1
|
Abstract
Anti-Müllerian hormone (AMH) is a member of the TGF-β family produced essentially by the supporting somatic cells of the testis. Initially known for its inhibiting role upon the development of female internal organs, AMH has been shown to exert many other effects namely upon germ cells. Circulating AMH reflects the ovarian reserve of young developing follicles and is used to evaluate the fertility potential in assisted reproduction. The signaling pathway of AMH is both similar and different from that of other members of the TGF-β family. Like these, it signals through two distinct serine/threonine receptors, type 1 and type 2, that phosphorylate cytoplasmic effectors, the Smads. It also shares type 1 receptors and Smads with other members of the family. However, AMH is the only family member with its own, dedicated, ligand-specific type 2 receptor, AMHR2. The monogamic relationship between AMH and AMHR2 is supported by molecular studies of the Persistent Müllerian Duct Syndrome, characterized by the presence of Müllerian derivatives in otherwise normally virilized males: mutations of AMH or AMHR2 are clinically indistinguishable.
Collapse
Affiliation(s)
- Nathalie Josso
- Lipodystrophies, Adaptations Métaboliques et Hormonales, et Vieillissement, Sorbonne Université, INSERM, Centre de Recherches Saint-Antoine, 27 rue de Chaligny, 75012 Paris, France.
| | - Jean-Yves Picard
- Lipodystrophies, Adaptations Métaboliques et Hormonales, et Vieillissement, Sorbonne Université, INSERM, Centre de Recherches Saint-Antoine, 27 rue de Chaligny, 75012 Paris, France.
| |
Collapse
|
2
|
Lemcke RA, Stephens CS, Hildebrandt KA, Johnson PA. Anti-Müllerian hormone type II receptor in avian follicle development. Biol Reprod 2019; 99:1227-1234. [PMID: 29931109 DOI: 10.1093/biolre/ioy140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Anti-Müllerian hormone (AMH) helps maintain the ovarian reserve by regulating primordial follicle activation and follicular selection in mammals, although its role within the avian ovary is unknown. In mammals, AMH is primarily produced in granulosa cells of preantral and early antral follicles. Similarly, in the hen, the granulosa cells of smaller follicles are the predominant source of AMH. The importance of AMH in mammalian ovarian dynamics suggests the protein and its specific Type II receptor, AMHRII, may have conserved functions in the hen. AMHRII mRNA expression is highest (P < 0.01) in small follicles of the hen and decreases as follicle size increases. Similarly, expression of AMHRII and AMH is highest in granulosa cells from small follicles as compared to larger follicles. Dissection of 3-5 mm follicles into ooplasm and granulosa components shows that AMHRII mRNA levels are greater in ooplasm than granulosa cells. Furthermore, immunohistochemistry also revealed AMHRII staining in the oocyte and granulosa cells. AMH expression in mammals is elevated during periods of reproductive dormancy, possibly protecting the ovarian reserve. AMHRII and AMH mRNA were significantly higher (P < 0.05) in nonlaying ovaries of broiler hens. In molting layer hens, AMHRII mRNA was significantly greater (P < 0.05) compared to nonmolting hen ovaries. These results suggest that AMH may have a direct effect on the oocyte and, thereby, contribute to bidirectional communication between oocyte and granulosa cells. Enhanced expression of AMHRII and AMH during reproductive quiescence supports a potential role of AMH in protecting the ovarian reserve in hens.
Collapse
Affiliation(s)
- R A Lemcke
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - C S Stephens
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - K A Hildebrandt
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - P A Johnson
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Mehanovic S, Mendoza-Villarroel RE, Viger RS, Tremblay JJ. The Nuclear Receptor COUP-TFII Regulates Amhr2 Gene Transcription via a GC-Rich Promoter Element in Mouse Leydig Cells. J Endocr Soc 2019; 3:2236-2257. [PMID: 31723721 PMCID: PMC6839530 DOI: 10.1210/js.2019-00266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023] Open
Abstract
The nuclear receptor chicken ovalbumin upstream promoter–transcription factor type II (COUP-TFII)/NR2F2 is expressed in adult Leydig cells, and conditional deletion of the Coup-tfii/Nr2f2 gene impedes their differentiation. Steroid production is also reduced in COUP-TFII–depleted Leydig cells, supporting an additional role in steroidogenesis for this transcription factor. COUP-TFII action in Leydig cells remains to be fully characterized. In the present work, we report that COUP-TFII is an essential regulator of the gene encoding the anti-Müllerian hormone receptor type 2 (Amhr2), which participates in Leydig cell differentiation and steroidogenesis. We found that Amhr2 mRNA levels are reduced in COUP-TFII–depleted MA-10 Leydig cells. Consistent with this, COUP-TFII directly activates a −1486 bp fragment of the mouse Amhr2 promoter in transient transfection assays. The COUP-TFII responsive region was localized between −67 and −34 bp. Chromatin immunoprecipitation assay confirmed COUP-TFII recruitment to the proximal Amhr2 promoter whereas DNA precipitation assay revealed that COUP-TFII associates with the −67/−34 bp region in vitro. Even though the −67/−34 bp region contains an imperfect nuclear receptor element, COUP-TFII–mediated activation of the Amhr2 promoter requires a GC-rich sequence at −39 bp known to bind the specificity protein (SP)1 transcription factor. COUP-TFII transcriptionally cooperates with SP1 on the Amhr2 promoter. Mutations that altered the GCGGGGCGG sequence at −39 bp abolished COUP-TFII–mediated activation, COUP-TFII/SP1 cooperation, and reduced COUP-TFII binding to the proximal Amhr2 promoter. Our data provide a better understanding of the mechanism of COUP-TFII action in Leydig cells through the identification and regulation of the Amhr2 promoter as a novel target.
Collapse
Affiliation(s)
- Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Raifish E Mendoza-Villarroel
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
4
|
Sun D, Dong W, Jin B, Chen G, Cai B, Deng W, Cui Y, Jin Y. Mechanisms of Yangjing Capsule in Leydig Cell Apoptosis and Testosterone Synthesis via Promoting StAR Expression. Biol Pharm Bull 2018; 41:1401-1405. [DOI: 10.1248/bpb.b18-00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dalin Sun
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University
| | | | - Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University
| | - Guanghui Chen
- Hebei Provincial Hospital of Traditional Chinese Medicine
| | - Bin Cai
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University
| | - Weimin Deng
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University
| | - Yihan Jin
- Medical College of Qinghai University
| |
Collapse
|
5
|
Ye L, Li X, Li L, Chen H, Ge RS. Insights into the Development of the Adult Leydig Cell Lineage from Stem Leydig Cells. Front Physiol 2017; 8:430. [PMID: 28701961 PMCID: PMC5487449 DOI: 10.3389/fphys.2017.00430] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Adult Leydig cells (ALCs) are the steroidogenic cells in the testes that produce testosterone. ALCs develop postnatally from a pool of stem cells, referred to as stem Leydig cells (SLCs). SLCs are spindle-shaped cells that lack steroidogenic cell markers, including luteinizing hormone (LH) receptor and 3β-hydroxysteroid dehydrogenase. The commitment of SLCs into the progenitor Leydig cells (PLCs), the first stage in the lineage, requires growth factors, including Dessert Hedgehog (DHH) and platelet-derived growth factor-AA. PLCs are still spindle-shaped, but become steroidogenic and produce mainly androsterone. The next transition in the lineage is from PLC to the immature Leydig cell (ILC). This transition requires LH, DHH, and androgen. ILCs are ovoid cells that are competent for producing a different form of androgen, androstanediol. The final stage in the developmental lineage is ALC. The transition to ALC involves the reduced expression of 5α-reductase 1, a step that is necessary to make the cells to produce testosterone as the final product. The transitions along the Leydig cell lineage are associated with the progressive down-regulation of the proliferative activity, and the up-regulation of steroidogenic capacity, with each step requiring unique regulatory signaling.
Collapse
Affiliation(s)
- Leping Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Xiaoheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Haolin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
6
|
Xing X, Zhang Z, Zhong L, Ju G, Zou X, Zhu Y, Sun J. Differentiation of human umbilical cord mesenchymal stem cells into steroidogenic cells in vitro. Exp Ther Med 2016; 12:3527-3534. [PMID: 28105086 PMCID: PMC5228511 DOI: 10.3892/etm.2016.3815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/23/2016] [Indexed: 12/29/2022] Open
Abstract
Although previous studies have shown that stem cells can be differentiated into Leydig cells by gene transfection, a simple, safe and effective induction method has not yet been reported. Therefore, the present study investigated novel methods for the induction of human umbilical cord mesenchymal stem cell (HUMSC) differentiation into Leydig-like, steroidogenic cells. HUMSCs were acquired using the tissue block culture attachment method, and the expression of MSC surface markers was evaluated by flow cytometry. Leydig cells were obtained by enzymatic digestion and identified by lineage-specific markers via immunofluorescence. Third-passage HUMSCs were cultured with differentiation-inducing medium (DIM) or Leydig cell-conditioned medium (LC-CM), and HUMSCs before induction were used as the control group. Following the induction of HUMSCs, Leydig cell lineage-specific markers (CYP11A1, CYP17A1 and 3β-HSD) were positively identified using immunofluorescence analysis. Additionally, reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to evaluate the expression levels of these genes and enzymes. In contrast, the control group cells did not show the characteristics of Leydig cells. Collectively, these results indicate that, under in vitro conditions, LC-CM can achieve a comparable effect to that of DIM on inducing HUMSCs differentiation into steroidogenic cells.
Collapse
Affiliation(s)
- Xiaoyu Xing
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Zhiyuan Zhang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Liang Zhong
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Guanqun Ju
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| | - Xiangyu Zou
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Yingjian Zhu
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
7
|
Rocha A, Zanuy S, Gómez A. Conserved Anti-Müllerian Hormone: Anti-Müllerian Hormone Type-2 Receptor Specific Interaction and Intracellular Signaling in Teleosts. Biol Reprod 2016; 94:141. [PMID: 27226310 DOI: 10.1095/biolreprod.115.137547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/29/2016] [Indexed: 12/24/2022] Open
Abstract
In higher vertebrates, anti-Müllerian hormone (AMH) is required for Müllerian duct regression in fetal males. AMH is also produced during postnatal life in both sexes regulating steroidogenesis and early stages of folliculogenesis. Teleosts lack Müllerian ducts, but Amh has been identified in several species including European sea bass. However, information on Amh type-2 receptor (Amhr2), the specific receptor for Amh binding, is restricted to a couple of fish species. Here, we report on cloning sea bass amhr2, the production of a recombinant sea bass Amh, and the functional analysis of this ligand-receptor couple. Phylogenetic analysis revealed that sea bass amhr2 segregates with Amhr2 from other vertebrates. This piscine receptor is capable of activating Smad proteins. Antibodies raised against sea bass Amh were used to study native and recombinant Amh, revealing proteins in the range of 66-70 kDa corresponding to the full length Amh. Once proteolytically treated, recombinant sea bass Amh generates a 12 kDa C-terminal mature protein, suggesting that contrary to what has been described for other fish Amh proteins, this protein is processed in a similar way as mammalian AMH. The mature sea bass Amh is a biologically active protein able to bind sea bass Amhr2 and, surprisingly, also human AMHR2. In prepubertal sea bass testes, Amh was detected by immunohistochemistry mostly in Sertoli cells surrounding early germ-cell generations. During spermatogenesis, a weaker staining signal could be observed in Sertoli cells surrounding spermatocytes.
Collapse
Affiliation(s)
- Ana Rocha
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre la Sal (Consejo Superior de Investigaciones Científicas), Torre la Sal, Castellón, Spain
| |
Collapse
|
8
|
Fumel B, Froment P, Holzenberger M, Livera G, Monget P, Fouchécourt S. Expression of dominant-negative thyroid hormone receptor alpha1 in Leydig and Sertoli cells demonstrates no additional defect compared with expression in Sertoli cells only. PLoS One 2015; 10:e0119392. [PMID: 25793522 PMCID: PMC4368620 DOI: 10.1371/journal.pone.0119392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/30/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND In the testis, thyroid hormone (T3) regulates the number of gametes produced through its action on Sertoli cell proliferation. However, the role of T3 in the regulation of steroidogenesis is still controversial. METHODS The TRαAMI knock-in allele allows the generation of transgenic mice expressing a dominant-negative TRα1 (thyroid receptor α1) isoform restricted to specific target cells after Cre-loxP recombination. Here, we introduced this mutant allele in both Sertoli and Leydig cells using a novel aromatase-iCre (ARO-iCre) line that expresses Cre recombinase under control of the human Cyp19(IIa)/aromatase promoter. FINDINGS We showed that loxP recombination induced by this ARO-iCre is restricted to male and female gonads, and is effective in Sertoli and Leydig cells, but not in germ cells. We compared this model with the previous introduction of TRαAMI specifically in Sertoli cells in order to investigate T3 regulation of steroidogenesis. We demonstrated that TRαAMI-ARO males exhibited increased testis weight, increased sperm reserve in adulthood correlated to an increased proliferative index at P3 in vivo, and a loss of T3-response in vitro. Nevertheless, TRαAMI-ARO males showed normal fertility. This phenotype is similar to TRαAMI-SC males. Importantly, plasma testosterone and luteinizing hormone levels, as well as mRNA levels of steroidogenesis enzymes StAR, Cyp11a1 and Cyp17a1 were not affected in TRαAMI-ARO. CONCLUSIONS/SIGNIFICANCE We concluded that the presence of a mutant TRαAMI allele in both Leydig and Sertoli cells does not accentuate the phenotype in comparison with its presence in Sertoli cells only. This suggests that direct T3 regulation of steroidogenesis through TRα1 is moderate in Leydig cells, and that Sertoli cells are the main target of T3 action in the testis.
Collapse
Affiliation(s)
- Betty Fumel
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- Université François Rabelais de Tours, F-37041, Tours, France
- IFCE, F-37380, Nouzilly, France
| | - Pascal Froment
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- Université François Rabelais de Tours, F-37041, Tours, France
- IFCE, F-37380, Nouzilly, France
| | - Martin Holzenberger
- INSERM and Sorbonne Universités—UPMC, UMRS 938, Hôpital Saint-Antoine, 75012, Paris, France
| | - Gabriel Livera
- Laboratoire de Développement des Gonades, INSERM U967, CEA/DSV/iRCM/SCSR/LDG, Univ Paris Diderot, Sorbonne Paris Cité, Univ Paris Sud, F-92265, Fontenay-Aux-Roses, France
| | - Philippe Monget
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- Université François Rabelais de Tours, F-37041, Tours, France
- IFCE, F-37380, Nouzilly, France
| | - Sophie Fouchécourt
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- Université François Rabelais de Tours, F-37041, Tours, France
- IFCE, F-37380, Nouzilly, France
- * E-mail:
| |
Collapse
|
9
|
Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis 2014; 1:87-105. [PMID: 25401122 PMCID: PMC4232216 DOI: 10.1016/j.gendis.2014.07.005] [Citation(s) in RCA: 733] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling.
Collapse
Affiliation(s)
- Richard N. Wang
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jordan Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Michael Peabody
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qian Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Sahitya Denduluri
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Olumuyiwa Idowu
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Melissa Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Christine Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alan Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - James Mok
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue L. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Cutting AD, Ayers K, Davidson N, Oshlack A, Doran T, Sinclair AH, Tizard M, Smith CA. Identification, expression, and regulation of anti-Müllerian hormone type-II receptor in the embryonic chicken gonad. Biol Reprod 2014; 90:106. [PMID: 24621923 DOI: 10.1095/biolreprod.113.116491] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Anti-Müllerian hormone (AMH) signaling is required for proper development of the urogenital system in vertebrates. In male mammals, AMH is responsible for regressing the Müllerian ducts, which otherwise develop into the fallopian tubes, oviducts, and upper vagina of the female reproductive tract. This role is highly conserved across higher vertebrates. However, AMH is required for testis development in fish species that lack Müllerian ducts, implying that AMH signaling has broader roles in other vertebrates. AMH signals through two serine/threonine kinase receptors. The primary AMH receptor, AMH receptor type-II (AMHR2), recruits the type I receptor, which transduces the signal intracellularly. To enhance our understanding of AMH signaling and the potential role of AMH in gonadal sex differentiation, we cloned chicken AMHR2 cDNA and examined its expression profile during gonadal sex differentiation. AMHR2 is expressed in the gonads and Müllerian ducts of both sexes but is more strongly expressed in males after the onset of gonadal sex differentiation. In the testes, the AMHR2 protein colocalizes with AMH, within Sertoli cells of the testis cords. AMHR2 protein expression is up-regulated in female embryos treated with the estrogen synthesis inhibitor fadrozole. Conversely, knockdown of the key testis gene DMRT1 leads to disruption of AMHR2 expression in the developing seminiferous cords of males. These results indicate that AMHR2 is developmentally regulated during testicular differentiation in the chicken embryo. AMH signaling may be important for gonadal differentiation in addition to Müllerian duct regression in birds.
Collapse
Affiliation(s)
- Andrew D Cutting
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia Commonwealth Scientific and Industrial Research Organisation (CSIRO) Food and Health Science, Australian Animal Health Laboratory, Geelong, Victoria, Australia Poultry Cooperative Research Centre, Armidale, New South Wales, Australia
| | - Katie Ayers
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia Poultry Cooperative Research Centre, Armidale, New South Wales, Australia
| | - Nadia Davidson
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Alicia Oshlack
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Tim Doran
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Food and Health Science, Australian Animal Health Laboratory, Geelong, Victoria, Australia Poultry Cooperative Research Centre, Armidale, New South Wales, Australia
| | - Andrew H Sinclair
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia Poultry Cooperative Research Centre, Armidale, New South Wales, Australia
| | - Mark Tizard
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Food and Health Science, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Craig A Smith
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia Department of Zoology, The University of Melbourne, Melbourne, Victoria, Australia Poultry Cooperative Research Centre, Armidale, New South Wales, Australia
| |
Collapse
|
11
|
Anti-Müllerian hormone recruits BMPR-IA in immature granulosa cells. PLoS One 2013; 8:e81551. [PMID: 24312319 PMCID: PMC3842941 DOI: 10.1371/journal.pone.0081551] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/23/2013] [Indexed: 01/24/2023] Open
Abstract
Anti-Müllerian hormone (AMH) is a member of the TGF-β superfamily secreted by the gonads of both sexes. This hormone is primarily known for its role in the regression of the Müllerian ducts in male fetuses. In females, AMH is expressed in granulosa cells of developing follicles. Like other members of the TGF-β superfamily, AMH transduces its signal through two transmembrane serine/threonine kinase receptors including a well characterized type II receptor, AMHR-II. The complete signalling pathway of AMH involving Smads proteins and the type I receptor is well known in the Müllerian duct and in Sertoli and Leydig cells but not in granulosa cells. In addition, few AMH target genes have been identified in these cells. Finally, while several co-receptors have been reported for members of the TGF-β superfamily, none have been described for AMH. Here, we have shown that none of the Bone Morphogenetic Proteins (BMPs) co-receptors, Repulsive guidance molecules (RGMs), were essential for AMH signalling. We also demonstrated that the main Smad proteins used by AMH in granulosa cells were Smad 1 and Smad 5. Like for the other AMH target cells, the most important type I receptor for AMH in these cells was BMPR-IA. Finally, we have identified a new AMH target gene, Id3, which could be involved in the effects of AMH on the differentiation of granulosa cells and its other target cells.
Collapse
|