1
|
Wagenaars F, Cenijn P, Scholze M, Frädrich C, Renko K, Köhrle J, Hamers T. Screening for endocrine disrupting chemicals inhibiting monocarboxylate 8 (MCT8) transporter facilitated thyroid hormone transport using a modified nonradioactive assay. Toxicol In Vitro 2024; 96:105770. [PMID: 38151217 DOI: 10.1016/j.tiv.2023.105770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Early neurodevelopmental processes are strictly dependent on spatial and temporally modulated of thyroid hormone (TH) availability and action. Thyroid hormone transmembrane transporters (THTMT) are critical for regulating the local concentrations of TH, namely thyroxine (T4) and 3,5,3'-tri-iodothyronine (T3), in the brain. Monocarboxylate transporter 8 (MCT8) is one of the most prominent THTMT. Genetically induced deficiencies in expression, function or localization of MCT8 are associated with irreversible and severe neurodevelopmental adversities. Due to the importance of MCT8 in brain development, studies addressing chemical interferences of MCT8 facilitated T3 uptake are a crucial step to identify TH system disrupting chemicals with this specific mode of action. Recently a non-radioactive in vitro assay has been developed to rapidly screen for endocrine disrupting chemicals (EDCs) acting upon MCT8 mediated transport. This study explored the use of an UV-light digestion step as an alternative for the original ammonium persulfate (APS) digestion step. The non-radioactive TH uptake assay, with the incorporated UV-light digestion step of TH, was then used to screen a set of 31 reference chemicals and environmentally relevant substances to detect inhibition of MCT8-depending T3 uptake. This alternative assay identified three novel MCT8 inhibitors: methylmercury, bisphenol-AF and bisphenol-Z and confirmed previously known MCT8 inhibitors.
Collapse
Affiliation(s)
- Fabian Wagenaars
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Peter Cenijn
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Martin Scholze
- Brunel University London, Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Caroline Frädrich
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Institut für Experimentelle Endokrinologie, Hessische Strasse 3-4, 10115 Berlin, Germany
| | - Kostja Renko
- German Centre for the Protection of Laboratory Animals (Bf3R), Bundesinstitut für Risikobewertung (BfR), Berlin, Germany
| | - Josef Köhrle
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Institut für Experimentelle Endokrinologie, Hessische Strasse 3-4, 10115 Berlin, Germany
| | - Timo Hamers
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Groeneweg S, van den Berge A, Lima de Souza EC, Meima ME, Peeters RP, Visser WE. Insights Into the Mechanism of MCT8 Oligomerization. J Endocr Soc 2020; 4:bvaa080. [PMID: 32724870 PMCID: PMC7375341 DOI: 10.1210/jendso/bvaa080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/03/2022] Open
Abstract
Mutations in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) result in MCT8 deficiency, characterized by severe intellectual and motor disability. The MCT8 protein is predicted to have 12 transmembrane domains (TMDs) and is expressed as monomers, homodimers, and homo-oligomers. This study aimed to delineate the mechanism of MCT8 oligomerization. Coimmunoprecipitation studies demonstrated that lithium dodecyl sulfate effectively disrupts MCT8 protein complexes, indicating the involvement of non-covalent interactions. Successive C-terminal truncations of the MCT8 protein altered the oligomerization pattern only if introduced in the N-terminal half of the protein (TMD1-6). The truncation at extracellular loop 1 (E206X) still allowed homodimerization, but completely abrogated homo-oligomerization, whereas both were preserved by the C231X mutant (at TMD2), suggesting that the minimally required oligomerization sites are located proximal of Cys231. However, mutant constructs lacking the intracellular N-terminus or TMD1 and 2 were still capable to form homo-oligomers. Therefore, other domains distal of Cys231 are also likely to be involved in the formation of extensive multidomain interactions. This hypothesis was supported by structural modeling. Despite multiple approaches, MCT8 oligomerization could not be fully abrogated unless a substantial part of the protein was removed, precluding detailed studies into its functional role. Together, our findings suggest that MCT8 oligomerization involves extensive noncovalent interactions between the N-terminal halves of MCT8 proteins. Most mutations identified in patients with MCT8 deficiency have only minor effects on MCT8 oligomerization and, thus, impaired oligomerization does not appear to be an important pathogenic mechanism.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Amanda van den Berge
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Elaine C Lima de Souza
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marcel E Meima
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - W Edward Visser
- Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Groeneweg S, Lima de Souza EC, Meima ME, Peeters RP, Visser WE, Visser TJ. Outward-Open Model of Thyroid Hormone Transporter Monocarboxylate Transporter 8 Provides Novel Structural and Functional Insights. Endocrinology 2017; 158:3292-3306. [PMID: 28977587 DOI: 10.1210/en.2017-00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates cellular uptake and efflux of thyroid hormone (TH). Mutations in MCT8 result in severe intellectual and motor disability known as the Allan-Herndon-Dudley syndrome (AHDS). Previous studies have provided valuable insights into the putative mechanism of substrate binding in the inward-open conformation, required for TH efflux. The current study aims to delineate the mechanism of substrate binding in the outward-open conformation, required for TH uptake. Extensive chemical modification and site-directed mutagenesis studies were used to guide protein homology modeling of MCT8 in the outward-open conformation. Arg271 and Arg445 were modified by phenylglyoxal, which was partially prevented in the presence of substrate. Substrate docking in our outward-open model suggested an important role for His192 and Arg445 in substrate binding. Interestingly, mutations affecting these residues have been identified in patients who have AHDS. In addition, our outward-open model predicted the location of Phe189, Met227, Phe279, Gly282, Phe287, and Phe501 at the substrate-binding center, and their Ala substitution differentially affected the apparent Vmax and Km of T3 transport, with F189A, F279A, and F287A showing the highest impact. Thus, here we present an MCT8 homology model in the outward-open conformation, which supports the important role of His192 and Arg445 in substrate docking and identifies critical residues at the putative substrate-binding center. Our findings provide insights into MCT8 structure and function, which add to our understanding of the pathogenic mechanism of mutations found in patients who have AHDS and can be used to screen for novel substrates and inhibitors.
Collapse
Affiliation(s)
- Stefan Groeneweg
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Elaine C Lima de Souza
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Marcel E Meima
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Robin P Peeters
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - W Edward Visser
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Theo J Visser
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Protze J, Braun D, Hinz KM, Bayer-Kusch D, Schweizer U, Krause G. Membrane-traversing mechanism of thyroid hormone transport by monocarboxylate transporter 8. Cell Mol Life Sci 2017; 74:2299-2318. [PMID: 28132097 PMCID: PMC11107705 DOI: 10.1007/s00018-017-2461-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/14/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
Monocarboxylate transporter 8 (MCT8) mediates thyroid hormone (TH) transport across the plasma membrane in many cell types. In order to better understand its mechanism, we have generated three new MCT8 homology models based on sugar transporters XylE in the intracellular opened (PDB ID: 4aj4) and the extracellular partly occluded (PDB ID: 4gby) conformations as well as FucP (PDB ID: 3o7q) and GLUT3 (PDB ID: 4zwc) in the fully extracellular opened conformation. T3-docking studies from both sides revealed interactions with His192, His415, Arg445 and Asp498 as previously identified. Selected mutations revealed further transport-sensitive positions mainly at the discontinuous transmembrane helices TMH7 and 10. Lys418 is potentially involved in neutralising the charge of the TH substrate because it can be replaced by charged, but not by uncharged, amino acids. The side chain of Thr503 was hypothesised to stabilise a helix break at TMH10 that undergoes a prominent local shift during the transport cycle. A T503V mutation accordingly affected transport. The aromatic Tyr419, the polar Ser313 and Ser314 as well as the charged Glu422 and Glu423 lining the transport channel have been studied. Based on related sugar transporters, we suggest an alternating access mechanism for MCT8 involving a series of amino acid positions previously and newly identified as critical for transport.
Collapse
Affiliation(s)
- Jonas Protze
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany
| | - Katrin Manuela Hinz
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Dorothea Bayer-Kusch
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany.
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| |
Collapse
|
6
|
Abstract
Transport of thyroid hormone (TH) across the plasma membrane is essential for intracellular TH metabolism and action, and this is mediated by specific transporter proteins. During the last two decades several transporters capable of transporting TH have been identified, including monocarboxylate transporter 8 (MCT8), MCT10 and organic anion transporting polypeptide 1C1 (OATP1C1). In particular MCT8 and OATP1C1 are important for the regulation of local TH activity in the brain and thus for brain development. MCT8 is a protein containing 12 transmembrane domains, and is encoded by the SLC16A2 gene located on the X chromosome. It facilitates both TH uptake and efflux across the cell membrane. Male subjects with hemizygous mutations in MCT8 are afflicted with severe intellectual and motor disability, also known as the Allan-Herndon-Dudley syndrome (AHDS), which goes together with low serum T4 and high T3 levels. This review concerns molecular and clinical aspects of MCT8 function.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - W Edward Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Theo J Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Vidart J, Wajner SM, Leite RS, Manica A, Schaan BD, Larsen PR, Maia AL. N-acetylcysteine administration prevents nonthyroidal illness syndrome in patients with acute myocardial infarction: a randomized clinical trial. J Clin Endocrinol Metab 2014; 99:4537-45. [PMID: 25148231 PMCID: PMC4255112 DOI: 10.1210/jc.2014-2192] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CONTEXT The acute phase of the nonthyroidal illness syndrome (NTIS) is characterized by low T3 and high rT3 levels, affecting up to 75% of critically ill patients. Oxidative stress has been implicated as a causative factor of the disturbed peripheral thyroid hormone metabolism. OBJECTIVE The objective of the study was to investigate whether N-acetylcysteine (NAC), a potent intracellular antioxidant, can prevent NTIS in patients with acute myocardial infarction. DESIGN This was a randomized, multicenter clinical trial. SETTINGS Consecutive patients admitted to the emergency and intensive care units of two tertiary hospitals in southern Brazil were recruited. Patients and intervention included 67 patients were randomized to receive NAC or placebo during 48 hours. Baseline characteristics and blood samples for thyroid hormones and oxidative parameters were collected. MAIN OUTCOME Variation of serum T3 and rT3 levels was measured. RESULTS Baseline characteristics were similar between groups (all P > .05). T3 levels decreased in the placebo group at 12 hours of follow-up (P = .002) but not in NAC-treated patients (P = .10). Baseline rT3 levels were elevated in both groups and decreased over the initial 48 hours in the NAC-treated patients (P = .003) but not in the control group (P = .75). The free T4 and TSH levels were virtually identical between the groups throughout the study period (P > .05). Measurement of total antioxidant status and total carbonyl content demonstrated that oxidative balance was deranged in acute myocardial infarction patients, whereas NAC corrected these alterations (P < .001). CONCLUSIONS NAC administration prevents the derangement in thyroid hormone concentrations commonly occurring in the acute phase of acute myocardial infarction, indicating that oxidative stress is involved in the NTIS pathophysiology.
Collapse
Affiliation(s)
- Josi Vidart
- Thyroid Unit (J.V., S.M.W., B.D.S., A.L.M.), Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, CEP 90620-000, Porto Alegre, RS, Brasil; Instituto de Cardiologia do RS/Fundação Universitária de Cardiologia (R.S.L., A.M.); and Division of Endocrinology, Diabetes, and Hypertension (P.R.L.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | |
Collapse
|
8
|
Sasaki S, Futagi Y, Kobayashi M, Ogura J, Iseki K. Functional characterization of 5-oxoproline transport via SLC16A1/MCT1. J Biol Chem 2014; 290:2303-11. [PMID: 25371203 DOI: 10.1074/jbc.m114.581892] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Thyrotropin-releasing hormone is a tripeptide that consists of 5-oxoproline, histidine, and proline. The peptide is rapidly metabolized by various enzymes. 5-Oxoproline is produced by enzymatic hydrolysis in a variety of peptides. Previous studies showed that 5-oxoproline could become a possible biomarker for autism spectrum disorders. Here we demonstrate the involvement of SLC16A1 in the transport of 5-oxoproline. An SLC16A1 polymorphism (rs1049434) was recently identified. However, there is no information about the effect of the polymorphism on SLC16A1 function. In this study, the polymorphism caused an observable change in 5-oxoproline and lactate transport via SLC16A1. The Michaelis constant (Km) was increased in an SLC16A1 mutant compared with that in the wild type. In addition, the proton concentration required to produce half-maximal activation of transport activity (K0.5, H (+)) was increased in the SLC16A1 mutant compared with that in the wild type. Furthermore, we examined the transport of 5-oxoproline in T98G cells as an astrocyte cell model. Despite the fact that 5-oxoproline is an amino acid derivative, Na(+)-dependent and amino acid transport systems scarcely contributed to 5-oxoproline transport. Based on our findings, we conclude that H(+)-coupled 5-oxoproline transport is mediated solely by SLC16A1 in the cells.
Collapse
Affiliation(s)
- Shotaro Sasaki
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and
| | - Yuya Futagi
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and
| | - Masaki Kobayashi
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and
| | - Jiro Ogura
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and
| | - Ken Iseki
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and the Department of Pharmacy, Hokkaido University Hospital, Sapporo 060-8648, Japan
| |
Collapse
|
9
|
Schweizer U, Johannes J, Bayer D, Braun D. Structure and function of thyroid hormone plasma membrane transporters. Eur Thyroid J 2014; 3:143-53. [PMID: 25538896 PMCID: PMC4224232 DOI: 10.1159/000367858] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/26/2014] [Indexed: 01/25/2023] Open
Abstract
Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- *Prof. Dr. Ulrich Schweizer, Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, DE-53115 Bonn (Germany), E-Mail
| | - Jörg Johannes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothea Bayer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
10
|
de Vrieze E, van de Wiel SMW, Zethof J, Flik G, Klaren PHM, Arjona FJ. Knockdown of monocarboxylate transporter 8 (mct8) disturbs brain development and locomotion in zebrafish. Endocrinology 2014; 155:2320-30. [PMID: 24693966 DOI: 10.1210/en.2013-1962] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Allan-Herndon-Dudley syndrome (AHDS) is an inherited disorder of brain development characterized by severe psychomotor retardation. This X-linked disease is caused by mutations in the monocarboxylate transporter 8 (MCT8), an important thyroid hormone transporter in brain neurons. MCT8-knockout mice lack the 2 major neurological symptoms of AHDS, namely locomotor problems and cognitive impairment. The pathological mechanism explaining the symptoms is still obscure, and no cure for this condition is known. The development of an animal model that carries MCT8-related neurological symptoms is warranted. We have employed morpholino-based gene knockdown to create zebrafish deficient for mct8. Knockdown of mct8 results in specific symptoms in the thyroid axis and brain. The mct8-morphants showed impaired locomotor behavior and brain development. More specifically, we observed maldevelopment of the cerebellum and mid-hindbrain boundary and apoptotic clusters in the zebrafish brain. The mRNA expression of zebrafish orthologs of mammalian TSH, thyroid hormone transporters, and deiodinases was altered in mct8 morphants. In particular, deiodinase type 3 gene expression was consistently up-regulated in zebrafish mct8 morphants. The thyroid hormone metabolite tetrac, but not T3, partly ameliorated the affected phenotype and locomotion disability of morphant larvae. Our results show that mct8 knockdown in zebrafish larvae results in disturbances in the thyroid axis, brain, and locomotion behavior, which is congruent with the clinical aspect of impaired locomotion and cognition in patients with AHDS. Taken together, the zebrafish is a suitable animal model for the study of the pathophysiology of AHDS.
Collapse
Affiliation(s)
- Erik de Vrieze
- Department of Organismal Animal Physiology (E.d.V., S.M.W.v.d.W., J.Z., G.F., P.H.M.K.), Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen; and Department of Otorhinolaryngology (E.d.V.) and Department of Physiology, Radboud Institute for Molecular Life Sciences (RIMLS) (F.J.A.), Radboud university medical center, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Wirth EK, Schweizer U, Köhrle J. Transport of thyroid hormone in brain. Front Endocrinol (Lausanne) 2014; 5:98. [PMID: 25009532 PMCID: PMC4067591 DOI: 10.3389/fendo.2014.00098] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/07/2014] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone (TH) transport into the brain is not only pivotal for development and differentiation, but also for maintenance and regulation of adult central nervous system (CNS) function. In this review, we highlight some key factors and structures regulating TH uptake and distribution. Serum TH binding proteins play a major role for the availability of TH since only free hormone concentrations may dictate cellular uptake. One of these proteins, transthyretin is also present in the cerebrospinal fluid (CSF) after being secreted by the choroid plexus. Entry routes into the brain like the blood-brain-barrier (BBB) and the blood-CSF-barrier will be explicated regarding fetal and adult status. Recently identified TH transmembrane transporters (THTT) like monocarboxylate transporter 8 (Mct8) play a major role in uptake of TH across the BBB but as well in transport between cells like astrocytes and neurons within the brain. Species differences in transporter expression will be presented and interference of TH transport by endogenous and exogenous compounds including endocrine disruptors and drugs will be discussed.
Collapse
Affiliation(s)
- Eva K. Wirth
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Josef Köhrle, Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany e-mail:
| |
Collapse
|
12
|
Fu J, Refetoff S, Dumitrescu AM. Inherited defects of thyroid hormone-cell-membrane transport: review of recent findings. Curr Opin Endocrinol Diabetes Obes 2013; 20:434-40. [PMID: 23974772 PMCID: PMC4061907 DOI: 10.1097/01.med.0000432531.03233.ad] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the most significant findings over the last year regarding human and animal models deficient in thyroid hormone cell-membrane transporters (THCMTs). Although several THCMTs have been modelled in genetically engineered mice, the only THCMT defect known in humans is that caused by mutations in the monocarboxylate transporter 8 (MCT8) gene. RECENT FINDINGS The importance of several amino acid residues has been assessed in vitro to further our understanding on the structure-function of the MCT8. The administration of the thyromimetic compound, diiodothyropropionic acid, has been tested in patients with MCT8 gene mutations, following studies of its use in mice. Another thyroid hormone analogue, 3,3',5,5'-tetraiodothyroacetic acid, was tested in Mct8-deficient mice. The phenotypes of L-type aminoacid transporter 2 and organic anion transporting polypeptide 1C1 deficiencies have been studied in mouse models. Mct8/organic anion transporting polypeptide 1C1 double knockout mice have been shown to manifest neurodevelopmental deficits. Zebrafish is emerging as another vertebrate model that may be useful to study the role of Mct8 in brain development. SUMMARY Studies on the pathogenesis and therapy of MCT8 deficiency are in progress, and new vertebrate models that are suitable to study the neurological consequences of the syndrome are being explored.
Collapse
Affiliation(s)
- Jiao Fu
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Samuel Refetoff
- Departments of Medicine, Pediatrics and Genetics, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|