1
|
Lopes NA, Ambeskovic M, King SE, Faraji J, Soltanpour N, Xu W, Fang X, Metz GAS, Olson DM. Transgenerational transmission of prenatal maternal stress across three generations of male progeny alters inflammatory stress markers in reproductive tissues. Psychoneuroendocrinology 2025; 177:107451. [PMID: 40179594 DOI: 10.1016/j.psyneuen.2025.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/18/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Prenatal maternal stress may lead to adverse pregnancy outcomes such as preterm birth and low birth weight. Our team has demonstrated in multiple rat models that prenatal maternal stress modifies the expression of inflammatory and stress regulators in the uterus and that this is transgenerationally passed over multiple generations through the female progeny. In this study, we investigated if male progeny exposed to ancestral prenatal maternal stress could also transmit changes to cause fetal programming of reproductive organs, leading to adverse pregnancy outcomes. We created a paternal transgenerational prenatal stress rat model. Dams (F0) were exposed to chronic variable stress during pregnancy, and their F1 male offspring stressed in utero were bred with control females for two generations. Gestational lengths and litter sizes were unchanged. Elevated gene expression of pro-inflammatory molecules in the uteri of F2 and F3 offspring was observed. Uterine expression of stress markers in the F2 and F3 females also increased even though plasma corticosterone levels were unchanged. Changes in the testicular expression of inflammatory and stress markers were also transmitted through the paternal lineage. These changes, however, tended to bear anti-inflammatory and adaptive functions, indicating compensatory mechanisms at play. These results demonstrate that fetal programming of uterine and testicular gene expression patterns can be transmitted through male progeny exposed to prenatal maternal stress.
Collapse
Affiliation(s)
- Nayara A Lopes
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mirela Ambeskovic
- Canadian Centre for Behavioural Neuroscience and Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Stephanie E King
- Canadian Centre for Behavioural Neuroscience and Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jamshid Faraji
- Canadian Centre for Behavioural Neuroscience and Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Nasrin Soltanpour
- Canadian Centre for Behavioural Neuroscience and Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Wendy Xu
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xin Fang
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Gerlinde A S Metz
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada; Canadian Centre for Behavioural Neuroscience and Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - David M Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada; Canadian Centre for Behavioural Neuroscience and Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
2
|
Kishor Kumar DG, Pashupathi M, Vaidhya A, Ravi Prakash G, Bramhane A, Panigrahi M, Karikalan M, Lingaraju MC, Manickam K, Singh TU, Parida S. Involvement of ObRb receptor, nitric oxide, and BK Ca channel signaling pathways in leptin-induced relaxation of pregnant mouse uterus. Eur J Pharmacol 2024; 978:176796. [PMID: 38945286 DOI: 10.1016/j.ejphar.2024.176796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
The purpose of this study was to determine the receptor subtype and the underlying mechanisms involved in the relaxant effect to leptin in mid- and late-pregnant mouse uterus. We determined the relative mRNA expression of receptor subtypes, eNOS, and BKCa channel by quantitative PCR and also the overall receptor expression by immunohistochemistry. Isometric tension studies were conducted to evaluate the effects of leptin and to delineate its mechanisms. A selective siRNA for the ObRb receptor was used to determine the participation of the receptor subtype in biochemical and molecular effects of leptin. The relaxant response to leptin was greater in mid-pregnancy compared to late pregnancy and was mediated by the activation of BKCa channels by eNOS-derived nitric oxide in an ObRb receptor-dependent manner. In comparison to mid-pregnancy, expression of short forms (mainly ObRa receptor) of the receptor was significantly increased in late pregnancy, whereas ObRb receptor expression was similar in both phases. The results of the study suggest that ObRb receptor mediates leptin-induced increase in eNOS expression and NO synthesis. Leptin-induced eNOS expression and activation cause cGMP-independent stimulation of BKCa channels causing uterine relaxation. Increased short forms of the receptors and reduced BKCa channels exert a negative effect on uterine relaxation in late pregnancy. Leptin may have a physiological role in maintaining uterine quiescence in mid-pregnancy and its reduced relaxant response in late gestation may facilitate labor. Further, ObRb receptor agonists may be useful in the management of preterm labor.
Collapse
Affiliation(s)
- D G Kishor Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India, 243122
| | - M Pashupathi
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India, 243122
| | - Ayushi Vaidhya
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India, 243122
| | - G Ravi Prakash
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India, 243122
| | - Anjali Bramhane
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India, 243122
| | - Manjit Panigrahi
- Division of Animal Genetics and Breeding, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India, 243122
| | - M Karikalan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India, 243122
| | - Madhu C Lingaraju
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India, 243122
| | - Kesavan Manickam
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India, 243122
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India, 243122
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India, 243122.
| |
Collapse
|
3
|
Ding L, Gao L. Factors of Fetal Origin in the Regulation of Labor Initiation and Preterm Birth. MATERNAL-FETAL MEDICINE 2023; 5:238-243. [PMID: 40406559 PMCID: PMC12094351 DOI: 10.1097/fm9.0000000000000200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 05/26/2025] Open
Abstract
Preterm birth is the leading cause of mortality and morbidity in newborns and children under 5 years-of-age. In order to improve the survival rate and quality of preterm infants, there is critical need to identify the specific mechanisms underlying the initiation of labor. Pregnancy represents a period of constant interactive dialog between mother and fetus. A disturbance in the pattern of maternal-fetal communication can induce physiological or pathological labor. Although a number of studies have investigated the contributions of maternal factors to the initiation of labor, the concept that fetal organ development and maternal adaptation are coordinated has emerged over recent years, thus emphasizing that factors of fetal origin may serve as hormonal signals for the initiation of labor. In this review, we summarize and discuss several specific mechanisms by which factors of fetal origin may influence parturition during term or preterm labor, including the specific regulation of fetal organs, including the lungs and accessory organs during pregnancy. Future research may focus on the specific pathways by which signals from the fetal lungs and other fetal organs interact with the maternal system to initiate eventual labor.
Collapse
Affiliation(s)
- Longkun Ding
- Department of Physiology, Naval Medical University, Shanghai 200433, China
| | - Lu Gao
- Department of Physiology, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| |
Collapse
|
4
|
Social Isolation Stress Modulates Pregnancy Outcomes and the Inflammatory Profile of Rat Uterus. Int J Mol Sci 2022; 23:ijms23116169. [PMID: 35682846 PMCID: PMC9181517 DOI: 10.3390/ijms23116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022] Open
Abstract
Prenatal stressors have been linked to adverse pregnancy outcomes; including preterm birth (PTB). Recent work demonstrates that social isolation in mothers represents a silent stressor contributing to PTB risk. Here; we investigate the association of inflammatory and stress markers with PTB risk in Long–Evans rats exposed to social isolation stress (SIS) during preconception and pregnancy across four generations (F0-F3). Gestational length; blood glucose; corticosterone levels; and maternal and offspring weights were assessed in two SIS paradigms: transgenerational (TG) and multigenerational (MG) exposure. Maternal uterine tissues were collected 21 days after the dams gave birth. Exposure to SIS reduced pregnancy lengths in the parental generation and neonatal birth weights in the F1 and F2 generations. Interleukin (IL)-1β (Il1b) mRNA levels increased in F0 animals but decreased in the offspring of both stress lineages. Protein levels of IL-1β decreased in the TG lineage. Corticotrophin-releasing hormone receptor 1 (Crhr1) expression decreased in SIS-exposed F0 animals and increased in the TG-F2 and MG-F1 offspring. Expression of enzyme 11-β hydroxysteroid dehydrogenase-2 (11bHSD2) was enhanced in F1 animals. These findings suggest SIS has adverse consequences on the F0 mothers; but their F1–F3 progeny may adapt to this chronic stress; thus supporting the fetal programming hypothesis.
Collapse
|
5
|
Zhang Y, Xu C, Tang Z, Guo D, Yao R, Zhao H, Chen Z, Ni X. Furin is involved in uterine activation for labor. FASEB J 2021; 35:e21565. [PMID: 33864414 DOI: 10.1096/fj.202002128rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
The uterus undergoes distinct molecular and functional changes during pregnancy and parturition. These processes are associated with the dramatic changes in various proteins. Given that the maturation and activation of many proteins require proteolytic processing by proprotein convertases (PCs), we sought to explore the role of PCs in uterine activation for labor. First, we found that furin was the most dramatically increased PC member in myometrial tissues from the pregnant women after onset of labor at term. Using the model of cultured human myometrial smooth muscle cells (HMSMCs), we showed that furin inhibitor CMK, D6R treatment and furin siRNA transfection suppressed contractility. Inhibition of furin activity or interfering furin expression decreased connexin 43 (CX43), prostaglandin (PG) endoperoxide synthase-2 (COX-2) and PGF2α receptor (FP) expression and NF-κB activation. In mouse model, administration of furin inhibitors prolonged gestational length. However, D6R treatment did not affect RU38486- and lipopolysaccharides (LPS)-induced preterm birth. Furthermore, D6R and furin siRNA treatment reduced the release of soluble form of tumor necrosis factor (TNF)-related weak inducer of apoptosis (TWEAK), while furin overexpression led to an increase in soluble TWEAK release in cultured HMSMCs. D6R treatment decreased TWEAK level in blood of pregnant mice. TWEAK treatment promoted contractility and NF-κB activation, while TWEAK receptor fibroblast growth factor-inducible 14 (FN14) antagonist treatment inhibited contractility and NF-κB activation in HMSMCs. In pregnant mice, administration of FN14 antagonist prolonged gestational length. Our data suggest that furin can act as a stimulator for uterine activation for labor at term. TWEAK is one of the potential substrates which mediate furin regulation of parturition initiation.
Collapse
Affiliation(s)
- Youyi Zhang
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China.,Department of Gynecology and Obstetrics, General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, Shanghai Medical School of Fundan University, Shanghai, China
| | - Zhengshan Tang
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Dewei Guo
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Ruojin Yao
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Huina Zhao
- Department of Gynecology and Obstetrics, Changhai Hospital, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Seventh People's Hospital, Shanghai, China
| | - Zixi Chen
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xin Ni
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
6
|
Centrally acting drug moxonidine decreases reactive oxygen species via inactivation of the phosphoinositide-3 kinase signaling in the rostral ventrolateral medulla in hypertensive rats. J Hypertens 2016; 34:993-1004. [PMID: 26886567 DOI: 10.1097/hjh.0000000000000887] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Centrally acting antihypertensive action of moxonidine is a result of activation of Imidazoline-1 receptor (I1R) in the rostral ventrolateral medulla (RVLM). Hypertension shows an increase in reactive oxygen species (ROS) in the RVLM. The present objective was to determine the phosphoinositide-3 kinase (PI3K) signaling pathway involved in the effect of moxonidine on ROS generation in the RVLM of spontaneously hypertensive rat (SHR). METHODS Wistar-Kyoto rats and SHR received intracisternal infusion (2 weeks) of tested agents which were subjected to subsequent experiments. In-situ ROS in the RVLM was evaluated by the oxidative fluorescence dye. Western blot and PCR analysis were performed to detect the expression levels of PI3K signaling pathway. Lentivirus was injected bilaterally into the RVLM for silencing PI3K signaling. RESULTS ROS production in the RVLM was dose-dependently reduced in SHRs treated with infusion of moxonidine (20 nmol/day), which was prevented by the I1R antagonist efaroxan but not by the α2-adrenoceptor antagonist yohimbine. Moxonidine pretreatment significantly blunted cardiovascular sensitivity to injection of tempol (5 nmol) or angiotensin II (10 pmol) into the RVLM in SHR. Expression levels of PI3K/Akt, nuclear factor kappa-B (NFκB), NADPHase (NOX4), and angiotensin type I receptor (AT1R) in the RVLM were markedly decreased in SHR treated with moxonidine. Infection of lentivirus containing PI3K shRNA in the RVLM effectively prevented effects of moxonidine on cardiovascular activity and expression levels of Akt, NFκB, NOX4, and AT1R. CONCLUSION The centrally antihypertensive drug moxonidine decreases ROS production in the RVLM through inactivation of the PI3K/Akt signaling pathway in hypertension.
Collapse
|
7
|
Xu C, Liu W, You X, Leimert K, Popowycz K, Fang X, Wood SL, Slater DM, Sun Q, Gu H, Olson DM, Ni X. PGF2α modulates the output of chemokines and pro-inflammatory cytokines in myometrial cells from term pregnant women through divergent signaling pathways. Mol Hum Reprod 2015; 21:603-614. [PMID: 25882540 PMCID: PMC4487446 DOI: 10.1093/molehr/gav018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/23/2015] [Accepted: 04/08/2015] [Indexed: 02/07/2023] Open
Abstract
Prostaglandin F2α (PGF2α) plays a critical role in the initiation and process of parturition. Since human labor has been described as an inflammatory event, we investigated the role of PGF2α in the inflammatory process using cultured human uterine smooth muscle cells (HUSMCs) isolated from term pregnant women as a model. Using a multiplex assay, HUSMCs treated with PGF2α changed their output of a number of cytokines and chemokines, with a distinct response pattern that differed between HUSMCs isolated from the upper and lower segment region of the uterus. Confirmatory enzyme-linked immunosorbent assays (ELISAs) showed that PGF2α stimulated increased output of interleukin (IL) 1β, IL6, IL8 (CXCL8) and monocyte chemotactic protein-1 (MCP1, also known as chemokine (c-c motif) ligand 2, CCL2) by HUSMCs isolated from both upper and lower uterine segments. In contrast, PGF2α inhibited tumor necrosis factor α (TNFα) release by HUMSCs from the lower uterine segment while the output of TNFα was undetectable in the upper segment. Small interfering (si) RNA mediated knockdown of the PGF2α receptor prevented the changes in cytokine and chemokine output by the HUSMCs. Since the PGF2α receptor (PTGFR) couples via the Gq protein and subsequently activates the phospholipase C (PLC) and protein kinase C (PKC) signaling pathways, we examined the role of these pathways in PGF2α modulation of the cytokines. Inhibition of PLC and PKC reversed the effects of PGF2α. PGF2α activated multiple signaling pathways including extracellular signal-regulated kinases (ERK) 1/2, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), P38, calcineurin/nuclear factor of activated T-cells (NFAT) and NF-κB signaling. Inhibition of ERK reversed PGF2α-induced IL1β, IL6 and CCL2 output, while inhibition of PI3K blocked the effect of PGF2α on IL6, CXCL8 and CCL2 output and inhibition of NF-κB reversed PGF2α-induced IL1β and CCL2 output. NFAT was involved in PGF2α modulation of CCL2 and TNFα output. In conclusion, our results support a role of PGF2α in creating an inflammatory environment during the late stage of human pregnancy.
Collapse
Affiliation(s)
- Chen Xu
- Department of Physiology, Second Military Medical University, Shanghai 200433, China Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Weina Liu
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Xingji You
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Kelycia Leimert
- Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Krystyn Popowycz
- Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Xin Fang
- Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Stephen L Wood
- Department of Obstetrics and Gynecology, University of Calgary, Calgary T2N1N4, Canada
| | - Donna M Slater
- Department of Obstetrics and Gynecology, University of Calgary, Calgary T2N1N4, Canada Departments of Physiology and Pharmacology, University of Calgary, Calgary T2N1N4, Canada
| | - Qianqian Sun
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hang Gu
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - David M Olson
- Departments of Physiology, Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton T6G2S2, Canada
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
8
|
Hill M, Dušková M, Stárka L. Dehydroepiandrosterone, its metabolites and ion channels. J Steroid Biochem Mol Biol 2015; 145:293-314. [PMID: 24846830 DOI: 10.1016/j.jsbmb.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/06/2014] [Accepted: 05/11/2014] [Indexed: 11/20/2022]
Abstract
This review is focused on the physiological and pathophysiological relevance of steroids influencing the activities of the central and peripheral nervous systems with regard to their concentrations in body fluids and tissues in various stages of human life like the fetal development or pregnancy. The data summarized in this review shows that DHEA and its unconjugated and sulfated metabolites are physiologically and pathophysiologically relevant in modulating numerous ion channels and participate in vital functions of the human organism. DHEA and its unconjugated and sulfated metabolites including 5α/β-reduced androstane steroids participate in various physiological and pathophysiological processes like the management of GnRH cyclic release, regulation of glandular and neurotransmitter secretions, maintenance of glucose homeostasis on one hand and insulin insensitivity on the other hand, control of skeletal muscle and smooth muscle activities including vasoregulation, promotion of tolerance to ischemia and other neuroprotective effects. In respect of prevalence of steroid sulfates over unconjugated steroids in the periphery and the opposite situation in the CNS, the sulfated androgens and androgen metabolites reach relevance in peripheral organs. The unconjugated androgens and estrogens are relevant in periphery and so much the more in the CNS due to higher concentrations of most unconjugated steroids in the CNS tissues than in circulation and peripheral organs. This article is part of a Special Issue entitled "Essential role of DHEA".
Collapse
Affiliation(s)
- M Hill
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - M Dušková
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - L Stárka
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| |
Collapse
|
9
|
Xu C, You X, Liu W, Sun Q, Ding X, Huang Y, Ni X. Prostaglandin F2α regulates the expression of uterine activation proteins via multiple signalling pathways. Reproduction 2015; 149:139-146. [PMID: 25342173 DOI: 10.1530/rep-14-0479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Prostaglandin F2α (PGF2A) has multiple roles in the birth process in addition to its vital contractile role. Our previous study has demonstrated that PGF2A can modulate uterine activation proteins (UAPs) in cultured pregnant human myometrial smooth muscle cells (HMSMCs). The objective of this study was to define the signalling pathways responsible for PGF2A modulation of UAPs in myometrium. It was found that PGF2A stimulated the expression of (GJA1) connexin 43 (CX43), prostaglandin endoperoxide synthase 2 (PTGS2) and oxytocin receptor (OTR) in cultured HMSMCs. The inhibitors of phospholipase C (PLC) and protein kinase C (PKC) blocked PGF2A-stimulated expression of CX43. The inhibitors of ERK, P38 and NFκB also blocked the effect of PGF2A on CX43 expression, whereas PI3K and calcineurin/nuclear factor of activated T-cells (NFAT) pathway inhibitors did not reverse the effect of PGF2A on CX43. For PTGS2 and OTR, PLC, PI3K, P38 and calcineurin/NFAT signalling pathways were involved in PGF2A action, whereas PKC and NFκB signalling were not involved. In addition, PGF2A activated NFAT, PI3K, NFκB, ERK and P38 signalling pathways. Our data suggest that PGF2A stimulates CX43, PTGS2 and OTR through divergent signalling pathways.
Collapse
Affiliation(s)
- Chen Xu
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| | - Xingji You
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| | - Weina Liu
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| | - Qianqian Sun
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| | - Xiaoying Ding
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| | - Ying Huang
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| | - Xin Ni
- Department of PhysiologySecond Military Medical University, 800 Xiangyin Road, Shanghai 200433, ChinaDepartment of Obstetrics and GynecologyChanghai Hospital, Shanghai, ChinaMaternity and Child Health Hospital of Pudong New District599 Hongfeng Road, Shanghai 201206, China
| |
Collapse
|
10
|
Li Y, Lorca RA, Ma X, Rhodes A, England SK. BK channels regulate myometrial contraction by modulating nuclear translocation of NF-κB. Endocrinology 2014; 155:3112-22. [PMID: 24914944 PMCID: PMC4098006 DOI: 10.1210/en.2014-1152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The large-conductance Ca(2+)-activated K(+) (BK) channel plays an essential role in maintaining uterine quiescence during pregnancy. Growing evidence has shown a link between the BK channel and bacterial lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) activation in macrophages. In the uterus, NF-κB activation plays an important role in inflammatory processes that lead to parturition. Our objective was to determine whether the BK channel regulates uterine contraction, in part, by modulating NF-κB translocation into the nucleus. We compared the effects of BK channel modulation to those of LPS on NF-κB nuclear translocation and contraction in an immortalized human myometrial cell line (human telomerase reverse transcriptase [hTERT]) and uterine myocytes. Our results showed that BK channel inhibitors paxilline and penitrem A induced translocation of NF-κB into the nucleus in both hTERT cells and uterine myocytes to a similar extent as LPS treatment, and LPS and paxilline similarly reduced BK channel currents. Conversely, neither BK channel openers nor blockade of the small conductance Ca(2+)-activated K(+) channel protein 3 had an effect on NF-κB translocation. Additionally, collagen-based assays showed that paxilline induced contraction of hTERT cells and uterine myocytes. This was dependent upon cyclooxygenase-2 activity. Moreover, paxilline-induced contractility and increased cyclooxygenase-2 expression both depended on availability of free NF-κB. This study suggests that BK channels regulate myometrial contraction, in part, by modulating nuclear translocation of NF-κB.
Collapse
Affiliation(s)
- Youe Li
- Center for Women's Reproductive Sciences Research, Department of Obstetrics and Gynecology, Basic Science Division, Washington University in St Louis, St Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
11
|
Lorca RA, Prabagaran M, England SK. Functional insights into modulation of BKCa channel activity to alter myometrial contractility. Front Physiol 2014; 5:289. [PMID: 25132821 PMCID: PMC4116789 DOI: 10.3389/fphys.2014.00289] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022] Open
Abstract
The large-conductance voltage- and Ca(2+)-activated K(+) channel (BKCa) is an important regulator of membrane excitability in a wide variety of cells and tissues. In myometrial smooth muscle, activation of BKCa plays essential roles in buffering contractility to maintain uterine quiescence during pregnancy and in the transition to a more contractile state at the onset of labor. Multiple mechanisms of modulation have been described to alter BKCa channel activity, expression, and cellular localization. In the myometrium, BKCa is regulated by alternative splicing, protein targeting to the plasma membrane, compartmentation in membrane microdomains, and posttranslational modifications. In addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits), association with G-protein coupled receptor signaling pathways, such as those activated by adrenergic and oxytocin receptors, and hormonal regulation provide further mechanisms of variable modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an overview of these mechanisms of BKCa channel modulation and provide a context for them in relation to myometrial function.
Collapse
Affiliation(s)
- Ramón A Lorca
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine St. Louis, MO, USA
| | - Monali Prabagaran
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine St. Louis, MO, USA
| |
Collapse
|
12
|
You X, Liu J, Xu C, Liu W, Zhu X, Li Y, Sun Q, Gu H, Ni X. Corticotropin-releasing hormone (CRH) promotes inflammation in human pregnant myometrium: the evidence of CRH initiating parturition? J Clin Endocrinol Metab 2014; 99:E199-E208. [PMID: 24248185 DOI: 10.1210/jc.2013-3366] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT An increasing body of evidence indicates that human labor, either term or preterm, is an inflammatory event. CRH has been implicated to be a trigger of human parturition. OBJECTIVE To investigate whether CRH induces the cascades of inflammation in human pregnant myometrium, thereby leading to activation of uterus. DESIGN The myometrial tissues were obtained from pregnant women who were in labor or not in labor at term. The output of cytokines and prostaglandins (PGs) was determined by Multiplex and ELISA. Western blot analysis was used to determine the levels of uterine activation proteins (UAPs). RESULTS The levels of chemokines and cytokines as well as activated nuclear factor-κB (NF-κB) were increased in the term labor group more than the not term labor group. CRH stimulated production of a number of chemokines and cytokines in cultured uterine smooth muscle cells (USMCs), which induced chemotaxis of monocytes. These effects were mediated by CRH receptor 1 (CRHR1) and dependent on adenylyl cyclase/protein kinase (PKA) and NF-κB signaling. Cocultures of CRH-treated USMCs with monocytes greatly enhanced the output of cytokines and chemokines as well as PGs in cultures and increased the expression of uterine activation proteins (UAPs) in USMCs. IL-1β, IL-6, and TNF-α stimulated the expression of UAPs and output of PGs in USMCs. CONCLUSIONS CRH induces the production of chemokines and cytokines in myometrium at term and subsequently results in the cascade of inflammation in uterus. The inflammation induced by CRH can lead to activation of uterus.
Collapse
Affiliation(s)
- Xingji You
- Department of Physiology (X.Y., J.L., C.X., W.L., X.Z., X.N.), Second Military Medical University, Shanghai 200433, China; and Department of Obstetrics and Gynecology (Y.L., Q.S., H.G.), Changhai Hospital, Shanghai 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The physiological roles of placental corticotropin releasing hormone in pregnancy and childbirth. J Physiol Biochem 2012; 69:559-73. [PMID: 23385670 DOI: 10.1007/s13105-012-0227-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/10/2012] [Indexed: 12/18/2022]
Abstract
In response to stress, the hypothalamus releases cortiticotropin releasing hormone (CRH) that travels to the anterior pituitary, where it stimulates the release of adrenocorticotropic hormone (ACTH). ACTH travels to the adrenal cortex, where it stimulates the release of cortisol and other steroids that liberate energy stores to cope with the stress. During pregnancy, the placenta synthesises CRH and releases it into the bloodstream at increasing levels to reach concentrations 1,000 to 10, 000 times of that found in the non-pregnant individual. Urocortins, which are CRH analogues are also secreted by the placenta. Desensitisation of the maternal pituitary to CRH and resetting after birth may be a factor in post-partum depression. Recently, CRH has been found to modulate glucose transporter (GLUT) proteins in placental tissue, and therefore there may be a link between CRH levels and foetal growth. Evidence suggests CRH is involved in the timing of birth by modulating signalling systems that control the contractile properties of the myometrium. In the placenta, cortisol stimulates CRH synthesis via activation of nuclear factor kappa B (NF-κB), a component in a cellular messenger system that may also be triggered by stressors such as hypoxia and infection, indicating that intrauterine stress could bring forward childbirth and cause low birth weight infants. Such infants could suffer health issues into their adult life as a result of foetal programming. Future treatment of these problems with CRH antagonists is an exciting possibility.
Collapse
|
14
|
You X, Gao L, Liu J, Xu C, Liu C, Li Y, Hui N, Gu H, Ni X. CRH activation of different signaling pathways results in differential calcium signaling in human pregnant myometrium before and during labor. J Clin Endocrinol Metab 2012; 97:E1851-61. [PMID: 22869609 DOI: 10.1210/jc.2011-3383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Our previous study has demonstrated that CRH has differential effects on human uterine contractility before and after onset of labor. Intracellular Ca2+ concentration ([Ca2+]i) mobilization plays an important role in the control of uterine contraction. OBJECTIVE Our objective was to investigate the effects of CRH on [Ca2+]i homeostasis in laboring and nonlaboring myometrial cells and determine subsequent signaling involved in [Ca2+]i regulation by CRH. DESIGN The myometrial tissues were obtained from pregnant women who were undergoing or not undergoing labor at term. [Ca2+]i was determined by Ca2+ imaging system using the fluorescent dye fura-2-acetoxymethyl ester. Western blot analysis, ELISA, and RIA were used to determine the signaling pathways induced by CRH. RESULTS CRH induced Ca2+ transient in laboring cells, which was blocked by CRH receptor type 1 (CRHR1) antagonist antalarmin. CRHR1 knockdown impaired this effect of CRH. CRH activated Gi protein, decreased cAMP production, and induced phosphorylated phospholipase C-β3 and inositol-1,4,5-triphosphate production. Phospholipase C and inositol-1,4,5-triphosphate receptor inhibitors blocked the CRH-induced Ca2+ transient in laboring cells. CRH did not induce whereas antalarmin induced the Ca2+ transient in nonlaboring cells. Knockdown of CRHR1 impaired the effect of antalarmin. CRH acted on CRHR1 to activate Gs in nonlaboring cells. Forskolin blocked antalarmin-induced Ca2+ transient. CONCLUSIONS CRH acts on CRHR1 to activate different signaling pathways before and after onset of labor, thereby resulting in differential calcium signaling in response to CRH. The signaling pathways of CRHR1 might serve as a target for the development of new therapeutic strategies for preterm birth.
Collapse
Affiliation(s)
- Xingji You
- Department of Physiology, Second Military Medical University, and Department of Obsetrics and Gynecology, Changhai Hospital, 800 Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|