimental models of hypothyroidism in laboratory animals are widely used for preclinical study of the fundamental pathophysiological mechanisms underlying hypothyroidism, as well as for assessing the effectiveness of treatment-and-prophylactic effects. Currently, several groups of effective models of hypothyroidism have been developed: dietary, surgical, medicamentous, genetic, radioactive and immunological. Each of the specified models is based on different principles, has advantages and disadvantages, and can be used depending on the goals and objectives of the experiment. In this review, we will consistently consider hypothyroidism modeling methods and indicate some promising areas of their use in cardiology.
Collapse
Affiliation(s)
- Aleksey M. Chaulin
- Samara State Medical University, Samara, Russia; Samara Regional Clinical Cardiological Dispensary, Samara, Russia
| | | | | | - Dmitry V. Duplyakov
- Samara State Medical University, Samara, Russia; Samara Regional Clinical Cardiological Dispensary, Samara, Russia
| |
Collapse
|
3
|
Micewicz ED, Damoiseaux RD, Deng G, Gomez A, Iwamoto KS, Jung ME, Nguyen C, Norris AJ, Ratikan JA, Ruchala P, Sayre JW, Schaue D, Whitelegge JP, McBride WH. Classes of Drugs that Mitigate Radiation Syndromes. Front Pharmacol 2021; 12:666776. [PMID: 34084139 PMCID: PMC8167044 DOI: 10.3389/fphar.2021.666776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
We previously reported several vignettes on types and classes of drugs able to mitigate acute and, in at least one case, late radiation syndromes in mice. Most of these had emerged from high throughput screening (HTS) of bioactive and chemical drug libraries using ionizing radiation-induced lymphocytic apoptosis as a readout. Here we report the full analysis of the HTS screen of libraries with 85,000 small molecule chemicals that identified 220 "hits." Most of these hits could be allocated by maximal common substructure analysis to one of 11 clusters each containing at least three active compounds. Further screening validated 23 compounds as being most active; 15 of these were cherry-picked based on drug availability and tested for their ability to mitigate acute hematopoietic radiation syndrome (H-ARS) in mice. Of these, five bore a 4-nitrophenylsulfonamide motif while 4 had a quinoline scaffold. All but two of the 15 significantly (p < 0.05) mitigated H-ARS in mice. We had previously reported that the lead 4-(nitrophenylsulfonyl)-4-phenylpiperazine compound (NPSP512), was active in mitigating multiple acute and late radiation syndromes in mice of more than one sex and strain. Unfortunately, the formulation of this drug had to be changed for regulatory reasons and we report here on the synthesis and testing of active analogs of NPSP512 (QS1 and 52A1) that have increased solubility in water and in vivo bioavailability while retaining mitigator activity against H-ARS (p < 0.0001) and other radiation syndromes. The lead quinoline 057 was also active in multiple murine models of radiation damage. Taken together, HTS of a total of 150,000 bioactive or chemical substances, combined with maximal common substructure analysis has resulted in the discovery of diverse groups of compounds that can mitigate H-ARS and at least some of which can mitigate multiple radiation syndromes when given starting 24 h after exposure. We discuss what is known about how these agents might work, and the importance of formulation and bioavailability.
Collapse
Affiliation(s)
- Ewa D. Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Robert D. Damoiseaux
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, Henry Samueli School of Engineering, University of California at Los Angeles, Los Angeles, CA, United States
| | - Gang Deng
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, United States
| | - Adrian Gomez
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, CA, United States
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Michael E. Jung
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA, United States
| | - Christine Nguyen
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | | | - Josephine A. Ratikan
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Piotr Ruchala
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, CA, United States
| | - James W. Sayre
- Department of Biostatistics and Radiology, Fielding School of Public Health, University of California at Los Angeles, Los Angeles, CA, United States
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, CA, United States
| | - William H. McBride
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
4
|
Kyrilli A, Gacquer D, Detours V, Lefort A, Libert F, Twyffels L, Van Den Eeckhaute L, Strickaert A, Maenhaut C, De Deken X, Dumont JE, Miot F, Corvilain B. Dissecting the Role of Thyrotropin in the DNA Damage Response in Human Thyrocytes after 131I, γ Radiation and H2O2. J Clin Endocrinol Metab 2020; 105:5614560. [PMID: 31701151 DOI: 10.1210/clinem/dgz185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/15/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The early molecular events in human thyrocytes after 131I exposure have not yet been unravelled. Therefore, we investigated the role of TSH in the 131I-induced DNA damage response and gene expression in primary cultured human thyrocytes. METHODS Following exposure of thyrocytes, in the presence or absence of TSH, to 131I (β radiation), γ radiation (3 Gy), and hydrogen peroxide (H2O2), we assessed DNA damage, proliferation, and cell-cycle status. We conducted RNA sequencing to profile gene expression after each type of exposure and evaluated the influence of TSH on each transcriptomic response. RESULTS Overall, the thyrocyte responses following exposure to β or γ radiation and to H2O2 were similar. However, TSH increased 131I-induced DNA damage, an effect partially diminished after iodide uptake inhibition. Specifically, TSH increased the number of DNA double-strand breaks in nonexposed thyrocytes and thus predisposed them to greater damage following 131I exposure. This effect most likely occurred via Gα q cascade and a rise in intracellular reactive oxygen species (ROS) levels. β and γ radiation prolonged thyroid cell-cycle arrest to a similar extent without sign of apoptosis. The gene expression profiles of thyrocytes exposed to β/γ radiation or H2O2 were overlapping. Modulations in genes involved in inflammatory response, apoptosis, and proliferation were observed. TSH increased the number and intensity of modulation of differentially expressed genes after 131I exposure. CONCLUSIONS TSH specifically increased 131I-induced DNA damage probably via a rise in ROS levels and produced a more prominent transcriptomic response after exposure to 131I.
Collapse
Affiliation(s)
- Aglaia Kyrilli
- Division of Endocrinology, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - David Gacquer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Vincent Detours
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Anne Lefort
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Frédéric Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Laure Twyffels
- Center for Microscopy and Molecular Imaging (CMMI), Gosselies Biopark, ULB, Gosselies, Belgium
| | - Laura Van Den Eeckhaute
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Aurélie Strickaert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Carine Maenhaut
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Jacques Emile Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Françoise Miot
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Bernard Corvilain
- Division of Endocrinology, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| |
Collapse
|
5
|
Riley AS, McKenzie GAG, Green V, Schettino G, England RJA, Greenman J. The effect of radioiodine treatment on the diseased thyroid gland. Int J Radiat Biol 2019; 95:1718-1727. [DOI: 10.1080/09553002.2019.1665206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Gordon A. G. McKenzie
- Hull and East, Yorkshire Hospitals NHS Trust, Cottingham, UK
- Hull York Medical School, Hull, UK
| | | | - Giuseppe Schettino
- Medical Radiation Sciences Group, National Physical Laboratory, University of Surrey, Teddington, UK
| | | | | |
Collapse
|
6
|
Kurashige T, Shimamura M, Nagayama Y. N-Acetyl-L-cysteine protects thyroid cells against DNA damage induced by external and internal irradiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:405-412. [PMID: 28871381 DOI: 10.1007/s00411-017-0711-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
We evaluated the effect of the antioxidant N-acetyl-L-cysteine (NAC) on the levels of reactive oxygen species (ROS), DNA double strand breaks (DSB) and micronuclei (MN) induced by internal and external irradiation using a rat thyroid cell line PCCL3. In internal irradiation experiments, ROS and DSB levels increased immediately after 131I addition and then gradually declined, resulting in very high levels of MN at 24 and 48 h. NAC administration both pre- and also post-131I addition suppressed ROS, DSB and MN. In external irradiation experiments with a low dose (0.5 Gy), ROS and DSB increased shortly and could be prevented by NAC administration pre-, but not post-irradiation. In contrast, external irradiation with a high dose (5 Gy) increased ROS and DSB in a bimodal way: ROS and DSB levels increased immediately after irradiation, quickly returned to the basal levels and gradually rose again after >24 h. The second phase was in parallel with an increase in 4-hydroxy-2-nonenal. The number of MN induced by the second wave of ROS/DSB elevations was much higher than that by the first peak. In this situation, NAC administered pre- and post-irradiation comparably suppressed MN induced by a delayed ROS elevation. In conclusion, a prolonged ROS increase during internal irradiation and a delayed ROS increase after external irradiation with a high dose caused serious DNA damage, which were efficiently prevented by NAC. Thus, NAC administration even both after internal or external irradiation prevents ROS increase and eventual DNA damage.
Collapse
Affiliation(s)
- Tomomi Kurashige
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
7
|
Maucksch U, Runge R, Wunderlich G, Freudenberg R, Naumann A, Kotzerke J. Comparison of the radiotoxicity of the 99mTc-labeled compounds 99mTc-pertechnetate, 99mTc-HMPAO and 99mTc-MIBI. Int J Radiat Biol 2016; 92:698-706. [DOI: 10.3109/09553002.2016.1168533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ute Maucksch
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Roswitha Runge
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Gerd Wunderlich
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Robert Freudenberg
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Anne Naumann
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Jörg Kotzerke
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| |
Collapse
|
8
|
Perona M, Dagrosa MA, Pagotto R, Casal M, Pignataro O, Pisarev MA, Juvenal GJ. Protective effect of an antithyroid compound against γ-radiation-induced damage in human colon cancer cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:611-619. [PMID: 24811726 DOI: 10.1007/s00411-014-0542-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 04/13/2014] [Indexed: 06/03/2023]
Abstract
We have previously reported the radioprotective effect of propylthiouracil (PTU) on thyroid cells. The aim of the present study was to analyze whether tumor cells and normal cells demonstrate the same response to PTU. Human colon carcinoma cells were irradiated with γ-irradiation with or without PTU. We evaluated the clonogenic survival, intracellular reactive oxygen species levels, catalase, superoxide dismutase and glutathione peroxidase activities, and apoptosis by nuclear cell morphology and caspase-3 activity assays. Cyclic AMP (cAMP) levels were measured by radioimmunoassay. PTU treatment increased surviving cell fraction at 2 Gy (SF2) from 56.9 ± 3.6 in controls to 75.0 ± 3.5 (p < 0.05) and diminished radiation-induced apoptosis. In addition, we observed that the level of antioxidant enzymes' activity was increased in cells treated with PTU. Moreover, pretreatment with PTU increased intracellular levels of cAMP. Forskolin (p < 0.01) and dibutyryl cAMP (p < 0.05) mimicked the effect of PTU on SF2. Co-treatment with H89, an inhibitor of protein kinase A, abolished the radioprotective effect of PTU. PTU reduces the toxicity of ionizing radiation by increasing cAMP levels and also possibly through a reduction in apoptosis levels and in radiation-induced oxidative stress damage. We therefore conclude that PTU protects both normal and cancer cells during exposure to radiation in conditions mimicking the radiotherapy.
Collapse
Affiliation(s)
- Marina Perona
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), San Martín, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
9
|
Russo E, Guerra A, Marotta V, Faggiano A, Colao A, Del Vecchio S, Tonacchera M, Vitale M. Radioiodide induces apoptosis in human thyroid tissue in culture. Endocrine 2013; 44:729-34. [PMID: 23543460 DOI: 10.1007/s12020-013-9940-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/20/2013] [Indexed: 01/10/2023]
Abstract
Radioiodide ((131)I) is routinely used for the treatment of toxic adenoma, Graves' disease, and for ablation of thyroid remnant after thyroidectomy in patients with thyroid cancer. The toxic effects of ionizing radiations on living cells can be mediated by a necrotic and/or apoptotic process. The involvement of apoptosis in radiation-induced cell death in the thyrocytes has been questioned. The knowledge of the mechanisms that underlie the thyrocyte death in response to radiations can help to achieve a successful treatment with the lowest (131)I dose. We developed a method to study the effects of (131)I in human thyroid tissue in culture, by which we demonstrated that (131)I induces thyroid cell apoptosis. Human thyroid tissues of about 1 mm(3) were cultured in vitro and cell viability was determined up to 3 weeks by the MTT assay. Radioiodide added to the culture medium was actively taken up by the tissues. The occurrence of apoptosis in the thyrocytes was assessed by measuring the production of a caspase-cleavage fragment of cytokeratin 18 (M30) by an enzyme-linked immunoassay. Neither variation of cell number nor spontaneous apoptosis was revealed after 1 week of culture. (131)I added to the culture medium induced a dose-dependent and a time-dependent generation of M30 fragment. The apoptotic process was confirmed by the generation of caspase-3 and PARP cleavage products. These results demonstrate that (131)I induces apoptosis in human thyrocytes. Human thyroid tissue cultures may be useful to investigate the cell death pathways induced by (131)I.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Cellular and Molecular Biology and Pathology, University "Federico II", 80131, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Perona M, Dagrosa MA, Pagotto R, Casal M, Pignataro OP, Pisarev MA, Juvenal GJ. Protection against radiation-induced damage of 6-propyl-2-thiouracil (PTU) in thyroid cells. Radiat Res 2013; 179:352-60. [PMID: 23398355 DOI: 10.1667/rr2658.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Many epidemiologic studies have shown that the exposure to high external radiation doses increases thyroid neoplastic frequency, especially when given during childhood or adolescence. The use of radioprotective drugs may decrease the damage caused by radiation therapy and therefore could be useful to prevent the development of thyroid tumors. The aim of this study was to investigate the possible application of 6-propyl-2-thiouracil (PTU) as a radioprotector in the thyroid gland. Rat thyroid epithelial cells (FRTL-5) were exposed to different doses of γ irradiation with or without the addition of PTU, methimazole (MMI), reduced glutathione (GSH) and perchlorate (KClO4). Radiation response was analyzed by clonogenic survival assay. Cyclic AMP (cAMP) levels were measured by radioimmunoassay (RIA). Apoptosis was quantified by nuclear cell morphology and caspase 3 activity assays. Intracellular reactive oxygen species (ROS) levels were measured using the fluorescent dye 2',7'-dichlorofluorescein-diacetate. Catalase, superoxide dismutase and glutathione peroxidase activities were also determined. Pretreatment with PTU, MMI and GSH prior to irradiation significantly increased the surviving cell fraction (SF) at 2 Gy (P < 0.05), while no effect was observed with KClO4. An increase in extracellular levels of cAMP was found only in PTU treated cells in a dose and time-dependent manner. Cells incubated with agents that stimulate cAMP (forskolin and dibutyril cAMP) mimicked the effect of PTU on SF. Moreover, pretreatment with the inhibitor of protein kinase A, H-89, abolished the radioprotective effect of PTU. PTU treatment diminished radiation-induced apoptosis and protected cells against radiation-induced ROS elevation and suppression of the antioxidant enzyme's activity. PTU was found to radioprotect normal thyroid cells through cAMP elevation and reduction in both apoptosis and radiation-induced oxidative stress damage.
Collapse
Affiliation(s)
- Marina Perona
- Department of Radiobiology, National Atomic Energy Commission, University of Buenos Aires, Department of Human Biochemistry, School of Medicine, Argentina
| | | | | | | | | | | | | |
Collapse
|
11
|
Bonnema SJ, Hegedüs L. Radioiodine therapy in benign thyroid diseases: effects, side effects, and factors affecting therapeutic outcome. Endocr Rev 2012; 33:920-80. [PMID: 22961916 DOI: 10.1210/er.2012-1030] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Radioiodine ((131)I) therapy of benign thyroid diseases was introduced 70 yr ago, and the patients treated since then are probably numbered in the millions. Fifty to 90% of hyperthyroid patients are cured within 1 yr after (131)I therapy. With longer follow-up, permanent hypothyroidism seems inevitable in Graves' disease, whereas this risk is much lower when treating toxic nodular goiter. The side effect causing most concern is the potential induction of ophthalmopathy in predisposed individuals. The response to (131)I therapy is to some extent related to the radiation dose. However, calculation of an exact thyroid dose is error-prone due to imprecise measurement of the (131)I biokinetics, and the importance of internal dosimetric factors, such as the thyroid follicle size, is probably underestimated. Besides these obstacles, several potential confounders interfere with the efficacy of (131)I therapy, and they may even interact mutually and counteract each other. Numerous studies have evaluated the effect of (131)I therapy, but results have been conflicting due to differences in design, sample size, patient selection, and dose calculation. It seems clear that no single factor reliably predicts the outcome from (131)I therapy. The individual radiosensitivity, still poorly defined and impossible to quantify, may be a major determinant of the outcome from (131)I therapy. Above all, the impact of (131)I therapy relies on the iodine-concentrating ability of the thyroid gland. The thyroid (131)I uptake (or retention) can be stimulated in several ways, including dietary iodine restriction and use of lithium. In particular, recombinant human thyrotropin has gained interest because this compound significantly amplifies the effect of (131)I therapy in patients with nontoxic nodular goiter.
Collapse
Affiliation(s)
- Steen Joop Bonnema
- Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark.
| | | |
Collapse
|
12
|
Evdokimova V, Gandhi M, Rayapureddi J, Stringer JR, Nikiforov YE. Formation of carcinogenic chromosomal rearrangements in human thyroid cells after induction of double-strand DNA breaks by restriction endonucleases. Endocr Relat Cancer 2012; 19:271-81. [PMID: 22323563 PMCID: PMC5828496 DOI: 10.1530/erc-11-0314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ionizing radiation (IR) exposure increases the risk of thyroid cancer and other cancer types. Chromosomal rearrangements, such as RET/PTC, are characteristic features of radiation-associated thyroid cancer and can be induced by radiation in vitro. IR causes double-strand breaks (DSBs), suggesting that such damage leads to RET/PTC, but the rearrangement mechanism has not been established. To study the mechanism, we explored the possibility of inducing RET/PTC by electroporation of restriction endonucleases (REs) into HTori-3 human thyroid cells. We used five REs, which induced DSB in a dose-dependent manner similar to that seen with IR. Although all but one RE caused DSB in one or more of the three genes involved in RET/PTC, rearrangement was detected only in cells electroporated with either PvuII (25 and 100 U) or StuI (100 and 250 U). The predominant rearrangement type was RET/PTC3, which is characteristic of human thyroid cancer arising early after Chernobyl-related radioactive iodine exposure. Both enzymes that produced RET/PTC had restriction sites only in one of the two fusion partner genes. Moreover, the two enzymes that produced RET/PTC had restriction sites present in clusters, which was not the case for RE that failed to induce RET/PTC. In summary, we establish a model of DSB induction by RE and report for the first time the formation of carcinogenic chromosomal rearrangements, predominantly RET/PTC3, as a result of DSB produced by RE. Our data also raise a possibility that RET/PTC rearrangement can be initiated by a complex DSB that is induced in one of the fusion partner genes.
Collapse
Affiliation(s)
- Viktoria Evdokimova
- Department of Pathology, University of Pittsburgh, 200 Lothrop Street, PUH, Room C-606, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|