1
|
Payant MA, Shankhatheertha A, Chee MJ. Melanin-concentrating hormone promotes feeding through the lateral septum. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111163. [PMID: 39389251 DOI: 10.1016/j.pnpbp.2024.111163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Feeding is necessary for survival but can be hindered by anxiety or fear, thus neural systems that can regulate anxiety states are key to elucidating the expression of food-related behaviors. Melanin-concentrating hormone (MCH) is a neuropeptide produced in the lateral hypothalamus and zona incerta that promotes feeding and anxiogenesis. The orexigenic actions of MCH that prolong ongoing homeostatic or hedonic feeding are context-dependent and more prominent in male than female rodents, but it is not clear where MCH acts to initiate feeding. The lateral septum (LS) promotes feeding and suppresses anxiogenesis when inhibited, and it comprises the densest projections from MCH neurons. However, it is not known whether the LS is a major contributor to MCH-mediated feeding. As MCH inhibits LS cells by MCH receptor (MCHR1) activation, MCH may promote feeding via the LS. We bilaterally infused MCH into the LS and found that MCH elicited a rapid and long-lasting increase in the consumption of standard chow and a palatable, high sugar diet in male and female mice; these MCH effects were blocked by the co-administration of a MCHR1 antagonist TC- MCH 7c. Interestingly, the orexigenic effect of MCH was abolished in a novel, anxiogenic environment even when presented with a food reward, but MCH did not induce anxiety-like behaviors. These findings indicated the LS as a novel region underlying orexigenic MCH actions, which stimulated and enhanced feeding in both sexes in a context -dependent manner that was most prominent in the homecage.
Collapse
Affiliation(s)
- Mikayla A Payant
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
2
|
Concetti C, Peleg-Raibstein D, Burdakov D. Hypothalamic MCH Neurons: From Feeding to Cognitive Control. FUNCTION 2023; 5:zqad059. [PMID: 38020069 PMCID: PMC10667013 DOI: 10.1093/function/zqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Modern neuroscience is progressively elucidating that the classic view positing distinct brain regions responsible for survival, emotion, and cognitive functions is outdated. The hypothalamus demonstrates the interdependence of these roles, as it is traditionally known for fundamental survival functions like energy and electrolyte balance, but is now recognized to also play a crucial role in emotional and cognitive processes. This review focuses on lateral hypothalamic melanin-concentrating hormone (MCH) neurons, producing the neuropeptide MCH-a relatively understudied neuronal population with integrative functions related to homeostatic regulation and motivated behaviors, with widespread inputs and outputs throughout the entire central nervous system. Here, we review early findings and recent literature outlining their role in the regulation of energy balance, sleep, learning, and memory processes.
Collapse
Affiliation(s)
- Cristina Concetti
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Daria Peleg-Raibstein
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| |
Collapse
|
3
|
Bell SM, Evans JM, Evans KM, Tsai KL, Noorai RE, Famula TR, Holle DM, Clark LA. Congenital idiopathic megaesophagus in the German shepherd dog is a sex-differentiated trait and is associated with an intronic variable number tandem repeat in Melanin-Concentrating Hormone Receptor 2. PLoS Genet 2022; 18:e1010044. [PMID: 35271580 PMCID: PMC8912139 DOI: 10.1371/journal.pgen.1010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
Congenital idiopathic megaesophagus (CIM) is a gastrointestinal (GI) motility disorder of dogs in which reduced peristaltic activity and dilation of the esophagus prevent the normal transport of food into the stomach. Affected puppies regurgitate meals and water, fail to thrive, and experience complications such as aspiration pneumonia that may necessitate euthanasia. The German shepherd dog (GSD) has the highest disease incidence, indicative of a genetic predisposition. Here, we discover that male GSDs are twice as likely to be affected as females and show that the sex bias is independent of body size. We propose that female endogenous factors (e.g., estrogen) are protective via their role in promoting relaxation of the sphincter between the esophagus and stomach, facilitating food passage. A genome-wide association study for CIM revealed an association on canine chromosome 12 (P-val = 3.12x10-13), with the lead SNPs located upstream or within Melanin-Concentrating Hormone Receptor 2 (MCHR2), a compelling positional candidate gene having a role in appetite, weight, and GI motility. Within the first intron of MCHR2, we identified a 33 bp variable number tandem repeat (VNTR) containing a consensus binding sequence for the T-box family of transcription factors. Across dogs and wolves, the major allele includes two copies of the repeat, whereas the predominant alleles in GSDs have one or three copies. The single-copy allele is strongly associated with CIM (P-val = 1.32x10-17), with homozygosity for this allele posing the most significant risk. Our findings suggest that the number of T-box protein binding motifs may correlate with MCHR2 expression and that an imbalance of melanin-concentrating hormone plays a role in CIM. We describe herein the first genetic factors identified in CIM: sex and a major locus on chromosome 12, which together predict disease state in the GSD with greater than 75% accuracy. German shepherd dogs (GSDs) are predisposed to an inherited motility disorder of the esophagus, termed congenital idiopathic megaesophagus (CIM), in which swallowing is ineffective and the esophagus is enlarged. Affected puppies are unable to properly pass food into their stomachs and consequently regurgitate their meals and show a failure to thrive, often leading to euthanasia. Here, we discovered that male GSDs are affected at a ratio of almost 2-to-1 over females, suggesting a protective biological advantage in females. In humans, estrogen is thought to play a role in the male predominance of esophageal disorders like reflux esophagitis and esophageal cancer. In a genome-wide scan, we identified an association with CIM on chromosome 12 and, within this region, a repetitive sequence in MCHR2. This gene encodes a receptor for melanin-concentrating hormone, a signaling molecule that is linked to appetite, weight, and gut motility. Together, sex and the MCHR2 repeat sequence accurately predict affection status in over 75% of dogs, and a genetic test is now available to facilitate breeding decisions aimed at reducing disease incidence.
Collapse
Affiliation(s)
- Sarah M. Bell
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Jacquelyn M. Evans
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katy M. Evans
- The Seeing Eye Inc., Morristown, New Jersey, United States of America
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Kate L. Tsai
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Rooksana E. Noorai
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, South Carolina, United States of America
| | - Thomas R. Famula
- Department of Animal Science, University of California, Davis, California, United States of America
| | - Dolores M. Holle
- The Seeing Eye Inc., Morristown, New Jersey, United States of America
| | - Leigh Anne Clark
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
4
|
Al-Massadi O, Dieguez C, Schneeberger M, López M, Schwaninger M, Prevot V, Nogueiras R. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat Rev Endocrinol 2021; 17:745-755. [PMID: 34608277 DOI: 10.1038/s41574-021-00559-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep-wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms. MCH mediates its functions through two receptors (MCHR1 and MCHR2), of which only MCHR1 is common to all mammals. Owing to the wide variety of MCH downstream signalling pathways, MCHR1 agonists and antagonists have great potential as tools for the directed management of energy balance disorders and associated metabolic complications, and translational strategies using these compounds hold promise for the development of novel treatments for obesity. This Review provides an overview of the numerous roles of MCH in energy and glucose homeostasis, as well as in regulation of the mesolimbic dopaminergic circuits that encode the hedonic component of food intake.
Collapse
Affiliation(s)
- Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
| | - Carlos Dieguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Miguel López
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S1172, EGID, Lille, France
| | - Ruben Nogueiras
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Lord MN, Subramanian K, Kanoski SE, Noble EE. Melanin-concentrating hormone and food intake control: Sites of action, peptide interactions, and appetition. Peptides 2021; 137:170476. [PMID: 33370567 PMCID: PMC8025943 DOI: 10.1016/j.peptides.2020.170476] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
Given the increased prevalence of obesity and its associated comorbidities, understanding the mechanisms through which the brain regulates energy balance is of critical importance. The neuropeptide melanin-concentrating hormone (MCH) is produced in the lateral hypothalamic area and the adjacent incerto-hypothalamic area and promotes both food intake and energy conservation, overall contributing to body weight gain. Decades of research into this system has provided insight into the neural pathways and mechanisms (behavioral and neurobiological) through which MCH stimulates food intake. Recent technological advancements that allow for selective manipulation of MCH neuron activity have elucidated novel mechanisms of action for the hyperphagic effects of MCH, implicating neural "volume" transmission in the cerebrospinal fluid and sex-specific effects of MCH on food intake control as understudied areas for future investigation. Highlighted here are historical and recent findings that illuminate the neurobiological mechanisms through which MCH promotes food intake, including the identification of various specific neural signaling pathways and interactions with other peptide systems. We conclude with a framework that the hyperphagic effects of MCH signaling are predominantly mediated through enhancement of an "appetition" process in which early postoral prandial signals promote further caloric consumption.
Collapse
Affiliation(s)
- Magen N Lord
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30606, USA
| | - Keshav Subramanian
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30606, USA.
| |
Collapse
|
6
|
The Important Role of Perituberal Tissue in Epileptic Patients with Tuberous Sclerosis Complex by the Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4980609. [PMID: 33123575 PMCID: PMC7585662 DOI: 10.1155/2020/4980609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022]
Abstract
Epilepsy is most common in patients with tuberous sclerosis complex (TSC). However, in addition to the challenging treatment, the pathogenesis of epilepsy is still controversial. To determine the transcriptome characteristics of perituberal tissue (PT) and clarify its role in the pathogenesis of epilepsy, GSE16969 was downloaded from the GEO database for further study by comprehensive bioinformatics analysis. Identification of differentially expressed genes (DEGs), functional enrichment analysis, construction of protein-protein interaction (PPI) network, and selection of Hub genes were performed using R language, Metascape, STRING, and Cytoscape, respectively. Comparing with cortical tuber (CT), 220 DEGs, including 95 upregulated and 125 downregulated genes, were identified in PT and mainly enriched in collagen-containing extracellular matrix and positive regulation of receptor-mediated endocytosis, as well as the pathways of ECM-receptor interaction and neuroactive ligand-receptor interaction. As for normal cortex (NC), 1549 DEGs, including 30 upregulated and 1519 downregulated genes, were identified and mainly enriched in presynapse, dendrite and axon, and also the pathways of dopaminergic synapse and oxytocin signaling pathway. In the PPI network, 4 hub modules were found between PT and CT, and top 5 hub modules were selected between PT and NC. C3, APLNR, ANXA2, CD44, CLU, CP, MCHR2, HTR1E, CTSG, APP, and GNG2 were identified as Hub genes, of which, C3, CD44, ANXA2, HTR1E, and APP were identified as Hub-BottleNeck genes. In conclusion, PT has the unique characteristics different from CT and NC in transcriptome and makes us further understand its importance in the TSC-associated epilepsy.
Collapse
|
7
|
Cirera S, Clop A, Jacobsen MJ, Guerin M, Lesnik P, Jørgensen CB, Fredholm M, Karlskov-Mortensen P. A targeted genotyping approach enhances identification of variants in taste receptor and appetite/reward genes of potential functional importance for obesity-related porcine traits. Anim Genet 2018; 49:110-118. [DOI: 10.1111/age.12641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2017] [Indexed: 12/12/2022]
Affiliation(s)
- S. Cirera
- Department of Veterinary and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| | - A. Clop
- CSIC-IRTA-UAB-UB; Campus UAB; Centre for Research in Agricultural Genomics (CRAG); 08193 Cerdanyola del Valles Catalonia Spain
| | - M. J. Jacobsen
- Department of Veterinary and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| | - M. Guerin
- INSERM; UMRS U1166; team 4 “Integrative Biology of Atherosclerosis”; Sorbonne Universités; UPMC Université Paris 6; Paris France
| | - P. Lesnik
- INSERM; UMRS U1166; team 4 “Integrative Biology of Atherosclerosis”; Sorbonne Universités; UPMC Université Paris 6; Paris France
| | - C. B. Jørgensen
- Department of Veterinary and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| | - M. Fredholm
- Department of Veterinary and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| | - P. Karlskov-Mortensen
- Department of Veterinary and Animal Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Frederiksberg Denmark
| |
Collapse
|
8
|
Gennemark P, Trägårdh M, Lindén D, Ploj K, Johansson A, Turnbull A, Carlsson B, Antonsson M. Translational Modeling to Guide Study Design and Dose Choice in Obesity Exemplified by AZD1979, a Melanin-concentrating Hormone Receptor 1 Antagonist. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:458-468. [PMID: 28556607 PMCID: PMC5529746 DOI: 10.1002/psp4.12199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
In this study, we present the translational modeling used in the discovery of AZD1979, a melanin‐concentrating hormone receptor 1 (MCHr1) antagonist aimed for treatment of obesity. The model quantitatively connects the relevant biomarkers and thereby closes the scaling path from rodent to man, as well as from dose to effect level. The complexity of individual modeling steps depends on the quality and quantity of data as well as the prior information; from semimechanistic body‐composition models to standard linear regression. Key predictions are obtained by standard forward simulation (e.g., predicting effect from exposure), as well as non‐parametric input estimation (e.g., predicting energy intake from longitudinal body‐weight data), across species. The work illustrates how modeling integrates data from several species, fills critical gaps between biomarkers, and supports experimental design and human dose‐prediction. We believe this approach can be of general interest for translation in the obesity field, and might inspire translational reasoning more broadly.
Collapse
Affiliation(s)
- P Gennemark
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - M Trägårdh
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden.,University of Warwick, School of Engineering, Coventry, UK
| | - D Lindén
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - K Ploj
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - A Johansson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - A Turnbull
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - B Carlsson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - M Antonsson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
9
|
Zheng M, Ren Y. The genetic basis of pigmentation in alopecia areata. Exp Dermatol 2017; 26:542-543. [PMID: 27673728 DOI: 10.1111/exd.13217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 12/12/2022]
Abstract
Alopecia areata (AA) is a common hair loss disorder characterized by discrete, well demarcated areas of non-scarring terminal hair alopecia, with the calculated lifetime risk of ~2%. In past decades, linkage and GWA studies have implicated dozens of susceptibility genes/loci that are linked to the development of AA. Fischer et al performed a genome-wide CNV analysis of 585 AA patients and 1,340 controls in a European population. This is the first genome-wide study of CNV to be performed in AA samples, and the association finding in the MCHR2 gene region further underscores the potential role of pigmentation in AA development.
Collapse
Affiliation(s)
- Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunqing Ren
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Fischer J, Degenhardt F, Hofmann A, Redler S, Basmanav FB, Heilmann-Heimbach S, Hanneken S, Giehl KA, Wolff H, Moebus S, Kruse R, Lutz G, Blaumeiser B, Böhm M, Garcia Bartels N, Blume-Peytavi U, Petukhova L, Christiano AM, Nöthen MM, Betz RC. Genomewide analysis of copy number variants in alopecia areata in a Central European cohort reveals association with MCHR2. Exp Dermatol 2017; 26:536-541. [PMID: 27306922 DOI: 10.1111/exd.13123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
Alopecia areata (AA) is a common hair loss disorder of autoimmune aetiology, which often results in pronounced psychological distress. Understanding of the pathophysiology of AA is increasing, due in part to recent genetic findings implicating common variants at several genetic loci. To date, no study has investigated the contribution of copy number variants (CNVs) to AA, a prominent class of genomic variants involved in other autoimmune disorders. Here, we report a genomewide- and a candidate gene-focused CNV analysis performed in a cohort of 585 patients with AA and 1340 controls of Central European origin. A nominally significant association with AA was found for CNVs in the following five chromosomal regions: 4q35.2, 6q16.3, 9p23, 16p12.1 and 20p12.1. The most promising finding was a 342.5-kb associated region in 6q16.3 (duplications in 4/585 patients; 0/1340 controls). The duplications spanned the genes MCHR2 and MCHR2-AS1, implicated in melanin-concentrating hormone (MCH) signalling. These genes have not been implicated in previous studies of AA pathogenesis. However, previous research has shown that MCHR2 affects the scale colour of barfin flounder fish via the induction of melanin aggregation. AA preferentially affects pigmented hairs, and the hair of patients with AA frequently shows a change in colour when it regrows following an acute episode of AA. This might indicate a relationship between AA, pigmentation and MCH signalling. In conclusion, the present results provide suggestive evidence for the involvement of duplications in MCHR2 in AA pathogenesis.
Collapse
Affiliation(s)
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Andrea Hofmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Silke Redler
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sandra Hanneken
- Department of Dermatology, University of Düsseldorf, Düsseldorf, Germany
| | - Kathrin A Giehl
- Department of Dermatology, University of Munich, Munich, Germany
| | - Hans Wolff
- Department of Dermatology, University of Munich, Munich, Germany
| | - Susanne Moebus
- Institute of Medical Informatics, Biometry and Epidemiology, University Duisburg-Essen, Duisburg, Germany
| | | | - Gerhard Lutz
- Hair & Nail, Dermatological Practice, Wesseling, Germany
| | - Bettina Blaumeiser
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Natalie Garcia Bartels
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lynn Petukhova
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University, New York, NY, USA.,Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Kawata Y, Okuda S, Hotta N, Igawa H, Takahashi M, Ikoma M, Kasai S, Ando A, Satomi Y, Nishida M, Nakayama M, Yamamoto S, Nagisa Y, Takekawa S. A novel and selective melanin-concentrating hormone receptor 1 antagonist ameliorates obesity and hepatic steatosis in diet-induced obese rodent models. Eur J Pharmacol 2016; 796:45-53. [PMID: 27986627 DOI: 10.1016/j.ejphar.2016.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 01/23/2023]
Abstract
Melanin-concentrating hormone (MCH), a cyclic neuropeptide expressed predominantly in the lateral hypothalamus, plays an important role in the control of feeding behavior and energy homeostasis. Mice lacking MCH or MCH1 receptor are resistant to diet-induced obesity (DIO) and MCH1 receptor antagonists show potent anti-obesity effects in preclinical studies, indicating that MCH1 receptor is a promising target for anti-obesity drugs. Moreover, recent studies have suggested the potential of MCH1 receptor antagonists for treatment of non-alcoholic fatty liver disease (NAFLD). In the present study, we show the anti-obesity and anti-hepatosteatosis effect of our novel MCH1 receptor antagonist, Compound A. Repeated oral administration of Compound A resulted in dose-dependent body weight reduction and had an anorectic effect in DIO mice. The body weight lowering effect of Compound A was more potent than that of pair-feeding. Compound A also reduced lipid content and the expression level of lipogenesis-, inflammation-, and fibrosis-related genes in the liver of DIO mice. Conversely, intracerebroventricular infusion of MCH caused induction of hepatic steatosis as well as increase in body weight in high-fat diet-fed wild type mice, but not MCH1 receptor knockout mice. The pair-feeding study revealed the MCH-MCH1 receptor system affects hepatic steatosis through a mechanism that is independent of body weight change. Metabolome analysis demonstrated that Compound A upregulated lipid metabolism-related molecules, such as acylcarnitines and cardiolipins, in the liver. These findings suggest that our novel MCH1 receptor antagonist, Compound A, exerts its beneficial therapeutic effect on NAFLD and obesity through a central MCH-MCH1 receptor pathway.
Collapse
Affiliation(s)
- Yayoi Kawata
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Shoki Okuda
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Natsu Hotta
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Igawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Ikoma
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shizuo Kasai
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ayumi Ando
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshinori Satomi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mayumi Nishida
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaharu Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Syunsuke Yamamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasutaka Nagisa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shiro Takekawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
12
|
Evolution of physicochemical properties of melanin concentrating hormone receptor 1 (MCHr1) antagonists. Bioorg Med Chem Lett 2016; 26:4559-4564. [PMID: 27595423 DOI: 10.1016/j.bmcl.2016.08.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/12/2016] [Accepted: 08/20/2016] [Indexed: 02/07/2023]
Abstract
One pharmacological principle for the treatment of obesity is blockade of the melanin concentrating hormone receptor 1 (MCHr1), which in rodents has been shown to be strongly associated with food intake and energy expenditure. However, discovery of safe and efficacious MCHr1 antagonists has proved to be complex. So far, six compounds have been progressed into clinical trials, but clinical validation of the concept is still lacking. An account of discovery of the three most recent clinical candidates targeting the MCHr1 receptor is given, with an emphasis on their physicochemical properties.
Collapse
|
13
|
Ploj K, Benthem L, Kakol-Palm D, Gennemark P, Andersson L, Bjursell M, Börjesson J, Kärrberg L, Månsson M, Antonsson M, Johansson A, Iverson S, Carlsson B, Turnbull A, Lindén D. Effects of a novel potent melanin-concentrating hormone receptor 1 antagonist, AZD1979, on body weight homeostasis in mice and dogs. Br J Pharmacol 2016; 173:2739-51. [PMID: 27400775 DOI: 10.1111/bph.13548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/13/2016] [Accepted: 07/01/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Melanin-concentrating hormone (MCH) is an orexigen, and while rodents express one MCH receptor (MCH1 receptor), humans, non-human primates and dogs express two MCH receptors (MCH1 and MCH2 ). MCH1 receptor antagonists have been developed for the treatment of obesity and lower body weight in rodents. However, the mechanisms for the body weight loss and whether MCH1 receptor antagonism can lower body weight in species expressing both MCH receptors are not fully understood. EXPERIMENTAL APPROACH A novel recently identified potent MCH1 receptor antagonist, AZD1979, was studied in wild type and Mchr1 knockout (KO) mice and by using pair-feeding and indirect calorimetry in diet-induced obese (DIO) mice. The effect of AZD1979 on body weight was also studied in beagle dogs. KEY RESULTS AZD1979 bound to MCH1 receptors in the CNS and dose-dependently reduced body weight in DIO mice leading to improved homeostasis model assessment-index of insulin sensitivity. AZD1979 did not affect food intake or body weight in Mchr1 KO mice demonstrating specificity for the MCH1 receptor mechanism. In DIO mice, initial AZD1979-mediated body weight loss was driven by decreased food intake, but an additional component of preserved energy expenditure was apparent in pair-feeding and indirect calorimetry studies. AZD1979 also dose-dependently reduced body weight in dogs. CONCLUSION AND IMPLICATIONS AZD1979 is a novel potent MCH1 receptor antagonist that affects both food intake and energy expenditure. That AZD1979 also lowers body weight in a species expressing both MCH receptors holds promise for the use of MCH1 receptor antagonists for the treatment of human obesity.
Collapse
Affiliation(s)
- Karolina Ploj
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden.,Drug Safety & Metabolism, AstraZeneca Mölndal, Sweden
| | - Lambertus Benthem
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Dorota Kakol-Palm
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Peter Gennemark
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Liselotte Andersson
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden.,Drug Safety & Metabolism, AstraZeneca Mölndal, Sweden
| | - Mikael Bjursell
- Discovery Sciences Transgenics, AstraZeneca, Mölndal, Sweden
| | - Jenny Börjesson
- Discovery Sciences Transgenics, AstraZeneca, Mölndal, Sweden
| | - Lillevi Kärrberg
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden.,Drug Safety & Metabolism, AstraZeneca Mölndal, Sweden
| | | | - Madeleine Antonsson
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Anders Johansson
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | | | - Björn Carlsson
- Early Clinical Development, AstraZeneca, Mölndal, Sweden
| | - Andrew Turnbull
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Daniel Lindén
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| |
Collapse
|
14
|
Johansson A, Löfberg C, Antonsson M, von Unge S, Hayes MA, Judkins R, Ploj K, Benthem L, Lindén D, Brodin P, Wennerberg M, Fredenwall M, Li L, Persson J, Bergman R, Pettersen A, Gennemark P, Hogner A. Discovery of (3-(4-(2-Oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone (AZD1979), a Melanin Concentrating Hormone Receptor 1 (MCHr1) Antagonist with Favorable Physicochemical Properties. J Med Chem 2016; 59:2497-511. [PMID: 26741166 DOI: 10.1021/acs.jmedchem.5b01654] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel series of melanin concentrating hormone receptor 1 (MCHr1) antagonists were the starting point for a drug discovery program that culminated in the discovery of 103 (AZD1979). The lead optimization program was conducted with a focus on reducing lipophilicity and understanding the physicochemical properties governing CNS exposure and undesired off-target pharmacology such as hERG interactions. An integrated approach was taken where the key assay was ex vivo receptor occupancy in mice. The candidate compound 103 displayed appropriate lipophilicity for a CNS indication and showed excellent permeability with no efflux. Preclinical GLP toxicology and safety pharmacology studies were without major findings and 103 was taken into clinical trials.
Collapse
Affiliation(s)
- Anders Johansson
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Christian Löfberg
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Madeleine Antonsson
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Sverker von Unge
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Martin A Hayes
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Robert Judkins
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Karolina Ploj
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Lambertus Benthem
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Daniel Lindén
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Peter Brodin
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Marie Wennerberg
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Marléne Fredenwall
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Lanna Li
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Joachim Persson
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Rolf Bergman
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Anna Pettersen
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Peter Gennemark
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| | - Anders Hogner
- Cardiovascular & Metabolic Diseases iMed and ‡Global Medicines Development, AstraZeneca Gothenburg , 431 83 Mölndal, Sweden
| |
Collapse
|
15
|
Influence of MCHR2 and MCHR2-AS1 Genetic Polymorphisms on Body Mass Index in Psychiatric Patients and In Population-Based Subjects with Present or Past Atypical Depression. PLoS One 2015; 10:e0139155. [PMID: 26461262 PMCID: PMC4604197 DOI: 10.1371/journal.pone.0139155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/08/2015] [Indexed: 12/14/2022] Open
Abstract
Obesity development during psychotropic treatments represents a major health issue in psychiatry. Melanin-concentrating hormone receptor 2 (MCHR2) is a central receptor involved in energy homeostasis. MCHR2 shares its promoter region with MCHR2-AS1, a long antisense non-coding RNA. The aim of this study was to determine whether tagging single nucleotide polymorphisms (tSNPs) of MCHR2 and MCHR2-AS1 are associated with the body mass index (BMI) in the psychiatric and in the general population. The influence of MCHR2 and MCHR2-AS1 tSNPs on BMI was firstly investigated in a discovery psychiatric sample (n1 = 474). Positive results were tested for replication in two other psychiatric samples (n2 = 164, n3 = 178) and in two population-based samples (CoLaus, n4 = 5409; GIANT, n5 = 113809). In the discovery sample, TT carriers of rs7754794C>T had 1.08 kg/m2 (p = 0.04) lower BMI as compared to C-allele carriers. This observation was replicated in an independent psychiatric sample (-2.18 kg/m2; p = 0.009). The association of rs7754794C>T and BMI seemed stronger in subjects younger than 45 years (median of age). In the population-based sample, a moderate association was observed (-0.17 kg/m2; p = 0.02) among younger individuals (<45y). Interestingly, this association was totally driven by patients meeting lifetime criteria for atypical depression, i.e. major depressive episodes characterized by symptoms such as an increased appetite. Indeed, patients with atypical depression carrying rs7754794-TT had 1.17 kg/m2 (p = 0.04) lower BMI values as compared to C-allele carriers, the effect being stronger in younger individuals (-2.50 kg/m2; p = 0.03; interaction between rs7754794 and age: p-value = 0.08). This study provides new insights on the possible influence of MCHR2 and/or MCHR2-AS1 on obesity in psychiatric patients and on the pathophysiology of atypical depression.
Collapse
|
16
|
Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015; 9:9. [PMID: 25741247 PMCID: PMC4332303 DOI: 10.3389/fnsys.2015.00009] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.
Collapse
Affiliation(s)
- Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, MI, USA ; Center for Integrative Toxicology East Lansing, MI, USA
| | | | - Gina M Leinninger
- Center for Integrative Toxicology East Lansing, MI, USA ; Department of Physiology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
17
|
|
18
|
The melanin-concentrating hormone receptors: neuronal and non-neuronal functions. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2014; 4:S31-6. [PMID: 27152164 DOI: 10.1038/ijosup.2014.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic peptide highly conserved in vertebrates and was originally identified as a skin-paling factor in Teleosts. In fishes, MCH also participates in the regulation of the stress-response and feeding behaviour. Mammalian MCH is a hypothalamic neuropeptide that displays multiple functions, mostly controlling feeding behaviour and energy homeostasis. Transgenic mouse models and pharmacological studies have shown the importance of the MCH system as a potential target in the treatment of appetite disorders and obesity as well as anxiety and psychiatric diseases. Two G-protein-coupled receptors (GPCRs) binding MCH have been characterized so far. The first, named MCH-R1 and also called SLC1, was identified through reverse pharmacology strategies by several groups as a cognate receptor of MCH. This receptor is expressed at high levels in many brain areas of rodents and primates and is also expressed in peripheral organs, albeit at a lower rate. A second receptor, designated MCH-R2, exhibited 38% identity to MCH-R1 and was identified by sequence analysis of the human genome. Interestingly, although MCH-R2 orthologues were also found in fishes, dogs, ferrets and non-human primates, this MCH receptor gene appeared either lacking or non-functional in rodents and lagomorphs. Both receptors are class I GPCRs, whose main roles are to mediate the actions of peptides and neurotransmitters in the central nervous system. However, examples of action of MCH on neuronal and non-neuronal cells are emerging that illustrate novel MCH functions. In particular, the functionality of endogenously expressed MCH-R1 has been explored in human neuroblastoma cells, SK-N-SH and SH-SY5Y cells, and in non-neuronal cell types such as the ependymocytes. Indeed, we have identified mitogen-activated protein kinase (MAPK)-dependent or calcium-dependent signalling cascades that ultimately contributed to neurite outgrowth in neuroblastoma cells or to modulation of ciliary beating in ependymal cells. The putative role of MCH on cellular shaping and plasticity on one side and volume transmission on the other must be now considered.
Collapse
|