1
|
Zambrano AK, Cadena-Ullauri S, Ruiz-Pozo VA, Tamayo-Trujillo R, Paz-Cruz E, Guevara-Ramírez P, Frias-Toral E, Simancas-Racines D. Impact of fundamental components of the Mediterranean diet on the microbiota composition in blood pressure regulation. J Transl Med 2024; 22:417. [PMID: 38702795 PMCID: PMC11067105 DOI: 10.1186/s12967-024-05175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The Mediterranean diet (MedDiet) is a widely studied dietary pattern reflecting the culinary traditions of Mediterranean regions. High adherence to MedDiet correlates with reduced blood pressure and lower cardiovascular disease (CVD) incidence and mortality. Furthermore, microbiota, influenced by diet, plays a crucial role in cardiovascular health, and dysbiosis in CVD patients suggests the possible beneficial effects of microbiota modulation on blood pressure. The MedDiet, rich in fiber and polyphenols, shapes a distinct microbiota, associated with higher biodiversity and positive health effects. The review aims to describe how various Mediterranean diet components impact gut microbiota, influencing blood pressure dynamics. MAIN BODY The MedDiet promotes gut health and blood pressure regulation through its various components. For instance, whole grains promote a healthy gut microbiota given that they act as substrates leading to the production of short-chain fatty acids (SCFAs) that can modulate the immune response, preserve gut barrier integrity, and regulate energy metabolism. Other components of the MedDiet, including olive oil, fuits, vegetables, red wine, fish, and lean proteins, have also been associated with blood pressure and gut microbiota regulation. CONCLUSION The MedDiet is a dietary approach that offers several health benefits in terms of cardiovascular disease management and its associated risk factors, including hypertension. Furthermore, the intake of MedDiet components promote a favorable gut microbiota environment, which, in turn, has been shown that aids in other physiological processes like blood pressure regulation.
Collapse
Affiliation(s)
- Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170527, Ecuador.
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170527, Ecuador
| | - Viviana A Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170527, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170527, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170527, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170527, Ecuador
| | - Evelyn Frias-Toral
- Escuela de Medicina, Universidad Espíritu Santo, Samborondón, 0901952, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, 170527, Ecuador
| |
Collapse
|
2
|
Agoston-Coldea L, Negru A. Myocardial fibrosis in right heart dysfunction. Adv Clin Chem 2024; 119:71-116. [PMID: 38514212 DOI: 10.1016/bs.acc.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Cardiac fibrosis, associated with right heart dysfunction, results in significant morbidity and mortality. Stimulated by various cellular and humoral stimuli, cardiac fibroblasts, macrophages, CD4+ and CD8+ T cells, mast and endothelial cells promote fibrogenesis directly and indirectly by synthesizing numerous profibrotic factors. Several systems, including the transforming growth factor-beta and the renin-angiotensin system, produce type I and III collagen, fibronectin and α-smooth muscle actin, thus modifying the extracellular matrix. Although magnetic resonance imaging with gadolinium enhancement remains the gold standard, the use of circulating biomarkers represents an inexpensive and attractive means to facilitate detection and monitor cardiovascular fibrosis. This review explores the use of protein and nucleic acid (miRNAs) markers to better understand underlying pathophysiology as well as their role in the development of therapeutics to inhibit and potentially reverse cardiac fibrosis.
Collapse
Affiliation(s)
- Lucia Agoston-Coldea
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Andra Negru
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Chu L, Xie D, Xu D. Epigenetic Regulation of Fibroblasts and Crosstalk between Cardiomyocytes and Non-Myocyte Cells in Cardiac Fibrosis. Biomolecules 2023; 13:1382. [PMID: 37759781 PMCID: PMC10526373 DOI: 10.3390/biom13091382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic mechanisms and cell crosstalk have been shown to play important roles in the initiation and progression of cardiac fibrosis. This review article aims to provide a thorough overview of the epigenetic mechanisms involved in fibroblast regulation. During fibrosis, fibroblast epigenetic regulation encompasses a multitude of mechanisms, including DNA methylation, histone acetylation and methylation, and chromatin remodeling. These mechanisms regulate the phenotype of fibroblasts and the extracellular matrix composition by modulating gene expression, thereby orchestrating the progression of cardiac fibrosis. Moreover, cardiac fibrosis disrupts normal cardiac function by imposing myocardial mechanical stress and compromising cardiac electrical conduction. This review article also delves into the intricate crosstalk between cardiomyocytes and non-cardiomyocytes in the heart. A comprehensive understanding of the mechanisms governing epigenetic regulation and cell crosstalk in cardiac fibrosis is critical for the development of effective therapeutic strategies. Further research is warranted to unravel the precise molecular mechanisms underpinning these processes and to identify potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 315 Yanchang Middle Road, Shanghai 200072, China; (L.C.); (D.X.)
| |
Collapse
|
4
|
Rossi VA, Gruebler M, Monzo L, Galluzzo A, Beltrami M. The Different Pathways of Epicardial Adipose Tissue across the Heart Failure Phenotypes: From Pathophysiology to Therapeutic Target. Int J Mol Sci 2023; 24:6838. [PMID: 37047810 PMCID: PMC10095298 DOI: 10.3390/ijms24076838] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Epicardial adipose tissue (EAT) is an endocrine and paracrine organ constituted by a layer of adipose tissue directly located between the myocardium and visceral pericardium. Under physiological conditions, EAT exerts protective effects of brown-like fat characteristics, metabolizing excess fatty acids, and secreting anti-inflammatory and anti-fibrotic cytokines. In certain pathological conditions, EAT acquires a proatherogenic transcriptional profile resulting in increased synthesis of biologically active adipocytokines with proinflammatory properties, promoting oxidative stress, and finally causing endothelial damage. The role of EAT in heart failure (HF) has been mainly limited to HF with preserved ejection fraction (HFpEF) and related to the HFpEF obese phenotype. In HFpEF, EAT seems to acquire a proinflammatory profile and higher EAT values have been related to worse outcomes. Less data are available about the role of EAT in HF with reduced ejection fraction (HFrEF). Conversely, in HFrEF, EAT seems to play a nutritive role and lower values may correspond to the expression of a catabolic, adverse phenotype. As of now, there is evidence that the beneficial systemic cardiovascular effects of sodium-glucose cotransporter-2 receptors-inhibitors (SGLT2-i) might be partially mediated by inducing favorable modifications on EAT. As such, EAT may represent a promising target organ for the development of new drugs to improve cardiovascular prognosis. Thus, an approach based on detailed phenotyping of cardiac structural alterations and distinctive biomolecular pathways may change the current scenario, leading towards a precision medicine model with specific therapeutic targets considering different individual profiles. The aim of this review is to summarize the current knowledge about the biomolecular pathway of EAT in HF across the whole spectrum of ejection fraction, and to describe the potential of EAT as a therapeutic target in HF.
Collapse
Affiliation(s)
- Valentina A. Rossi
- University Heart Center, Department of Cardiology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Martin Gruebler
- Regional Hospital Neustadt, 2700 Wiener Neustadt, Austria
- Faculty of Medicine, Medical University of Graz, 8036 Graz, Austria
- Faculty of Medicine, Sigmund Freud University Vienna, 1020 Vienna, Austria
| | - Luca Monzo
- Centre d’Investigations Cliniques Plurithématique 1433 and Inserm U1116, Université de Lorraine, CHRU Nancy, FCRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), 54035 Nancy, France
| | | | - Matteo Beltrami
- Azienda USL Toscana Centro, Cardiology Unit, San Giovanni di Dio Hospital, 50143 Florence, Italy;
| |
Collapse
|
5
|
Chaszczewska-Markowska M, Górna K, Bogunia-Kubik K, Brzecka A, Kosacka M. The Influence of Comorbidities on Chemokine and Cytokine Profile in Obstructive Sleep Apnea Patients: Preliminary Results. J Clin Med 2023; 12:jcm12030801. [PMID: 36769452 PMCID: PMC9918226 DOI: 10.3390/jcm12030801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is frequently associated with a chronic inflammatory state and cardiovascular/metabolic complications. The aim of this study was to evaluate the influence of certain comorbidities on a panel of 45 chemokines and cytokines in OSA patients with special regard to their possible association with cardiovascular diseases. MATERIAL AND METHODS This cross-sectional study was performed on 61 newly diagnosed OSA patients. For the measurement of the plasma concentration of chemokines and cytokines, the magnetic bead-based multiplex assay for the Luminex® platform was used. RESULTS In the patients with concomitant COPD, there were increased levels of pro-inflammatory cytokines (CCL11, CD-40 ligand) and decreased anti-inflammatory cytokine (IL-10), while in diabetes, there were increased levels of pro-inflammatory cytokines (IL-6, TRIAL). Obesity was associated with increased levels of both pro-inflammatory (IL-13) and anti-inflammatory (IL-1RA) cytokines. Hypertension was associated with increased levels of both pro-inflammatory (CCL3) and anti-inflammatory (IL-10) cytokines. Increased daytime pCO2, low mean nocturnal SaO2, and the oxygen desaturation index were associated with increased levels of pro-inflammatory cytokines (CXCL1, PDGF-AB, TNF-α, and IL-15). CONCLUSIONS In OSA patients with concomitant diabetes and COPD, elevated levels of certain pro-inflammatory and decreased levels of certain anti-inflammatory cytokines may favor the persistence of a chronic inflammatory state with further consequences. Nocturnal hypoxemia, frequent episodes of desaturation, and increased daytime pCO2 are factors contributing to the chronic inflammatory state in OSA patients.
Collapse
Affiliation(s)
- Monika Chaszczewska-Markowska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Katarzyna Górna
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
- Correspondence:
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, 53-439 Wroclaw, Poland
| | - Monika Kosacka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, 53-439 Wroclaw, Poland
| |
Collapse
|
6
|
Wang K, Zhou M, Zhang Y, Du Y, Li P, Guan C, Huang Z. IRX2 activated by jumonji domain-containing protein 2A is crucial for cardiac hypertrophy and dysfunction in response to the hypertrophic stimuli. Int J Cardiol 2023; 371:332-344. [PMID: 36181956 DOI: 10.1016/j.ijcard.2022.09.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/25/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Iroquois homeobox 2 (IRX2) is a member of the Iroquois family whose upregulation has been potentially correlated to cardiac hypertrophy. This work studied the function of IRX2 and its related molecules in hypertrophic cardiomyopathy (HCM). METHODS A GEO dataset GSE32453 was analyzed to identify aberrantly expressed genes in HCM. Altered expression of IRX2 was induced in mice by lentivirus injection, followed by angiotensin II (Ang II) treatment to induce HCM. The function of IRX2 knockdown in ventricular dysfunction, heart volume and pathological changes in mice, and in surface area, oxidative stress and apoptosis of isolated cardiomyocytes were examined. Binding relationship between jumonji domain-containing protein 2A (JMJD2A) and IRX2 was predicted by online tools and validated. The interaction between JMJD2A and IRX2 in HCM development was examined by joint interventions. RESULTS IRX2 was highly expressed in heart tissues with HCM. IRX2 knockdown prevented mice from Ang II-induced ventricular dysfunction, cardiac hypertrophy, inflammation and fibrosis in mouse heart, and it decreased the levels of cardiac hypertrophy-related markers, oxidative stress response, and apoptosis of Ang II-treated cardiomyocytes. JMJD2A catalyzed demethylation of H3K9me3 near the IRX2 promoter to activate its transcription. JMJD2A knockdown similarly exerted protective functions against cardiac hypertrophy in vivo and in vitro, but the protection was blocked upon further IRX2 upregulation. IRX2 was found to increase the Wnt/β-catenin signaling activation. CONCLUSION This work reports that JMJD2A activates IRX2 transcription and the Wnt/β-catenin signaling to induce cardiac hypertrophy and dysfunction in HCM.
Collapse
Affiliation(s)
- Kaihao Wang
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong, PR China
| | - Min Zhou
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong, PR China
| | - Youhong Zhang
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong, PR China
| | - Yipeng Du
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong, PR China
| | - Peixin Li
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong, PR China
| | - Chang Guan
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong, PR China
| | - Zheng Huang
- Department of Cardiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong, PR China.
| |
Collapse
|
7
|
GJD Modulates Cardiac/Vascular Inflammation and Decreases Blood Pressure in Hypertensive Rats. Mediators Inflamm 2022; 2022:7345116. [PMID: 36164390 PMCID: PMC9509256 DOI: 10.1155/2022/7345116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Gedan Jiangya decoction (GJD) (aqueous ethanol extract), a traditional Chinese medicine formula which contain six botanical drugs (Uncaria rhynchophylla (Miq.) Miq., Salvia miltiorrhiza Bunge, Pueraria lobata (Willd.) Ohwi, Eucommia ulmoides Oliv., Prunella vulgaris L., and Achyranthes bidentata Blume) was designed to treat hypertension; however, the underlying mechanism of action is unclear. This study aimed to determine the mechanisms of action of GJD in the treatment of hypertension in spontaneously hypertensive rats (SHR). Male SHRs were randomly divided into five groups: GJD doses were low (1.36 g/kg/d), medium (2.72 g/kg/d), and high (5.44 g/kg/d), captopril (13.5 mg/kg/d), and SHR groups, with Wistar-Kyoto rats (WKY) serving as the control. Every rat was gavaged once a day. The ALC-NIBP, a noninvasive blood pressure device, measured systolic (SBP) and diastolic (DBP) blood pressures. Six weeks following treatment, all rats were anesthetized. The blood samples were obtained from the abdominal aorta and then serum isolated to assess endothelin-1 and angiotensin II, interleukin-1beta, interleukin-6, and TNF-alpha. The left ventricular and thoracic aortas were taken for HE staining, immunohistochemistry, RT-qPCR, and western blot examination. Following GJD therapy, SBP and DBP were significantly lowered, as were serum levels of endothelin-1 and angiotensin II. The thickness of the left ventricular and thoracic aorta walls reduced, as did type I collagen, type III collagen, and alpha-SMA expression in the left ventricular and aortic tissues. The GJD treatment significantly reduced serum levels of the inflammatory markers interleukin-1beta, interleukin-6, and TNF-alpha. Furthermore, interleukin-1 beta, interleukin-6, TNF-alpha, TAK1, and NF-κB/p65 levels were significantly reduced in left ventricular and aortic tissues, whereas IkB-alpha levels were significantly elevated. GJD has a dose-dependent effect on all parameters. In conclusion, GJD has been shown to lower blood pressure, improve cardiovascular remodeling, and reduce inflammation via regulating NF-κB in SHRs.
Collapse
|
8
|
Jiang W, Xiong Y, Li X, Yang Y. Cardiac Fibrosis: Cellular Effectors, Molecular Pathways, and Exosomal Roles. Front Cardiovasc Med 2021; 8:715258. [PMID: 34485413 PMCID: PMC8415273 DOI: 10.3389/fcvm.2021.715258] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibrosis, a common pathophysiologic process in most heart diseases, refers to an excess of extracellular matrix (ECM) deposition by cardiac fibroblasts (CFs), which can lead to cardiac dysfunction and heart failure subsequently. Not only CFs but also several other cell types including macrophages and endothelial cells participate in the process of cardiac fibrosis via different molecular pathways. Exosomes, ranging in 30-150 nm of size, have been confirmed to play an essential role in cellular communications by their bioactive contents, which are currently a hot area to explore pathobiology and therapeutic strategy in multiple pathophysiologic processes including cardiac fibrosis. Cardioprotective factors such as RNAs and proteins packaged in exosomes make them an excellent cell-free system to improve cardiac function without significant immune response. Emerging evidence indicates that targeting selective molecules in cell-derived exosomes could be appealing therapeutic treatments in cardiac fibrosis. In this review, we summarize the current understandings of cellular effectors, molecular pathways, and exosomal roles in cardiac fibrosis.
Collapse
Affiliation(s)
- Wenyang Jiang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuyan Xiong
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaosong Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Li G, Shao Y, Guo HC, Zhi Y, Qiao B, Ma K, Lai YQ, Du J, Li Y. MicroRNA-27b-3p downregulates FGF1 and aggravates pathological cardiac remodelling. Cardiovasc Res 2021; 118:2139-2151. [PMID: 34358309 PMCID: PMC9302889 DOI: 10.1093/cvr/cvab248] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS The heart undergoes pathological remodelling under increased stress and neuronal imbalance. MicroRNAs (miRNAs) are involved in post-transcriptional regulation of genes in cardiac physiology and pathology. However, the mechanisms underlying miRNA-mediated regulation of pathological cardiac remodelling remain to be studied. This study aimed to explore the function of endogenous microRNA-27b-3p (miR-27b-3p) in pathological cardiac remodelling. METHODS AND RESULTS miR-27b-3p expression was elevated in the heart of a transverse aortic constriction (TAC)-induced cardiac hypertrophy mouse model. MiR-27b-knockout mice showed significantly attenuated cardiac hypertrophy, fibrosis, and inflammation induced by two independent pathological cardiac hypertrophy models, TAC and Angiotensin II (Ang II) perfusion. Transcriptome sequencing analysis revealed that miR-27b deletion significantly downregulated TAC-induced cardiac hypertrophy, fibrosis, and inflammatory genes. We identified fibroblast growth factor 1 (FGF1) as a miR-27b-3p target gene in the heart and was upregulated in miR-27b-null mice. We found that both recombinant FGF1 (rFGF1) and inhibition of miR-27b-3p enhanced mitochondrial oxidative phosphorylation (OXPHOS) and inhibited cardiomyocyte hypertrophy. Importantly, rFGF1 administration inhibited cardiac hypertrophy and fibrosis in TAC or Ang II-induced models, and enhanced OXPHOS by activating PGC1α/β. CONCLUSIONS Our study demonstrated that miR-27b-3p induces pathological cardiac remodelling and suggests that inhibition of endogenous miR-27b-3p or administration of FGF1 might have the potential to suppress cardiac remodelling in a clinical setting. TRANSLATIONAL PERSPECTIVE MicroRNAs (miRNAs) are involved in post-transcriptional regulation of genes in cardiac physiology and pathology. However, the mechanisms underlying miRNA-mediated regulation of pathological cardiac remodelling remain to be studied. We show for the first time that miR-27b deletion attenuates cardiac hypertrophy, fibrosis, and inflammation and that rFGF1 administration inhibits cardiac hypertrophy and fibrosis in TAC- or Ang II-induced models, and enhances OXPHOS by activating PGC1α/β. Our findings suggest that miR-27b-3p and FGF1 may be potential therapeutic targets to treat conditions characterised by pathological cardiac remodelling.
Collapse
Affiliation(s)
- Guoqi Li
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yihui Shao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Hong-Chang Guo
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Ying Zhi
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Bokang Qiao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Ke Ma
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yong-Qiang Lai
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodelling-Related Cardiovascular Diseases, Ministry of Education; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| |
Collapse
|
10
|
Peng X, Wang Y, Xi X, Jia Y, Tian J, Yu B, Tian J. Promising Therapy for Heart Failure in Patients with Severe COVID-19: Calming the Cytokine Storm. Cardiovasc Drugs Ther 2021; 35:231-247. [PMID: 33404925 PMCID: PMC7786163 DOI: 10.1007/s10557-020-07120-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 12/11/2022]
Abstract
The coronavirus disease 19 (COVID-19) pandemic poses a serious global threat to human health and the economy. Based on accumulating evidence, its continuous progression involves not only pulmonary injury but also damage to the cardiovascular system due to intertwined pathophysiological risks. As a point of convergence in the pathophysiologic process between COVID-19 and heart failure (HF), cytokine storm induces the progression of COVID-19 in patients presenting pre-existing or new onset myocardial damage and even HF. Cytokine storm, as a trigger of the progression of HF in patients with COVID-19, has become a novel focus to explore therapies for target populations. In this review, we briefly introduce the basis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and illuminate the mechanism and links among COVID-19, cytokine storm, and HF. Furthermore, we discuss drugs and therapeutic targets for patients with COVID-19 and HF.
Collapse
Affiliation(s)
- Xiang Peng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Yani Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Xiangwen Xi
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Ying Jia
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Jiangtian Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, 541000, Guangxi, China.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Macrophages play an important role in regulating homeostasis, kidney injury, repair, and tissue fibrogenesis. The present review will discuss recent advances that explore the novel subsets and functions of macrophage in the pathogenesis of kidney damage and hypertension. RECENT FINDINGS Macrophages differentiate into a variety of subsets in microenvironment-dependent manner. Although the M1/M2 nomenclature is still applied in considering the pro-inflammatory versus anti-inflammatory effects of macrophages in kidney injury, novel, and accurate macrophage phenotypes are defined by flow cytometric markers and single-cell RNA signatures. Studies exploring the crosstalk between macrophages and other cells are rapidly advancing with the additional recognition of exosome trafficking between cells. Using murine conditional mutants, actions of macrophage can be defined more precisely than in bone marrow transfer models. Some studies revealed the opposing effects of the same protein in renal parenchymal cells and macrophages, highlighting a need for the development of cell-specific immune therapies for translation. SUMMARY Macrophage-targeted therapies hold potential for limiting kidney injury and hypertension. To realize this potential, future studies will be required to understand precise mechanisms in macrophage polarization, crosstalk, proliferation, and maturation in the setting of renal disease.
Collapse
|
12
|
Ge W, Hou C, Zhang W, Guo X, Gao P, Song X, Gao R, Liu Y, Guo W, Li B, Zhao H, Wang J. Mep1a contributes to Ang II-induced cardiac remodeling by promoting cardiac hypertrophy, fibrosis and inflammation. J Mol Cell Cardiol 2020; 152:52-68. [PMID: 33301800 DOI: 10.1016/j.yjmcc.2020.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023]
Abstract
Pathological cardiac remodeling, characterized by excessive deposition of extracellular matrix proteins and cardiac hypertrophy, leads to the development of heart failure. Meprin α (Mep1a), a zinc metalloprotease, previously reported to participate in the regulation of inflammatory response and fibrosis, may also contribute to cardiac remodeling, although whether and how it participates in this process remains unknown. Here, in this work, we investigated the role of Mep1a in pathological cardiac remodeling, as well as the effects of the Mep1a inhibitor actinonin on cardiac remodeling-associated phenotypes. We found that Mep1a deficiency or chemical inhibition both significantly alleviated TAC- and Ang II-induced cardiac remodeling and dysfunction. Mep1a deletion and blocking both attenuated TAC- and Ang II-induced heart enlargement and increases in the thickness of the left ventricle anterior and posterior walls, and reduced expression of pro-hypertrophic markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and myosin heavy chain beta (β-MHC). In addition, Mep1a deletion and blocking significantly inhibited TAC- and Ang II-induced cardiac fibroblast activation and production of extracellular matrix (ECM). Moreover, in Mep1a-/- mice and treatment with actinonin significantly reduced Ang II-induced infiltration of macrophages and proinflammatory cytokines. Notably, we found that in vitro, Mep1a is expressed in cardiac myocytes and fibroblasts and that Mep1a deletion or chemical inhibition both markedly suppressed Ang II-induced hypertrophy of rat or mouse cardiac myocytes and activation of rat or mouse cardiac fibroblasts. In addition, blocking Mep1a in macrophages reduced Ang II-induced expression of interleukin (IL)-6 and IL-1β, strongly suggesting that Mep1a participates in cardiac remodeling processes through regulation of inflammatory cytokine expression. Mechanism studies revealed that Mep1a mediated ERK1/2 activation in cardiac myocytes, fibroblasts and macrophages and contributed to cardiac remodeling. In light of our findings that blocking Mep1a can ameliorate cardiac remodeling via inhibition of cardiac hypertrophy, fibrosis, and inflammation, Mep1a may therefore serve as a strong potential candidate for therapeutic targeting to prevent cardiac remodeling.
Collapse
Affiliation(s)
- Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Cuiliu Hou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Pan Gao
- Department of Geriatrics, Southwest Hospital, The First Affiliate Hospital to Army Medical University, Chongqing, China
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Physiology, Peking Union Medical College, Beijing, China
| | - Wenjun Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China.
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Institute of Basic Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Lin F, Huang X, Xing F, Xu L, Zhang W, Chen Z, Ke X, Song Y, Zeng Z. Semen Brassicae reduces thoracic aortic remodeling, inflammation, and oxidative damage in spontaneously hypertensive rats. Biomed Pharmacother 2020; 129:110400. [PMID: 32570115 DOI: 10.1016/j.biopha.2020.110400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the role of Semen Brassicae, a common Traditional Chinese Medicine, in the treatment of hypertension. METHODS Spontaneously hypertensive rats (SHRs) were divided into five groups and were gavaged with either distilled water, water-decocted solution from Semen Brassicae (0.5, 1 or 2 g/kg), or nifedipine (2.7 mg/kg). Normal rats gavaged with distilled water were used as a control. Systolic (SBP) and diastolic blood pressure (DBP) were measured using a non-invasive method. After 8 weeks of administration, all animals were anesthetized. Abdominal aortic serum was collected to measure serum factors; the thoracic aorta was collected for hematoxylin and eosin staining and western blot analysis. RESULTS Both SBP and DBP were significantly decreased after Semen Brassicae treatment. Endothelin-1 and angiotensin II levels in abdominal aortic serum, as well as the levels of inflammatory factors interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha, were significantly decreased after Semen Brassicae treatment. The wall thickness of the thoracic aorta was significantly reduced after Semen Brassicae treatment. Nitric oxide level and the activity of superoxide dismutase and glutathione peroxidase were significantly increased, and malondialdehyde level was significantly decreased in the abdominal aortic serum after Semen Brassicae treatment. Semen Brassicae treatment increased the levels of peroxisome proliferator-activated receptor gamma and IκB-α and decreased the levels of intercellular adhesion molecule 1, monocyte chemoattractant protein-1, von Willebrand factor, p-IκB-α and p-p65 NF-κB. CONCLUSIONS In conclusion, water-decocted solution from Semen Brassicae can decrease blood pressure, improve vascular remodeling, and attenuate oxidative stress and inflammation in SHRs.
Collapse
Affiliation(s)
- Fengxia Lin
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China.
| | - Xiaojing Huang
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China.
| | - Fuya Xing
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China.
| | - Luhua Xu
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China.
| | - Weiwei Zhang
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China.
| | - Zhengtao Chen
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China.
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, 518057, China.
| | - Yinzhi Song
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China.
| | - Zhicong Zeng
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China.
| |
Collapse
|
14
|
Drugs That Ameliorate Epicardial Adipose Tissue Inflammation May Have Discordant Effects in Heart Failure With a Preserved Ejection Fraction as Compared With a Reduced Ejection Fraction. J Card Fail 2019; 25:986-1003. [DOI: 10.1016/j.cardfail.2019.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
|
15
|
Exercise Attenuates Acute β-Adrenergic Overactivation-Induced Cardiac Fibrosis by Modulating Cytokines. J Cardiovasc Transl Res 2019; 12:528-538. [PMID: 31161536 DOI: 10.1007/s12265-019-09894-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
During acute sympathetic stress, the overactivation of β-adrenergic receptors (β-ARs) causes cardiac fibrosis by triggering inflammation and cytokine expression. It is unknown whether exercise training inhibits acute β-AR overactivation-induced cytokine expression and cardiac injury. Here, we report that running exercise inhibited cardiac fibrosis and improved cardiac function in mice treated with isoproterenol (ISO), a β-AR agonist. A cytokine antibody array revealed that running exercise prevented most of the changes in cytokine expression induced by ISO. Specifically, ISO-induced upregulation of 18 cytokines was prevented by running exercise. A Kyoto encyclopedia of genes and genomes analysis of these cytokines revealed that Hedgehog and RAP1 signaling pathways were involved in the regulation of cytokine expression by exercise. The changes in the expression of some cytokines that were prevented by exercise were verified by an enzyme-linked immunosorbent assay and real-time PCR. In conclusion, running exercise prevented the cytokine expression changes after acute β-AR overactivation and therefore attenuated cardiac fibrosis. Acute sympathetic stress is an important risk factor for the patients with cardiovascular diseases, and the present study revealed that exercise training can prevent against the upregulation of cytokines and the subsequent cardiac injury induced by acute sympathetic stress, suggesting that exercise training may be beneficial for cardiovascular patients who are in risk of acute sympathetic stress. This finding provides a theoretical basis for the application of exercise training in patients who may suffer from acute sympathetic stress.
Collapse
|
16
|
Bomfim GF, Cau SBA, Bruno AS, Fedoce AG, Carneiro FS. Hypertension: a new treatment for an old disease? Targeting the immune system. Br J Pharmacol 2019; 176:2028-2048. [PMID: 29969833 PMCID: PMC6534786 DOI: 10.1111/bph.14436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/14/2018] [Accepted: 06/24/2018] [Indexed: 12/22/2022] Open
Abstract
Arterial hypertension represents a serious public health problem, being a major cause of morbidity and mortality worldwide. The availability of many antihypertensive therapeutic strategies still fails to adequately treat around 20% of hypertensive patients, who are considered resistant to conventional treatment. In the pathogenesis of hypertension, immune system mechanisms are activated and both the innate and adaptive immune responses play a crucial role. However, what, when and how the immune system is triggered during hypertension development is still largely undefined. In this context, this review highlights scientific advances in the manipulation of the immune system in order to attenuate hypertension and end-organ damage. Here, we discuss the potential use of immunosuppressants and immunomodulators as pharmacological tools to control the activation of the immune system, by non-specific and specific mechanisms, to treat hypertension and improve end-organ damage. Nevertheless, more clinical trials should be performed with these drugs to establish their therapeutic efficacy, safety and risk-benefit ratio in hypertensive conditions. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
| | - Stefany Bruno Assis Cau
- Department of Pharmacology, Institute of Biological ScienceFederal University of Minas GeraisBelo HorizonteMGBrazil
| | - Alexandre Santos Bruno
- Department of Pharmacology, Institute of Biological ScienceFederal University of Minas GeraisBelo HorizonteMGBrazil
| | - Aline Garcia Fedoce
- Department of Pharmacology, Ribeirão Preto Medical SchoolUniversity of São PauloSão PauloBrazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirão Preto Medical SchoolUniversity of São PauloSão PauloBrazil
| |
Collapse
|
17
|
Legere SA, Haidl ID, Légaré JF, Marshall JS. Mast Cells in Cardiac Fibrosis: New Insights Suggest Opportunities for Intervention. Front Immunol 2019; 10:580. [PMID: 31001246 PMCID: PMC6455071 DOI: 10.3389/fimmu.2019.00580] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MC) are innate immune cells present in virtually all body tissues with key roles in allergic disease and host defense. MCs recognize damage-associated molecular patterns (DAMPs) through expression of multiple receptors including Toll-like receptors and the IL-33 receptor ST2. MCs can be activated to degranulate and release pre-formed mediators, to synthesize and secrete cytokines and chemokines without degranulation, and/or to produce lipid mediators. MC numbers are generally increased at sites of fibrosis. They are potent, resident, effector cells producing mediators that regulate the fibrotic process. The nature of the secretory products produced by MCs depend on micro-environmental signals and can be both pro- and anti-fibrotic. MCs have been repeatedly implicated in the pathogenesis of cardiac fibrosis and in angiogenic responses in hypoxic tissues, but these findings are controversial. Several rodent studies have indicated a protective role for MCs. MC-deficient mice have been reported to have poorer outcomes after coronary artery ligation and increased cardiac function upon MC reconstitution. In contrast, MCs have also been implicated as key drivers of fibrosis. MC stabilization during a hypertensive rat model and an atrial fibrillation mouse model rescued associated fibrosis. Discrepancies in the literature could be related to problems with mouse models of MC deficiency. To further complicate the issue, mice generally have a much lower density of MCs in their cardiac tissue than humans, and as such comparing MC deficient and MC containing mouse models is not necessarily reflective of the role of MCs in human disease. In this review, we will evaluate the literature regarding the role of MCs in cardiac fibrosis with an emphasis on what is known about MC biology, in this context. MCs have been well-studied in allergic disease and multiple pharmacological tools are available to regulate their function. We will identify potential opportunities to manipulate human MC function and the impact of their mediators with a view to preventing or reducing harmful fibrosis. Important therapeutic opportunities could arise from increased understanding of the impact of such potent, resident immune cells, with the ability to profoundly alter long term fibrotic processes.
Collapse
Affiliation(s)
- Stephanie A. Legere
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Ian D. Haidl
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jean-François Légaré
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Surgery, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Jean S. Marshall
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
18
|
Alegría-Herrera E, Herrera-Ruiz M, Román-Ramos R, Zamilpa A, Santillán-Urquiza MA, Aguilar MI, Avilés-Flores M, Fuentes-Mata M, Jiménez-Ferrer E. Effect of Ocimum basilicum, Ocimum selloi, and Rosmarinic Acid on Cerebral Vascular Damage in a Chronic Hypertension Model. Biol Pharm Bull 2019; 42:201-211. [PMID: 30713252 DOI: 10.1248/bpb.b18-00574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The main objective of treatment against hypertension is not only to reduce blood pressure levels, but also to reduce vascular risk in general. In the present work, administering angiotensin II (AGII; 0.2 µg/kg intraperitoneally (i.p.) for 12 weeks) activates the hypothalamic-pituitary-adrenal (HPA) axis, which caused an increase in corticosterone levels, as well as in proinflammatory cytokines (interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α)) and macrophage chemotactic protein 1 (MCP-1), and decreased anti-inflammatory cytokines (interleukin 10 (IL-10) and interleukin 4 (IL-4)). On observing the behavior in the different models, an anxiogenic effect (elevated plus maze (EPM)) and cognitive impairment (water Morris maze (WMM)) was observed in animals with AGII. By administering organic extracts from Ocimum basilicum (Oba-EtOAc) and Ocimum selloi (Ose-EtOAc), and some doses of rosmarinic acid (RA) (6 weeks per os (p.o.)), the damage caused by AGII was stopped by re-establishing corticosterone serum levels and by decreasing the proinflammatory cytokines and MCP-1.
Collapse
Affiliation(s)
- Elian Alegría-Herrera
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS)
- Doctorado en Ciencias Biológicas y de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa
- Departamento Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS)
| | - Rubén Román-Ramos
- Departamento Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS)
| | | | - María Isabel Aguilar
- Laboratorio 111, Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México
| | | | | | | |
Collapse
|
19
|
Zacharia E, Papageorgiou N, Ioannou A, Siasos G, Papaioannou S, Vavuranakis M, Latsios G, Vlachopoulos C, Toutouzas K, Deftereos S, Providência R, Tousoulis D. Inflammatory Biomarkers in Atrial Fibrillation. Curr Med Chem 2019; 26:837-854. [PMID: 28748764 DOI: 10.2174/0929867324666170727103357] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/20/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022]
Abstract
During the last few years, a significant number of studies have attempted to clarify the underlying mechanisms that lead to the presentation of atrial fibrillation (AF). Inflammation is a key component of the pathophysiological processes that lead to the development of AF; the amplification of inflammatory pathways triggers AF, and, in tandem, AF increases the inflammatory state. Indeed, the plasma levels of several inflammatory biomarkers are elevated in patients with AF. In addition, the levels of specific inflammatory biomarkers may provide information regarding to the AF duration. Several small studies have assessed the role of anti-inflammatory treatment in atrial fibrillation but the results have been contradictory. Large-scale studies are needed to evaluate the role of inflammation in AF and whether anti-inflammatory medications should be routinely administered to patients with AF.
Collapse
Affiliation(s)
- Effimia Zacharia
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | | | | | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Spyridon Papaioannou
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Manolis Vavuranakis
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - George Latsios
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | | | - Konstantinos Toutouzas
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Spyridon Deftereos
- Department of Cardiology, "G. Gennimatas" General Hospital of Athens, 154 Mesogion ave., 115 27, Athens, Greece
| | - Rui Providência
- Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| |
Collapse
|
20
|
Haspula D, Clark MA. Molecular Basis of the Brain Renin Angiotensin System in Cardiovascular and Neurologic Disorders: Uncovering a Key Role for the Astroglial Angiotensin Type 1 Receptor AT1R. J Pharmacol Exp Ther 2018; 366:251-264. [PMID: 29752427 DOI: 10.1124/jpet.118.248831] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
The central renin angiotensin system (RAS) is one of the most widely investigated cardiovascular systems in the brain. It is implicated in a myriad of cardiovascular diseases. However, studies from the last decade have identified its involvement in several neurologic abnormalities. Understanding the molecular functionality of the various RAS components can thus provide considerable insight into the phenotypic differences and mechanistic drivers of not just cardiovascular but also neurologic disorders. Since activation of one of its primary receptors, the angiotensin type 1 receptor (AT1R), results in an augmentation of oxidative stress and inflammatory cytokines, it becomes essential to investigate not just neuronal RAS but glial RAS as well. Glial cells are key homeostatic regulators in the brain and are critical players in the resolution of overt oxidative stress and neuroinflammation. Designing better and effective therapeutic strategies that target the brain RAS could well hinge on understanding the molecular basis of both neuronal and glial RAS. This review provides a comprehensive overview of the major studies that have investigated the mechanisms and regulation of the brain RAS, and it also provides insight into the potential role of glial AT1Rs in the pathophysiology of cardiovascular and neurologic disorders.
Collapse
Affiliation(s)
- Dhanush Haspula
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| | - Michelle A Clark
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| |
Collapse
|
21
|
Cambier L, Giani JF, Liu W, Ijichi T, Echavez AK, Valle J, Marbán E. Angiotensin II-Induced End-Organ Damage in Mice Is Attenuated by Human Exosomes and by an Exosomal Y RNA Fragment. Hypertension 2018; 72:370-380. [PMID: 29866742 DOI: 10.1161/hypertensionaha.118.11239] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 01/06/2023]
Abstract
Hypertension often leads to cardiovascular disease and kidney dysfunction. Exosomes secreted from cardiosphere-derived cells (CDC-exo) and their most abundant small RNA constituent, the Y RNA fragment EV-YF1, exert therapeutic benefits after myocardial infarction. Here, we investigated the effects of CDC-exo and EV-YF1, each administered individually, in a model of cardiac hypertrophy and kidney injury induced by chronic infusion of Ang (angiotensin) II. After 2 weeks of Ang II, multiple doses of CDC-exo or EV-YF1 were administered retro-orbitally. Ang II infusion induced an elevation in systolic blood pressure that was not affected by CDC-exo or EV-YF1. Echocardiography confirmed that Ang II infusion led to cardiac hypertrophy. CDC-exo and EV-YF1 both attenuated cardiac hypertrophy and reduced cardiac inflammation and fibrosis. In addition, both CDC-exo and EV-YF1 improved kidney function and diminished renal inflammation and fibrosis. The beneficial effects of CDC-exo and EV-YF1 were associated with changes in the expression of the anti-inflammatory cytokine IL (interleukin)-10 in plasma, heart, spleen, and kidney. In summary, infusions of CDC-exo or EV-YF1 attenuated cardiac hypertrophy and renal injury induced by Ang II infusion, without affecting blood pressure, in association with altered IL-10 expression. Exosomes and their defined noncoding RNA contents may represent potential new therapeutic approaches for hypertension-associated cardiovascular and renal damage.
Collapse
Affiliation(s)
- Linda Cambier
- From the Smidt Heart Institute (L.C., W.L., T.I., A.K.E., J.V., E.M.).,Department of Biomedical Sciences (L.C., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jorge F Giani
- Department of Biomedical Sciences (L.C., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Weixin Liu
- From the Smidt Heart Institute (L.C., W.L., T.I., A.K.E., J.V., E.M.)
| | - Takeshi Ijichi
- From the Smidt Heart Institute (L.C., W.L., T.I., A.K.E., J.V., E.M.)
| | - Antonio K Echavez
- From the Smidt Heart Institute (L.C., W.L., T.I., A.K.E., J.V., E.M.)
| | - Jackelyn Valle
- From the Smidt Heart Institute (L.C., W.L., T.I., A.K.E., J.V., E.M.)
| | - Eduardo Marbán
- From the Smidt Heart Institute (L.C., W.L., T.I., A.K.E., J.V., E.M.)
| |
Collapse
|
22
|
Zhou P, Lu S, Luo Y, Wang S, Yang K, Zhai Y, Sun G, Sun X. Attenuation of TNF-α-Induced Inflammatory Injury in Endothelial Cells by Ginsenoside Rb1 via Inhibiting NF-κB, JNK and p38 Signaling Pathways. Front Pharmacol 2017; 8:464. [PMID: 28824425 PMCID: PMC5540891 DOI: 10.3389/fphar.2017.00464] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022] Open
Abstract
It is currently believed that inflammation plays a central role in the pathophysiology of atherosclerosis. Oxidative stress and redox-sensitive transcription factors are implicated in the process. Ginsenoside Rb1, a major active ingredient in processed Radix notoginseng, has attracted widespread attention because of its potential to improve cardiovascular function. However, the effects of ginsenoside Rb1 on tumor necrosis factor-α (TNF-α)-induced vascular endothelial cell injury and the underlying molecular mechanisms have never been studied. This study showed that TNF-α-induced oxidative stress, inflammation and apoptosis in human umbilical vein endothelial cells (HUVECs) could be attenuated by ginsenoside Rb1 pretreatment. Using JC-1, Annexin V/PI and TUNEL staining, and a caspase-3 activity assay, we found that Rb1 provided significant protection against TNF-α-induced cell death. Furthermore, Rb1 pretreatment could inhibit TNF-α-induced ROS and MDA production; increase the activities of SOD, CAT, and GSH-Px; and decrease the levels of IL-1β, IL-6, VCAM-1, ICAM-1, VEGF, MMP-2 and MMP-9. Importantly, the cytoprotective effects of Rb1 were correlated with NF-κB signaling pathway inhibition. Additionally, we found that Rb1 may suppress the NF-κB pathway through p-38 and JNK pathway activation, findings supported by the results of our experiments involving anisomycin (AM), a JNK and p38 activator. In conclusion, this study showed that ginsenoside Rb1 protects HUVECs from TNF-α-induced oxidative stress and inflammation by inhibiting JNK and p38. This inhibition suppressed NF-κB signaling and down-regulated the expression of inflammatory factors and apoptosis-related proteins.
Collapse
Affiliation(s)
- Ping Zhou
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Shan Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Ke Yang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Yadong Zhai
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW With the intention to summarize the currently available evidence on the pathophysiological relevance of inflammation in heart failure, this review addresses the question whether inflammation is a cause or consequence of heart failure, or both. RECENT FINDINGS This review discusses the diversity (sterile, para-inflammation, chronic inflammation) and sources of inflammation and gives an overview of how inflammation (local versus systemic) can trigger heart failure. On the other hand, the review is outlined how heart failure-associated wall stress and signals released by stressed, malfunctioning, or dead cells (DAMPs: e.g., mitochondrial DNA, ATP, S100A8, matricellular proteins) induce cardiac sterile inflammation and how heart failure provokes inflammation in various peripheral tissues in a direct (inflammatory) and indirect (hemodynamic) manner. The crosstalk between the heart and peripheral organs (bone marrow, spleen, gut, adipose tissue) is outlined and the importance of neurohormonal mechanisms including the renin angiotensin aldosteron system and the ß-adrenergic nervous system in inflammation and heart failure is discussed. Inflammation and heart failure are strongly interconnected and mutually reinforce each other. This indicates the difficulty to counteract inflammation and heart failure once this chronic vicious circle has started and points out the need to control the inflammatory process at an early stage avoiding chronic inflammation and heart failure. The diversity of inflammation further addresses the need for a tailored characterization of inflammation enabling differentiation of inflammation and subsequent target-specific strategies. It is expected that the characterization of the systemic and/or cardiac immune profile will be part of precision medicine in the future of cardiology.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
24
|
Shi J, Dai W, Kloner RA. Therapeutic Hypothermia Reduces the Inflammatory Response Following Ischemia/Reperfusion Injury in Rat Hearts. Ther Hypothermia Temp Manag 2017; 7:162-170. [PMID: 28338422 DOI: 10.1089/ther.2016.0042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Therapeutic hypothermia (TH) is known to protect against ischemia/reperfusion (I/R) injury. One mechanism of I/R injury includes secondary injury due to the inflammatory cascade. We hypothesized that TH reduces the inflammatory response following I/R injury. Rats were randomized to sham, normothermic, or hypothermic groups and subjected to 1 hour of coronary artery occlusion and 48 hours of reperfusion. Hypothermia was initiated, using the ThermoSuit® device, 2 minutes after the onset of coronary artery occlusion to a core temperature of 32°C, and then the rats were allowed to rewarm. After 48 hours, rats in the hypothermia group demonstrated a preserved left ventricular fractional shortening by echocardiography. TH decreased the inflammatory cytokines in the risk zone of the heart, which included monocyte chemoattractant protein-1, interleukin-6, tumor necrosis factor-α, and inducible nitric oxide synthase gene expression, and altered expression of the remodeling genes of matrix metalloproteinase and tissue inhibitor of metalloproteinase. Furthermore, rat inflammatory cytokines & receptors PCR array was performed and the data showed that 71 out of 84 genes were upregulated in the risk zone of normothermia hearts versus shams. The upregulation was largely reversed in the risk zone of hypothermia hearts compared to normothermia. TH preserves cardiac function, decreases excessive inflammatory gene expression, and regulates myocardial matrix remodeling related genes.
Collapse
Affiliation(s)
- Jianru Shi
- 1 Huntington Medical Research Institutes , Pasadena, California.,2 Division of Cardiovascular Medicine, Department of Medicine of the Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Wangde Dai
- 1 Huntington Medical Research Institutes , Pasadena, California.,2 Division of Cardiovascular Medicine, Department of Medicine of the Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Robert A Kloner
- 1 Huntington Medical Research Institutes , Pasadena, California.,2 Division of Cardiovascular Medicine, Department of Medicine of the Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
25
|
Chen K, Zheng X, Feng M, Li D, Zhang H. Gut Microbiota-Dependent Metabolite Trimethylamine N-Oxide Contributes to Cardiac Dysfunction in Western Diet-Induced Obese Mice. Front Physiol 2017; 8:139. [PMID: 28377725 PMCID: PMC5359299 DOI: 10.3389/fphys.2017.00139] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/23/2017] [Indexed: 12/24/2022] Open
Abstract
Excessive consumption of diets high in sugars and saturated fat, frequently known as western diet (WD), may lead to obesity and metabolic syndrome. Recent evidence shows that WD-induced obesity impairs cardiac function, but the underlying mechanisms are not fully understood. Trimethylamine N-oxide (TMAO), a gut microbiota-dependent metabolite of specific dietary nutrients, has emerged as a key contributor to cardiovascular disease pathogenesis. We tested the hypothesis that elevated circulating TMAO levels contribute to cardiac dysfunction in WD-induced obesity. CD1 mice were fed a normal diet (ND) or a WD, without or with 1.0% 3,3-Dimethyl-1-butanol (DMB, an inhibitor of trimethylamine formation) in drinking water for 8 weeks. Compared with mice fed a ND, mice fed a WD showed a significant increase in body weight and dyslipidemia, and had markedly higher plasma TMAO levels at the end of the feeding protocol. Echocardiography revealed that cardiac systolic and diastolic function was impaired in mice fed a WD. DMB treatment had no effects on body weight and dyslipidemia, but significantly reduced plasma TMAO levels and prevented cardiac dysfunction in mice fed a WD. In addition, mice fed a WD had elevated expression of pro-inflammatory cytokines tumor necrosis factor-α and interleukin IL-1β, decreased expression of anti-inflammatory cytokine IL-10, and increased interstitial fibrosis in the hearts, all of which were prevented by DMB treatment. Notably, DMB treatment also reduced plasma TMAO levels in mice fed a ND but did not alter other parameters. These results suggest that consumption of a WD increases circulating TMAO levels, which lead to cardiac inflammation and fibrosis, contributing to cardiac dysfunction. Interventions that reduce circulating TMAO levels may be a novel therapeutic strategy for prevention and treatment of WD-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Kui Chen
- Department of Anesthesiology, Jining NO.1 People's Hospital Jining, China
| | - Xiaoqian Zheng
- Outpatient Department, Jining NO.1 People's Hospital Jining, China
| | - Mingchen Feng
- Department of Critical Care Medicine, Jining NO.1 People's Hospital Jining, China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University Jinan, China
| | - Hongqi Zhang
- Department of Anesthesiology, Jining NO.1 People's Hospital Jining, China
| |
Collapse
|
26
|
The role of macrophages in hypertension and its complications. Pflugers Arch 2017; 469:419-430. [PMID: 28251313 DOI: 10.1007/s00424-017-1950-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/17/2022]
Abstract
Circulating monocytes and tissue macrophages play complex roles in the pathogenesis of hypertension, a highly prevalent disease associated with catastrophic cardiovascular morbidity. In the vasculature and kidney, macrophage-derived reactive oxygen species (ROS) and inflammatory cytokines induce endothelial and epithelial dysfunction, respectively, resulting in vascular oxidative stress and impairment of sodium excretion. By contrast, VEGF-C-expressing macrophages in the skin can facilitate the removal of excess interstitial stores of sodium by stimulating lymphangiogenesis. Inappropriate activation of the renin-angiotensin system (RAS) contributes to essential hypertension in a majority of patients, and macrophages express the type 1 (AT1) receptor for angiotensin II (Ang II). While proinflammatory macrophages clearly contribute to RAS-dependent hypertension, activation of the AT1 receptor directly on macrophages suppresses their M1 polarization and limits tubular and interstitial damage to the kidney during hypertension. Thus, stimulating the macrophage AT1 receptor ameliorates the target organ damage and immune stimulation provoked by AT1 receptor activation in intrinsic renal and vascular cells. The proinflammatory cytokines TNF-α and IL-1β produced by M1 macrophages drive blood pressure elevation and consequent target organ damage. However, additional studies are needed to identify the tissues in which these cytokines act and the signaling pathways they stimulate during hypertension. Moreover, identifying the precise myeloid cell subsets that contribute to hypertension should guide the development of more precise immunomodulatory therapies for patients with persistent blood pressure elevation and progressive end-organ injury.
Collapse
|
27
|
Denney JM, Bird C, Gendron-Fitzpatrick A, Sampene E, Bird IM, Shah DM. Renin-angiotensin system transgenic mouse model recapitulates pathophysiology similar to human preeclampsia with renal injury that may be mediated through VEGF. Am J Physiol Renal Physiol 2016; 312:F445-F455. [PMID: 27927648 DOI: 10.1152/ajprenal.00108.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 11/07/2016] [Accepted: 11/26/2016] [Indexed: 11/22/2022] Open
Abstract
Using a transgenic cross, we evaluated features of preeclampsia, renal injury and the sFlt1/VEGF changes. Transgenic hAGT and hREN, or wild-type (WT) C57Bl/6 mice were cross-bred: female hAGT × male hREN for preeclampsia (PRE) model and female WT × male WT for pregnant controls (WTP). Samples were collected for plasma VEGF, sFlt1, and urine albumin. Blood pressures (BP) were monitored by telemetry. Vascular reactivity was investigated by wire myography. Kidneys and placenta were immunostained for sFlt1 and VEGF. Eleven PRE and 9 WTP mice were compared. PRE more frequently demonstrated albuminuria, glomerular endotheliosis (80% vs. 11%; P = 0.02), and placental necrosis (60% vs. 0%; P < 0.01). PRE group demonstrated declining BPs with advancing gestation. Plasma sFlt1 increased across pregnancy in PRE; VEGF did not vary. IHC demonstrated the presence of sFlt1 in glomeruli, lymphatics, and collecting tubules of PRE kidneys, suggesting excretion. VEGF immunostaining was increased specifically in the glomeruli of PRE kidneys. Placenta in PRE showed marked immunostaining for sFlt1. We conclude that this transgenic model of preeclampsia recapitulates human preeclamptic state with high fidelity, and that, vascular adaptation to pregnancy is suggested by declining BPs and reduced vascular response to PE and increased response to acetylcholine. Placental damage with resultant increased release of sFlt1, proteinuria, deficient spiral artery remodeling, and glomerular endotheliosis were observed in this model of PRE. Increased VEGF binding to glomerular endothelial cells in this model of PRE is similar to human PRE and leads us to hypothesize that renal injury in preeclampsia may be mediated through local VEGF.
Collapse
Affiliation(s)
- J Morgan Denney
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, University of Wisconsin School of Medicine and Public Health-Madison, Madison, Wisconsin
| | - Cynthia Bird
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, University of Wisconsin School of Medicine and Public Health-Madison, Madison, Wisconsin
| | - Annette Gendron-Fitzpatrick
- Comparative Pathology Laboratory, Research Animal Resource Center, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Emmanuel Sampene
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, University of Wisconsin School of Medicine and Public Health-Madison, Madison, Wisconsin
| | - Ian M Bird
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Wisconsin School of Medicine and Public Health-Madison, Madison, Wisconsin
| | - Dinesh M Shah
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, University of Wisconsin School of Medicine and Public Health-Madison, Madison, Wisconsin;
| |
Collapse
|
28
|
Pentoxifylline Ameliorates Cardiac Fibrosis, Pathological Hypertrophy, and Cardiac Dysfunction in Angiotensin II-induced Hypertensive Rats. J Cardiovasc Pharmacol 2016; 67:76-85. [PMID: 26340750 DOI: 10.1097/fjc.0000000000000316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inflammation induces cardiac fibrosis and hypertrophy in multiple cardiovascular diseases, contributing to cardiac dysfunction. We tested the hypothesis that pentoxifylline (PTX), a phosphodiesterase inhibitor with anti-inflammatory property, would attenuate cardiac fibrosis and hypertrophy, and prevent cardiac dysfunction in angiotensin (ANG) II-induced hypertensive rats. Sprague-Dawley rats were divided into control and ANG II-infused groups treated with or without PTX for 2 weeks. PTX had no effect on ANG II-induced hypertension, but significantly attenuated cardiac fibrosis and hypertrophy, and ameliorated cardiac dysfunction in ANG II-induced hypertensive rats. In addition, ANG II-induced increase in circulating and cardiac proinflammatory cytokines were attenuated by PTX, which reduced cardiac nuclear factor-kappa B activity. Furthermore, PTX decreased cardiac expression of genetic markers important for fibrosis, hypertrophy, and endothelial dysfunction, and reduced migration and infiltration of macrophages. In contrast, PTX had no effects on the above parameters in control rats. The findings suggest that PTX ameliorates cardiac fibrosis, pathological hypertrophy, and cardiac dysfunction by suppressing inflammatory responses in angiotensin II-induced hypertension, and that these benefits were independent of the blood pressure lowering effect. The PTX by its anti-inflammatory property may be a potential therapeutic option for the prevention of cardiac remodeling and dysfunction in ANG II-induced hypertension.
Collapse
|
29
|
Interleukin-10 deficiency aggravates angiotensin II-induced cardiac remodeling in mice. Life Sci 2016; 146:214-21. [DOI: 10.1016/j.lfs.2016.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 12/01/2015] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
|
30
|
Nair AR, Ebenezer PJ, Saini Y, Francis J. Angiotensin II-induced hypertensive renal inflammation is mediated through HMGB1-TLR4 signaling in rat tubulo-epithelial cells. Exp Cell Res 2015; 335:238-47. [PMID: 26033363 DOI: 10.1016/j.yexcr.2015.05.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/27/2015] [Accepted: 05/13/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Angiotensin II is a vaso-constrictive peptide that regulates blood pressure homeostasis. Even though the inflammatory effects of AngII in renal pathophysiology have been studied, there still exists a paucity of data with regard to the mechanism of action of AngII-mediated kidney injury. The objective of this study was to elucidate the mechanistic role of HMGB1-TLR4 signaling in AngII-induced inflammation in the kidney. EXPERIMENTAL APPROACH Rat tubular epithelial cells (NRK52E) were treated with AngII over a preset time-course. In another set of experiments, HMGB1 was neutralized and TLR4 was knocked down using small interfering RNA targeting TLR4. Cell extracts were subjected to RT-PCR, immunoblotting, flow cytometry, and ELISA. KEY RESULTS AngII-induced inflammation in NRK52E cells increased gene and protein expression of TLR4, HMGB1 and key proinflammatory cytokines (TNFα and IL1β). Pretreatment with Losartan (an AT1 receptor blocker) attenuated the AngII-induced expression of TLR4 and inflammatory cytokines. TLR4 silencing was used to elucidate the specific role played by TLR4 in AngII-induced inflammation. TLR4siRNA treatment in these cells significantly decreased the AngII-induced inflammatory effect. Consistent observations were made when the Ang II treated cells were pretreated with anti-HMGB1. Downstream activation of NFκB and rate of generation of ROS was also decreased on gene silencing of TLR4 and exposure to anti-HMGB1. CONCLUSIONS AND IMPLICATIONS These results indicate a key role for HMGB1-TLR4 signaling in AngII-mediated inflammation in the renal epithelial cells. Our data also reveal that AngII-induced effects could be alleviated by HMGB1-TLR4 inhibition, suggesting this pathway as a potential therapeutic target for hypertensive renal dysfunctions.
Collapse
Affiliation(s)
- Anand R Nair
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Philip J Ebenezer
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Yogesh Saini
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Joseph Francis
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
31
|
Matsuda S, Umemoto S, Yoshimura K, Itoh S, Murata T, Fukai T, Matsuzaki M. Angiotensin Ⅱ Activates MCP-1 and Induces Cardiac Hypertrophy and Dysfunction via Toll-like Receptor 4. J Atheroscler Thromb 2015; 22:833-44. [PMID: 25752363 DOI: 10.5551/jat.27292] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM Angiotensin Ⅱ(Ang Ⅱ) produces reactive oxygen species (ROS), thus contributing to the development of cardiac hypertrophy and subsequent heart failure, and stimulates the expression of monocyte chemoattractant protein-1 (MCP-1). In addition, Toll-like receptor 4 (TLR4) is involved in the upregulation of MCP-1. In order to clarify whether TLR4 is involved in the onset of cardiac dysfunction caused by Ang Ⅱ stimulation, we investigated the effects of TLR4 on oxidative stress, the MCP-1 expression and cardiac dysfunction in mice with Ang Ⅱ-induced hypertension. METHODS TLR4-deficient (Tlr4(lps-d)) and wild-type (WT) mice were randomized into groups treated with Ang Ⅱ, norepinephrine (NE) or a subdepressor dose of the Ang Ⅱreceptor blocker irbesartan (IRB) and Ang Ⅱ for two weeks. RESULTS Ang Ⅱ and NE similarly increased systolic blood pressure in all drug-treated groups compared to that observed in the control group among both WT and Tlr4(lps-d) mice (p<0.05). In the WT mice, Ang Ⅱ induced cardiac hypertrophy as well as vascular remodeling and perivascular fibrosis of the intramyocardial arteries and monocyte/macrophage infiltration in the heart (p<0.05). Furthermore, Ang Ⅱ treatment decreased the left ventricular diastolic function and resulted in a greater left ventricular end-systolic dimension (p<0.05) in addition to producing a five-fold increase in the NADPH oxidase activity, ROS content and MCP-1 expression (p<0.05). In contrast, the Tlr4(lps-d) mice showed little effects of Ang Ⅱ on these indices. In the WT mice, IRB treatment reversed these changes compared to that seen in the mice treated with Ang Ⅱ alone. NE produced little effect on any of the indices in either the WT or Tlr4(lps-d) mice. CONCLUSIONS TLR4 may be involved in the processes underlying the increased oxidative stress, selectively activated MCP-1 expression and cardiac hypertrophy and dysfunction seen in cases of Ang Ⅱ- induced hypertension.
Collapse
Affiliation(s)
- Susumu Matsuda
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. However, the development of preventative therapies for AF has been disappointing. The infiltration of immune cells and proteins that mediate the inflammatory response in cardiac tissue and circulatory processes is associated with AF. Furthermore, the presence of inflammation in the heart or systemic circulation can predict the onset of AF and recurrence in the general population, as well as in patients after cardiac surgery, cardioversion, and catheter ablation. Mediators of the inflammatory response can alter atrial electrophysiology and structural substrates, thereby leading to increased vulnerability to AF. Inflammation also modulates calcium homeostasis and connexins, which are associated with triggers of AF and heterogeneous atrial conduction. Myolysis, cardiomyocyte apoptosis, and the activation of fibrotic pathways via fibroblasts, transforming growth factor-β and matrix metalloproteases are also mediated by inflammatory pathways, which can all contribute to structural remodelling of the atria. The development of thromboembolism, a detrimental complication of AF, is also associated with inflammatory activity. Understanding the complex pathophysiological processes and dynamic changes of AF-associated inflammation might help to identify specific anti-inflammatory strategies for the prevention of AF.
Collapse
|
33
|
Duerrschmid C, Trial J, Wang Y, Entman ML, Haudek SB. Tumor necrosis factor: a mechanistic link between angiotensin-II-induced cardiac inflammation and fibrosis. Circ Heart Fail 2014; 8:352-61. [PMID: 25550440 DOI: 10.1161/circheartfailure.114.001893] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Continuous angiotensin-II infusion induced the uptake of monocytic fibroblast precursors that initiated the development of cardiac fibrosis; these cells and concurrent fibrosis were absent in mice lacking tumor necrosis factor receptor 1 (TNFR1). We now investigated their cellular origin and temporal uptake and the involvement of TNFR1 in monocyte-to-fibroblast differentiation. METHODS AND RESULTS Within a day, angiotensin-II induced a proinflammatory environment characterized by production of inflammatory chemokines, cytokines, and TH1-interleukins and uptake of bone marrow-derived M1 cells. After a week, the cardiac environment changed to profibrotic with growth factor and TH2-interleukin synthesis, uptake of bone marrow-derived M2 cells, and the presence of M2-related fibroblasts. TNFR1 signaling was not necessary for early M1 uptake, but its absence diminished the amount of M2 cells. TNFR1-knockout hearts also showed reduced levels of cytokine expression, but not of TH-related lymphokines. Reconstitution of wild-type bone marrow into TNFR1-knockout mice was sufficient to restore M2 uptake, upregulation of proinflammatory and profibrotic genes, and development of fibrosis in response to angiotensin-II. We also developed an in vitro mouse monocyte-to-fibroblast maturation assay that confirmed the essential role of TNFR1 in the sequential progression of monocyte activation and fibroblast formation. CONCLUSIONS Development of cardiac fibrosis in response to angiotensin-II was mediated by myeloid precursors and consisted of 2 stages. A primary M1 inflammatory response was followed by a subsequent M2 fibrotic response. Although the first phase seemed to be independent of TNFR1 signaling, the later phase (and development of fibrosis) was abrogated by deletion of TNFR1.
Collapse
Affiliation(s)
- Clemens Duerrschmid
- From the Division of Cardiovascular Sciences (C.D., J.T., M.L.E., S.B.H.) and Division of Nephrology (Y.W.), Department of Medicine, Baylor College of Medicine, Houston, TX
| | - JoAnn Trial
- From the Division of Cardiovascular Sciences (C.D., J.T., M.L.E., S.B.H.) and Division of Nephrology (Y.W.), Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Yanlin Wang
- From the Division of Cardiovascular Sciences (C.D., J.T., M.L.E., S.B.H.) and Division of Nephrology (Y.W.), Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Mark L Entman
- From the Division of Cardiovascular Sciences (C.D., J.T., M.L.E., S.B.H.) and Division of Nephrology (Y.W.), Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Sandra B Haudek
- From the Division of Cardiovascular Sciences (C.D., J.T., M.L.E., S.B.H.) and Division of Nephrology (Y.W.), Department of Medicine, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
34
|
Kul S, Guvenc TS, Uyarel H. Speckle tracking echocardiography in cardiac sarcoidosis. Int J Cardiol 2014; 176:1329-30. [DOI: 10.1016/j.ijcard.2014.07.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/27/2014] [Indexed: 02/07/2023]
|
35
|
Morales MG, Abrigo J, Meneses C, Cisternas F, Simon F, Cabello-Verrugio C. Expression of the Mas receptor is upregulated in skeletal muscle wasting. Histochem Cell Biol 2014; 143:131-41. [DOI: 10.1007/s00418-014-1275-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2014] [Indexed: 12/13/2022]
|
36
|
Angiotensin converting enzyme is involved in the cardiac hypertrophy induced by sinoaortic denervation in rats. Cardiovasc Pathol 2014; 24:41-8. [PMID: 25261879 DOI: 10.1016/j.carpath.2014.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/11/2014] [Accepted: 08/25/2014] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The present study was designed to test the hypothesis that local angiotensin converting enzyme (ACE) was involved in the cardiac hypertrophy induced by sinoaortic denervation (SAD) in rats. METHODS Experiment 1: Six weeks after SAD of rats, components of renin-angiotensin system (RAS) in left ventricles were assayed by quantitative real-time PCR and Western blotting analysis. Experiment 2: Rats were divided into five groups treated as follows: (1) sham-operated group; (2) SAD group; (3) SAD group treated with angiotensin II type 1 receptor (AT1R) antagonist losartan (10 mg·kg(-1)·day(-1), orally); (4) SAD group treated by ACE inhibitor ramipril (1 mg·kg(-1)·day(-1), orally); (5) SAD group treated by ramipril and the B2-kinin receptor selective antagonist HOE-140 (0.25 mg·kg(-1)·day(-1), subcutaneously). RESULTS SAD led to augmentation of the mRNA levels and protein expression of left ventricular ACE and AT1R. Both losartan and ramipril ameliorated SAD-induced left ventricular hypertrophy. Both losartan and ramipril abated oxidative stress, suppressed inflammation, and reduced expression TGFβ-R in left ventricles. In addition, the protective effect of ramipril could be abolished by HOE-140. CONCLUSION Local ACE is involved in the left ventricular hypertrophy induced by sinoaortic denervation in rats, via both angiotensin II/AT1R and bradykinin/B2R pathways.
Collapse
|