1
|
Parashara P, Gao L, Riglos A, Sidhu SB, Lartey D, Marks T, Williams C, Siauw G, Ostrem AIL, Siebold C, Kinnebrew M, Riffle M, Gunn TM, Kong JH. The E3 ubiquitin ligase MGRN1 targets melanocortin receptors MC1R and MC4R via interactions with transmembrane adapters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645338. [PMID: 40196599 PMCID: PMC11974829 DOI: 10.1101/2025.03.25.645338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
E3 ubiquitin ligases play a crucial role in modulating receptor stability and signaling at the cell surface, yet the mechanisms governing their substrate specificity remain incompletely understood. Mahogunin Ring Finger 1 (MGRN1) is a membrane-tethered E3 ligase that fine-tunes signaling sensitivity by targeting surface receptors for ubiquitination and degradation. Unlike cytosolic E3 ligases, membrane-tethered E3s require transmembrane adapters to selectively recognize and regulate surface receptors, yet few such ligases have been studied in detail. While MGRN1 is known to regulate the receptor Smoothened (SMO) within the Hedgehog pathway through its interaction with the transmembrane adapter Multiple Epidermal Growth Factor-like 8 (MEGF8), the broader scope of its regulatory network has been speculative. Here, we identify Attractin (ATRN) and Attractin-like 1 (ATRNL1) as additional transmembrane adapters that recruit MGRN1 and regulate cell surface receptor turnover. Through co-immunoprecipitation, we show that ATRN and ATRNL1 likely interact with the RING domain of MGRN1. Functional assays reveal that MGRN1 requires these transmembrane adapters to ubiquitinate and degrade the melanocortin receptors MC1R and MC4R, in a process analogous to its regulation of SMO. Loss of MGRN1 leads to increased surface and ciliary localization of MC4R in fibroblasts and elevated MC1R levels in melanocytes, with the latter resulting in enhanced eumelanin production. These findings expand the repertoire of MGRN1-regulated receptors and provide new insight into a shared mechanism by which membrane-tethered E3 ligases utilize transmembrane adapters to dictate substrate receptor specificity. By elucidating how MGRN1 selectively engages with surface receptors, this work establishes a broader framework for understanding how this unique class of E3 ligases fine-tunes receptor homeostasis and signaling output.
Collapse
|
2
|
Yin X, Liu Q, Liu F, Tian X, Yan T, Han J, Jiang S. Emerging Roles of Non-proteolytic Ubiquitination in Tumorigenesis. Front Cell Dev Biol 2022; 10:944460. [PMID: 35874839 PMCID: PMC9298949 DOI: 10.3389/fcell.2022.944460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a critical type of protein post-translational modification playing an essential role in many cellular processes. To date, more than eight types of ubiquitination exist, all of which are involved in distinct cellular processes based on their structural differences. Studies have indicated that activation of the ubiquitination pathway is tightly connected with inflammation-related diseases as well as cancer, especially in the non-proteolytic canonical pathway, highlighting the vital roles of ubiquitination in metabolic programming. Studies relating degradable ubiquitination through lys48 or lys11-linked pathways to cellular signaling have been well-characterized. However, emerging evidence shows that non-degradable ubiquitination (linked to lys6, lys27, lys29, lys33, lys63, and Met1) remains to be defined. In this review, we summarize the non-proteolytic ubiquitination involved in tumorigenesis and related signaling pathways, with the aim of providing a reference for future exploration of ubiquitination and the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Xiu Yin
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Han
- Department of Thyroid and Breast Surgery, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Lebensohn AM, Bazan JF, Rohatgi R. Receptor control by membrane-tethered ubiquitin ligases in development and tissue homeostasis. Curr Top Dev Biol 2022; 150:25-89. [PMID: 35817504 DOI: 10.1016/bs.ctdb.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Paracrine cell-cell communication is central to all developmental processes, ranging from cell diversification to patterning and morphogenesis. Precise calibration of signaling strength is essential for the fidelity of tissue formation during embryogenesis and tissue maintenance in adults. Membrane-tethered ubiquitin ligases can control the sensitivity of target cells to secreted ligands by regulating the abundance of signaling receptors at the cell surface. We discuss two examples of this emerging concept in signaling: (1) the transmembrane ubiquitin ligases ZNRF3 and RNF43 that regulate WNT and bone morphogenetic protein receptor abundance in response to R-spondin ligands and (2) the membrane-recruited ubiquitin ligase MGRN1 that controls Hedgehog and melanocortin receptor abundance. We focus on the mechanistic logic of these systems, illustrated by structural and protein interaction models enabled by AlphaFold. We suggest that membrane-tethered ubiquitin ligases play a widespread role in remodeling the cell surface proteome to control responses to extracellular ligands in diverse biological processes.
Collapse
|
4
|
Mahogunin Ring Finger 1 Is Required for Genomic Stability and Modulates the Malignant Phenotype of Melanoma Cells. Cancers (Basel) 2020; 12:cancers12102840. [PMID: 33019669 PMCID: PMC7599452 DOI: 10.3390/cancers12102840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Melanoma, the most aggressive skin cancer, accounts for the majority of deaths due to this disease. Therefore, identification of genes/proteins involved in melanoma genesis and/or progression is urgent. Mutations abrogating expression of Mahogunin Ring Finger 1 (MGRN1) in mice cause complex phenotypes with hyperpigmentation, and known MGRN1 interactors are important regulators of cell shape and movement. This suggests that MGRN1 may modulate the malignant phenotype of melanoma cells. Analysis of MGRN1-KO mouse melanocytes and melanoma cells showed that lack of MGRN1 leads to cell cycle defects and to a more differentiated, less aggressive phenotype, with increased adhesion to various matrices, decreased motility and high genomic instability. The higher aggressivity of MGRN1-expressing melanoma cells was confirmed in an in vivo mouse melanoma model and is consistent with higher survival of human melanoma patients expressing low levels of MGRN1. Therefore, MGRN1 appears an important determinant of the malignant phenotype of melanoma. Abstract The mouse mahoganoid mutation abrogating Mahogunin Ring Finger-1 (MGRN1) E3 ubiquitin ligase expression causes hyperpigmentation, congenital heart defects and neurodegeneration. To study the pathophysiology of MGRN1 loss, we compared Mgrn1-knockout melanocytes with genetically matched controls and melan-md1 (mahoganoid) melanocytes. MGRN1 knockout induced a more differentiated and adherent phenotype, decreased motility, increased the percentage of cells in the S phase of the cell cycle and promoted genomic instability, as shown by stronger γH2AX labelling, increased burden of DNA breaks and higher abundance of aneuploid cells. Lack of MGRN1 expression decreased the ability of melanocytes to cope with DNA breaks generated by oxidizing agents or hydroxyurea-induced replicative stress, suggesting a contribution of genomic instability to the mahoganoid phenotype. MGRN1 knockout in B16-F10 melanoma cells also augmented pigmentation, increased cell adhesion to collagen, impaired 2D and 3D motility and caused genomic instability. Tumors formed by Mgrn1-KO B16-F10 cells had lower mitotic indices, fewer Ki67-positive cells and showed a trend towards smaller size. In short-term lung colonization assays Mgrn1-KO cells showed impaired colonization potential. Moreover, lower expression of MGRN1 is significantly associated with better survival of human melanoma patients. Therefore, MGRN1 might be an important phenotypic determinant of melanoma cells.
Collapse
|
5
|
Kong JH, Young CB, Pusapati GV, Patel CB, Ho S, Krishnan A, Lin JHI, Devine W, Moreau de Bellaing A, Athni TS, Aravind L, Gunn TM, Lo CW, Rohatgi R. A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development. Dev Cell 2020; 55:432-449.e12. [PMID: 32966817 PMCID: PMC7686252 DOI: 10.1016/j.devcel.2020.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/23/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
The etiology of congenital heart defects (CHDs), which are among the most common human birth defects, is poorly understood because of its complex genetic architecture. Here, we show that two genes implicated in CHDs, Megf8 and Mgrn1, interact genetically and biochemically to regulate the strength of Hedgehog signaling in target cells. MEGF8, a transmembrane protein, and MGRN1, a RING superfamily E3 ligase, assemble to form a receptor-like ubiquitin ligase complex that catalyzes the ubiquitination and degradation of the Hedgehog pathway transducer Smoothened. Homozygous Megf8 and Mgrn1 mutations increased Smoothened abundance and elevated sensitivity to Hedgehog ligands. While mice heterozygous for loss-of-function Megf8 or Mgrn1 mutations were normal, double heterozygous embryos exhibited an incompletely penetrant syndrome of CHDs with heterotaxy. Thus, genetic interactions can arise from biochemical mechanisms that calibrate morphogen signaling strength, a conclusion broadly relevant for the many human diseases in which oligogenic inheritance is emerging as a mechanism for heritability.
Collapse
Affiliation(s)
- Jennifer H Kong
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cullen B Young
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Ganesh V Pusapati
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chandni B Patel
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sebastian Ho
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Arunkumar Krishnan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jiuann-Huey Ivy Lin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - William Devine
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Anne Moreau de Bellaing
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Department of Pediatric Cardiology, Necker-Sick Children Hospital and The University of Paris Descartes, Paris 75015, France
| | - Tejas S Athni
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Teresa M Gunn
- McLaughlin Research Institute, Great Falls, MT 59405, USA.
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA.
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Dores MR, Trejo J. Endo-lysosomal sorting of G-protein-coupled receptors by ubiquitin: Diverse pathways for G-protein-coupled receptor destruction and beyond. Traffic 2018; 20:101-109. [PMID: 30353650 DOI: 10.1111/tra.12619] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Ubiquitin is covalently attached to substrate proteins in the form of a single ubiquitin moiety or polyubiquitin chains and has been generally linked to protein degradation, however, distinct types of ubiquitin linkages are also used to control other critical cellular processes like cell signaling. Over forty mammalian G protein-coupled receptors (GPCRs) have been reported to be ubiquitinated, but despite the diverse and rich complexity of GPCR signaling, ubiquitin has been largely ascribed to receptor degradation. Indeed, GPCR ubiquitination targets the receptors for degradation by lysosome, which is mediated by the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, and the proteasome. This has led to the view that ubiquitin and ESCRTs primarily function as the signal to target GPCRs for destruction. Contrary to this conventional view, studies indicate that ubiquitination of certain GPCRs and canonical ubiquitin-binding ESCRTs are not required for receptor degradation and revealed that diverse and complex pathways exist to regulate endo-lysosomal sorting of GPCRs. In other studies, GPCR ubiquitination has been shown to drive signaling and not receptor degradation and further revealed novel insight into the mechanisms by which GPCRs trigger the activity of the ubiquitination machinery. Here, we discuss the diverse pathways by which ubiquitin controls GPCR endo-lysosomal sorting and beyond.
Collapse
Affiliation(s)
- Michael R Dores
- Department of Biology, Hofstra University, Hempstead, New York
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
7
|
Human melanocortin 1 receptor-mediated ubiquitination of nonvisual arrestins. Role of Mahogunin Ring Finger 1 E3 ligase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:76-94. [DOI: 10.1016/j.bbamcr.2017.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022]
|
8
|
Dogan T, Gnad F, Chan J, Phu L, Young A, Chen MJ, Doll S, Stokes MP, Belvin M, Friedman LS, Kirkpatrick DS, Hoeflich KP, Hatzivassiliou G. Role of the E3 ubiquitin ligase RNF157 as a novel downstream effector linking PI3K and MAPK signaling pathways to the cell cycle. J Biol Chem 2017; 292:14311-14324. [PMID: 28655764 PMCID: PMC5582827 DOI: 10.1074/jbc.m117.792754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 11/23/2022] Open
Abstract
The interconnected PI3K and MAPK signaling pathways are commonly perturbed in cancer. Dual inhibition of these pathways by the small-molecule PI3K inhibitor pictilisib (GDC-0941) and the MEK inhibitor cobimetinib (GDC-0973) suppresses cell proliferation and induces cell death better than either single agent in several preclinical models. Using mass spectrometry-based phosphoproteomics, we have identified the RING finger E3 ubiquitin ligase RNF157 as a target at the intersection of PI3K and MAPK signaling. We demonstrate that RNF157 phosphorylation downstream of the PI3K and MAPK pathways influences the ubiquitination and stability of RNF157 during the cell cycle in an anaphase-promoting complex/cyclosome–CDH1-dependent manner. Deletion of these phosphorylation-targeted residues on RNF157 disrupts binding to CDH1 and protects RNF157 from ubiquitination and degradation. Expression of the cyclin-dependent kinase 2 (CDK2), itself a downstream target of PI3K/MAPK signaling, leads to increased phosphorylation of RNF157 on the same residues modulated by PI3K and MAPK signaling. Inhibition of PI3K and MEK in combination or of CDK2 by their respective small-molecule inhibitors reduces RNF157 phosphorylation at these residues and attenuates RNF157 interaction with CDH1 and its subsequent degradation. Knockdown of endogenous RNF157 in melanoma cells leads to late S phase and G2/M arrest and induces apoptosis, the latter further potentiated by concurrent PI3K/MEK inhibition, consistent with a role for RNF157 in the cell cycle. We propose that RNF157 serves as a novel node integrating oncogenic signaling pathways with the cell cycle machinery and promoting optimal cell cycle progression in transformed cells.
Collapse
Affiliation(s)
- Taner Dogan
- From the Departments of Translational Oncology
| | | | | | - Lilian Phu
- Microchemistry Proteomics and Lipidomics, and
| | - Amy Young
- From the Departments of Translational Oncology
| | | | - Sophia Doll
- Microchemistry Proteomics and Lipidomics, and
| | | | - Marcia Belvin
- From the Departments of Translational Oncology.,Cancer Immunology, Genentech, Inc., South San Francisco, California 94080 and
| | | | | | | | | |
Collapse
|
9
|
Regulation of G Protein-Coupled Receptors by Ubiquitination. Int J Mol Sci 2017; 18:ijms18050923. [PMID: 28448471 PMCID: PMC5454836 DOI: 10.3390/ijms18050923] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of membrane receptors that control many cellular processes and consequently often serve as drug targets. These receptors undergo a strict regulation by mechanisms such as internalization and desensitization, which are strongly influenced by posttranslational modifications. Ubiquitination is a posttranslational modification with a broad range of functions that is currently gaining increased appreciation as a regulator of GPCR activity. The role of ubiquitination in directing GPCRs for lysosomal degradation has already been well-established. Furthermore, this modification can also play a role in targeting membrane and endoplasmic reticulum-associated receptors to the proteasome. Most recently, ubiquitination was also shown to be involved in GPCR signaling. In this review, we present current knowledge on the molecular basis of GPCR regulation by ubiquitination, and highlight the importance of E3 ubiquitin ligases, deubiquitinating enzymes and β-arrestins. Finally, we discuss classical and newly-discovered functions of ubiquitination in controlling GPCR activity.
Collapse
|
10
|
Herraiz C, Garcia-Borron JC, Jiménez-Cervantes C, Olivares C. MC1R signaling. Intracellular partners and pathophysiological implications. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2448-2461. [PMID: 28259754 DOI: 10.1016/j.bbadis.2017.02.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/11/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022]
Abstract
The melanocortin-1 receptor (MC1R) preferentially expressed in melanocytes is best known as a key regulator of the synthesis of epidermal melanin pigments. Its paracrine stimulation by keratinocyte-derived melanocortins also activates DNA repair pathways and antioxidant defenses to build a complex, multifaceted photoprotective response. Many MC1R actions rely on cAMP-dependent activation of two transcription factors, MITF and PGC1α, but pleiotropic MC1R signaling also involves activation of mitogen-activated kinases and AKT. MC1R partners such as β-arrestins, PTEN and the E3 ubiquitin ligase MGRN1 differentially regulate these pathways. The MC1R gene is complex and polymorphic, with frequent variants associated with skin phenotypes and increased cancer risk. We review current knowledge of signaling from canonical MC1R, its splice isoforms and natural polymorphic variants. Recently discovered intracellular targets and partners are also discussed, to highlight the diversity of mechanisms that may contribute to normal and pathological variation of pigmentation and sensitivity to solar radiation-induced damage. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Cecilia Herraiz
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 El Palmar, Murcia, Spain
| | - Jose C Garcia-Borron
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 El Palmar, Murcia, Spain.
| | - Celia Jiménez-Cervantes
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 El Palmar, Murcia, Spain
| | - Conchi Olivares
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 El Palmar, Murcia, Spain
| |
Collapse
|
11
|
Yin Z, Zhao X, Wang Z, Wang L, Li Z, Bai R, Zhao M, Pang Q. Identification of differentially expressed Gnαs and Gnα11 in sheep (Ovis aries) skins associated with white and black coat colors. Acta Histochem 2016; 118:170-5. [PMID: 26767972 DOI: 10.1016/j.acthis.2015.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/15/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Guanine nucleotide-binding protein subunit alpha-s (Gnαs) and guanine nucleotide-binding protein subunit alpha-11 (Gnα11) play an important role in coat color formation. To improve our understanding of Gnαs and Gnα11 expression levels and pattern in the skin of black sheep (Ovis aries) compared with white sheep, we analyzed the expression levels through quantitative real time PCR (qPCR) and Western blot, immunohistochemistry and immunofluorescence. qPCR and Western blot results suggested that Gnαs and Gnα11 were significantly expressed at high levels in black sheep skin compared with the white sheep skin. Gnα11 expression was higher than Gnαs expression in both skin colors, transcripts and protein exhibited the same expression pattern in white and black sheep skins. Immunohistochemical results revealed that Gnαs and Gnα11 were localized in the outer root sheath of hair follicle in sheep. Furthermore, the expression of Gnα11 in outer root sheath of hair follicle was stronger than that in Gnαs. Immunofluorescencence further demonstrated that signals of Gnαs and Gnα11 were detected in outer root sheath and hair papilla. These results provide a novel insight into the role of Gnαs and Gnα11 in the regulation of sheep coat color.
Collapse
|
12
|
Maben ZJ, Malik S, Jiang LH, Hinkle PM. Dual Topology of the Melanocortin-2 Receptor Accessory Protein Is Stable. Front Endocrinol (Lausanne) 2016; 7:96. [PMID: 27486435 PMCID: PMC4947873 DOI: 10.3389/fendo.2016.00096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 01/02/2023] Open
Abstract
Melanocortin 2 receptor accessory protein (MRAP) facilitates trafficking of melanocortin 2 (MC2) receptors and is essential for ACTH binding and signaling. MRAP is a single transmembrane domain protein that forms antiparallel homodimers. These studies ask when MRAP first acquires this dual topology, whether MRAP architecture is static or stable, and whether the accessory protein undergoes rapid turnover. To answer these questions, we developed an approach that capitalizes on the specificity of bacterial biotin ligase, which adds biotin to lysine in a short acceptor peptide sequence; the distinct mobility of MRAP protomers of opposite orientations based on their N-linked glycosylation; and the ease of identifying biotin-labeled proteins. We inserted biotin ligase acceptor peptides at the N- or C-terminal ends of MRAP and expressed the modified proteins in mammalian cells together with either cytoplasmic or endoplasmic reticulum-targeted biotin ligase. MRAP assumed dual topology early in biosynthesis in both CHO and OS3 adrenal cells. Once established, MRAP orientation was stable. Despite its conformational stability, MRAP displayed a half-life of under 2 h in CHO cells. The amount of MRAP was increased by the proteasome inhibitor MG132 and MRAP underwent ubiquitylation on lysine and other amino acids. Nonetheless, when protein synthesis was blocked with cycloheximide, MRAP was rapidly degraded even when MG132 was included and all lysines were replaced by arginines, implicating non-proteasomal degradation pathways. The results show that although MRAP does not change orientations during trafficking, its synthesis and degradation are dynamically regulated.
Collapse
Affiliation(s)
- Zachary J. Maben
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Liyi H. Jiang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Patricia M. Hinkle
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- *Correspondence: Patricia M. Hinkle,
| |
Collapse
|
13
|
Jean-Charles PY, Snyder JC, Shenoy SK. Chapter One - Ubiquitination and Deubiquitination of G Protein-Coupled Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:1-55. [PMID: 27378754 DOI: 10.1016/bs.pmbts.2016.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The seven-transmembrane containing G protein-coupled receptors (GPCRs) constitute the largest family of cell-surface receptors. Transmembrane signaling by GPCRs is fundamental to many aspects of physiology including vision, olfaction, cardiovascular, and reproductive functions as well as pain, behavior and psychomotor responses. The duration and magnitude of signal transduction is tightly controlled by a series of coordinated trafficking events that regulate the cell-surface expression of GPCRs at the plasma membrane. Moreover, the intracellular trafficking profiles of GPCRs can correlate with the signaling efficacy and efficiency triggered by the extracellular stimuli that activate GPCRs. Of the various molecular mechanisms that impart selectivity, sensitivity and strength of transmembrane signaling, ubiquitination of the receptor protein plays an important role because it defines both trafficking and signaling properties of the activated GPCR. Ubiquitination of proteins was originally discovered in the context of lysosome-independent degradation of cytosolic proteins by the 26S proteasome; however a large body of work suggests that ubiquitination also orchestrates the downregulation of membrane proteins in the lysosomes. In the case of GPCRs, such ubiquitin-mediated lysosomal degradation engenders long-term desensitization of transmembrane signaling. To date about 40 GPCRs are known to be ubiquitinated. For many GPCRs, ubiquitination plays a major role in postendocytic trafficking and sorting to the lysosomes. This chapter will focus on the patterns and functional roles of GPCR ubiquitination, and will describe various molecular mechanisms involved in GPCR ubiquitination.
Collapse
Affiliation(s)
- P-Y Jean-Charles
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, NC, United States
| | - J C Snyder
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - S K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, NC, United States; Department of Cell Biology, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
14
|
Mahogunin ring finger 1 confers cytoprotection against mutant SOD1 aggresomes and is defective in an ALS mouse model. Neurobiol Dis 2015; 86:16-28. [PMID: 26607786 DOI: 10.1016/j.nbd.2015.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/21/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022] Open
Abstract
Proteotoxicity of misfolded, disease-causing proteins is deeply implicated in the pathomechanisms for neurodegenerative diseases including copper-zinc superoxide dismutase (SOD1)-linked amyotrophic lateral sclerosis (ALS). However, the precise cellular quality control (QC) mechanisms against aggregation of misfolded mutant SOD1 proteins remain elusive. Here, we found that the Mahogunin ring finger-1 (MGRN1) E3 ubiquitin ligase, which catalyzes mono-ubiquitination to the substrate, was dysregulated in the cellular and mouse models of ALS and that it preferentially interacted with various mutant forms of SOD1. Intriguingly, the motor neurons of presymptomatic ALS mice have diminished MGRN1 cytoplasmic distribution. MGRN1 was partially recruited to mutant SOD1 inclusions where they were positive for p62 and Lamp2. Moreover, overexpression of MGRN1 reduced mutant SOD1 aggregation and alleviated its proteotoxic effects on cells. Taken together, our findings suggest that MGRN1 contributes to the clearance of toxic mutant SOD1 inclusions likely through autophagic pathway, and, most likely, the sequestration of MGRN1 sensitizes motor neurons to degeneration in the ALS mouse model. Furthermore, the present study identifies the MGRN1-mediated protein QC mechanism as a novel therapeutic target in neurodegenerative diseases.
Collapse
|
15
|
Upadhyay A, Amanullah A, Chhangani D, Mishra R, Prasad A, Mishra A. Mahogunin Ring Finger-1 (MGRN1), a Multifaceted Ubiquitin Ligase: Recent Unraveling of Neurobiological Mechanisms. Mol Neurobiol 2015; 53:4484-96. [PMID: 26255182 DOI: 10.1007/s12035-015-9379-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/27/2015] [Indexed: 11/29/2022]
Abstract
In healthy cell, inappropriate accumulation of poor or damaged proteins is prevented by cellular quality control system. Autophagy and ubiquitin proteasome system (UPS) provides regular cytoprotection against proteotoxicity induced by abnormal or disruptive proteins. E3 ubiquitin ligases are crucial components in this defense mechanism. Mahogunin Ring Finger-1 (MGRN1), an E3 ubiquitin ligase of the Really Interesting New Gene (RING) finger family, plays a pivotal role in many biological and cellular mechanisms. Previous findings indicate that lack of functions of MGRN1 can cause spongiform neurodegeneration, congenital heart defects, abnormal left-right patterning, and mitochondrial dysfunctions in mice brains. However, the detailed molecular pathomechanism of MGRN1 in cellular functions and diseases is not well known. This article comprehensively represents the molecular nature, characterization, and functions of MGRN1; we also summarize possible beneficiary aspects of this novel E3 ubiquitin ligase. Here, we review recent literature on the role of MGRN1 in the neuro-pathobiological mechanisms, with precise focus on the processes of neurodegeneration, and thereby propose new lines of potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Deepak Chhangani
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India.
| |
Collapse
|
16
|
Rodrigues AR, Almeida H, Gouveia AM. Intracellular signaling mechanisms of the melanocortin receptors: current state of the art. Cell Mol Life Sci 2015; 72:1331-45. [PMID: 25504085 PMCID: PMC11113477 DOI: 10.1007/s00018-014-1800-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022]
Abstract
The melanocortin system is composed by the agonists adrenocorticotropic hormone and α, β and γ-melanocyte-stimulating hormone, and two naturally occurring antagonists, agouti and agouti-related protein. These ligands act by interaction with a family of five melanocortin receptors (MCRs), assisted by MCRs accessory proteins (MRAPs). MCRs stimulation activates different signaling pathways that mediate a diverse array of physiological processes, including pigmentation, energy metabolism, inflammation and exocrine secretion. This review focuses on the regulatory mechanisms of MCRs signaling, highlighting the differences among the five receptors. MCRs signal through G-dependent and independent mechanisms and their functional coupling to agonists at the cell surface is regulated by interacting proteins, namely MRAPs and β-arrestins. The knowledge of the distinct modulation pattern of MCRs signaling and function may be helpful for the future design of novel drugs able to combine specificity, safety and effectiveness in the course of their therapeutic use.
Collapse
Affiliation(s)
- Adriana R Rodrigues
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal,
| | | | | |
Collapse
|
17
|
Rodrigues AR, Sousa D, Almeida H, Gouveia AM. Structural determinants regulating cell surface targeting of melanocortin receptors. J Mol Endocrinol 2013; 51:R23-32. [PMID: 23907004 DOI: 10.1530/jme-13-0055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Melanocortin receptors (MCRs) belong to the G-protein-coupled receptor family of transmembrane proteins. They recognize specific ligands named melanocortins that are mainly produced in the pituitary and hypothalamus. Newly synthesized MCRs at the endoplasmic reticulum are subjected to quality control mechanisms that screen for the correct structure, folding or processing, essential for their proper cell surface expression. Some motifs, located at the N- or C-terminus or even on transmembrane and in loop regions, have been implicated in these biological processes. This article reviews these specific domains and the role of accessory proteins and post-translation modifications in MCRs' targeting to cell surface. Additionally, promising approaches involving pharmacological stabilization of misfolded and misrouted mutant MCRs, which improve their forward transport, are reported. Understanding the MCRs' structural determinants fundamental for their proper cell surface integration is essential for correcting abnormalities found in some diseases.
Collapse
Affiliation(s)
- A R Rodrigues
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal IPATIMUP, Institute of Molecular Pathology and Immunology Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | | | | | | |
Collapse
|
18
|
Guerra DD, Pratelli R, Kraft E, Callis J, Pilot G. Functional conservation between mammalian MGRN1 and plant LOG2 ubiquitin ligases. FEBS Lett 2013; 587:3400-5. [PMID: 24036454 DOI: 10.1016/j.febslet.2013.08.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
Plant LOSS OF GDU 2 (LOG2) and Mammalian Mahogunin Ring Finger 1 (MGRN1) proteins are RING-type E3 ligases sharing similarity N-terminal to the RING domain. Deletion of this region disrupts the interaction of LOG2 with the plant membrane protein GLUTAMINE DUMPER1 (GDU1). Phylogenetic analysis identified two clades of LOG2/MGRN1-like proteins in vertebrates and plants. The ability of MGRN1 to functionally replace LOG2 was tested. MGRN1 ubiquitylates GDU1 in vitro and can partially substitute for LOG2 in the plant, partially restoring amino acid resistance to a GDU1-myc over-expression, log2-2 background. Altogether, these results suggest a conserved function for the N-terminal domain in evolution.
Collapse
Affiliation(s)
- Damian D Guerra
- Department of Molecular and Cellular Biology, UC Davis, Davis, CA 95616, United States; UC Davis Biochemistry, Molecular, Cellular, Developmental Biology Graduate Group, United States
| | | | | | | | | |
Collapse
|
19
|
Alonso V, Friedman PA. Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. Mol Endocrinol 2013; 27:558-72. [PMID: 23471539 DOI: 10.1210/me.2012-1404] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest and most diverse superfamily of membrane proteins and mediate most cellular responses to hormones and neurotransmitters. Posttranslational modifications are considered the main regulators of all GPCRs. In addition to phosphorylation, glycosylation, and palmitoylation, increasing evidence as reviewed here reveals that ubiquitination also regulates the magnitude and temporospatial aspects of GPCR signaling. Posttranslational protein modification by ubiquitin is a key molecular mechanism governing proteins degradation. Ubiquitination mediates the covalent conjugation of ubiquitin, a highly conserved polypeptide of 76 amino acids, to protein substrates. This process is catalyzed by 3 enzymes acting in tandem: an E1, ubiquitin-activating enzyme; an E2, ubiquitin-carrying enzyme; and an E3, ubiquitin ligase. Ubiquitination is counteracted by deubiquitinating enzymes that deconjugate ubiquitin-modified proteins and rescue the substrate from proteasomal degradation. Although ubiquitination is known to target many GPCRs for lysosomal or proteasomal degradation, emerging findings define novel roles for the basal status of ubiquitination and for rapid deubiquitination and transubiquitination controlling cell surface expression and cellular responsiveness of some GPCRs. In this review, we highlight the classical and novel roles of ubiquitin in the regulation of GPCR function, signaling, and trafficking.
Collapse
Affiliation(s)
- Verónica Alonso
- Institute of Applied Molecular Medicine, San Pablo-CEU University School of Medicine, Madrid, 28668, Spain
| | | |
Collapse
|
20
|
Gunn TM, Silvius D, Bagher P, Sun K, Walker KK. MGRN1-dependent pigment-type switching requires its ubiquitination activity but not its interaction with TSG101 or NEDD4. Pigment Cell Melanoma Res 2013; 26:263-8. [PMID: 23253940 DOI: 10.1111/pcmr.12059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 12/11/2012] [Indexed: 12/25/2022]
Abstract
Mice lacking the E3 ubiquitin ligase mahogunin ring finger-1 (MGRN1) have a pleiotropic phenotype that includes spongiform neurodegeneration, embryonic patterning defects, and dark fur due to a defect in pigment-type switching. The only MGRN1 ubiquitination target identified to date is tumor susceptibility gene 101 (TSG101), a component of the endosomal trafficking machinery. Here, we show that MGRN1 also interacts with but does not ubiquitinate NEDD4, a HECT-domain ubiquitin ligase involved in endosomal trafficking. Using transgenesis in mice, we demonstrate that pigment-type switching likely requires MGRN1's ubiquitin ligase activity but not its ability to bind TSG101 or NEDD4. This indicates that MGRN1-dependent ubiquitination of an as-yet unidentified target protein is required for agouti-mediated melanocortin signaling.
Collapse
Affiliation(s)
- Teresa M Gunn
- McLaughlin Research Institute, Great Falls, MT, USA; Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.
| | | | | | | | | |
Collapse
|
21
|
Dores MR, Trejo J. Ubiquitination of G protein-coupled receptors: functional implications and drug discovery. Mol Pharmacol 2012; 82:563-70. [PMID: 22700696 PMCID: PMC3463220 DOI: 10.1124/mol.112.079418] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/14/2012] [Indexed: 12/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the largest and most diverse family of signaling receptors and control a vast array of physiological responses. Modulating the signaling responses of GPCRs therapeutically is important for the treatment of various diseases, and discovering new aspects of GPCR signal regulation is critical for future drug development. Post-translational modifications are integral to the regulation of GPCR function. In addition to phosphorylation, many GPCRs are reversibly modified with ubiquitin. Ubiquitin is covalently attached to lysine residues within the cytoplasmic domains of GPCRs by ubiquitin ligases and removed by ubiquitin-specific proteases. In many cases, ubiquitin functions as a sorting signal that facilitates trafficking of mammalian GPCRs from endosomes to lysosomes for degradation, but not all GPCRs use this pathway. Moreover, there are distinct types of ubiquitin conjugations that are known to serve diverse functions in controlling a wide range of cellular processes, suggesting broad roles for GPCR ubiquitination. In this review, we highlight recent studies that illustrate various roles for ubiquitin in regulation of GPCR function. Ubiquitination is known to target many GPCRs for lysosomal degradation, and current studies now indicate that basal ubiquitination, deubiquitination, and transubiquitination of certain GPCRs are important for controlling cell surface expression and cellular responsiveness. In addition, novel functions for ubiquitin in regulation of GPCR dimers and in mediating differential GPCR regulation induced by biased agonists have been reported. We will discuss the implications of these new discoveries for ubiquitin regulation of GPCR function in the context of drug development.
Collapse
Affiliation(s)
- Michael R Dores
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Dr., Biomedical Sciences Building, Room 3044A, La Jolla, CA 92093, USA
| | | |
Collapse
|
22
|
Pratelli R, Guerra DD, Yu S, Wogulis M, Kraft E, Frommer WB, Callis J, Pilot G. The ubiquitin E3 ligase LOSS OF GDU2 is required for GLUTAMINE DUMPER1-induced amino acid secretion in Arabidopsis. PLANT PHYSIOLOGY 2012; 158:1628-42. [PMID: 22291198 PMCID: PMC3320174 DOI: 10.1104/pp.111.191965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Amino acids serve as transport forms for organic nitrogen in the plant, and multiple transport steps are involved in cellular import and export. While the nature of the export mechanism is unknown, overexpression of GLUTAMINE DUMPER1 (GDU1) in Arabidopsis (Arabidopsis thaliana) led to increased amino acid export. To gain insight into GDU1's role, we searched for ethyl-methanesulfonate suppressor mutants and performed yeast-two-hybrid screens. Both methods uncovered the same gene, LOSS OF GDU2 (LOG2), which encodes a RING-type E3 ubiquitin ligase. The interaction between LOG2 and GDU1 was confirmed by glutathione S-transferase pull-down, in vitro ubiquitination, and in planta coimmunoprecipitation experiments. Confocal microscopy and subcellular fractionation indicated that LOG2 and GDU1 both localized to membranes and were enriched at the plasma membrane. LOG2 expression overlapped with GDU1 in the xylem and phloem tissues of Arabidopsis. The GDU1 protein encoded by the previously characterized intragenic suppressor mutant log1-1, with an arginine in place of a conserved glycine, failed to interact in the multiple assays, suggesting that the Gdu1D phenotype requires the interaction of GDU1 with LOG2. This hypothesis was supported by suppression of the Gdu1D phenotype after reduction of LOG2 expression using either artificial microRNAs or a LOG2 T-DNA insertion. Altogether, in accordance with the emerging bulk of data showing membrane protein regulation via ubiquitination, these data suggest that the interaction of GDU1 and the ubiquitin ligase LOG2 plays a significant role in the regulation of amino acid export from plant cells.
Collapse
|