1
|
Zhu JY, Guo L. Exercise-regulated lipolysis: Its role and mechanism in health and diseases. J Adv Res 2024:S2090-1232(24)00550-2. [PMID: 39613256 DOI: 10.1016/j.jare.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Exercise has received considerable attention because of its importance not just in regulating physiological function, but also in ameliorating multiple pathological processes. Among these processes, lipolysis may play an important role in exercise-induced benefits. It is generally accepted that active lipolysis contributes to breakdown of fats, leading to the release of free fatty acids (FFAs) that serve as an energy source for muscles and other tissues during exercise. However, the significance of lipolysis in the context of exercise has not been fully understood. This review comprehensively outlines the potential regulatory mechanisms by which exercise stimulates lipolysis. The potential roles of exercise-mediated lipolysis in various physiological and pathological processes are also summarized. Additionally, we also discussed the potential non-classical effects of key lipolytic effectors induced by exercise. This will enhance our understanding of how exercise improves lipolytic function to bring about beneficial effects, offering new insights into potential therapeutic avenues for promoting health and alleviating diseases.
Collapse
Affiliation(s)
- Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China 200438; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China 200438; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China 200438
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China 200438; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China 200438; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China 200438.
| |
Collapse
|
2
|
Duan Z, Yang Y, Qin M, Yi X. Interleukin 15: A new intermediary in the effects of exercise and training on skeletal muscle and bone function. J Cell Mol Med 2024; 28:e70136. [PMID: 39601091 PMCID: PMC11599876 DOI: 10.1111/jcmm.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024] Open
Abstract
Interleukin-15 (IL-15), a pro-inflammatory cytokine, is produced mainly by skeletal muscle cells, macrophages and epithelial cells. Recent research has demonstrated that IL-15 is closely related to the functions of bone and skeletal muscle in the locomotor system. There is growing evidence that exercise, an important means to regulate the immune and locomotor systems, influences IL-15 content in various tissues, thereby indirectly affecting the function of bones and muscles. Furthermore, the form, intensity, and duration of exercise determine the degree of change in IL-15 and downstream effects. This paper reviews the structure, synthesis and secretion of IL-15, the role of IL-15 in regulating the metabolism of bone tissue cells and myofibers through binding to the IL-15 receptor-α (IL-15Rα), and the response of IL-15 to different types of exercise. This review provides a reference for further analyses of the role and mechanism of action of IL-15 in the regulation of metabolism during exercise.
Collapse
Affiliation(s)
- Ziqiang Duan
- School of Sports HealthShenyang Sport UniversityShenyangChina
| | - Yang Yang
- School of KinesiologyShanghai University of SportShanghaiChina
| | - Mianhong Qin
- School of Sports HealthShenyang Sport UniversityShenyangChina
| | - Xuejie Yi
- Social Science Research CenterShenyang Sport UniversityShenyangChina
| |
Collapse
|
3
|
Tanaka M, Sugimoto K, Akasaka H, Yoshida S, Takahashi T, Fujimoto T, Xie K, Yasunobe Y, Yamamoto K, Hirabayashi T, Nakanishi R, Fujino H, Rakugi H. Effects of interleukin-15 on autophagy regulation in the skeletal muscle of mice. Am J Physiol Endocrinol Metab 2024; 326:E326-E340. [PMID: 38294696 DOI: 10.1152/ajpendo.00311.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
This study aimed to evaluate the role of skeletal muscle-derived interleukin (IL)-15 in the regulation of skeletal muscle autophagy using IL-15 knockout (KO) and transgenic (TG) mice. Male C57BL/6 wild-type (WT), IL-15 KO, and IL-15 TG mice were used in this study. Changes in muscle mass, forelimb grip strength, succinate dehydrogenase (SDH) activity, gene and protein expression levels of major regulators and indicators of autophagy, comprehensive gene expression, and DNA methylation in the gastrocnemius muscle were analyzed. Enrichment pathway analyses revealed that the pathology of IL-15 gene deficiency was related to the autophagosome pathway. Moreover, although IL-15 KO mice maintained gastrocnemius muscle mass, they exhibited a decrease in autophagy induction. IL-15 TG mice exhibited a decrease in gastrocnemius muscle mass and an increase in forelimb grip strength and SDH activity in skeletal muscle. In the gastrocnemius muscle, the ratio of phosphorylated adenosine monophosphate-activated protein kinase α (AMPKα) to total AMPKα and unc-51-like autophagy activating kinase 1 and Beclin1 protein expression were higher in the IL-15 TG group than in the WT group. IL-15 gene deficiency induces a decrease in autophagy induction. In contrast, IL-15 overexpression could improve muscle quality by activating autophagy induction while decreasing muscle mass. The regulation of IL-15 in autophagy in skeletal muscles may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.NEW & NOTEWORTHY IL-15 gene deficiency can decrease autophagy induction. However, although IL-15 overexpression induced a decrease in muscle mass, it led to an improvement in muscle quality. Based on these results, understanding the role of IL-15 in regulating autophagy pathways within skeletal muscle may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Ken Sugimoto
- Department of General and Geriatric Medicine, Kawasaki Medical School, Okayama, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shino Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keyu Xie
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukiko Yasunobe
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Osaka Rosai Hospital, Osaka, Japan
| |
Collapse
|
4
|
Mazurkiewicz Ł, Czernikiewicz K, Grygiel-Górniak B. Immunogenetic Aspects of Sarcopenic Obesity. Genes (Basel) 2024; 15:206. [PMID: 38397196 PMCID: PMC10888391 DOI: 10.3390/genes15020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Sarcopenic obesity (SO) is a combination of obesity and sarcopenia, with diagnostic criteria defined as impaired skeletal muscle function and altered body composition (e.g., increased fat mass and reduced muscle mass). The mechanism of SO is not yet perfectly understood; however, the pathogenesis includes aging and its complications, chronic inflammation, insulin resistance (IR), and hormonal changes. Genetic background is apparent in the pathogenesis of isolated obesity, which is most often polygenic and is characterized by the additive effect of various genetic factors. The genetic etiology has not been strictly established in SO. Still, many data confirm the existence of pathogenic gene variants, e.g., Fat Mass and Obesity Associated Gene (FTO), beta-2-adrenergic receptor (ADRB2) gene, melanocortin-4 receptor (MC4R) and others with obesity. The literature on the role of these genes is scarce, and their role has not yet been thoroughly established. On the other hand, the involvement of systemic inflammation due to increased adipose tissue in SO plays a significant role in its pathophysiology through the synthesis of various cytokines such as monocyte chemoattractant protein-1 (MCP-1), IL-1Ra, IL-15, adiponectin or CRP. The lack of anti-inflammatory cytokine (e.g., IL-15) can increase SO risk, but further studies are needed to evaluate the exact mechanisms of implications of various cytokines in SO individuals. This manuscript analyses various immunogenetic and non-genetic factors and summarizes the recent findings on immunogenetics potentially impacting SO development.
Collapse
Affiliation(s)
| | | | - Bogna Grygiel-Górniak
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
5
|
Bondi D, Bevere M, Piccirillo R, Sorci G, Di Felice V, Re Cecconi AD, D'Amico D, Pietrangelo T, Fulle S. Integrated procedures for accelerating, deepening, and leading genetic inquiry: A first application on human muscle secretome. Mol Genet Metab 2023; 140:107705. [PMID: 37837864 DOI: 10.1016/j.ymgme.2023.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/15/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE Beyond classical procedures, bioinformatic-assisted approaches and computational biology offer unprecedented opportunities for scholars. However, these amazing possibilities still need epistemological criticism, as well as standardized procedures. Especially those topics with a huge body of data may benefit from data science (DS)-assisted methods. Therefore, the current study dealt with the combined expert-assisted and DS-assisted approaches to address the broad field of muscle secretome. We aimed to apply DS tools to fix the literature research, suggest investigation targets with a data-driven approach, predict possible scenarios, and define a workflow. METHODS Recognized scholars with expertise on myokines were invited to provide a list of the most important myokines. GeneRecommender, GeneMANIA, HumanNet, and STRING were selected as DS tools. Networks were built on STRING and GeneMANIA. The outcomes of DS tools included the top 5 recommendations. Each expert-led discussion has been then integrated with an DS-led approach to provide further perspectives. RESULTS Among the results, 11 molecules had already been described as bona-fide myokines in literature, and 11 molecules were putative myokines. Most of the myokines and the putative myokines recommended by the DS tools were described as present in the cargo of extracellular vesicles. CONCLUSIONS Including both supervised and unsupervised learning methods, as well as encompassing algorithms focused on both protein interaction and gene represent a comprehensive approach to tackle complex biomedical topics. DS-assisted methods for reviewing existent evidence, recommending targets of interest, and predicting original scenarios are worth exploring as in silico recommendations to be integrated with experts' ideas for optimizing molecular studies.
Collapse
Affiliation(s)
- Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.
| | - Rosanna Piccirillo
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Valentina Di Felice
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Andrea David Re Cecconi
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.
| | - Daniela D'Amico
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| |
Collapse
|
6
|
Baig MH, Ahmad K, Moon JS, Park SY, Ho Lim J, Chun HJ, Qadri AF, Hwang YC, Jan AT, Ahmad SS, Ali S, Shaikh S, Lee EJ, Choi I. Myostatin and its Regulation: A Comprehensive Review of Myostatin Inhibiting Strategies. Front Physiol 2022; 13:876078. [PMID: 35812316 PMCID: PMC9259834 DOI: 10.3389/fphys.2022.876078] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is a well-reported negative regulator of muscle growth and a member of the transforming growth factor (TGF) family. MSTN has important functions in skeletal muscle (SM), and its crucial involvement in several disorders has made it an important therapeutic target. Several strategies based on the use of natural compounds to inhibitory peptides are being used to inhibit the activity of MSTN. This review delivers an overview of the current state of knowledge about SM and myogenesis with particular emphasis on the structural characteristics and regulatory functions of MSTN during myogenesis and its involvements in various muscle related disorders. In addition, we review the diverse approaches used to inhibit the activity of MSTN, especially in silico approaches to the screening of natural compounds and the design of novel short peptides derived from proteins that typically interact with MSTN.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jun Sung Moon
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Afsha Fatima Qadri
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| |
Collapse
|
7
|
Renzini A, D’Onghia M, Coletti D, Moresi V. Histone Deacetylases as Modulators of the Crosstalk Between Skeletal Muscle and Other Organs. Front Physiol 2022; 13:706003. [PMID: 35250605 PMCID: PMC8895239 DOI: 10.3389/fphys.2022.706003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle plays a major role in controlling body mass and metabolism: it is the most abundant tissue of the body and a major source of humoral factors; in addition, it is primarily responsible for glucose uptake and storage, as well as for protein metabolism. Muscle acts as a metabolic hub, in a crosstalk with other organs and tissues, such as the liver, the brain, and fat tissue. Cytokines, adipokines, and myokines are pivotal mediators of such crosstalk. Many of these circulating factors modulate histone deacetylase (HDAC) expression and/or activity. HDACs form a numerous family of enzymes, divided into four classes based on their homology to their orthologs in yeast. Eleven family members are considered classic HDACs, with a highly conserved deacetylase domain, and fall into Classes I, II, and IV, while class III members are named Sirtuins and are structurally and mechanistically distinct from the members of the other classes. HDACs are key regulators of skeletal muscle metabolism, both in physiological conditions and following metabolic stress, participating in the highly dynamic adaptative responses of the muscle to external stimuli. In turn, HDAC expression and activity are closely regulated by the metabolic demands of the skeletal muscle. For instance, NAD+ levels link Class III (Sirtuin) enzymatic activity to the energy status of the cell, and starvation or exercise affect Class II HDAC stability and intracellular localization. SUMOylation or phosphorylation of Class II HDACs are modulated by circulating factors, thus establishing a bidirectional link between HDAC activity and endocrine, paracrine, and autocrine factors. Indeed, besides being targets of adipo-myokines, HDACs affect the synthesis of myokines by skeletal muscle, altering the composition of the humoral milieu and ultimately contributing to the muscle functioning as an endocrine organ. In this review, we discuss recent findings on the interplay between HDACs and circulating factors, in relation to skeletal muscle metabolism and its adaptative response to energy demand. We believe that enhancing knowledge on the specific functions of HDACs may have clinical implications leading to the use of improved HDAC inhibitors for the treatment of metabolic syndromes or aging.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Marco D’Onghia
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Institute of Nanotechnology (Nanotec), National Research Council, Rome, Italy
| |
Collapse
|
8
|
Yoshida S, Fujimoto T, Takahashi T, Sugimoto K, Akasaka H, Tanaka M, Huang Y, Yasunobe Y, Xie K, Ohnishi Y, Minami T, Takami Y, Yamamoto K, Rakugi H. IL-15RA regulates IL-15 localization and protein expression in skeletal muscle cells. Exp Physiol 2022; 107:222-232. [PMID: 35100657 DOI: 10.1113/ep090205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? How are the dynamics of IL-15 and its receptors altered during the differentiation of myoblasts into myotubes, and how is IL-15 regulated? What is the main finding and its importance? ABSTRACT Interleukin-15 (IL-15) is a myokine in the Interleukin-2 (IL-2) family that is generated in the skeletal muscle during exercise. The functional effect of IL-15 involves muscle regeneration and metabolic regulation in skeletal muscle. Reports have indicated that the mechanism of Interleukin-15 receptor subunit alpha (IL-15RA) regulates IL-15 localization in immune cells. However, the dynamic of IL-15 and its receptors, which regulate the IL-15 pathway in skeletal muscle differentiation, have not yet been clarified. This study investigated the mechanism of IL-15 regulation using a mouse skeletal muscle cell line, C2C12 cells. We found that the mRNA expression of IL-15, Interleukin 2 Receptor Subunit Beta (IL-2RB) (CD122), and Interleukin 2 Receptor Subunit Gamma (IL-2RG) (CD132) increased, but that IL-15RA exhibits different kinetics as differentiation progresses. We also found that IL-15, mainly localized in the cytosol, preassembled with IL-15RA in the cytosol and fused to the plasma membrane. Moreover, IL-15RA increased IL-15 protein levels. Our findings suggest that genes comprising the IL-15 signaling complex are enhanced with the differentiation of myotubes and that IL-15RA regulates the protein kinetics of IL-15 signaling in skeletal muscle. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shino Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,Institute for Biogenesis Research, Department of Anatomy Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Ken Sugimoto
- Department of General and Geriatric Medicine, Kawasaki Medical University, Okayama, 700-8505, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Minoru Tanaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, 654-0142, Japan.,Department of Rehabilitation Science, Osaka Health Science University, Osaka, 530-0043, Japan
| | - Yibin Huang
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yukiko Yasunobe
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Keyu Xie
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuri Ohnishi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tomohiro Minami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Sabouri M, Taghibeikzadehbadr P, Shabkhiz F, Izanloo Z, Shaghaghi FA. Effect of eccentric and concentric contraction mode on myogenic regulatory factors expression in human vastus lateralis muscle. J Muscle Res Cell Motil 2022; 43:9-20. [PMID: 35018575 DOI: 10.1007/s10974-021-09613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
Skeletal muscle contractions are caused to release myokines by muscle fiber. This study investigated the myogenic regulatory factors, as MHC I, IIA, IIX, Myo-D, MRF4, Murf, Atrogin-1, Decorin, Myonection, and IL-15 mRNA expression in the response of eccentric vs concentric contraction. Eighteen healthy men were randomly divided into two eccentric and concentric groups, each of 9 persons. Isokinetic contraction protocols included maximal single-leg eccentric or concentric knee extension tasks at 60°/s with the dominant leg. Contractions consisted of a maximum of 12 sets of 10 reps, and the rest time between each set was 30 s. The baseline biopsy was performed 4 weeks before the study, and post-test biopsies were taken immediately after exercise protocols from the vastus lateralis muscle. The gene expression levels were evaluated using Real-Time PCR methods. The eccentric group showed a significantly lower RPE score than the concentric group (P ≤ 0.05). A significant difference in MyoD, MRF4, Myonection, and Decorin mRNA, were observed following eccentric or concentric contractions (P ≤ 0.05). The MHC I, MHC IIA, IL-15 mRNA has been changed significantly compared to the pre-exercise in the concentric group (P ≤ 0.05). While only MHC IIX and Atrogin-1 mRNA changed significantly in the eccentric group (P ≤ 0.05). Additionally, the results showed a significant difference in MyoD, MRF4, IL-15, and Decorin at the follow-up values between eccentric or concentric groups (P ≤ 0.05). Our findings highlight the growing importance of elucidating the different responses of muscle growth factors associated with a myogenic activity such as MHC IIA, Decorin, IL-15, Myonectin, Decorin, MuRF1, and MHC IIX mRNA in following various types of exercise.
Collapse
Affiliation(s)
- Mostafa Sabouri
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran.
| | | | - Fatemeh Shabkhiz
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran
| | - Zahra Izanloo
- Department of Sport Science, Faculty of Human Science, University of Bojnord, Bojnord, Iran
| | | |
Collapse
|
10
|
So HK, Kim S, Kang JS, Lee SJ. Role of Protein Arginine Methyltransferases and Inflammation in Muscle Pathophysiology. Front Physiol 2021; 12:712389. [PMID: 34489731 PMCID: PMC8416770 DOI: 10.3389/fphys.2021.712389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Arginine methylation mediated by protein arginine methyltransferases (PRMTs) is a post-translational modification of both histone and non-histone substrates related to diverse biological processes. PRMTs appear to be critical regulators in skeletal muscle physiology, including regeneration, metabolic homeostasis, and plasticity. Chronic inflammation is commonly associated with the decline of skeletal muscle mass and strength related to aging or chronic diseases, defined as sarcopenia. In turn, declined skeletal muscle mass and strength can exacerbate chronic inflammation. Thus, understanding the molecular regulatory pathway underlying the crosstalk between skeletal muscle function and inflammation might be essential for the intervention of muscle pathophysiology. In this review, we will address the current knowledge on the role of PRMTs in skeletal muscle physiology and pathophysiology with a specific emphasis on its relationship with inflammation.
Collapse
Affiliation(s)
- Hyun-Kyung So
- Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Research Institute of Aging-Related Disease, AniMusCure Inc., Suwon, South Korea
| | - Sunghee Kim
- Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jong-Sun Kang
- Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Sang-Jin Lee
- Research Institute of Aging-Related Disease, AniMusCure Inc., Suwon, South Korea
| |
Collapse
|
11
|
Gonzalez-Gil AM, Elizondo-Montemayor L. The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients 2020; 12:E1899. [PMID: 32604889 PMCID: PMC7353393 DOI: 10.3390/nu12061899] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Exercise is an effective strategy for preventing and treating obesity and its related cardiometabolic disorders, resulting in significant loss of body fat mass, white adipose tissue browning, redistribution of energy substrates, optimization of global energy expenditure, enhancement of hypothalamic circuits that control appetite-satiety and energy expenditure, and decreased systemic inflammation and insulin resistance. Novel exercise-inducible soluble factors, including myokines, hepatokines, and osteokines, and immune cytokines and adipokines are hypothesized to play an important role in the body's response to exercise. To our knowledge, no review has provided a comprehensive integrative overview of these novel molecular players and the mechanisms involved in the redistribution of metabolic fuel during and after exercise, the loss of weight and fat mass, and reduced inflammation. In this review, we explain the potential role of these exercise-inducible factors, namely myokines, such as irisin, IL-6, IL-15, METRNL, BAIBA, and myostatin, and hepatokines, in particular selenoprotein P, fetuin A, FGF21, ANGPTL4, and follistatin. We also describe the function of osteokines, specifically osteocalcin, and of adipokines such as leptin, adiponectin, and resistin. We also emphasize an integrative overview of the pleiotropic mechanisms, the metabolic pathways, and the inter-organ crosstalk involved in energy expenditure, fat mass loss, reduced inflammation, and healthy weight induced by exercise.
Collapse
Affiliation(s)
- Adrian M. Gonzalez-Gil
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey N.L. 64710, Mexico;
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Ave. Morones Prieto 300, Monterrey N.L. 64710, Mexico
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey N.L. 64710, Mexico;
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Ave. Morones Prieto 300, Monterrey N.L. 64710, Mexico
- Tecnologico de Monterrey, Cardiovascular and Metabolomics Research Group, Hospital Zambrano Hellion, San Pedro Garza Garcia P.C. 66278, Mexico
| |
Collapse
|
12
|
Garneau L, Aguer C. Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. DIABETES & METABOLISM 2019; 45:505-516. [PMID: 30844447 DOI: 10.1016/j.diabet.2019.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Due to its mass, skeletal muscle is the major site of glucose uptake and an important tissue in the development of type 2 diabetes (T2D). Muscles of patients with T2D are affected with insulin resistance and mitochondrial dysfunction, which result in impaired glucose and fatty acid metabolism. A well-established method of managing the muscle metabolic defects occurring in T2D is physical exercise. During exercise, muscles contract and secrete factors called myokines which can act in an autocrine/paracrine fashion to improve muscle energy metabolism. In patients with T2D, plasma levels as well as muscle levels (mRNA and protein) of some myokines are upregulated, while others are downregulated. The signalling pathways of certain myokines are also altered in skeletal muscle of patients with T2D. Taken together, these findings suggest that myokine secretion is an important factor contributing to the development of muscle metabolic defects during T2D. It is also of interest considering that lack of physical activity is closely linked to the occurrence of this disease. The causal relationships between sedentary behavior, factors secreted by skeletal muscle at rest and during contraction and the development of T2D remain to be elucidated. Many myokines shown to influence muscle energy metabolism still have not been characterized in the context of T2D in skeletal muscle specifically. The purpose of this review is to highlight what is known and what remains to be determined regarding myokine secretion in patients with T2D to uncover potential therapeutic targets for the management of this disease.
Collapse
Affiliation(s)
- L Garneau
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada
| | - C Aguer
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada.
| |
Collapse
|
13
|
Nadeau L, Aguer C. Interleukin-15 as a myokine: mechanistic insight into its effect on skeletal muscle metabolism. Appl Physiol Nutr Metab 2019; 44:229-238. [DOI: 10.1139/apnm-2018-0022] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin (IL)-15 is a cytokine with important immunological functions. It is highly expressed in skeletal muscle and is believed to be a myokine, a hypothesis supported by the rapid increase in circulating levels of IL-15 in response to exercise. Treatment with high doses of IL-15 results in metabolic adaptations such as improved insulin sensitivity and whole-body fatty acid oxidation and protection from high-fat-diet-induced obesity and insulin resistance. IL-15 secreted by contracting muscle may therefore act as an endocrine factor to improve adiposity and energy metabolism in different tissues. Most studies have used supraphysiological doses of IL-15 that do not represent circulating IL-15 in response to exercise. However, evidence shows that IL-15 levels are higher in muscle interstitium and that IL-15 might improve muscle glucose homeostasis and oxidative metabolism in an autocrine/paracrine manner. Nevertheless, how IL-15 signals in skeletal muscle to improve muscle energy metabolism is not understood completely, especially because the absence of the α subunit of the IL-15 receptor (IL-15Rα) results in a phenotype similar to that of overexpressing/oversecreting IL-15 in mice. In this article, we review the literature to propose a model for the regulation of IL-15 by the soluble form of IL-15Rα to explain why some findings in the literature seem, at first glance, to be contradictory.
Collapse
Affiliation(s)
- Lucien Nadeau
- Institut du Savoir Montfort – Recherche, 713 Montreal Road, Ottawa, ON K1K 0T2, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Céline Aguer
- Institut du Savoir Montfort – Recherche, 713 Montreal Road, Ottawa, ON K1K 0T2, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
14
|
Nadeau L, Patten DA, Caron A, Garneau L, Pinault-Masson E, Foretz M, Haddad P, Anderson BG, Quinn LS, Jardine K, McBurney MW, Pistilli EE, Harper ME, Aguer C. IL-15 improves skeletal muscle oxidative metabolism and glucose uptake in association with increased respiratory chain supercomplex formation and AMPK pathway activation. Biochim Biophys Acta Gen Subj 2018; 1863:395-407. [PMID: 30448294 DOI: 10.1016/j.bbagen.2018.10.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND IL-15 is believed to play a role in the beneficial impact of exercise on muscle energy metabolism. However, previous studies have generally used supraphysiological levels of IL-15 that do not represent contraction-induced IL-15 secretion. METHODS L6 myotubes were treated acutely (3 h) and chronically (48 h) with concentrations of IL-15 mimicking circulating (1-10 pg/ml) and muscle interstitial (100 pg/ml -20 ng/ml) IL-15 levels with the aim to better understand its autocrine/paracrine role on muscle glucose uptake and mitochondrial function. RESULTS Acute exposure to IL-15 levels representing muscle interstitial IL-15 increased basal glucose uptake without affecting insulin sensitivity. This was accompanied by increased mitochondrial oxidative functions in association with increased AMPK pathway and formation of complex III-containing supercomplexes. Conversely, chronic IL-15 exposure resulted in a biphasic effect on mitochondrial oxidative functions and ETC supercomplex formation was increased with low IL-15 levels but decreased with higher IL-15 concentrations. The AMPK pathway was activated only by high levels of chronic IL-15 treatment. Similar results were obtained in skeletal muscle from muscle-specific IL-15 overexpressing mice that show very high circulating IL-15 levels. CONCLUSIONS Acute IL-15 treatment that mimics local IL-15 concentrations enhances muscle glucose uptake and mitochondrial oxidative functions. That mitochondria respond differently to different levels of IL-15 during chronic treatments indicates that IL-15 might activate two different pathways in muscle depending on IL-15 concentrations. GENERAL SIGNIFICANCE Our results suggest that IL-15 may act in an autocrine/paracrine fashion and be, at least in part, involved in the positive effect of exercise on muscle energy metabolism.
Collapse
Affiliation(s)
- L Nadeau
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - D A Patten
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - A Caron
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - L Garneau
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - E Pinault-Masson
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - M Foretz
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - P Haddad
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - B G Anderson
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - L S Quinn
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - K Jardine
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - M W McBurney
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - E E Pistilli
- West Virginia University School of Medicine, Morgantown, WV, United States
| | - M E Harper
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - C Aguer
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada.
| |
Collapse
|
15
|
García MDC, Pazos P, Lima L, Diéguez C. Regulation of Energy Expenditure and Brown/Beige Thermogenic Activity by Interleukins: New Roles for Old Actors. Int J Mol Sci 2018; 19:E2569. [PMID: 30158466 PMCID: PMC6164446 DOI: 10.3390/ijms19092569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity rates and the burden of metabolic associated diseases are escalating worldwide Energy burning brown and inducible beige adipocytes in human adipose tissues (ATs) have attracted considerable attention due to their therapeutic potential to counteract the deleterious metabolic effects of nutritional overload and overweight. Recent research has highlighted the relevance of resident and recruited ATs immune cell populations and their signalling mediators, cytokines, as modulators of the thermogenic activity of brown and beige ATs. In this review, we first provide an overview of the developmental, cellular and functional heterogeneity of the AT organ, as well as reported molecular switches of its heat-producing machinery. We also discuss the key contribution of various interleukins signalling pathways to energy and metabolic homeostasis and their roles in the biogenesis and function of brown and beige adipocytes. Besides local actions, attention is also drawn to their influence in the central nervous system (CNS) networks governing energy expenditure.
Collapse
Affiliation(s)
- María Del Carmen García
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Patricia Pazos
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Luis Lima
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| |
Collapse
|
16
|
Bohlen J, McLaughlin SL, Hazard‐Jenkins H, Infante AM, Montgomery C, Davis M, Pistilli EE. Dysregulation of metabolic-associated pathways in muscle of breast cancer patients: preclinical evaluation of interleukin-15 targeting fatigue. J Cachexia Sarcopenia Muscle 2018; 9:701-714. [PMID: 29582584 PMCID: PMC6104109 DOI: 10.1002/jcsm.12294] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/27/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Breast cancer patients report a perception of increased muscle fatigue, which can persist following surgery and standardized therapies. In a clinical experiment, we tested the hypothesis that pathways regulating skeletal muscle fatigue are down-regulated in skeletal muscle of breast cancer patients and that different muscle gene expression patterns exist between breast tumour subtypes. In a preclinical study, we tested the hypothesis that mammary tumour growth in mice induces skeletal muscle fatigue and that overexpression of the cytokine interleukin-15 (IL-15) can attenuate mammary tumour-induced muscle fatigue. METHODS Early stage non-metastatic female breast cancer patients (n = 14) and female non-cancer patients (n = 6) provided a muscle biopsy of the pectoralis major muscle during mastectomy, lumpectomy, or breast reconstruction surgeries. The breast cancer patients were diagnosed with either luminal (ER+ /PR+ , n = 6), triple positive (ER+ /PR+ /Her2/neu+ , n = 5), or triple negative (ER- /PR- /Her2/neu- , n = 3) breast tumours and were being treated with curative intent either with neoadjuvant chemotherapy followed by surgery or surgery followed by standard post-operative therapy. Biopsies were used for RNA-sequencing to compare the skeletal muscle gene expression patterns between breast cancer patients and non-cancer patients. The C57BL/6 mouse syngeneic mammary tumour cell line, E0771, was used to induce mammary tumours in immunocompetent mice, and isometric muscle contractile properties and fatigue properties were analysed following 4 weeks of tumour growth. RESULTS RNA-sequencing and subsequent bioinformatics analyses revealed a dysregulation of canonical pathways involved in oxidative phosphorylation, mitochondrial dysfunction, peroxisome proliferator-activated receptor signalling and activation, and IL-15 signalling and production. In a preclinical mouse model of breast cancer, the rate of muscle fatigue was greater in mice exposed to mammary tumour growth for 4 weeks, and this greater muscle fatigue was attenuated in transgenic mice that overexpressed the cytokine IL-15. CONCLUSIONS Our data identify novel genes and pathways dysregulated in the muscles of breast cancer patients with early stage non-metastatic disease, with particularly aberrant expression among genes that would predispose these patients to greater muscle fatigue. Furthermore, we demonstrate that IL-15 overexpression can attenuate muscle fatigue associated with mammary tumour growth in a preclinical mouse model of breast cancer. Therefore, we propose that skeletal muscle fatigue is an inherent consequence of breast tumour growth, and this greater fatigue can be targeted therapeutically.
Collapse
Affiliation(s)
- Joseph Bohlen
- Division of Exercise Physiology, Department of Human PerformanceWest Virginia University School of MedicineMorgantownWV26506USA
| | - Sarah L. McLaughlin
- Cancer InstituteWest Virginia University School of MedicineMorgantownWV26506USA
| | - Hannah Hazard‐Jenkins
- Department of SurgeryWest Virginia University School of MedicineMorgantownWV26506USA
| | | | - Cortney Montgomery
- Cancer InstituteWest Virginia University School of MedicineMorgantownWV26506USA
| | - Mary Davis
- Department of Physiology and PharmacologyWest Virginia University School of MedicineMorgantownWV26506USA
| | - Emidio E. Pistilli
- Division of Exercise Physiology, Department of Human PerformanceWest Virginia University School of MedicineMorgantownWV26506USA
- Cancer InstituteWest Virginia University School of MedicineMorgantownWV26506USA
- Department of Microbiology, Immunology and Cell BiologyWest Virginia University School of MedicineMorgantownWV26506USA
- West Virginia Clinical and Translational Sciences InstituteWest Virginia University School of MedicineMorgantownWV26506USA
| |
Collapse
|
17
|
Akieda-Asai S, Ida T, Miyazato M, Kangawa K, Date Y. Interleukin-15 derived from Guanylin-GC-C-expressing macrophages inhibits fatty acid synthase in adipocytes. Peptides 2018; 99:14-19. [PMID: 29097254 DOI: 10.1016/j.peptides.2017.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/13/2023]
Abstract
Recently we found that guanylin (Gn) and its receptor, guanylyl cyclase C (GC-C), are uniquely expressed in the mesenteric macrophages of some diet-resistant rats and that double-transgenic (dTg) rats overexpressing Gn and GC-C in macrophages demonstrate reduced fatty acid synthase and fat accumulation in fat tissue even when fed a high-fat diet (HFD). Lipid accumulation and fatty acid synthase mRNA levels in cocultured dTg rat adipocytes and macrophages were reduced compared with those in adipocytes cultured with WT rat macrophages. Here, we investigated whether Interleukin-15 (IL-15) derived from Gn-GC-C-expressing macrophages regulates lipid accumulation in adipocytes. IL-15 inhibited fatty acid synthase and lipid accumulation via STAT5 in cultured adipocytes. IL-15 mRNA and protein levels in the mesenteric fat of HFD-fed dTg rats were significantly higher than those of HFD-fed WT rats. Phosphorylated STAT5 levels in the mesenteric fat of HFD-fed dTg rats were increased compared with those of HFD-fed WT rats. In addition, the mRNA level of fatty acid synthase in the mesenteric fat was lower in HFD-fed dTg rats than in HFD-fed WT rats. These results support the hypothesis that IL-15 secreted from Gn-GC-C-expressing macrophages contributes to the inhibition of fatty acid synthase and lipid accumulation in adipocytes, leading to obesity resistance.
Collapse
Affiliation(s)
- Sayaka Akieda-Asai
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Takanori Ida
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | - Yukari Date
- Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan.
| |
Collapse
|
18
|
Duan Y, Li F, Wang W, Guo Q, Wen C, Li Y, Yin Y. Interleukin-15 in obesity and metabolic dysfunction: current understanding and future perspectives. Obes Rev 2017; 18:1147-1158. [PMID: 28752527 DOI: 10.1111/obr.12567] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/16/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022]
Abstract
Obesity rises rapidly and is a major health concern for modern people. Importantly, it is a major risk factor in the development of numerous chronic diseases such as type 2 diabetes mellitus (T2DM). Recently, interleukin (IL)-15 has attracted considerable attention as a potential regulator for the prevention and/or treatment of obesity and T2DM. The beneficial effects include increased loss of fat mass and body weight, improved lipid and glucose metabolism, reduced white adipose tissue inflammation, enhanced mitochondrial function, alterations in the composition of muscle fibres and gut bacterial and attenuated endoplasmic reticulum stress. Although these beneficial effects are somewhat controversial, IL-15, exogenously delivered or endogenously produced, may be a promising target in the prevention and treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Y Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - F Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, China.,Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, China
| | - W Wang
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, China
| | - Q Guo
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - C Wen
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, China
| | - Y Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Y Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, China.,Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, China
| |
Collapse
|
19
|
Nguyen L, Bohlen J, Stricker J, Chahal I, Zhang H, Pistilli EE. Hippocampus-specific deficiency of IL-15Rα contributes to greater anxiety-like behaviors in mice. Metab Brain Dis 2017; 32:297-302. [PMID: 27837366 DOI: 10.1007/s11011-016-9930-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023]
Abstract
A hippocampus-specific IL15RαKO mouse (hipIl15ra fl/fl /Cre+) was generated to test the hypothesis that the targeted deletion of interleukin-15 receptor alpha (IL-15Rα) in the hippocampus contributes to altered behavior, including greater levels of anxiety and ambulatory activity. Using Cre-loxP, exons 2 and 3 of the IL-15Rα gene were excised within the hippocampus, while normal expression was maintained within the rest of the brain. In the open field test (OFT), hipIl15ra fl/fl /Cre+ spent a greater amount of time in the periphery and less time in the central portions of the chamber, and there was also a noticeable trend for decreased rearing activity; these behaviors are consistent with greater levels of anxiety-like behavior in these mice. However, there were no differences in the overall locomotor counts in the OFT when comparing hipIl15ra fl/fl /Cre+ mice to their littermate controls. These data implicate IL-15-related signaling within the hippocampus has a role in anxiety-like behavior.
Collapse
Affiliation(s)
- Linda Nguyen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Joseph Bohlen
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Janelle Stricker
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Ikttesh Chahal
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Hanting Zhang
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Emidio E Pistilli
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.
- West Virginia Clinical and Translational Sciences Institute, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- Division of Exercise Physiology, Department of Human Performance and Applied Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, 26506-9227, USA.
| |
Collapse
|
20
|
Boa BCS, Yudkin JS, van Hinsbergh VWM, Bouskela E, Eringa EC. Exercise effects on perivascular adipose tissue: endocrine and paracrine determinants of vascular function. Br J Pharmacol 2017; 174:3466-3481. [PMID: 28147449 DOI: 10.1111/bph.13732] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
Obesity is a global epidemic, accompanied by increased risk of type 2 diabetes and cardiovascular disease. Adipose tissue hypertrophy is associated with adipose tissue inflammation, which alters the secretion of adipose tissue-derived bioactive products, known as adipokines. Adipokines determine vessel wall properties such as smooth muscle tone and vessel wall inflammation. Exercise is a mainstay of prevention of chronic, non-communicable diseases, type 2 diabetes and cardiovascular disease in particular. Aside from reducing adipose tissue mass, exercise has been shown to reduce inflammatory activity in this tissue. Mechanistically, contracting muscles release bioactive molecules known as myokines, which alter the metabolic phenotype of adipose tissue. In adipose tissue, myokines induce browning, enhance fatty acid oxidation and improve insulin sensitivity. In the past years, the perivascular adipose tissue (PVAT) which surrounds the vasculature, has been shown to control vascular tone and inflammation through local release of adipokines. In obesity, an increase in mass and inflammation of PVAT culminate in dysregulation of adipokine secretion, which contributes to vascular dysfunction. This review describes our current understanding of the mechanisms by which active muscles interact with adipose tissue and improve vascular function. Aside from the exercise-dependent regulation of canonical adipose tissue function, we will focus on the interactions between skeletal muscle and PVAT and the role of novel myokines, such as IL-15, FGF21 and irisin, in these interactions. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- B C S Boa
- Department of Physiology, VU University Medical Centre, Amsterdam, The Netherlands.,Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J S Yudkin
- Department of Medicine, University College London, London, UK
| | - V W M van Hinsbergh
- Department of Physiology, VU University Medical Centre, Amsterdam, The Netherlands
| | - E Bouskela
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - E C Eringa
- Department of Physiology, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Krolopp JE, Thornton SM, Abbott MJ. IL-15 Activates the Jak3/STAT3 Signaling Pathway to Mediate Glucose Uptake in Skeletal Muscle Cells. Front Physiol 2016; 7:626. [PMID: 28066259 PMCID: PMC5167732 DOI: 10.3389/fphys.2016.00626] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022] Open
Abstract
Myokines are specialized cytokines that are secreted from skeletal muscle (SKM) in response to metabolic stimuli, such as exercise. Interleukin-15 (IL-15) is a myokine with potential to reduce obesity and increase lean mass through induction of metabolic processes. It has been previously shown that IL-15 acts to increase glucose uptake in SKM cells. However, the downstream signals orchestrating the link between IL-15 signaling and glucose uptake have not been fully explored. Here we employed the mouse SKM C2C12 cell line to examine potential downstream targets of IL-15-induced alterations in glucose uptake. Following differentiation, C2C12 cells were treated overnight with 100 ng/ml of IL-15. Activation of factors associated with glucose metabolism (Akt and AMPK) and known downstream targets of IL-15 (Jak1, Jak3, STAT3, and STAT5) were assessed with IL-15 stimulation. IL-15 stimulated glucose uptake and GLUT4 translocation to the plasma membrane. IL-15 treatment had no effect on phospho-Akt, phospho-Akt substrates, phospho-AMPK, phospho-Jak1, or phospho-STAT5. However, with IL-15, phospho-Jak3 and phospho-STAT3 levels were increased along with increased interaction of Jak3 and STAT3. Additionally, IL-15 induced a translocation of phospho-STAT3 from the cytoplasm to the nucleus. We have evidence that a mediator of glucose uptake, HIF1α, expression was dependent on IL-15 induced STAT3 activation. Finally, upon inhibition of STAT3 the positive effects of IL-15 on glucose uptake and GLUT4 translocation were abolished. Taken together, we provide evidence for a novel signaling pathway for IL-15 acting through Jak3/STAT3 to regulate glucose metabolism.
Collapse
Affiliation(s)
- James E Krolopp
- Department of Health Sciences and Kinesiology, Crean College of Health and Behavioral Sciences, Chapman University Orange, CA, USA
| | - Shantaé M Thornton
- Department of Health Sciences and Kinesiology, Crean College of Health and Behavioral Sciences, Chapman University Orange, CA, USA
| | - Marcia J Abbott
- Department of Health Sciences and Kinesiology, Crean College of Health and Behavioral Sciences, Chapman UniversityOrange, CA, USA; Department of Biological Sciences, Human and Evolutionary Biology Section, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
22
|
IL-15 Mediates Mitochondrial Activity through a PPAR δ-Dependent-PPAR α-Independent Mechanism in Skeletal Muscle Cells. PPAR Res 2016; 2016:5465804. [PMID: 27738421 PMCID: PMC5050360 DOI: 10.1155/2016/5465804] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/01/2016] [Accepted: 08/21/2016] [Indexed: 11/17/2022] Open
Abstract
Molecular mediators of metabolic processes, to increase energy expenditure, have become a focus for therapies of obesity. The discovery of cytokines secreted from the skeletal muscle (SKM), termed "myokines," has garnered attention due to their positive effects on metabolic processes. Interleukin-15 (IL-15) is a myokine that has numerous positive metabolic effects and is linked to the PPAR family of mitochondrial regulators. Here, we aimed to determine the importance of PPARα and/or PPARδ as targets of IL-15 signaling. C2C12 SKM cells were differentiated for 6 days and treated every other day with IL-15 (100 ng/mL), a PPARα inhibitor (GW-6471), a PPARδ inhibitor (GSK-3787), or both IL-15 and the inhibitors. IL-15 increased mitochondrial activity and induced PPARα, PPARδ, PGC1α, PGC1β, UCP2, and Nrf1 expression. There was no effect of inhibiting PPARα, in combination with IL-15, on the aforementioned mRNA levels except for PGC1β and Nrf1. However, with PPARδ inhibition, IL-15 failed to induce the expression levels of PGC1α, PGC1β, UCP2, and Nrf1. Further, inhibition of PPARδ abolished IL-15 induced increases in citrate synthase activity, ATP production, and overall mitochondrial activity. IL-15 had no effects on mitochondrial biogenesis. Our data indicates that PPARδ activity is required for the beneficial metabolic effects of IL-15 signaling in SKM.
Collapse
|
23
|
Ost M, Coleman V, Kasch J, Klaus S. Regulation of myokine expression: Role of exercise and cellular stress. Free Radic Biol Med 2016; 98:78-89. [PMID: 26898145 DOI: 10.1016/j.freeradbiomed.2016.02.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/26/2022]
Abstract
Exercise training is well known to improve physical fitness and to combat chronic diseases and aging related disorders. Part of this is thought to be mediated by myokines, muscle derived secretory proteins (mainly cytokines) that elicit auto/paracrine but also endocrine effects on organs such as liver, adipose tissue, and bone. Today, several hundred potential myokines have been identified most of them not exclusive to muscle cells. Strenuous exercise is associated with increased production of free radicals and reactive oxidant species (ROS) as well as endoplasmic reticulum (ER)-stress which at an excessive level can lead to muscle damage and cell death. On the other hand, transient elevations in oxidative and ER-stress are thought to be necessary for adaptive improvements by regular exercise through a hormesis action termed mitohormesis since mitochondria are essential for the generation of energy and tightly connected to ER- and oxidative stress. Exercise induced myokines have been identified by various in vivo and in vitro approaches and accumulating evidence suggests that ROS and ER-stress linked pathways are involved in myokine induction. For example, interleukin (IL)-6, the prototypic exercise myokine is also induced by oxidative and ER-stress. Exercise induced expression of some myokines such as irisin and meteorin-like is linked to the transcription factor PGC-1α and apparently not related to ER-stress whereas typical ER-stress induced cytokines such as FGF-21 and GDF-15 are not exercise myokines under normal physiological conditions. Recent technological advances have led to the identification of numerous potential new myokines but for most of them regulation by oxidative and ER-stress still needs to be unraveled.
Collapse
Affiliation(s)
- Mario Ost
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Verena Coleman
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Juliane Kasch
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Susanne Klaus
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
24
|
Anderson BG, Quinn LS. Free IL-15 Is More Abundant Than IL-15 Complexed With Soluble IL-15 Receptor-α in Murine Serum: Implications for the Mechanism of IL-15 Secretion. Endocrinology 2016; 157:1315-20. [PMID: 26812159 DOI: 10.1210/en.2015-1746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-15 is a cytokine that is part of the innate immune system, as well as a proposed myokine released from skeletal muscle during physical exercise that mediates many of the positive physiological effects of exercise. Many of the immune functions of IL-15 are mediated by juxtacrine signaling via externalized IL-15 bound to membrane-associated IL-15 receptor-α (IL-15Rα). Serum and plasma samples also contain measurable concentrations of IL-15, believed to arise from proteolytic cleavage of membrane-associated IL-15/IL-15Rα complexes to generate soluble IL-15/IL-15Rα species. Here, we validate commercial assays that can distinguish the free form of IL-15 and IL-15/IL-15Rα complexes. These assays showed that most (86%) IL-15 in mouse serum resides in the free state, with a minor proportion (14%) residing in complex with IL-15Rα. Given the much shorter half-life of free IL-15 compared with IL-15/IL-15Rα complexes, these findings cast doubt on the currently accepted model for IL-15 secretion from cleavage of membrane-bound IL-15/IL-15Rα and suggest that IL-15 is released as a free molecule by an unknown mechanism.
Collapse
Affiliation(s)
- Barbara G Anderson
- Geriatric Research, Education, and Clinical Center (B.G.A., L.S.Q.), and Research Service (L.S.Q.), Veteran's Administration Puget Sound Health Care System, Seattle, Washington 98108; and Division of Gerontology and Geriatric Medicine (B.G.A., L.S.Q.), Department of Medicine, University of Washington, Seattle, Washington 98195
| | - LeBris S Quinn
- Geriatric Research, Education, and Clinical Center (B.G.A., L.S.Q.), and Research Service (L.S.Q.), Veteran's Administration Puget Sound Health Care System, Seattle, Washington 98108; and Division of Gerontology and Geriatric Medicine (B.G.A., L.S.Q.), Department of Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
25
|
Kapilevich LV, Kironenko TA, Zaharova AN, Kotelevtsev YV, Dulin NO, Orlov SN. Skeletal muscle as an endocrine organ: Role of [Na +] i/[K +] i-mediated excitation-transcription coupling. Genes Dis 2015; 2:328-336. [PMID: 27610402 PMCID: PMC5012537 DOI: 10.1016/j.gendis.2015.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/21/2015] [Indexed: 01/20/2023] Open
Abstract
During the last two decades numerous research teams demonstrated that skeletal muscles function as an exercise-dependent endocrine organ secreting dozens of myokines. Variety of physiological and pathophysiological implications of skeletal muscle myokines secretion has been described; however, upstream signals and sensing mechanisms underlying this phenomenon remain poorly understood. It is well documented that in skeletal muscles intensive exercise triggers dissipation of transmembrane gradient of monovalent cations caused by permanent activation of voltage-gated Na+ and K+ channels. Recently, we demonstrated that sustained elevation of the [Na+]i/[K+]i ratio triggers expression of dozens ubiquitous genes including several canonical myokines, such as interleukin 6 and cyclooxygenase 2, in the presence of intra- and extracellular Ca2+ chelators. These data allowed us to suggest a novel [Na+]i/[K+]i-sensitive, Ca2+i-independent mechanism of excitation-transcription coupling which triggers myokine production. This pathway exists in parallel with canonical signaling mediated by Ca2+i, AMP-activated protein kinase and hypoxia-inducible factor 1α (HIF-1α). In our mini-review we briefly summarize data supporting this hypothesis as well as unresolved issues aiming to forthcoming studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergei N. Orlov
- National Research Tomsk State University, Tomsk, Russia
- Siberian Medical University, Tomsk, Russia
- M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
26
|
Quinn LS, Anderson BG, Conner JD, Wolden-Hanson T. Circulating irisin levels and muscle FNDC5 mRNA expression are independent of IL-15 levels in mice. Endocrine 2015; 50:368-77. [PMID: 25920499 DOI: 10.1007/s12020-015-0607-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022]
Abstract
Interleukin-15 (IL-15) and irisin are exercise-induced myokines that exert favorable effects on energy expenditure and metabolism. IL-15 can induce PGC-1α expression, which in turn induces expression of irisin and its precursor, FNDC5. Therefore, the present study tested the hypothesis that increases in circulating irisin levels and muscle FNDC5 mRNA expression are dependent on IL-15. Circulating irisin levels and gastrocnemius muscle FNDC5 mRNA expression were examined following acute exercise in control and IL-15-deleted (IL-15 KO) mice, following injection of IL-15 into IL-15 KO mice, and in transgenic mice with elevated circulating IL-15 levels (IL-15 Tg mice). Circulating IL-15 levels and muscle PGC-1α and PPARδ mRNA expressions were determined as positive controls. No effect of IL-15 deletion on post-exercise serum irisin levels or muscle FNDC5 mRNA expression was detected. While serum IL-15 levels and muscle PGC-1α expression were elevated post-exercise in control mice, both serum irisin levels and muscle FNDC5 expression decreased shortly after exercise in both control and IL-15 KO mice. A single injection of recombinant IL-15 into IL-15 KO mice that significantly increased muscle PPARδ and PGC-1α mRNA expressions had no effect on circulating irisin release, but modestly induced muscle FNDC5 expression. Additionally, serum irisin and gastrocnemius muscle FNDC5 expression in IL-15 Tg mice were similar to those of control mice. Muscle FNDC5 mRNA expression and irisin release are not IL-15-dependent in mice.
Collapse
Affiliation(s)
- LeBris S Quinn
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, S-182 GRECC, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
- Research Service, VA Puget Sound Health Care System, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98195, USA.
- Seattle Institute for Biomedical and Clinical Research, Seattle, WA, 98108, USA.
| | - Barbara G Anderson
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, S-182 GRECC, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jennifer D Conner
- Seattle Institute for Biomedical and Clinical Research, Seattle, WA, 98108, USA
| | - Tami Wolden-Hanson
- Research Service, VA Puget Sound Health Care System, Seattle, WA, 98108, USA
| |
Collapse
|
27
|
O'Connell GC, Nichols C, Guo G, Croston TL, Thapa D, Hollander JM, Pistilli EE. IL-15Rα deficiency in skeletal muscle alters respiratory function and the proteome of mitochondrial subpopulations independent of changes to the mitochondrial genome. Mitochondrion 2015; 25:87-97. [PMID: 26458787 DOI: 10.1016/j.mito.2015.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Interleukin-15 receptor alpha knockout (IL15RαKO) mice exhibit a greater skeletal muscle mitochondrial density with an altered mitochondrial morphology. However, the mechanism and functional impact of these changes have not been determined. In this study, we characterized the functional, proteomic, and genomic alterations in mitochondrial subpopulations isolated from the skeletal muscles of IL15RαKO mice and B6129 background control mice. State 3 respiration was greater in interfibrillar mitochondria and whole muscle ATP levels were greater in IL15RαKO mice supporting the increases in respiration rate. However, the state 3/state 4 ratio was lower, suggesting some degree of respiratory uncoupling. Proteomic analyses identified several markers independently in mitochondrial subpopulations that are associated with these functional alterations. Next Generation Sequencing of mtDNA revealed a high degree of similarity between the mitochondrial genomes of IL15RαKO mice and controls in terms of copy number, consensus coding and the presence of minor alleles, suggesting that the functional and proteomic alterations we observed occurred independent of alterations to the mitochondrial genome. These data provide additional evidence to implicate IL-15Rα as a regulator of skeletal muscle phenotypes through effects on the mitochondrion, and suggest these effects are driven by alterations to the mitochondrial proteome.
Collapse
Affiliation(s)
| | | | - Ge Guo
- Division of Exercise Physiology, United States
| | | | | | - John M Hollander
- Division of Exercise Physiology, United States; Center for Cardiovascular and Respiratory Sciences, United States
| | - Emidio E Pistilli
- Division of Exercise Physiology, United States; Center for Cardiovascular and Respiratory Sciences, United States; Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
28
|
Huang PL, Hou MS, Wang SW, Chang CL, Liou YH, Liao NS. Skeletal muscle interleukin 15 promotes CD8(+) T-cell function and autoimmune myositis. Skelet Muscle 2015; 5:33. [PMID: 26417430 PMCID: PMC4584479 DOI: 10.1186/s13395-015-0058-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/08/2015] [Indexed: 12/30/2022] Open
Abstract
Background Interleukin 15 (IL-15) is thought to be abundant in the skeletal muscle under steady state conditions based on RNA expression; however, the IL-15 RNA level may not reflect the protein level due to post-transcriptional regulation. Although exogenous protein treatment and overexpression studies indicated IL-15 functions in the skeletal muscle, how the skeletal muscle cell uses IL-15 remains unclear. In myositis patients, IL-15 protein is up-regulated in the skeletal muscle. Given the supporting role of IL-15 in CD8+ T-cell survival and activation and the pathogenic role of cytotoxic CD8+ T cells in polymyositis and inclusion-body myositis, we hypothesize that IL-15 produced by the inflamed skeletal muscle promotes myositis via CD8+ T cells. Methods Expression of IL-15 and IL-15 receptors at the protein level by skeletal muscle cells were examined under steady state and cytokine stimulation conditions. The functions of IL-15 in the skeletal muscle were investigated using Il15 knockout (Il15−/−) mice. The immune regulatory role of skeletal muscle IL-15 was determined by co-culturing cytokine-stimulated muscle cells and memory-like CD8+ T cells in vitro and by inducing autoimmune myositis in skeletal-muscle-specific Il15−/− mice. Results We found that the IL-15 protein was not expressed by skeletal muscle cells under steady state condition but induced by tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) stimulation and expressed as IL-15/IL-15 receptor alpha (IL-15Rα) complex. Skeletal muscle cells expressed a scanty amount of IL-15 receptor beta (IL-15Rβ) under either conditions and only responded to a high concentration of IL-15 hyperagonist, but not IL-15. Consistently, deficiency of endogenous IL-15 affected neither skeletal muscle growth nor its responses to TNF-α and IFN-γ. On the other hand, the cytokine-stimulated skeletal muscle cells presented antigen and provided IL-15 to promote the effector function of memory-like CD8+ T cells. Genetic ablation of Il15 in skeletal muscle cells greatly ameliorated autoimmune myositis in mice. Conclusions These findings together indicate that skeletal muscle IL-15 directly regulates immune effector cells but not muscle cells and thus presents a potential therapeutic target for myositis. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0058-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Po-Lin Huang
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan ; Institute of Molecular Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Mau-Sheng Hou
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Szu-Wen Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Chin-Ling Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Yae-Huei Liou
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Nan-Shih Liao
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan ; Institute of Molecular Biology, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
29
|
Molanouri Shamsi M, Hassan ZM, Quinn LS, Gharakhanlou R, Baghersad L, Mahdavi M. Time course of IL-15 expression after acute resistance exercise in trained rats: effect of diabetes and skeletal muscle phenotype. Endocrine 2015; 49:396-403. [PMID: 25522723 DOI: 10.1007/s12020-014-0501-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes is associated with skeletal muscle atrophy. Skeletal muscle is an endocrine organ producing myokines such as interleukin-15 (IL-15) and interleukin-6 (IL-6) in response to contraction. These factors may mediate the effects of exercise on skeletal muscle metabolism and anabolic pathways. Lack of correlation between muscle IL-15 mRNA and protein levels after exercise training has been observed, while regulatory effects of IL-6 on IL-15 expression have also been suggested. This study determined post-exercise changes in muscle IL-15 and IL-6 mRNA expression and IL-15 protein levels in healthy and streptozotocin-induced diabetic rats in both the fast flexor hallucis longus (FHL) and slow soleus muscles. Resistance training preserved FHL muscle weight in diabetic rats and increased IL-15 protein levels in both the soleus and FHL muscles. However, the temporal pattern of this response was distinct in normal and diabetic rats. Moreover, discordance between post-exercise muscle IL-15 mRNA and protein expression was observed in our study, and diabetes suppressed post-exercise increases in FHL muscle IL-6 mRNA expression. Our study indicates that training, skeletal muscle phenotype, and metabolic status all influence the temporal pattern of post-exercise changes in IL-15 expression. Muscle IL-15 protein levels increase following training, suggesting this may be an adaptation contributing to increased capacity for secretion of this myokine that is not depressed by the diabetic state.
Collapse
Affiliation(s)
- Mahdieh Molanouri Shamsi
- Physical Education & Sport Sciences Department, Faculty of Humanities, Tarbiat Modares University, Tehran, Islamic Republic of Iran,
| | | | | | | | | | | |
Collapse
|
30
|
Interleukin-15 directly stimulates pro-oxidative gene expression in skeletal muscle in-vitro via a mechanism that requires interleukin-15 receptor alpha. Biochem Biophys Res Commun 2015; 458:614-619. [DOI: 10.1016/j.bbrc.2015.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/04/2015] [Indexed: 01/10/2023]
|
31
|
Yang HT, Luo LJ, Chen WJ, Zhao L, Tang CS, Qi YF, Zhang J. IL-15 expression increased in response to treadmill running and inhibited endoplasmic reticulum stress in skeletal muscle in rats. Endocrine 2015; 48:152-63. [PMID: 24647688 DOI: 10.1007/s12020-014-0233-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 02/28/2014] [Indexed: 12/12/2022]
Abstract
Interleukin 15 (IL-15) has recently been proposed as a circulating myokine involved in glucose uptake and utilization in skeletal muscle. However, the role and mechanism of IL-15 in exercise improving insulin resistance (IR) is unclear. Here, we investigated the alteration in expression of IL-15 and IL-15 receptor α (IL-15Rα) in skeletal muscle during treadmill running in rats with IR induced by a high-fat diet (HFD) and elucidated the mechanism of the anti-IR effects of IL-15. At 20 weeks of HFD, rats showed severe IR, with increased levels of fasting blood sugar and plasma insulin, impaired glucose tolerance, and reduced glucose transport activity. IL-15 immunoreactivity and mRNA level in gastrocnemius muscle were decreased markedly as compared with controls. IL-15Rα protein and mRNA levels in both soleus and gastrocnemius muscle were significantly decreased, which might attenuate the signaling or secretion of IL-15 in muscle. Eight-week treadmill running completely ameliorated HFD-induced IR and reversed the downregulated level of IL-15 and IL-15Rα in skeletal muscle of HFD-fed rats. To investigate whether IL-15 exerts its anti-IR effects directly in muscle, we pre-incubated muscle strips with the endoplasmic reticulum stress (ERS) inducer dithiothreitol (DTT) or tunicamycin (Tm); IL-15 treatment markedly decreased the protein expression of the ERS markers 78-kDa glucose-regulated protein, 94-kDa glucose-regulated protein and C/EBP homologous protein and inhibited ERS induced by DTT or Tm. Therefore, treadmill running promoted skeletal IL-15 and IL-15Rα expression in HFD-induced IR in rats. The inhibitory effect of IL-15 on ERS may be involved in improved insulin sensitivity with exercise training.
Collapse
Affiliation(s)
- Hong-Tao Yang
- School of P.E. and Sports Science, Beijing Normal University, Beijing, 100875, China
| | | | | | | | | | | | | |
Collapse
|
32
|
O'Connell G, Guo G, Stricker J, Quinn LS, Ma A, Pistilli EE. Muscle-specific deletion of exons 2 and 3 of the IL15RA gene in mice: effects on contractile properties of fast and slow muscles. J Appl Physiol (1985) 2014; 118:437-48. [PMID: 25505029 DOI: 10.1152/japplphysiol.00704.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interleukin-15 (IL-15) is a putative myokine hypothesized to induce an oxidative skeletal muscle phenotype. The specific IL-15 receptor alpha subunit (IL-15Rα) has also been implicated in specifying this contractile phenotype. The purposes of this study were to determine the muscle-specific effects of IL-15Rα functional deficiency on skeletal muscle isometric contractile properties, fatigue characteristics, spontaneous cage activity, and circulating IL-15 levels in male and female mice. Muscle creatine kinase (MCK)-driven IL-15Rα knockout mice (mIl15ra(fl/fl)/Cre(+)) were generated using the Cre-loxP system. We tested the hypothesis that IL-15Rα functional deficiency in skeletal muscle would increase resistance to contraction-induced fatigue, cage activity, and circulating IL-15 levels. There was a significant effect of genotype on the fatigue curves obtained in extensor digitorum longus (EDL) muscles from female mIl15ra(fl/fl)/Cre(+) mice, such that force output was greater during the repeated contraction protocol compared with mIl15ra(fl/fl)/Cre(-) control mice. Muscles from female mIl15ra(fl/fl)/Cre(+) mice also had a twofold greater amount of the mitochondrial genome-specific COXII gene compared with muscles from mIl15ra(fl/fl)/Cre(-) control mice, indicating a greater mitochondrial density in these skeletal muscles. There was a significant effect of genotype on the twitch:tetanus ratio in EDL and soleus muscles from mIl15ra(fl/fl)/Cre(+) mice, such that the ratio was lower in these muscles compared with mIl15ra(fl/fl)/Cre(-) control mice, indicating a pro-oxidative shift in muscle phenotype. However, spontaneous cage activity was not different and IL-15 protein levels were lower in male and female mIl15ra(fl/fl)/Cre(+) mice compared with control. Collectively, these data support a direct effect of muscle IL-15Rα deficiency in altering contractile properties and fatigue characteristics in skeletal muscles.
Collapse
Affiliation(s)
- Grant O'Connell
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - Ge Guo
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
| | - Janelle Stricker
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia; Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - LeBris S Quinn
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington; and
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Emidio E Pistilli
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, West Virginia; West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, West Virginia;
| |
Collapse
|
33
|
Conner JD, Wolden-Hanson T, Quinn LS. Assessment of murine exercise endurance without the use of a shock grid: an alternative to forced exercise. J Vis Exp 2014:e51846. [PMID: 25145813 DOI: 10.3791/51846] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Using laboratory mouse models, the molecular pathways responsible for the metabolic benefits of endurance exercise are beginning to be defined. The most common method for assessing exercise endurance in mice utilizes forced running on a motorized treadmill equipped with a shock grid. Animals who quit running are pushed by the moving treadmill belt onto a grid that delivers an electric foot shock; to escape the negative stimulus, the mice return to running on the belt. However, avoidance behavior and psychological stress due to use of a shock apparatus can interfere with quantitation of running endurance, as well as confound measurements of postexercise serum hormone and cytokine levels. Here, we demonstrate and validate a refined method to measure running endurance in naïve C57BL/6 laboratory mice on a motorized treadmill without utilizing a shock grid. When mice are preacclimated to the treadmill, they run voluntarily with gait speeds specific to each mouse. Use of the shock grid is replaced by gentle encouragement by a human operator using a tongue depressor, coupled with sensitivity to the voluntary willingness to run on the part of the mouse. Clear endpoints for quantifying running time-to-exhaustion for each mouse are defined and reflected in behavioral signs of exhaustion such as splayed posture and labored breathing. This method is a humane refinement which also decreases the confounding effects of stress on experimental parameters.
Collapse
Affiliation(s)
- Jennifer D Conner
- Research Service, VA Puget Sound Health Care System; Seattle Institute for Biomedical and Clinical Research
| | | | - LeBris S Quinn
- Research Service, VA Puget Sound Health Care System; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington; Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System;
| |
Collapse
|