1
|
Zhou S, Xu Y, Xiong J, Cheng G. Cross-trait multivariate GWAS confirms health implications of pubertal timing. Nat Commun 2025; 16:799. [PMID: 39824883 PMCID: PMC11742396 DOI: 10.1038/s41467-025-56191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Pubertal timing is highly variable and is associated with long-term health outcomes. Phenotypes associated with pubertal timing include age at menarche, age at voice break, age at first facial hair and growth spurt, and pubertal timing seems to have a shared genetic architecture between the sexes. However, puberty phenotypes have primarily been assessed separately, failing to account for shared genetics, which limits the reliability of the purported health implications. Here, we model the common genetic architecture for puberty timing using a multivariate GWAS, with an effective population of 514,750 European participants. We find 266 independent variants in 197 loci, including 18 novel variants. Transcriptomic, proteome imputation and fine-mapping analyses reveal genes causal for pubertal timing, including KDM4C, LEPR, CCNC, ACP1, and PCSK1. Linkage disequilibrium score regression and Mendelian randomisation analysis establish causal associations between earlier puberty and both accelerated ageing and the risk of developing cardiovascular disease and osteoporosis. We find that alanine aminotransferase, glycated haemoglobin, high-density lipoprotein cholesterol and Parabacteroides levels are mediators of these relationships, and establish that controlling oily fish and retinol intake may be beneficial for promoting healthy pubertal development.
Collapse
Affiliation(s)
- Siquan Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yujie Xu
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingyuan Xiong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China.
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, China.
- Children's Medicine Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Walker KA, Rhodes ST, Liberman DA, Gore AC, Bell MR. Microglial responses to inflammatory challenge in adult rats altered by developmental exposure to polychlorinated biphenyls in a sex-specific manner. Neurotoxicology 2024; 104:95-115. [PMID: 39038526 PMCID: PMC11548868 DOI: 10.1016/j.neuro.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 μg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 μg / kg BW, ip) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex-specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.
Collapse
Affiliation(s)
- Katherine A Walker
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Simone T Rhodes
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Deborah A Liberman
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Margaret R Bell
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA; Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
3
|
Perez-Pouchoulen M, Holley AS, Reinl EL, VanRyzin JW, Mehrabani A, Dionisos C, Mirza M, McCarthy MM. Viral-mediated inflammation by Poly I:C induces the chemokine CCL5 in NK cells and its receptors CCR1 and CCR5 in microglia in the neonatal rat cerebellum. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:155-168. [PMID: 39175524 PMCID: PMC11338497 DOI: 10.1515/nipt-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/22/2024] [Indexed: 08/24/2024]
Abstract
Objectives To study the effect of viral inflammation induced by Polyinosinic:polycytidylic acid (PIC) on the cerebellum during a critical period of development in rats. Methods Neonatal rat pups were treated with PIC on postnatal days (PN) 8 and 10 after which we quantified RNA using Nanostring, qRT-PCR and RNAscope and analyzed immune cells through flow cytometry and immunohistochemistry on PN11. Using the same paradigm, we also analyzed play juvenile behavior, anxiety-like behavior, motor balance using the balance beam and the rotarod assays as well as fine motor behavior using the sunflower seed opening test. Results We determined that male and female pups treated with PIC reacted with a significant increase in CCL5, a chemotactic cytokine that attracts T-cells, eosinophils and basophils to the site of inflammation, at PN11. PIC treatment also increased the expression of two receptors for CCL5, CCR1 and CCR5 in the cerebellar vermis in both males and females at PN11. In-situ hybridization (RNAscope®) for specific transcripts revealed that microglia express both CCL5 receptors under inflammatory and non-inflammatory conditions in both males and females. PIC treatment also increased the total number of CCL5+ cells in the developing cerebellum which were determined to be both natural killer cells and T-cells. There were modest but significant impacts of PIC treatment on large and fine motor skills and juvenile play behavior. Conclusions Our findings suggest an important role for CCL5 and other immune cells in mediating inflammation in the developing cerebellum that potentially impact the maturation of cerebellar neurons during a critical period of development.
Collapse
Affiliation(s)
| | - Amanda S. Holley
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin L. Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amir Mehrabani
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christie Dionisos
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muhammed Mirza
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Margaret M. McCarthy
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Ament SA, Cortes-Gutierrez M, Herb BR, Mocci E, Colantuoni C, McCarthy MM. A single-cell genomic atlas for maturation of the human cerebellum during early childhood. Sci Transl Med 2023; 15:eade1283. [PMID: 37824600 DOI: 10.1126/scitranslmed.ade1283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Inflammation early in life is a clinically established risk factor for autism spectrum disorders and schizophrenia, yet the impact of inflammation on human brain development is poorly understood. The cerebellum undergoes protracted postnatal maturation, making it especially susceptible to perturbations contributing to the risk of developing neurodevelopmental disorders. Here, using single-cell genomics of postmortem cerebellar brain samples, we characterized the postnatal development of cerebellar neurons and glia in 1- to 5-year-old children, comparing individuals who had died while experiencing inflammation with those who had died as a result of an accident. Our analyses revealed that inflammation and postnatal cerebellar maturation are associated with extensive, overlapping transcriptional changes primarily in two subtypes of inhibitory neurons: Purkinje neurons and Golgi neurons. Immunohistochemical analysis of a subset of these postmortem cerebellar samples revealed no change to Purkinje neuron soma size but evidence for increased activation of microglia in those children who had experienced inflammation. Maturation-associated and inflammation-associated gene expression changes included genes implicated in neurodevelopmental disorders. A gene regulatory network model integrating cell type-specific gene expression and chromatin accessibility identified seven temporally specific gene networks in Purkinje neurons and suggested that inflammation may be associated with the premature down-regulation of developmental gene expression programs.
Collapse
Affiliation(s)
- Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcia Cortes-Gutierrez
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian R Herb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Evelina Mocci
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pain Sciences, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Carlo Colantuoni
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Margaret M McCarthy
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Ni H, Guo Z, Wu Y, Wang J, Yang Y, Zhu Z, Wang D. The crucial role that hippocampus Cyclooxygenase-2 plays in memory. Eur J Neurosci 2023; 58:4123-4136. [PMID: 37867375 DOI: 10.1111/ejn.16165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
It is generally accepted that Cyclooxygenase-2 (COX-2) is activated to cause inflammation. However, COX-2 is also constitutively expressed at the postsynaptic dendrites and excitatory terminals of the cortical and spinal cord neurons. Although some evidence suggests that COX-2 release during neuronal signalling may be pivotal for regulating the function of memory, the significance of constitutively expressed COX-2 in neuron is still unclear. This research aims to discover the role of COX-2 in memory beyond neuroinflammation and to determine whether the inhibition of COX-2 can cause cognitive dysfunction by influencing dendritic plasticity and its underlying mechanism. We found COX-2 gene knockout (KO) could significantly impact the learning and memory ability, cause neuronal structure disorder and influence gamma oscillations. These might be mediated by the inhibition of prostaglandin (PG) E2/cAMP pathway and phosphorylated protein kinase A (p-PKA)-phosphorylated cAMP response element binding protein (p-CREB)-brain derived neurotrophic factor (BDNF) axis. It suggested COX-2 might play a critical role in learning, regulating neuronal structure and gamma oscillations in the hippocampus CA1 by regulating COX-2/BDNF signalling pathway.
Collapse
Affiliation(s)
- Hong Ni
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Zhongzhao Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Wu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jie Wang
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Yang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zilu Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deheng Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Garcia-Segura LM, Méndez P, Arevalo MA, Azcoitia I. Neuroestradiol and neuronal development: Not an exclusive male tale anymore. Front Neuroendocrinol 2023; 71:101102. [PMID: 37689249 DOI: 10.1016/j.yfrne.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The brain synthesizes a variety of neurosteroids, including neuroestradiol. Inhibition of neuroestradiol synthesis results in alterations in basic neurodevelopmental processes, such as neurogenesis, neuroblast migration, neuritogenesis and synaptogenesis. Although the neurodevelopmental actions of neuroestradiol are exerted in both sexes, some of them are sex-specific, such as the well characterized effects of neuroestradiol derived from the metabolism of testicular testosterone during critical periods of male brain development. In addition, recent findings have shown sex-specific actions of neuroestradiol on neuroblast migration, neuritic growth and synaptogenesis in females. Among other factors, the epigenetic regulation exerted by X linked genes, such as Kdm6a/Utx, may determine sex-specific actions of neuroestradiol in the female brain. This review evidences the impact of neuroestradiol on brain formation in both sexes and highlights the interaction of neural steriodogenesis, hormones and sex chromosomes in sex-specific brain development.
Collapse
Affiliation(s)
- Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Pablo Méndez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - M Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Iñigo Azcoitia
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain; Department of Cell Biology, Universidad Complutense de Madrid, C José Antonio Nováis 12, 28040 Madrid, Spain
| |
Collapse
|
7
|
Cealie MY, Douglas JC, Le LHD, Vonkaenel ED, McCall MN, Drew PD, Majewska AK. Developmental ethanol exposure has minimal impact on cerebellar microglial dynamics, morphology, and interactions with Purkinje cells during adolescence. Front Neurosci 2023; 17:1176581. [PMID: 37214408 PMCID: PMC10198441 DOI: 10.3389/fnins.2023.1176581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Fetal alcohol spectrum disorders (FASD) are the most common cause of non-heritable, preventable mental disability, occurring in almost 5% of births in the United States. FASD lead to physical, behavioral, and cognitive impairments, including deficits related to the cerebellum. There is no known cure for FASD and their mechanisms remain poorly understood. To better understand these mechanisms, we examined the cerebellum on a cellular level by studying microglia, the principal immune cells of the central nervous system, and Purkinje cells, the sole output of the cerebellum. Both cell types have been shown to be affected in models of FASD, with increased cell death, immune activation of microglia, and altered firing in Purkinje cells. While ethanol administered in adulthood can acutely depress the dynamics of the microglial process arbor, it is unknown how developmental ethanol exposure impacts microglia dynamics and their interactions with Purkinje cells in the long term. Methods To address this question, we used a mouse model of human 3rd trimester exposure, whereby L7cre/Ai9+/-/Cx3cr1G/+ mice (with fluorescently labeled microglia and Purkinje cells) of both sexes were subcutaneously treated with a binge-level dose of ethanol (5.0 g/kg/day) or saline from postnatal days 4-9. Cranial windows were implanted in adolescent mice above the cerebellum to examine the long-term effects of developmental ethanol exposure on cerebellar microglia and Purkinje cell interactions using in vivo two-photon imaging. Results We found that cerebellar microglia dynamics and morphology were not affected after developmental ethanol exposure. Microglia dynamics were also largely unaltered with respect to how they interact with Purkinje cells, although subtle changes in these interactions were observed in females in the molecular layer of the cerebellum. Discussion This work suggests that there are limited in vivo long-term effects of ethanol exposure on microglia morphology, dynamics, and neuronal interactions, so other avenues of research may be important in elucidating the mechanisms of FASD.
Collapse
Affiliation(s)
- MaKenna Y. Cealie
- Majewska Laboratory, Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - James C. Douglas
- Drew Laboratory, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Linh H. D. Le
- Majewska Laboratory, Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Erik D. Vonkaenel
- McCall Laboratory, Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Matthew N. McCall
- McCall Laboratory, Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Paul D. Drew
- Drew Laboratory, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ania K. Majewska
- Majewska Laboratory, Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
8
|
Suarez LM, Diaz-Del Cerro E, Felix J, Gonzalez-Sanchez M, Ceprian N, Guerra-Perez N, G Novelle M, Martinez de Toda I, De la Fuente M. Sex differences in neuroimmunoendocrine communication. Involvement on longevity. Mech Ageing Dev 2023; 211:111798. [PMID: 36907251 DOI: 10.1016/j.mad.2023.111798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Endocrine, nervous, and immune systems work coordinately to maintain the global homeostasis of the organism. They show sex differences in their functions that, in turn, contribute to sex differences beyond reproductive function. Females display a better control of the energetic metabolism and improved neuroprotection and have more antioxidant defenses and a better inflammatory status than males, which is associated with a more robust immune response than that of males. These differences are present from the early stages of life, being more relevant in adulthood and influencing the aging trajectory in each sex and may contribute to the different life lifespan between sexes.
Collapse
Affiliation(s)
- Luz M Suarez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.
| | - Estefania Diaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Judith Felix
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Monica Gonzalez-Sanchez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Noemi Ceprian
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Natalia Guerra-Perez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Marta G Novelle
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain
| | - Irene Martinez de Toda
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Monica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| |
Collapse
|
9
|
Kissoondoyal A, Crawford DA. Prostaglandin E2 Increases Neurite Length and the Formation of Axonal Loops, and Regulates Cone Turning in Differentiating NE4C Cells Via PKA. Cell Mol Neurobiol 2022; 42:1385-1397. [PMID: 33389417 PMCID: PMC11421704 DOI: 10.1007/s10571-020-01029-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Prostaglandin E2 (PGE2) is a membrane-derived lipid signaling molecule important in neuronal development. Abnormal levels of PGE2, due to environmental insults prenatal development, have been linked to brain pathologies. We have previously shown that the addition of PGE2 to neuroectodermal (NE4C) stem cells affects early stages of neuronal differentiation (day 0-8) including increased stem cell motility, accelerated formation of neurospheres, and elevated calcium levels in growth cones. In this study, we further examine whether PGE2 can influence actin-dependent neuronal morphology in later stages (day 8-12) of NE4C cell differentiation. We show that exposure to PGE2 from the initiation of differentiation increased neurite length and the proportion of neurites that formed axonal loops. We also observed changes in the proportion of turning growth cones as the differentiation progressed, with a reduced likelihood of observing turning (or asymmetrical) growth cones on day 8 and increased odds on days 10 and 12. Moreover, we showed for the first time that the observed changes in cytoskeletal morphology were PGE2/PKA dependent. Interestingly, we also found that PGE2 decreased the total protein levels of the actin-bound form of spinophilin and increased levels of unbound PKA-phosphorylated ser94-spinophilin. Hence, we propose that exposure to PGE2 can destabilize the actin cytoskeleton at various stages of neuronal differentiation due to dissociation of ser94-spinophilin causing changes in neuronal morphology.
Collapse
Affiliation(s)
- Ashby Kissoondoyal
- School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada
| | - Dorota A Crawford
- School of Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada.
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada.
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
10
|
Brann DW, Lu Y, Wang J, Zhang Q, Thakkar R, Sareddy GR, Pratap UP, Tekmal RR, Vadlamudi RK. Brain-derived estrogen and neural function. Neurosci Biobehav Rev 2021; 132:793-817. [PMID: 34823913 PMCID: PMC8816863 DOI: 10.1016/j.neubiorev.2021.11.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Although classically known as an endocrine signal produced by the ovary, 17β-estradiol (E2) is also a neurosteroid produced in neurons and astrocytes in the brain of many different species. In this review, we provide a comprehensive overview of the localization, regulation, sex differences, and physiological/pathological roles of brain-derived E2 (BDE2). Much of what we know regarding the functional roles of BDE2 has come from studies using specific inhibitors of the E2 synthesis enzyme, aromatase, as well as the recent development of conditional forebrain neuron-specific and astrocyte-specific aromatase knockout mouse models. The evidence from these studies support a critical role for neuron-derived E2 (NDE2) in the regulation of synaptic plasticity, memory, socio-sexual behavior, sexual differentiation, reproduction, injury-induced reactive gliosis, and neuroprotection. Furthermore, we review evidence that astrocyte-derived E2 (ADE2) is induced following brain injury/ischemia, and plays a key role in reactive gliosis, neuroprotection, and cognitive preservation. Finally, we conclude by discussing the key controversies and challenges in this area, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Roshni Thakkar
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA; Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
11
|
Regulation of Estradiol Synthesis by Aromatase Interacting Partner in Breast (AIPB). Mol Cell Biol 2021; 41:e0035721. [PMID: 34460330 DOI: 10.1128/mcb.00357-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estradiol is essential for the development of female sex characteristics and fertility. Postmenopausal women and breast cancer patients have high levels of estradiol. Aromatase catalyzes estradiol synthesis; however, the factors regulating aromatase activity are unknown. We identified a new 22-kDa protein, aromatase interacting partner in breast (AIPB), from the endoplasmic reticulum of human breast tissue. AIPB expression is reduced in tumorigenic breast and further reduced in triple-negative tumors. Like that of aromatase, AIPB expression is induced by nonsteroidal estrogen. We found that AIPB and aromatase interact in nontumorigenic and tumorigenic breast tissues and cells. In tumorigenic cells, conditional AIPB overexpression decreased estradiol, and blocking AIPB availability with an AIPB-binding antibody increased estradiol. Estradiol synthesis is highly increased in AIPB knockdown cells, suggesting that the newly identified AIPB protein is important for aromatase activity and a key modulator of estradiol synthesis. Thus, a change in AIPB protein expression may represent an early event in tumorigenesis and be predictive of an increased risk of developing breast cancer.
Collapse
|
12
|
Kissoondoyal A, Rai-Bhogal R, Crawford DA. Abnormal dendritic morphology in the cerebellum of cyclooxygenase-2 - knockin mice. Eur J Neurosci 2021; 54:6355-6373. [PMID: 34510613 DOI: 10.1111/ejn.15454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022]
Abstract
Prostaglandin E2 (PGE2) is a bioactive signalling molecule metabolized from the phospholipid membranes by the enzymatic activity of cycloxygenase-2 (COX-2). In the developing brain, COX-2 constitutively regulates the production of PGE2, which is important in neuronal development. However, abnormal COX-2/PGE2 signalling has been linked to neurodevelopmental disorders including autism spectrum disorders (ASDs). We have previously demonstrated that COX-2- -KI mice show autism-related behaviours including social deficits, repetitive behaviours and anxious behaviours. COX-2-deficient mice also have deficits in pathways involved in synaptic transmission and dendritic spine formation. In this study, we use a Golgi-COX staining method to examine sex-dependent differences in dendritic and dendritic spine morphology in neurons of COX-2- -KI mice cerebellum compared with wild-type (WT) matched controls at postnatal day 25 (P25). We show that COX-2- -KI mice have increased dendritic arborization closer to the cell soma and increased dendritic looping. We also observed a sex-dependent effect of the COX-2- -KI on dendritic thickness, dendritic spine density, dendritic spine morphology, and the expression of β-actin and the actin-binding protein spinophilin. Our findings show that changes in COX-2/PGE2 signalling lead to impaired morphology of dendrites and dendritic spines in a sex-dependant manner and may contribute the pathology of the cerebellum seen in individuals with ASD. This study provides further evidence that the COX-2- -KI mouse model can be used to study a subset of ASD pathologies.
Collapse
Affiliation(s)
- Ashby Kissoondoyal
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada
| | - Ravneet Rai-Bhogal
- Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Dorota A Crawford
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Delage CI, Nys G, Fillet M, Cornil CA. Effect of cyclo‑oxygenase inhibition on embryonic microglia and the sexual differentiation of the brain and behavior of Japanese quail (Coturnix japonica). Horm Behav 2021; 134:105024. [PMID: 34256221 DOI: 10.1016/j.yhbeh.2021.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
Enduring sex differences in the brain are established during a developmental process known as brain sexual differentiation and are mainly driven by estrogens during a critical period. In rodents, the masculinization of the preoptic area by estrogens derived from the central aromatization of testosterone depends in part on the interaction between microglia and prostaglandin E2 (PGE2), a pro-inflammatory hormone of the prostanoid subclass. In contrast, in birds, estrogens produced by females induce a demasculinization, but whether an interaction with the neuro-immune system is involved in this process is unknown. This study addressed this question by testing the effects of blockade of cyclo‑oxygenases (COX), the rate-limiting enzymes for prostanoid synthesis, on embryonic microglia and the sexual differentiation of brain and behavior using the Japanese quail as an animal model. The results show that COX inhibition does not affect the behavior of females, but impairs male sexual behavior and suppresses the sex difference in microglial profiles at embryonic day 12 (E12) in the medial preoptic nucleus by increasing the number of microglia in males only. However, neither prostanoid concentrations nor PGE2 receptors differed between sexes in the hypothalamus and preoptic area (HPOA) during development. Overall, these results uncovered a potential role of prostanoids in the demasculinization of Japanese quail. Moreover, the parallel effect of COX inhibition on behavior and microglia suggests an interaction between prostanoids and microglia in brain demasculinization, thus fueling the hypothesis of a conserved role of the neuroimmune system in the organization of the brain by estrogens.
Collapse
Affiliation(s)
- Charlotte I Delage
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium
| | - Gwenael Nys
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Charlotte A Cornil
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium.
| |
Collapse
|
14
|
Seiffe A, Ramirez MF, Barrios CD, Albarrán MM, Depino AM. Early estradiol exposure masculinizes disease-relevant behaviors in female mice. Eur J Neurosci 2021; 53:2483-2499. [PMID: 33497491 DOI: 10.1111/ejn.15130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022]
Abstract
Most psychiatric disorders show a sex bias in incidence, symptomatology, and/or response to treatment. Males are more susceptible to neurodevelopmental disorders including autism spectrum disorder and attention-deficit activity disorder, while women are more prone to major depressive disorder and anxiety disorders after puberty. A striking difference between males and females in humans and other mammals is that males undergo a process of brain masculinization due to the early exposure to gonadal hormones. In rodents, this developmental organization of the brain is essential for adult males to express the appropriate sexual behaviors in the presence of a receptive female. Our goal was to determine whether this process of brain masculinization influences behaviors relevant to psychiatric disorders. To this aim, we studied sex differences and the effect of neonatal 17β-estradiol benzoate treatment of female mice on different disease-relevant behaviors. Our analysis includes postnatal behavior, juvenile play, and adult tests for sociability, repetitive behaviors, anxiety, and depression. Our results show that the sex differences observed in exploration, repetitive behaviors, and depression-related behaviors are largely reduced when females are neonatally treated with 17β-estradiol benzoate. These results suggest a role of neonatal sex steroids in the development of disease-relevant behaviors and provide evidence supporting a role for perinatal exposure to estrogens and androgens on the development and manifestation of psychiatric disorders.
Collapse
Affiliation(s)
- Araceli Seiffe
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauro Federico Ramirez
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio Darío Barrios
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Milagros Albarrán
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amaicha Mara Depino
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Arima-Yoshida F, Raveau M, Shimohata A, Amano K, Fukushima A, Watanave M, Kobayashi S, Hattori S, Usui M, Sago H, Mataga N, Miyakawa T, Yamakawa K, Manabe T. Impairment of spatial memory accuracy improved by Cbr1 copy number resumption and GABA B receptor-dependent enhancement of synaptic inhibition in Down syndrome model mice. Sci Rep 2020; 10:14187. [PMID: 32843708 PMCID: PMC7447763 DOI: 10.1038/s41598-020-71085-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
Down syndrome is a complex genetic disorder caused by the presence of three copies of the chromosome 21 in humans. The most common models, carrying extra-copies of overlapping fragments of mouse chromosome 16 that is syntenic to human chromosome 21, are Ts2Cje, Ts1Cje and Ts1Rhr mice. In electrophysiological analyses using hippocampal slices, we found that the later phase of the depolarization during tetanic stimulation, which was regulated by GABAB receptors, was significantly smaller in Ts1Cje and Ts2Cje mice than that in WT controls but not in Ts1Rhr mice. Furthermore, isolated GABAB receptor-mediated inhibitory synaptic responses were larger in Ts1Cje mice. To our knowledge, this is the first report that directly shows the enhancement of GABAB receptor-mediated synaptic currents in Ts1Cje mice. These results suggest that GABAB receptor-mediated synaptic inhibition was enhanced in Ts1Cje and Ts2Cje mice but not in Ts1Rhr mice. The Cbr1 gene, which is present in three copies in Ts1Cje and Ts2Cje but not in Ts1Rhr, encodes carbonyl reductase that may facilitate GABAB-receptor activity through a reduction of prostaglandin E2 (PGE2). Interestingly, we found that a reduction of PGE2 and an memory impairment in Ts1Cje mice were alleviated when only Cbr1 was set back to two copies (Ts1Cje;Cbr1+/+/-). However, the GABAB receptor-dependent enhancement of synaptic inhibition in Ts1Cje was unaltered in Ts1Cje;Cbr1+/+/- mice. These results indicate that Cbr1 is one of the genes responsible for DS cognitive impairments and the gene(s) other than Cbr1, which is included in Ts1Cje but not in Ts1Rhr, is responsible for the GABAB receptor-dependent over-inhibition.
Collapse
Affiliation(s)
- Fumiko Arima-Yoshida
- Division of Neuronal Network, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Kenji Amano
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Akihiro Fukushima
- Division of Neuronal Network, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Masashi Watanave
- Division of Neuronal Network, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Shizuka Kobayashi
- Division of Neuronal Network, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Masaya Usui
- Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Nobuko Mataga
- Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan. .,Department of Neurodevelopmental Disorder Genetics, Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan.
| | - Toshiya Manabe
- Division of Neuronal Network, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
16
|
Estradiol Increases Microglial Response to Lipopolysaccharide in the Ventromedial Hypothalamus during the Peripubertal Sensitive Period in Female Mice. eNeuro 2020; 7:ENEURO.0505-19.2020. [PMID: 32554430 PMCID: PMC7333979 DOI: 10.1523/eneuro.0505-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/05/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Sensitive periods are times of development during which the effects of experience are unusually strong and long lasting. The peripubertal period has emerged as one such sensitive period, and a single administration of lipopolysaccharide (LPS) during this time reduces hormone-induced sexual behavior in adult female mice. During periods of high synaptic turnover, maturation, and elimination, as occurs during this sensitive period, microglia are particularly active. Estradiol also regulates microglial numbers, morphology, and activation. In addition, a good deal of evidence suggests that estradiol may confer this vulnerability to the effects of a stressor during the peripubertal period. Therefore, we investigated the effects of estradiol on microglial morphology, cytokine levels, and the sickness response to LPS. Estradiol levels were manipulated by implanting an estradiol-filled SILASTIC capsule (or oil-filled control) in ovariectomized mice or by administering the aromatase inhibitor, formestane (or oil control), to ovary-intact mice. We found that (1) estradiol elevates basal microglial Iba1 immunoreactivity in the ventromedial nucleus of the hypothalamus (VMH), (2) LPS induces higher levels of proinflammatory cytokines in the presence of estradiol, and (3) LPS causes hypothermia in the presence of estradiol. Taken together, these data suggest that estradiol enhances the effect of LPS during the pubertal sensitive period.
Collapse
|
17
|
Saldanha CJ. Estrogen as a Neuroprotectant in Both Sexes: Stories From the Bird Brain. Front Neurol 2020; 11:497. [PMID: 32655477 PMCID: PMC7324752 DOI: 10.3389/fneur.2020.00497] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogens such as estradiol (E2) are potent effectors of neural structure and function via peripheral and central synthesis. In the zebra finch (Taeniopygia guttata), neural E2 synthesis is among the highest reported in homeotherms due to the abundant constitutive expression of aromatase (E-synthase) in discrete neuronal pools across the forebrain. Following penetrating or concussive trauma, E2 synthesis increases even further via the induced expression of aromatase in reactive astrocytes around the site of damage. Injury-associated astrocytic aromatization occurs in the brains of both sexes regardless of the site of injury and can remain elevated for weeks following trauma. Interestingly, penetrating injury induces astrocytic aromatase more rapidly in females compared to males, but this sex difference is not detectable 24 h posttrauma. Indeed, unilateral penetrating injury can increase E2 content 4-fold relative to the contralateral uninjured hemisphere, suggesting that glial aromatization may be a powerful source of neural E2 available to circuits. Glial aromatization is neuroprotective as inhibition of injury-induced aromatase increases neuroinflammation, gliosis, necrosis, apoptosis, and infarct size. These effects are ameliorated upon replacement with E2, suggesting that the songbird may have evolved a rapidly responsive neurosteroidogenic system to protect vulnerable brain circuits. The precise signals that induce aromatase expression in astrocytes include elements of the inflammatory cascade and underscore the sentinel role of the innate immune system as a crucial effector of trauma-associated E2 provision in the vertebrate brain. This review will describe the inductive signals of astroglial aromatase and the neuroprotective role for glial E2 synthesis in the adult songbird brains of both sexes.
Collapse
Affiliation(s)
- Colin J Saldanha
- Departments of Neuroscience, Biology, Psychology & The Center for Behavioral Neuroscience, American University, Washington, DC, United States
| |
Collapse
|
18
|
Arambula SE, McCarthy MM. Neuroendocrine-Immune Crosstalk Shapes Sex-Specific Brain Development. Endocrinology 2020; 161:bqaa055. [PMID: 32270188 PMCID: PMC7217281 DOI: 10.1210/endocr/bqaa055] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Sex is an essential biological variable that significantly impacts multiple aspects of neural functioning in both the healthy and diseased brain. Sex differences in brain structure and function are organized early in development during the critical period of sexual differentiation. While decades of research establish gonadal hormones as the primary modulators of this process, new research has revealed a critical, and perhaps underappreciated, role of the neuroimmune system in sex-specific brain development. The immune and endocrine systems are tightly intertwined and share processes and effector molecules that influence the nervous system. Thus, a natural question is whether endocrine-immune crosstalk contributes to sexual differentiation of the brain. In this mini-review, we first provide a conceptual framework by classifying the major categories of neural sex differences and review the concept of sexual differentiation of the brain, a process occurring early in development and largely controlled by steroid hormones. Next, we describe developmental sex differences in the neuroimmune system, which may represent targets or mediators of the sexual differentiation process. We then discuss the overwhelming evidence in support of crosstalk between the neuroendocrine and immune systems and highlight recent examples that shape sex differences in the brain. Finally, we review how early life events can perturb sex-specific neurodevelopment via aberrant immune activation.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
19
|
Moussa-Tooks AB, Larson ER, Gimeno AF, Leishman E, Bartolomeo LA, Bradshaw HB, Green JT, O'Donnell BF, Mackie K, Hetrick WP. Long-Term Aberrations To Cerebellar Endocannabinoids Induced By Early-Life Stress. Sci Rep 2020; 10:7236. [PMID: 32350298 PMCID: PMC7190863 DOI: 10.1038/s41598-020-64075-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/07/2020] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence points to the role of the endocannabinoid system in long-term stress-induced neural remodeling with studies on stress-induced endocannabinoid dysregulation focusing on cerebral changes that are temporally proximal to stressors. Little is known about temporally distal and sex-specific effects, especially in cerebellum, which is vulnerable to early developmental stress and is dense with cannabinoid receptors. Following limited bedding at postnatal days 2-9, adult (postnatal day 70) cerebellar and hippocampal endocannabinoids, related lipids, and mRNA were assessed, and behavioral performance evaluated. Regional and sex-specific effects were present at baseline and following early-life stress. Limited bedding impaired peripherally-measured basal corticosterone in adult males only. In the CNS, early-life stress (1) decreased 2-arachidonoyl glycerol and arachidonic acid in the cerebellar interpositus nucleus in males only; (2) decreased 2-arachidonoyl glycerol in females only in cerebellar Crus I; and (3) increased dorsal hippocampus prostaglandins in males only. Cerebellar interpositus transcriptomics revealed substantial sex effects, with minimal stress effects. Stress did impair novel object recognition in both sexes and social preference in females. Accordingly, the cerebellar endocannabinoid system exhibits robust sex-specific differences, malleable through early-life stress, suggesting the role of endocannabinoids and stress to sexual differentiation of the brain and cerebellar-related dysfunctions.
Collapse
Affiliation(s)
- Alexandra B Moussa-Tooks
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Eric R Larson
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Alex F Gimeno
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Emma Leishman
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Lisa A Bartolomeo
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Heather B Bradshaw
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - John T Green
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Brian F O'Donnell
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ken Mackie
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - William P Hetrick
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, USA.
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
20
|
Perez-Pouchoulen M, Yu SJ, Roby CR, Bonsavage N, McCarthy MM. Regulatory Control of Microglial Phagocytosis by Estradiol and Prostaglandin E2 in the Developing Rat Cerebellum. THE CEREBELLUM 2020; 18:882-895. [PMID: 31435854 DOI: 10.1007/s12311-019-01071-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microglia are essential to sculpting the developing brain, and they achieve this in part through the process of phagocytosis which is regulated by microenvironmental signals associated with cell death and synaptic connectivity. In the rat cerebellum, microglial phagocytosis reaches its highest activity during the third postnatal week of development but the factors regulating this activity are unknown. A signaling pathway, involving prostaglandin E2 (PGE2) stimulation of the estrogen synthetic enzyme aromatase, peaks during the 2nd postnatal week and is a critical regulator of Purkinje cell maturation. We explored the relationship between the PGE2-estradiol pathway and microglia in the maturing cerebellum. Toward that end, we treated developing rat pups with pharmacological inhibitors of estradiol and PGE2 synthesis and then stained microglia with the universal marker Iba1 and quantified microglia engaged in phagocytosis as well as phagocytic cups in the vermis and cerebellar hemispheres. Inhibition of aromatase reduced the number of phagocytic cups in the vermis, but not in the cerebellar hemisphere at postnatal day 17. Similar results were found after treatment with nimesulide and indomethacin, inhibitors of the PGE2-producing enzymes cyclooxygenase 1 and 2. In contrast, treatment with estradiol or PGE2 had little effect on microglial phagocytosis in the developing cerebellum. Thus, endogenous estrogens and prostaglandins upregulate the phagocytic activity of microglia during a select window of postnatal cerebellar development, but exogenous treatment with these same signaling molecules does not further increase the already high levels of phagocytosis. This may be due to an upper threshold or evidence of resistance to exogenous perturbation.
Collapse
Affiliation(s)
- Miguel Perez-Pouchoulen
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA.
| | - Stacey J Yu
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Clinton R Roby
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Nicole Bonsavage
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| |
Collapse
|
21
|
Duncan KA, Saldanha CJ. Central aromatization: A dramatic and responsive defense against threat and trauma to the vertebrate brain. Front Neuroendocrinol 2020; 56:100816. [PMID: 31786088 PMCID: PMC9366903 DOI: 10.1016/j.yfrne.2019.100816] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023]
Abstract
Aromatase is the requisite and limiting enzyme in the production of estrogens from androgens. Estrogens synthesized centrally have more recently emerged as potent neuroprotectants in the vertebrate brain. Studies in rodents and songbirds have identified key mechanisms that underlie both; the injury-dependent induction of central aromatization, and the protective effects of centrally synthesized estrogens. Injury-induced aromatase expression in astrocytes occurs following a broad range of traumatic brain damage including excitotoxic, penetrating, and concussive injury. Responses to neural insult such as edema and inflammation involve signaling pathways the components of which are excellent candidates as inducers of this astrocytic response. Finally, estradiol from astrocytes exerts a paracrine neuroprotective influence via the potent inhibition of inflammatory pathways. Taken together, these data suggest a novel role for neural aromatization as a protective mechanism against the threat of inflammation and suggests that central estrogen provision is a wide-ranging neuroprotectant in the vertebrate brain.
Collapse
Affiliation(s)
- Kelli A Duncan
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, United States.
| | - Colin J Saldanha
- Department of Biology and Center for Behavioral Neuroscience, American University, Washington, DC 20016, United States.
| |
Collapse
|
22
|
Arambula SE, Reinl EL, El Demerdash N, McCarthy MM, Robertson CL. Sex differences in pediatric traumatic brain injury. Exp Neurol 2019; 317:168-179. [PMID: 30831070 DOI: 10.1016/j.expneurol.2019.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
Abstract
The response of the developing brain to traumatic injury is different from the response of the mature, adult brain. There are critical developmental trajectories in the young brain, whereby injury can lead to long term functional abnormalities. Emerging preclinical and clinical literature supports the presence of significant sex differences in both the response to and the recovery from pediatric traumatic brain injury (TBI). These sex differences are seen at all pediatric ages, including neonates/infants, pre-pubertal children, and adolescents. As importantly, the response to neuroprotective therapies or treatments can differ between male and females subjects. These sex differences can result from several biologic origins, and may manifest differently during the various phases of brain and body development. Recognizing and understanding these potential sex differences is crucial, and should be considered in both preclinical and clinical studies of pediatric TBI.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erin L Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Courtney L Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
23
|
Wright CL, Hoffman JH, McCarthy MM. Evidence that inflammation promotes estradiol synthesis in human cerebellum during early childhood. Transl Psychiatry 2019; 9:58. [PMID: 30705253 PMCID: PMC6355799 DOI: 10.1038/s41398-018-0363-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023] Open
Abstract
Discovering and characterizing critical and sensitive periods in brain development is essential for unraveling the myriad variables that impact disease risk. In previous work, we identified a critical period in cerebellar development in the rat that depends upon an intrinsic gene expression program and links increased prostaglandin production to local estradiol synthesis by stimulating Cyp19a, the estradiol synthetic enzyme, aromatase. This intrinsic critical period is sensitive to disruption by either inflammation or administration of cyclooxygenase (COX) inhibitors, ultimately impacting Purkinje cell dendritic growth. In a first step towards determining if a similar sensitive period exists in humans, the same gene expression profile was characterized in post-mortem cerebellar tissue of 58 children aged 0 to 9 years. Subjects were categorized as experiencing inflammation or not at the time of death. In individuals experiencing inflammation and over 1 year of age, there was a significant increase in the messenger RNA (mRNA) of the COX-1 and COX-2 enzymes and this strongly correlated with mRNA levels of aromatase. A step-wise linear model accounted for 94% of the variance in aromatase mRNA levels by co-variance with the COX enzymes, prostaglandin E2 synthase and other inflammatory mediators (Toll-like receptor 4), and Purkinje cell markers (calbindin, estrogen receptor 2). The influence of inflammation on these measures was not seen in subjects younger than 1 year. These data suggest a sensitive period to inflammation in the human cerebellum begins at about 1 year of age and may provide insight into sources of vulnerability of very young children to either inflammation or drugs designed to treat it.
Collapse
Affiliation(s)
- Christopher L Wright
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jessica H Hoffman
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
24
|
Pedersen AL, Brownrout JL, Saldanha CJ. Neuroinflammation and neurosteroidogenesis: Reciprocal modulation during injury to the adult zebra finch brain. Physiol Behav 2018; 187:51-56. [DOI: 10.1016/j.physbeh.2017.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 01/10/2023]
|
25
|
Hedges VL, Chen G, Yu L, Krentzel AA, Starrett JR, Zhu JN, Suntharalingam P, Remage-Healey L, Wang JJ, Ebner TJ, Mermelstein PG. Local Estrogen Synthesis Regulates Parallel Fiber-Purkinje Cell Neurotransmission Within the Cerebellar Cortex. Endocrinology 2018; 159:1328-1338. [PMID: 29381778 PMCID: PMC5839732 DOI: 10.1210/en.2018-00039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 02/04/2023]
Abstract
Estrogens affect cerebellar activity and cerebellum-based behaviors. Within the adult rodent cerebellum, the best-characterized action of estradiol is to enhance glutamatergic signaling. However, the mechanisms by which estradiol promotes glutamatergic neurotransmission remain unknown. Within the mouse cerebellum, we found that estrogen receptor activation of metabotropic glutamate receptor type 1a strongly enhances neurotransmission at the parallel fiber-Purkinje cell synapse. The blockade of local estrogen synthesis within the cerebellum results in a diminution of glutamatergic neurotransmission. Correspondingly, decreased estrogen availability via gonadectomy or blockade of aromatase activity negatively affects locomotor performance. These data indicate that locally derived, and not just gonad-derived, estrogens affect cerebellar physiology and function. In addition, estrogens were found to facilitate parallel fiber-Purkinje cell synaptic transmission in both sexes. As such, the actions of estradiol to support cerebellar neurotransmission and cerebellum-based behaviors might be fundamental to understanding the normal processing of activity within the cerebellar cortex.
Collapse
Affiliation(s)
- Valerie L. Hedges
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Amanda A. Krentzel
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Joseph R. Starrett
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | | | - Luke Remage-Healey
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Paul G. Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Correspondence: Paul G. Mermelstein, PhD, Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455. E-mail:
| |
Collapse
|
26
|
Systemic inflammation combined with neonatal cerebellar haemorrhage aggravates long-term structural and functional outcomes in a mouse model. Brain Behav Immun 2017; 66:257-276. [PMID: 28755859 DOI: 10.1016/j.bbi.2017.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/11/2017] [Accepted: 07/19/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Despite the increased recognition of cerebellar injury in survivors of preterm birth, the neurodevelopmental consequences of isolated cerebellar injury have been largely unexplored and our current understanding of the functional deficits requires further attention in order to translate knowledge to best practices. Preterm infants are exposed to multiple stressors during their postnatal development including perinatal cerebellar haemorrhage (CBH) and postnatal infection, two major risk factors for neurodevelopmental impairments. METHODS We developed a translational mouse model of CBH and/or inflammation to measure the short- and long-term outcomes in cerebellar structure and function. RESULTS Mice exposed to early combined insults of CBH and early inflammatory state (EIS) have a delay in grasping acquisition, neonatal motor deficits and deficient long-term memory. CBH combined with late inflammatory state (LIS) does not induce neonatal motor problems but leads to poor fine motor function and long-term memory deficits at adulthood. Early combined insults result in poor cerebellar growth from postnatal day 15 until adulthood shown by MRI, which are reflected in diminished volumes of cerebellar structures. There are also decreases in volumes of gray matter and hippocampus. Cerebellar microgliosis appears 24h after the combined insults and persists until postnatal day 15 in the cerebellar molecular layer and cerebellar nuclei in association with a disrupted patterning of myelin deposition, a delay of oligodendrocyte maturation and reduced white matter cerebellar volume. CONCLUSIONS Together, these findings reveal poor outcomes in developing brains exposed to combined cerebellar perinatal insults in association with cerebellar hypoplasia, persistence of microgliosis and alterations of cerebellar white matter maturation and growth.
Collapse
|
27
|
Abstract
Brain development diverges in males and females in response to androgen production by the fetal testis. This sexual differentiation of the brain occurs during a sensitive window and induces enduring neuroanatomical and physiological changes that profoundly impact behavior. What we know about the contribution of sex chromosomes is still emerging, highlighting the need to integrate multiple factors into understanding sex differences, including the importance of context. The cellular mechanisms are best modeled in rodents and have provided both unifying principles and surprising specifics. Markedly distinct signaling pathways direct differentiation in specific brain regions, resulting in mosaicism of relative maleness, femaleness, and sameness through-out the brain, while canalization both exaggerates and constrains sex differences. Non-neuronal cells and inflammatory mediators are found in greater number and at higher levels in parts of male brains. This higher baseline of inflammation is speculated to increase male vulnerability to developmental neuropsychiatric disorders that are triggered by inflammation.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Activation of the peripheral immune system regulates neuronal aromatase in the adult zebra finch brain. Sci Rep 2017; 7:10191. [PMID: 28860515 PMCID: PMC5579002 DOI: 10.1038/s41598-017-10573-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/10/2017] [Indexed: 11/23/2022] Open
Abstract
Estradiol provision via neural aromatization decreases neuro-inflammation and –degeneration, but almost nothing is known about the interactions between the peripheral immune system and brain aromatase. Given the vulnerability of the CNS we reasoned that brain aromatization may protect circuits from the threats of peripheral infection; perhaps shielding cells that are less resilient from the degeneration associated with peripheral infection or trauma. Lipopolysaccharide (LPS) or vehicle was administered peripherally to adult zebra finches and sickness behavior was recorded 2 or 24 hours later. The central transcription of cytokines and aromatase was measured, as were telencephalic aromatase activity and immunoreactive aromatase (24 hour time point only). Two hours post LPS, sickness-like behaviors increased, the transcription of IL-1β was higher in both sexes, and TNFα was elevated in females. 24 hours post-LPS, the behavior of LPS birds was similar to controls, and cytokines had returned to baseline, but aromatase mRNA and activity were elevated in both sexes. Immunocytochemistry revealed greater numbers of aromatase-expressing neurons in LPS birds. These data suggest that the activation of the immune system via peripheral endotoxin increases neuronal aromatase; a mechanism that may rapidly generate a potent anti-neuroinflammatory steroid in response to peripheral activation of the immune system.
Collapse
|
29
|
Pedersen AL, Brownrout JL, Saldanha CJ. Central Administration of Indomethacin Mitigates the Injury-Induced Upregulation of Aromatase Expression and Estradiol Content in the Zebra Finch Brain. Endocrinology 2017; 158:2585-2592. [PMID: 28575175 PMCID: PMC5551551 DOI: 10.1210/en.2017-00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
Injury to the vertebrate brain causes neuroinflammation, characterized in part by increases in prostaglandins. In rodents and songbirds, brain injury also induces the transcription and translation of aromatase in reactive astrocytes around the site of damage. Interestingly, this induction is more rapid in female zebra finches relative to males. Induced aromatization is neuroprotective, as inhibition of aromatase and estrogen replacement, increases and decreases the extent of damage, respectively. Although the consequences of induced astrocytic aromatization are intensely studied, little is known about what factors induce aromatase. Inflammation is sufficient to induce astrocytic aromatase suggesting that the link between inflammation and aromatase expression may be causal. To test this hypothesis, adult male and female zebra finches received bilateral mechanical injuries through which either the cyclooxygenase (COX)-1/2 inhibitor indomethacin or vehicle was administered into contralateral hemispheres. Subjects were killed either 6 or 24 hours after injury. In both sexes, an enzyme immunoassay for prostaglandin E2 (PGE2) revealed that indomethacin decreased PGE2 relative to the contralateral hemisphere at both time points, suggesting that the dose and mode of administration used were successful in affecting neuroinflammation locally. Indomethacin reduced aromatase expression and 17β-estradiol (E2) content at 6 hours but not 24 hours following injury in females. However, in males, the inhibitory effect of indomethacin on aromatase and E2 was apparent at 24 but not 6 hours after treatment. These data suggest that COX activity, perhaps via consequent prostaglandin secretion, may induce aromatase expression and central E2, an effect that is detectable in temporally distinct patterns between sexes.
Collapse
Affiliation(s)
- Alyssa L. Pedersen
- Department of Biology, Behavior, Cognition, and Neuroscience Program, and the Center for Behavioral Neuroscience, American University, Washington, DC 20016
| | - Jenna L. Brownrout
- Department of Biology, Behavior, Cognition, and Neuroscience Program, and the Center for Behavioral Neuroscience, American University, Washington, DC 20016
| | - Colin J. Saldanha
- Department of Biology, Behavior, Cognition, and Neuroscience Program, and the Center for Behavioral Neuroscience, American University, Washington, DC 20016
| |
Collapse
|
30
|
McCarthy MM, Wright CL. Convergence of Sex Differences and the Neuroimmune System in Autism Spectrum Disorder. Biol Psychiatry 2017; 81:402-410. [PMID: 27871670 PMCID: PMC5285451 DOI: 10.1016/j.biopsych.2016.10.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023]
Abstract
The male bias in autism spectrum disorder incidence is among the most extreme of all neuropsychiatric disorders, yet the origins of the sex difference remain obscure. Developmentally, males are exposed to high levels of testosterone and its byproduct, estradiol. Together these steroids modify the course of brain development by altering neurogenesis, cell death, migration, differentiation, dendritic and axonal growth, synaptogenesis, and synaptic pruning, all of which can be deleteriously impacted during the course of developmental neuropsychiatric disorders. Elucidating the cellular mechanisms by which steroids modulate brain development provides valuable insights into how these processes may go awry. An emerging theme is the role of inflammatory signaling molecules and the innate immune system in directing brain masculinization, the evidence for which we review here. Evidence is also emerging that the neuroimmune system is overactivated in individuals with autism spectrum disorder. These combined observations lead us to propose that the natural process of brain masculinization puts males at risk by moving them closer to a vulnerability threshold that could more easily be breached by inflammation during critical periods of brain development. Two brain regions are highlighted: the preoptic area and the cerebellum. Both are developmentally regulated by the inflammatory prostaglandin E2, but in different ways. Microglia, innate immune cells of the brain, and astrocytes are also critical contributors to masculinization and illustrate the importance of nonneuronal cells to the health of the developing brain.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Christopher L Wright
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
31
|
Li J, Oberly PJ, Poloyac SM, Gibbs RB. A microsomal based method to detect aromatase activity in different brain regions of the rat using ultra performance liquid chromatography-mass spectrometry. J Steroid Biochem Mol Biol 2016; 163:113-20. [PMID: 27113434 DOI: 10.1016/j.jsbmb.2016.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/22/2016] [Accepted: 04/20/2016] [Indexed: 01/08/2023]
Abstract
Aromatase (ARO) is a cytochrome P450 enzyme that accounts for local estrogen production in the brain. The goal of this study was to develop a microsomal based assay to sensitively and reliably detect the low levels of ARO activity in different brain regions. Enzyme activity was detected based on the conversion of testosterone to estradiol. Quantity of estradiol was measured using ultra performance liquid chromatography-mass spectrometry. Detection was linear over a range of 2.5-200pg/ml estradiol, and was reproducible with intra- and inter-assay coefficients of variation (CV) <15%. Estradiol production using isolated microsomes was linear with time up to 30min as well as linearly related to amount of microsome. Substrate concentration curves revealed enzymatic kinetics (hippocampus: Vmax and Km: 0.57pmol estradiol/h per mg microsome and 48.58nM; amygdala: Vmax and Km: 1.69pmol estradiol/h per mg microsome and 48.4nM; preoptic area: Vmax and Km: 0.96pmol estradiol/h per mg microsome and 44.31nM) with testosterone used at a saturating concentration of 400nM. Anastrozole treatment blocked ARO activity in hippocampal and ovarian microsomes, indicating that the assay is specific for ARO. Also, we showed that the distribution of the long form ARO mRNA (CYP19A1) in different regions of the brain is correlated with ARO activity, with highest levels in the amygdala, followed by preoptic area and hippocampus. In the frontal cortex, very little long form ARO mRNA, and little to no ARO activity, were detected. These findings demonstrate that the microsomal incubation (MIB) assay is a sensitive and reliable method for quantifying ARO activity in discrete brain regions.
Collapse
Affiliation(s)
- Junyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J Oberly
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
32
|
A Critical Period in Purkinje Cell Development Is Mediated by Local Estradiol Synthesis, Disrupted by Inflammation, and Has Enduring Consequences Only for Males. J Neurosci 2016; 36:10039-49. [PMID: 27683901 DOI: 10.1523/jneurosci.1262-16.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/24/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Identifying and understanding critical periods in brain development is essential to decoding the long-term impact of widespread, poorly defined, and frequently occurring insults such as inflammation. Using the laboratory rat Rattus norvegicus, we have discovered a narrowly constrained critical period in Purkinje neuron development subject to dysregulation by inflammation. The onset and offset of heightened vulnerability are attributed to a tightly orchestrated gene expression profile present only during the second postnatal week and not the first or third weeks. Genes expressed during this time code for enzymes and receptors which are critical not only for prostaglandin production and activity but also for estradiol production via the aromatase enzyme and estradiol action via the α isoform of the estrogen receptor. The two synthetic pathways are connected by prostaglandin E2 (PGE2) activation of the aromatase enzyme, as we reported previously (Dean et al., 2012b) and confirm here. Dysregulation of the PGE2-estradiol pathway during the second week by treatment with PGE2 or lipopolysaccharides produces enduring consequences as a result of reduced growth of Purkinje dendritic trees and impaired juvenile social play behavior, but only in males. The deleterious consequences of inflammation locally in the cerebellum are prevented by peripheral treatment with the cyclooxygenase inhibitor nimesulide or the aromatase inhibitor formestane. These findings highlight a novel regulatory pathway that creates a critical period in brain development vulnerable to dysregulation by inflammation. SIGNIFICANCE STATEMENT The cerebellum is increasingly appreciated for its role in social, emotional, and cognitive behaviors. It is consistently and severely affected in neuropsychiatric disorders originating during development, such as autism spectrum disorder and schizophrenia. We have identified a critical period in rat development during the second week of life that is dysregulated by inflammatory insults. An intrinsic program of gene expression determines the critical period. The enduring consequences of inflammation during the second postnatal week are stunted dendrites of the cerebellum's principal neurons, Purkinje cells, and impairments in later social behavior. These changes are not evident if inflammation occurs during the first or third week, highlighting the importance of fine-grained analyses of developmental processes and the factors that influence them.
Collapse
|
33
|
AhR signaling activation disrupts migration and dendritic growth of olfactory interneurons in the developing mouse. Sci Rep 2016; 6:26386. [PMID: 27197834 PMCID: PMC4873754 DOI: 10.1038/srep26386] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022] Open
Abstract
Perinatal exposure to a low level of dioxin, a ubiquitous environmental pollutant, has been shown to induce abnormalities in learning and memory, emotion, and sociality in laboratory animals later in adulthood. However, how aryl hydrocarbon receptor (AhR) signaling activation disrupts the higher brain function remains unclear. Therefore, we studied the possible effects of excessive activation of AhR signaling on neurodevelopmental processes, such as cellular migration and neurite growth, in mice. To this end, we transfected a constitutively active-AhR plasmid into stem cells in the lateral ventricle by in vivo electroporation on postnatal day 1. Transfection was found to induce tangential migration delay and morphological abnormalities in neuronal precursors in the rostral migratory stream at 6 days post-electroporation (dpe) as well as disrupt radial migration in the olfactory bulb and apical and basal dendritic growth of the olfactory interneurons in the granule cell layer at 13 and 20 dpe. These results suggest that the retarded development of interneurons by the excessive AhR signaling may at least in part explain the dioxin-induced abnormal behavioral alterations previously reported in laboratory animals.
Collapse
|
34
|
Mercer AA, Palarz KJ, Tabatadze N, Woolley CS, Raman IM. Sex differences in cerebellar synaptic transmission and sex-specific responses to autism-linked Gabrb3 mutations in mice. eLife 2016; 5. [PMID: 27077953 PMCID: PMC4878876 DOI: 10.7554/elife.07596] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/13/2016] [Indexed: 12/18/2022] Open
Abstract
Neurons of the cerebellar nuclei (CbN) transmit cerebellar signals to premotor areas. The cerebellum expresses several autism-linked genes, including GABRB3, which encodes GABAA receptor β3 subunits and is among the maternal alleles deleted in Angelman syndrome. We tested how this Gabrb3 m-/p+ mutation affects CbN physiology in mice, separating responses of males and females. Wild-type mice showed sex differences in synaptic excitation, inhibition, and intrinsic properties. Relative to females, CbN cells of males had smaller synaptically evoked mGluR1/5-dependent currents, slower Purkinje-mediated IPSCs, and lower spontaneous firing rates, but rotarod performances were indistinguishable. In mutant CbN cells, IPSC kinetics were unchanged, but mutant males, unlike females, showed enlarged mGluR1/5 responses and accelerated spontaneous firing. These changes appear compensatory, since mutant males but not females performed indistinguishably from wild-type siblings on the rotarod task. Thus, sex differences in cerebellar physiology produce similar behavioral output, but provide distinct baselines for responses to mutations.
Collapse
Affiliation(s)
- Audrey A Mercer
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States.,Department of Neurobiology, Northwestern University, Evanston, United States
| | - Kristin J Palarz
- Department of Neurobiology, Northwestern University, Evanston, United States.,Integrated Science Program, Northwestern University, Evanston, United States
| | - Nino Tabatadze
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Catherine S Woolley
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States.,Department of Neurobiology, Northwestern University, Evanston, United States
| | - Indira M Raman
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States.,Department of Neurobiology, Northwestern University, Evanston, United States.,Integrated Science Program, Northwestern University, Evanston, United States
| |
Collapse
|
35
|
del Pino J, Moyano-Cires PV, Anadon MJ, Díaz MJ, Lobo M, Capo MA, Frejo MT. Molecular Mechanisms of Amitraz Mammalian Toxicity: A Comprehensive Review of Existing Data. Chem Res Toxicol 2015; 28:1073-94. [PMID: 25973576 DOI: 10.1021/tx500534x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Javier del Pino
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Paula Viviana Moyano-Cires
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Maria Jose Anadon
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - María Jesús Díaz
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Margarita Lobo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Miguel Andrés Capo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - María Teresa Frejo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
36
|
Wei J, Yuen EY, Liu W, Li X, Zhong P, Karatsoreos IN, McEwen BS, Yan Z. Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition. Mol Psychiatry 2014; 19:588-98. [PMID: 23835908 DOI: 10.1038/mp.2013.83] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/24/2013] [Accepted: 05/24/2013] [Indexed: 02/06/2023]
Abstract
Converging evidence suggests that females and males show different responses to stress; however, little is known about the mechanism underlying the sexually dimorphic effects of stress. In this study, we found that young female rats exposed to 1 week of repeated restraint stress show no negative effects on temporal order recognition memory (TORM), a cognitive process controlled by the prefrontal cortex (PFC), which was contrary to the impairment in TORM observed in stressed males. Concomitantly, normal glutamatergic transmission and glutamate receptor surface expression in PFC pyramidal neurons were found in repeatedly stressed females, in contrast to the significant reduction seen in stressed males. The detrimental effects of repeated stress on TORM and glutamate receptors were unmasked in stressed females when estrogen receptors were inhibited or knocked down in PFC, and were prevented in stressed males with the administration of estradiol. Blocking aromatase, the enzyme for the biosynthesis of estrogen, revealed the stress-induced glutamatergic deficits and memory impairment in females, and the level of aromatase was significantly higher in the PFC of females than in males. These results suggest that estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and PFC-dependent cognition, which may underlie the stress resilience of females.
Collapse
Affiliation(s)
- J Wei
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - E Y Yuen
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - W Liu
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - X Li
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - P Zhong
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - I N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - B S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Z Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
37
|
Wong CT, Ahmad E, Li H, Crawford DA. Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders. Cell Commun Signal 2014; 12:19. [PMID: 24656144 PMCID: PMC4233645 DOI: 10.1186/1478-811x-12-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/13/2014] [Indexed: 01/30/2023] Open
Abstract
Prostaglandin E2 (PGE2) is a natural lipid-derived molecule that is involved in important physiological functions. Abnormal PGE2 signalling has been associated with pathologies of the nervous system. Previous studies provide evidence for the interaction of PGE2 and canonical Wnt signalling pathways in non-neuronal cells. Since the Wnt pathway is crucial in the development and organization of the brain, the main goal of this study is to determine whether collaboration between these pathways exists in neuronal cell types. We report that PGE2 interacts with canonical Wnt signalling through PKA and PI-3K in neuroectodermal (NE-4C) stem cells. We used time-lapse microscopy to determine that PGE2 increases the final distance from origin, path length travelled, and the average speed of migration in Wnt-activated cells. Furthermore, PGE2 alters distinct cellular phenotypes that are characteristic of Wnt-induced NE-4C cells, which corresponds to the modified splitting behaviour of the cells. We also found that in Wnt-induced cells the level of β-catenin protein was increased and the expression levels of Wnt-target genes (Ctnnb1, Ptgs2, Ccnd1, Mmp9) was significantly upregulated in response to PGE2 treatment. This confirms that PGE2 activated the canonical Wnt signalling pathway. Furthermore, the upregulated genes have been previously associated with ASD. Our findings show, for the first time, evidence for cross-talk between PGE2 and Wnt signalling in neuronal cells, where PKA and PI-3K might act as mediators between the two pathways. Given the importance of PGE2 and Wnt signalling in prenatal development of the nervous system, our study provides insight into how interaction between these two pathways may influence neurodevelopment.
Collapse
Affiliation(s)
| | | | | | - Dorota A Crawford
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
38
|
Diaz MR, Vollmer CC, Zamudio-Bulcock PA, Vollmer W, Blomquist SL, Morton RA, Everett JC, Zurek AA, Yu J, Orser BA, Valenzuela CF. Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABA(A) receptor δ subunit in cerebellar granule neurons and delays motor development in rats. Neuropharmacology 2013; 79:262-74. [PMID: 24316160 DOI: 10.1016/j.neuropharm.2013.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 10/17/2013] [Accepted: 11/25/2013] [Indexed: 02/01/2023]
Abstract
Exposure to ethanol (EtOH) during fetal development can lead to long-lasting alterations, including deficits in fine motor skills and motor learning. Studies suggest that these are, in part, a consequence of cerebellar damage. Cerebellar granule neurons (CGNs) are the gateway of information into the cerebellar cortex. Functionally, CGNs are heavily regulated by phasic and tonic GABAergic inhibition from Golgi cell interneurons; however, the effect of EtOH exposure on the development of GABAergic transmission in immature CGNs has not been investigated. To model EtOH exposure during the 3rd trimester-equivalent of human pregnancy, neonatal pups were exposed intermittently to high levels of vaporized EtOH from postnatal day (P) 2 to P12. This exposure gradually increased pup serum EtOH concentrations (SECs) to ∼60 mM (∼0.28 g/dl) during the 4 h of exposure. EtOH levels gradually decreased to baseline 8 h after the end of exposure. Surprisingly, basal tonic and phasic GABAergic currents in CGNs were not significantly affected by postnatal alcohol exposure (PAE). However, PAE increased δ subunit expression at P28 as detected by immunohistochemical and western blot analyses. Also, electrophysiological studies with an agonist that is highly selective for δ-containing GABA(A) receptors, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP), showed an increase in THIP-induced tonic current. Behavioral studies of PAE rats did not reveal any deficits in motor coordination, except for a delay in the acquisition of the mid-air righting reflex that was apparent at P15 to P18. These findings demonstrate that repeated intermittent exposure to high levels of EtOH during the equivalent of the last trimester of human pregnancy has significant but relatively subtle effects on motor coordination and GABAergic transmission in CGNs in rats.
Collapse
Affiliation(s)
- Marvin R Diaz
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cyndel C Vollmer
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Paula A Zamudio-Bulcock
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - William Vollmer
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Samantha L Blomquist
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Julie C Everett
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Agnieszka A Zurek
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jieying Yu
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
39
|
Lee KS, Asgar J, Zhang Y, Chung MK, Ro JY. The role of androgen receptor in transcriptional modulation of cannabinoid receptor type 1 gene in rat trigeminal ganglia. Neuroscience 2013; 254:395-403. [PMID: 24055403 DOI: 10.1016/j.neuroscience.2013.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/31/2022]
Abstract
We have previously shown that anti-hyperalgesic effects of cannabinoid agonists under inflammatory condition are much greater in male than female, and that inflammatory cytokines upregulate cannabinoid receptor type 1 (CB1) expression in male, but not female, trigeminal ganglia (TG) in a testosterone-dependent manner. In this study, we investigated the mechanisms underlying the testosterone-mediated regulation of peripheral CB1 expression. We hypothesized that testosterone upregulates CB1 through transcriptional modulation by androgen receptor (AR). Interleukin-1 beta (IL-1β), a pro-inflammatory cytokine, upregulated CB1 mRNA expression in TG of male rats. The cytokine-induced upregulation was prevented by the pretreatment with flutamide, a specific antagonist for AR, but not by ICI 182,780, a specific antagonist for estrogen receptor, suggesting that the effects of testosterone are not mediated by estradiol, a testosterone metabolite. The expression levels of AR and IL-1β receptors were comparable between male and female TG, suggesting that the male specific IL-1β effects on CB1 upregulation occurs downstream to these receptors. The chromatin immunoprecipitation assay showed AR binding to the CB1 promoter in the rat TG. Furthermore, luciferase reporter assay revealed that AR activated the CB1 gene in response to testosterone or dihydrotestosterone treatment. These experiments provided compelling evidence that testosterone regulates CB1 gene transcription in TG through AR following cytokine stimulation. These results should provide mechanistic bases for understanding cytokine-hormone-neuron interactions in peripheral cannabinoid systems, and have important clinical implications for pain patients in whom testosterone level is naturally low, gradually declining or pharmacologically compromised.
Collapse
Affiliation(s)
- K S Lee
- University of Maryland Dental School, Department of Neural and Pain Sciences, Program in Neuroscience, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
40
|
Rogers TD, McKimm E, Dickson PE, Goldowitz D, Blaha CD, Mittleman G. Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Front Syst Neurosci 2013; 7:15. [PMID: 23717269 PMCID: PMC3650713 DOI: 10.3389/fnsys.2013.00015] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 04/23/2013] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorders are a group of neurodevelopmental disorders characterized by deficits in social skills and communication, stereotyped and repetitive behavior, and a range of deficits in cognitive function. While the etiology of autism is unknown, current research indicates that abnormalities of the cerebellum, now believed to be involved in cognitive function and the prefrontal cortex (PFC), are associated with autism. The current paper proposes that impaired cerebello-cortical circuitry could, at least in part, underlie autistic symptoms. The use of animal models that allow for manipulation of genetic and environmental influences are an effective means of elucidating both distal and proximal etiological factors in autism and their potential impact on cerebello-cortical circuitry. Some existing rodent models of autism, as well as some models not previously applied to the study of the disorder, display cerebellar and behavioral abnormalities that parallel those commonly seen in autistic patients. The novel findings produced from research utilizing rodent models could provide a better understanding of the neurochemical and behavioral impact of changes in cerebello-cortical circuitry in autism.
Collapse
Affiliation(s)
- Tiffany D Rogers
- Department of Psychology, The University of Memphis Memphis, TN, USA
| | | | | | | | | | | |
Collapse
|
41
|
McCarthy MM. Sexual differentiation of the brain in man and animals: of relevance to Klinefelter syndrome? AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:3-15. [PMID: 23335108 DOI: 10.1002/ajmg.c.31351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The developing brain is highly sensitive to the organizing effects of steroids of gonadal origin in a process referred to as sexual differentiation. Early hormone effects prime the brain for adult sensitivity to the appropriate hormonal milieu, maximizing reproductive fitness via coordinated physiology and behavior. Animal models, in particular rodents, have provided insight into general principles and the cellular and molecular mechanisms of brain differentiation. Cellular endpoints influenced by steroids in the developing brain include neurogenesis, migration, apoptosis, dendritic growth, and synaptic patterning. Important roles for prostaglandins, endocanabinoids, and epigenetics are among the many cellular mediators of hormonal organization. Transference of general principles of brain sexual differentiation to humans relies on observations of individuals with genetic anomalies that either increase or decrease hormone exposure and sensitivity. The physiology and behavior of individuals with XXY (Klinefelter syndrome) has not been considered in the context of sexual differentiation of the brain, most likely due to the delay in diagnoses and highly variable presentation. The behavioral phenotype and impairments in the domains of speech and language that are characteristic of individuals with XXY is consistent with the reduced androgen production associated with the syndrome. Hormone replacement appears effective in restoring some deficits and impact may be further improved by increased understanding of the hormonally mediated sexual differentiation of the brain.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|