1
|
Basak S, Kumar Dixit A, Kumar Dey R, Roy S, Singh R, Nair PG, Kumar S, Babu G. Rodent models in polycystic ovarian syndrome: Dissecting reproductive and metabolic phenotypes for therapeutic advancements. Steroids 2024; 211:109489. [PMID: 39117289 DOI: 10.1016/j.steroids.2024.109489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The most prevalent reason for female infertility is polycystic ovarian syndrome (PCOS) exhibiting two of three phenotypes including biochemical or clinical hyperandrogenism, anovulation and polycystic ovaries. Insulin resistance and obesity are common in PCOS-afflicted women. Androgens are thought to be the primary cause of PCOS causing symptoms including anovulation, follicles that resemble cysts, higher levels of the luteinizing hormone (LH), increased adiposity, and insulin resistance. However, due to the heterogeneity of PCOS, it is challenging to establish a single model that accurately mimics all the reproductive and metabolic phenotypes seen in PCOS patients. In this review, we aimed to investigate rodent models of PCOS and related phenotypes with or without direct hormonal treatments and to determine the underlying mechanisms to comprehend PCOS better. We summarized rodent models of PCOS that includes direct and indirect hormone intervention and discussed the aetiology of PCOS and related phenotypes produced in rodent models. We presented combined insights on multiple rodent models of PCOS and compared their reproductive and/or metabolic phenotypes. Our review indicates that there are various models for studying PCOS and one should select a model most suitable for their purpose. This review will be helpful for consideration of rodent models for PCOS which are not conventionally used to determine mechanisms at the molecular/cellular levels encouraging development of novel treatments and control methods for PCOS.
Collapse
Affiliation(s)
- Smarto Basak
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Amit Kumar Dixit
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India.
| | - Ranjit Kumar Dey
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Susmita Roy
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Rahul Singh
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Parvathy G Nair
- National Ayurveda Research Institute for Panchakarma, CCRAS, Kerala, India
| | - Sanjay Kumar
- Central Council for Research in Ayurvedic Sciences, Janakpuri, New Delhi, India
| | - Gajji Babu
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Luo M, Yang X, Zhou M, Zhang J, Yu B, Lian H, Ye J. Integrated single-cell and spatial transcriptomics reveal microenvironment disruptions by androgen in mouse ovary. iScience 2024; 27:111028. [PMID: 39429789 PMCID: PMC11490719 DOI: 10.1016/j.isci.2024.111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Elevated levels of androgen are risk factors for disrupted follicular maturation in the polycystic ovary syndrome (PCOS), a reproductive disease in women. As essential cell types for follicular maturation, granulosa and thecal cells respond to androgen, but their responses are unclear at the subpopulation level. Using single-cell RNA sequencing and spatial transcriptomics, we examined the subpopulation and function alterations in an androgen-induced PCOS-like mouse model. The results demonstrated that the granulosa cell subset 5 (GC5) was active in inflammation and the thecal cell subtype 2 (TC2) had an enhanced activity in lipid metabolism. The two subsets were expanded in population size and intercellular signaling pathways, such as Ptn-Ncl and Mdk-Ncl. The results reveal that androgen induced landscape and function shifts in the two cell types under the condition of impaired follicular maturation. The study characterizes the ovarian microenvironment in responses to androgen in PCOS mice.
Collapse
Affiliation(s)
- Man Luo
- Institute of Trauma and Metabolism, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Mengsi Zhou
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Jing Zhang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230036, China
| | - Biao Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
| | - Hongkai Lian
- Institute of Trauma and Metabolism, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Jianping Ye
- Institute of Trauma and Metabolism, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Zhengzhou Key Laboratory for Obesity Research, Zhengzhou 450007, China
| |
Collapse
|
3
|
Zhang Y, Zhao X, Ge D, Huang Y, Yao Q. The impact and mechanism of nerve injury on bone metabolism. Biochem Biophys Res Commun 2024; 704:149699. [PMID: 38412668 DOI: 10.1016/j.bbrc.2024.149699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
With an increasing understanding of the mechanisms of fracture healing, it has been found that nerve injury plays a crucial role in the process, but the specific mechanism is yet to be completely revealed. To address this issue and provide novel insights for fracture treatment, we compiled this review. This review aims to study the impact of nerve injury on fracture healing, exploring the role of neurotrophic factors in the healing process. We first revisited the effects of the central nervous system (CNS) and the peripheral nervous system (PNS) on the skeletal system, and further explained the phenomenon of significantly accelerated fracture healing under nerve injury conditions. Then, from the perspective of neurotrophic factors, we delved into the physiological functions and mechanisms of neurotrophic factors, such as nerve growth factor (NGF), Neuropeptides (NPs), and Brain-derived neurotrophic factor (BDNF), in bone metabolism. These effects include direct actions on bone cells, improvement of local blood supply, regulation of bone growth factors, control of cellular signaling pathways, promotion of callus formation and bone regeneration, and synergistic or antagonistic effects with other endocrine factors, such as Sema3A and Transforming Growth Factor β (TGF-β). Finally, we discussed the treatments of fractures with nerve injuries and the future research directions in this review, suggesting that the relationship between nerve injury and fracture healing, as well as the role of nerve injury in other skeletal diseases.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Xiao Zhao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Dawei Ge
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals & Materials and Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China.
| |
Collapse
|
4
|
Robeva R, Elenkova A, Kirilov G, Zacharieva S. Plasma-free metanephrines, nerve growth factor, and renalase significance in patients with PCOS. Endocrine 2023; 81:602-612. [PMID: 37248367 PMCID: PMC10226715 DOI: 10.1007/s12020-023-03404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Polycystic ovarian syndrome (PCOS) is a common heterogeneous condition with probably multifactorial genesis. Animal studies have proven the essential role of the sympathetic nervous system in the syndrome development, while human studies are still contradictory. The present study aims to investigate the possible influence of plasma-free metanephrine (MN), and normetanephrine (NMN), nerve growth factor (NGF), and renalase (RNL) on the hormonal and metabolic parameters in women with PCOS and healthy controls. METHODS Fifty patients with PCOS and 30 healthy women participated in the study. The plasma-free MN and NMN, NGF, RNL, anti-Mullerian hormone (AMH), gonadotropin, androgen levels, and metabolic parameters were investigated. RESULTS Plasma-free NMN and NGF concentrations were increased in PCOS individuals, while RNL levels were decreased compared to healthy volunteers. Increased plasma-free NMN (OR = 1.0213 [95%CI 1.0064-1.0364], p = 0.005) and NGF (OR = 1.0078 [95%CI 1.0001-1.0155], p = 0.046) but not MN or RNL levels were associated with a higher risk of PCOS after adjustment for age. Plasma-free NMN levels were positively associated with the LH (r = +0.253; p = 0.039). androstenedione (r = +0.265; p = 0.029), 17-OH progesterone (r = +0.285; p = 0.024), NGF (r = +0.320; p = 0.008), and AMH (r = +0.417; p < 0.001) concentrations of the investigated women. RNL levels were inversely related to the BMI (r = -0.245; p = 0.029), HOMA-IR (r = -0.250; p = 0.030), free testosterone (r = -0.303; p = 0.006) levels. systolic (r = -0.294; p = 0.008) and diastolic (r = -0.342; p = 0.002) blood pressure. CONCLUSIONS Increased sympathetic noradrenergic activity and NGF synthesis might be related to the increased AMH and delta-4 androgen levels in a subgroup of PCOS patients. RNL levels might influence the metabolic status of PCOS patients. Further studies are needed to explore the significance of adrenal medullar and autonomic dysfunction for developing different PCOS phenotypes and their subsequent cardiovascular complications.
Collapse
Affiliation(s)
- Ralitsa Robeva
- Department of Endocrinology, Faculty of Medicine, Medical University - Sofia, USHATE "Acad. Iv. Penchev", 2, Zdrave Str., 1431, Sofia, Bulgaria.
| | - Atanaska Elenkova
- Department of Endocrinology, Faculty of Medicine, Medical University - Sofia, USHATE "Acad. Iv. Penchev", 2, Zdrave Str., 1431, Sofia, Bulgaria
| | - Georgi Kirilov
- Department of Endocrinology, Faculty of Medicine, Medical University - Sofia, USHATE "Acad. Iv. Penchev", 2, Zdrave Str., 1431, Sofia, Bulgaria
| | - Sabina Zacharieva
- Department of Endocrinology, Faculty of Medicine, Medical University - Sofia, USHATE "Acad. Iv. Penchev", 2, Zdrave Str., 1431, Sofia, Bulgaria
| |
Collapse
|
5
|
NGF and Its Role in Immunoendocrine Communication during Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24031957. [PMID: 36768281 PMCID: PMC9916855 DOI: 10.3390/ijms24031957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Nerve growth factor (NGF) was the first neurotrophin described. This neurotrophin contributes to organogenesis by promoting sensory innervation and angiogenesis in the endocrine and immune systems. Neuronal and non-neuronal cells produce and secrete NGF, and several cell types throughout the body express the high-affinity neurotrophin receptor TrkA and the low-affinity receptor p75NTR. NGF is essential for glucose-stimulated insulin secretion and the complete development of pancreatic islets. Plus, this factor is involved in regulating lipolysis and thermogenesis in adipose tissue. Immune cells produce and respond to NGF, modulating their inflammatory phenotype and the secretion of cytokines, contributing to insulin resistance and metabolic homeostasis. This neurotrophin regulates the synthesis of gonadal steroid hormones, which ultimately participate in the metabolic homeostasis of other tissues. Therefore, we propose that this neurotrophin's imbalance in concentrations and signaling during metabolic syndrome contribute to its pathophysiology. In the present work, we describe the multiple roles of NGF in immunoendocrine organs that are important in metabolic homeostasis and related to the pathophysiology of metabolic syndrome.
Collapse
|
6
|
Pei Y, Risal S, Jiang H, Lu H, Lindgren E, Stener-Victorin E, Deng Q. Transcriptomic survey of key reproductive and metabolic tissues in mouse models of polycystic ovary syndrome. Commun Biol 2023; 6:69. [PMID: 36653487 PMCID: PMC9849269 DOI: 10.1038/s42003-022-04362-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Excessive androgen production and obesity are key to polycystic ovary syndrome (PCOS) pathogenesis. Prenatal androgenized (PNA), peripubertal androgenized, and overexpression of nerve growth factor in theca cells (17NF) are commonly used PCOS-like mouse models and diet-induced maternal obesity model is often included for comparsion. To reveal the molecular features of these models, we have performed transcriptome survey of the hypothalamus, adipose tissue, ovary and metaphase II (MII) oocytes. The largest number of differentially expressed genes (DEGs) is found in the ovaries of 17NF and in the adipose tissues of peripubertal androgenized models. In contrast, hypothalamus is most affected in PNA and maternal obesity models suggesting fetal programming effects. The Ms4a6e gene, membrane-spanning 4-domains subfamily A member 6E, a DEG identified in the adipose tissue in all mouse models is also differently expressed in adipose tissue of women with PCOS, highlighting a conserved disease function. Our comprehensive transcriptomic profiling of key target tissues involved in PCOS pathology highlights the effects of developmental windows for androgen exposure and maternal obesity, and provides unique resource to investigate molecular mechanisms underlying PCOS pathogenesis.
Collapse
Affiliation(s)
- Yu Pei
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Center for molecular medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sanjiv Risal
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jiang
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Haojiang Lu
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Lindgren
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Stener-Victorin
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Qiaolin Deng
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Center for molecular medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Liu H, Li J, Chang X, He F, Ma J. Modeling Obesity-Associated Ovarian Dysfunction in Drosophila. Nutrients 2022; 14:nu14245365. [PMID: 36558524 PMCID: PMC9783805 DOI: 10.3390/nu14245365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
We perform quantitative studies to investigate the effect of high-calorie diet on Drosophila oogenesis. We use the central composite design (CCD) method to obtain quadratic regression models of body fat and fertility as a function of the concentrations of protein and sucrose, two major macronutrients in Drosophila diet, and treatment duration. Our results reveal complex interactions between sucrose and protein in impacting body fat and fertility when they are considered as an integrated physiological response. We verify the utility of our quantitative modeling approach by experimentally confirming the physiological responses-including increased body fat, reduced fertility, and ovarian insulin insensitivity-expected of a treatment condition identified by our modeling method. Under this treatment condition, we uncover a Drosophila oogenesis phenotype that exhibits an accumulation of immature oocytes and a halt in the production of mature oocytes, a phenotype that bears resemblance to key aspects of the human condition of polycystic ovary syndrome (PCOS). Our analysis of the dynamic progression of different aspects of diet-induced pathophysiology also suggests an order of the onset timing for obesity, ovarian dysfunction, and insulin resistance. Thus, our study documents the utility of quantitative modeling approaches toward understanding the biology of Drosophila female reproduction, in relation to diet-induced obesity and type II diabetes, serving as a potential disease model for human ovarian dysfunction.
Collapse
Affiliation(s)
- Huanju Liu
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
| | - Jiajun Li
- ZJU-UOE Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Xinyue Chang
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
| | - Feng He
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
- Correspondence: (F.H.); (J.M.)
| | - Jun Ma
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou 310058, China
- Women’s Reproductive Health Research Laboratory of Zhejiang Province, Hangzhou 310006, China
- Zhejiang University-University of Toronto Joint Institute of Genetics and Genome Medicine, Hangzhou 310058, China
- Correspondence: (F.H.); (J.M.)
| |
Collapse
|
8
|
Björkgren I, Chung DH, Mendoza S, Gabelev-Khasin L, Petersen NT, Modzelewski A, He L, Lishko PV. Alpha/Beta Hydrolase Domain-Containing Protein 2 Regulates the Rhythm of Follicular Maturation and Estrous Stages of the Female Reproductive Cycle. Front Cell Dev Biol 2021; 9:710864. [PMID: 34568325 PMCID: PMC8455887 DOI: 10.3389/fcell.2021.710864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Mammalian female fertility is defined by a successful and strictly periodic ovarian cycle, which is under the control of gonadotropins and steroid hormones, particularly progesterone and estrogen. The latter two are produced by the ovaries that are engaged in controlled follicular growth, maturation, and release of the eggs, i.e., ovulation. The steroid hormones regulate ovarian cycles via genomic signaling, by altering gene transcription and protein synthesis. However, despite this well-studied mechanism, steroid hormones can also signal via direct, non-genomic action, by binding to their membrane receptors. Here we show, that the recently discovered membrane progesterone receptor α/β hydrolase domain-containing protein 2 (ABHD2) is highly expressed in mammalian ovaries where the protein plays a novel regulatory role in follicle maturation and the sexual cycle of females. Ablation of Abhd2 caused a dysregulation of the estrous cycle rhythm with females showing shortened luteal stages while remaining in the estrus stage for a longer time. Interestingly, the ovaries of Abhd2 knockout (KO) females resemble polycystic ovary morphology (PCOM) with a high number of atretic antral follicles that could be rescued with injection of gonadotropins. Such a procedure also allowed Abhd2 KO females to ovulate a significantly increased number of mature and fertile eggs in comparison with their wild-type littermates. These results suggest a novel regulatory role of ABHD2 as an important factor in non-genomic steroid regulation of the female reproductive cycle.
Collapse
Affiliation(s)
- Ida Björkgren
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Dong Hwa Chung
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Sarah Mendoza
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Liliya Gabelev-Khasin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Natalie T. Petersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Andrew Modzelewski
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Lin He
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Polina V. Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- The Center for Reproductive Longevity and Equality at the Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
9
|
Shao S, Zhao H, Lu Z, Lei X, Zhang Y. Circadian Rhythms Within the Female HPG Axis: From Physiology to Etiology. Endocrinology 2021; 162:6298422. [PMID: 34125877 PMCID: PMC8256628 DOI: 10.1210/endocr/bqab117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Declining female fertility has become a global health concern. It results partially from an abnormal circadian clock caused by unhealthy diet and sleep habits in modern life. The circadian clock system is a hierarchical network consisting of central and peripheral clocks. It not only controls the sleep-wake and feeding-fasting cycles but also coordinates and maintains the required reproductive activities in the body. Physiologically, the reproductive processes are governed by the hypothalamic-pituitary-gonadal (HPG) axis in a time-dependent manner. The HPG axis releases hormones, generates female characteristics, and achieves fertility. Conversely, an abnormal daily rhythm caused by aberrant clock genes or abnormal environmental stimuli contributes to disorders of the female reproductive system, such as polycystic ovarian syndrome and premature ovarian insufficiency. Therefore, breaking the "time code" of the female reproductive system is crucial. In this paper, we review the interplay between circadian clocks and the female reproductive system and present its regulatory principles, moving from normal physiology regulation to disease etiology.
Collapse
Affiliation(s)
- Shuyi Shao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Huanqiang Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Zhiying Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Xiaohong Lei
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Ying Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
- Correspondence: Dr. Ying Zhang, Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Huangpu District, Shanghai, 200011, China.
| |
Collapse
|
10
|
Manti M, Pui HP, Edström S, Risal S, Lu H, Lindgren E, Ohlsson C, Jerlhag E, Benrick A, Deng Q, Stener-Victorin E. Excess of ovarian nerve growth factor impairs embryonic development and causes reproductive and metabolic dysfunction in adult female mice. FASEB J 2020; 34:14440-14457. [PMID: 32892421 DOI: 10.1096/fj.202001060r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022]
Abstract
Nerve growth factor (NGF) is critical for the development and maintenance of the peripheral sympathetic neurons. NGF is also involved in the ovarian sympathetic innervation and in the development and maintenance of folliculogenesis. Women with the endocrine disorder, polycystic ovary syndrome (PCOS), have an increased sympathetic nerve activity and increased ovarian NGF levels. The role of ovarian NGF excess in the PCOS pathophysiology and in the PCOS-related features is unclear. Here, using transgenic mice overexpressesing NGF in the ovarian theca cells (17NF mice), we assessed the female embryonic development, and the reproductive and metabolic profile in adult females. Ovarian NGF excess caused growth restriction in the female fetuses, and a delayed gonocyte and primary oocyte maturation. In adulthood, the 17NF mice displayed irregular estrous cycles and altered ovarian expression of steroidogenic and epigenetic markers. They also exhibited an increased sympathetic output with increased circulating dopamine, and metabolic dysfunction reflected by aberrant adipose tissue morphology and function, impaired glucose metabolism, decreased energy expenditure, and hepatic steatosis. These findings indicate that ovarian NGF excess leads to adverse fetal development and to reproductive and metabolic complications in adulthood, mirroring common features of PCOS. This work provides evidence that NGF excess may be implicated in the PCOS pathophysiology.
Collapse
Affiliation(s)
- Maria Manti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Han-Pin Pui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sonja Edström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sanjiv Risal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Haojiang Lu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Lindgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,School of Health and Education, University of Skövde, Skövde, Sweden
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
11
|
Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020; 41:bnaa010. [PMID: 32310267 PMCID: PMC7279705 DOI: 10.1210/endrev/bnaa010] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
More than 1 out of 10 women worldwide are diagnosed with polycystic ovary syndrome (PCOS), the leading cause of female reproductive and metabolic dysfunction. Despite its high prevalence, PCOS and its accompanying morbidities are likely underdiagnosed, averaging > 2 years and 3 physicians before women are diagnosed. Although it has been intensively researched, the underlying cause(s) of PCOS have yet to be defined. In order to understand PCOS pathophysiology, its developmental origins, and how to predict and prevent PCOS onset, there is an urgent need for safe and effective markers and treatments. In this review, we detail which animal models are more suitable for contributing to our understanding of the etiology and pathophysiology of PCOS. We summarize and highlight advantages and limitations of hormonal or genetic manipulation of animal models, as well as of naturally occurring PCOS-like females.
Collapse
Affiliation(s)
| | - Vasantha Padmanabhan
- Departments of Pediatrics, Obstetrics and Gynecology, and Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kirsty A Walters
- Fertility & Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences and Education, University of Skövde, Skövde, Sweden
| | - Paolo Giacobini
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, California
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
12
|
Chang HM, Wu HC, Sun ZG, Lian F, Leung PCK. Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: physiological and pathophysiological implications. Hum Reprod Update 2020; 25:224-242. [PMID: 30608586 PMCID: PMC6390169 DOI: 10.1093/humupd/dmy047] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 12/27/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4)] and glial cell line-derived neurotrophic factor (GDNF) are soluble polypeptide growth factors that are widely recognized for their roles in promoting cell growth, survival and differentiation in several classes of neurons. Outside the nervous system, neurotrophin (NT) and GDNF signaling events have substantial roles in various non-neural tissues, including the ovary. OBJECTIVE AND RATIONALE The molecular mechanisms that promote and regulate follicular development and oocyte maturation have been extensively investigated. However, most information has been obtained from animal models. Even though the fundamental process is highly similar across species, the paracrine regulation of ovarian function in humans remains poorly characterized. Therefore, this review aims to summarize the expression and functional roles of NTs and GDNF in human ovarian biology and disorders, and to describe and propose the development of novel strategies for diagnosing, treating and preventing related abnormalities. SEARCH METHODS Relevant literature in the English language from 1990 to 2018 describing the role of NTs and GDNF in mammalian ovarian biology and phenotypes was comprehensively selected using PubMed, MEDLINE and Google Scholar. OUTCOMES Studies have shown that the neurotrophins NGF, BDNF, NT-3 and NT-4 as well as GDNF and their functional receptors are expressed in the human ovary. Recently, gathered experimental data suggest putative roles for NT and GDNF signaling in the direct control of ovarian function, including follicle assembly, activation of the primordial follicles, follicular growth and development, oocyte maturation, steroidogenesis, ovulation and corpus luteum formation. Additionally, crosstalk occurs between these ovarian regulators and the endocrine signaling system. Dysregulation of the NT system may negatively affect ovarian function, leading to reproductive pathology (decreased ovarian reserve, polycystic ovary syndrome and endometriosis), female infertility and even epithelial ovarian cancers. WIDER IMPLICATIONS A comprehensive understanding of the expression, actions and underlying molecular mechanisms of the NT/GDNF system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in ovarian diseases and to develop more safe, effective methods of inducing ovulation in ART in the treatment of female infertility.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Cui Wu
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhen-Gao Sun
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Lian
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peter C K Leung
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Ryu Y, Kim SW, Kim YY, Ku SY. Animal Models for Human Polycystic Ovary Syndrome (PCOS) Focused on the Use of Indirect Hormonal Perturbations: A Review of the Literature. Int J Mol Sci 2019; 20:2720. [PMID: 31163591 PMCID: PMC6600358 DOI: 10.3390/ijms20112720] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
Hormonal disturbances, such as hyperandrogenism, are considered important for developing polycystic ovary syndrome (PCOS) in humans. Accordingly, directly hormone-regulated animal models are widely used for studying PCOS, as they replicate several key PCOS features. However, the pathogenesis and treatment of PCOS are still unclear. In this review, we aimed to investigate animal PCOS models and PCOS-like phenotypes in animal experiments without direct hormonal interventions and determine the underlying mechanisms for a better understanding of PCOS. We summarized animal PCOS models that used indirect hormonal interventions and suggested or discussed pathogenesis of PCOS-like features in animals and PCOS-like phenotypes generated in other animals. We presented integrated physiological insights and shared cellular pathways underlying the pathogenesis of PCOS in reviewed animal models. Our review indicates that the hormonal and metabolic changes could be due to molecular dysregulations, such as upregulated PI3K-Akt and extracellular signal-regulated kinase (ERK) signalling, that potentially cause PCOS-like phenotypes in the animal models. This review will be helpful for considering alternative animal PCOS models to determine the cellular/molecular mechanisms underlying PCOS symptoms. The efforts to determine the specific cellular mechanisms of PCOS will contribute to novel treatments and control methods for this complex syndrome.
Collapse
Affiliation(s)
- Youngjae Ryu
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (Y.R.); (Y.Y.K.)
| | - Sung Woo Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea;
| | - Yoon Young Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (Y.R.); (Y.Y.K.)
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (Y.R.); (Y.Y.K.)
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Korea;
| |
Collapse
|
14
|
Montazerian M, Yasari F, Aghaalikhani N. Ovarian extracellular MicroRNAs as the potential non-invasive biomarkers: An update. Biomed Pharmacother 2018; 106:1633-1640. [PMID: 30119239 DOI: 10.1016/j.biopha.2018.07.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023] Open
Abstract
Through the reproductive system, it has been realized that the microRNAs (miRNAs) have emerged as one of the principal post-transcriptional gene regulators of the diverse developmental processes. The ovary, as a dynamic organ, co-ordinates follicle recruitment, selection, and ovulation, in which miRNAs play the central role almost in its all functions. Deregulation of these developmental procedures in ovary could lead to the ovarian dysfunction, infertility, decrease in the assisted reproductive treatment (ART) outcome, and death in some patients with ovarian cancer. In recent years, detection of ovarian extracellular miRNAs in body fluids such as follicular fluid and serum/plasma has opened a new era in the biomarker discovery field. Here through the present review, different aspects of the potential and proposed involvement of the extracellular miRNAs in both physiologic and pathologic contexts of the ovary have been discussed. Moreover, the researchers have addressed the relevant findings, challenges, and issues which associated with the extracellular miRNAs in the ovarian microenvironments to provide the better insight into understanding the molecular mechanisms which were involved in the pathophysiologic conditions. Finally, a comprehensive survey of the gaps has been discussed to hopefully shed new light and perspective on the development of the novel diagnostic and therapeutic platforms in the clinic.
Collapse
Affiliation(s)
- Mojgan Montazerian
- Department of Midwifery, Dezful Branch Islamic Azad University, Dezful, Iran.
| | - Fahimeh Yasari
- Department of Midwifery, Dezful Branch Islamic Azad University, Dezful, Iran
| | - Nazi Aghaalikhani
- Department of Midwifery, Dezful Branch Islamic Azad University, Dezful, Iran
| |
Collapse
|
15
|
Tamadon A, Hu W, Cui P, Ma T, Tong X, Zhang F, Li X, Shao LR, Feng Y. How to choose the suitable animal model of polycystic ovary syndrome? TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018300047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a gynecological metabolic and endocrine disorder with uncertain etiology. To understand the etiology of PCOS or the evaluation of various therapeutic agents, different animal models have been introduced. Considering this fact that is difficult to develop an animal model that mimics all aspects of this syndrome, but, similarity of biological, anatomical, and/or biochemical features of animal model to the human PCOS phenotypes can increase its application. This review paper evaluates the recently researched animal models and introduced the best models for different research purposes in PCOS studies. During January 2013 to January 2017, 162 studies were identified which applied various kinds of animal models of PCOS including rodent, primate, ruminant and fish. Between these models, prenatal and pre-pubertal androgen rat models and then prenatal androgen mouse model have been studied in detail than others. The comparison of main features of these models with women PCOS demonstrates higher similarity of these three models to human conditions. Thereafter, letrozole models can be recommended for the investigation of various aspects of PCOS. Interestingly, similarity of PCOS features of post-pubertal insulin and human chorionic gonadotropin rat models with women PCOS were considerable which can make it as a good choice for future investigations.
Collapse
Affiliation(s)
- Amin Tamadon
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Peng Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Feifei Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
16
|
Yang YL, Sun LF, Yu Y, Xiao TX, Wang BB, Ren PG, Tang HR, Zhang JV. Deficiency of Gpr1 improves steroid hormone abnormality in hyperandrogenized mice. Reprod Biol Endocrinol 2018; 16:50. [PMID: 29793502 PMCID: PMC5968470 DOI: 10.1186/s12958-018-0363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/29/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex genetic disease with multifarious phenotypes. Many researches use dehydroepiandrosterone (DHEA) to induce PCOS in pubertal mouse models. The aim of this study was to investigate the role of GPR1 in dehydroepiandrosterone (DHEA)-induced hyperandrogenized mice. METHODS Prepubertal C57BL/6 mice (25 days of age) and Gpr1-deficient mice were each divided into two groups and injected daily with sesame oil with or without DHEA (6 mg/100 g) for 21 consecutive days. Hematoxylin and eosin (H&E) staining was performed to determine the characteristics of the DHEA-treated ovaries. Real-time PCR was used to examine steroid synthesis enzymes gene expression. Granulosa cell was cultured to explore the mechanism of DHEA-induced, GPR1-mediated estradiol secretion. RESULTS DHEA treatment induced some aspects of PCOS in wild-type mice, such as increased body weight, elevated serum testosterone, increased number of small, cystic, atretic follicles, and absence of corpus luteum in ovaries. However, Gpr1 deficiency significantly attenuated the DHEA-induced weight gain and ovarian phenotype, improving steroidogenesis in ovaries and estradiol synthesis in cultured granulosa cells, partially through mTOR signaling. CONCLUSIONS In conclusion, Gpr1 deficiency leads to the improvement of steroid synthesis in mice hyperandrogenized with DHEA, indicating that GPR1 may be a therapeutic target for DHEA-induced hyperandrogenism.
Collapse
Affiliation(s)
- Ya-Li Yang
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Li-Feng Sun
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yan Yu
- Baoan Maternal and Child Health Care Hospital, Shenzhen, 518101 China
| | - Tian-Xia Xiao
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Bao-Bei Wang
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Pei-Gen Ren
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Hui-Ru Tang
- Peking University Shenzhen Hospital, Shenzhen, 518035 China
| | - Jian V. Zhang
- Research Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| |
Collapse
|
17
|
Zhai Y, Yao G, Rao F, Wang Y, Song X, Sun F. Excessive nerve growth factor impairs bidirectional communication between the oocyte and cumulus cells resulting in reduced oocyte competence. Reprod Biol Endocrinol 2018; 16:28. [PMID: 29580253 PMCID: PMC5869770 DOI: 10.1186/s12958-018-0349-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/15/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Excessive nerve growth factor (NGF) is commonly found in the follicular fluid of patients with polycystic ovary syndrome (PCOS). Furthermore, oocytes from PCOS patients exhibit lower developmental competence. The purpose of this study was to explore the association between excessive NGF and low oocyte competence in vitro. METHODS Excessive NGF was added to mouse cumulus oocyte complexes (COCs) cultured in vitro to investigate meiotic maturation of the oocyte. After culture, mRNA expression levels of Pfkp and Ldha genes in cumulus cells (CCs) and Gdf9, Bmp15 and Fgf8 genes in oocytes, were determined by real-time quantitative polymerase chain reaction (qPCR). We also investigated the mRNA content of Pfkp and Ldha in CCs from PCOS and non-PCOS patients. RESULTS Excessive NGF significantly inhibited oocyte meiotic maturation. The inhibitory effect was mediated by the NGF high-affinity receptor, NTRK1. mRNA content of Pfkp and Ldha genes in CCs was significantly reduced by excessive NGF stimulation. Moreover, the expression levels of Gdf9, Bmp15 and Fgf8 were also decreased in oocytes, and was induced by excessive NGF-stimulated CCs. In addition, lower expression levels of Pfkp and Ldha in CCs were identified in Chinese PCOS patients with excessive NGF (PCOS, 22 ± 2.63 ng/ml, n = 13; non-PCOS, 7.18 ± 2.42 ng/ml, n = 9; p < 0.01) in the follicular fluid, suggesting a potential association between excessive NGF and decreased glycolysis in the CCs of women with PCOS. CONCLUSIONS Excessive NGF impairs bidirectional communication between oocyte and cumulus cells, which might be related to low oocyte competence.
Collapse
Affiliation(s)
- Yiwen Zhai
- 0000000121679639grid.59053.3aSchool of Life Sciences, University of Science and Technology of China, Hefei, Anhui People’s Republic of China
- 0000000121679639grid.59053.3aHefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui People’s Republic of China
| | - Guidong Yao
- grid.412633.1Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China
| | - Faiza Rao
- 0000000121679639grid.59053.3aSchool of Life Sciences, University of Science and Technology of China, Hefei, Anhui People’s Republic of China
- 0000000121679639grid.59053.3aHefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui People’s Republic of China
| | - Yong Wang
- 0000000121679639grid.59053.3aSchool of Life Sciences, University of Science and Technology of China, Hefei, Anhui People’s Republic of China
- 0000000121679639grid.59053.3aHefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui People’s Republic of China
| | - Xiaoyuan Song
- 0000000121679639grid.59053.3aSchool of Life Sciences, University of Science and Technology of China, Hefei, Anhui People’s Republic of China
- 0000000121679639grid.59053.3aHefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui People’s Republic of China
| | - Fei Sun
- 0000000121679639grid.59053.3aSchool of Life Sciences, University of Science and Technology of China, Hefei, Anhui People’s Republic of China
- 0000000121679639grid.59053.3aHefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui People’s Republic of China
| |
Collapse
|
18
|
Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev 2016; 37:467-520. [PMID: 27459230 PMCID: PMC5045492 DOI: 10.1210/er.2015-1104] [Citation(s) in RCA: 808] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/20/2016] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) was hypothesized to result from functional ovarian hyperandrogenism (FOH) due to dysregulation of androgen secretion in 1989-1995. Subsequent studies have supported and amplified this hypothesis. When defined as otherwise unexplained hyperandrogenic oligoanovulation, two-thirds of PCOS cases have functionally typical FOH, characterized by 17-hydroxyprogesterone hyperresponsiveness to gonadotropin stimulation. Two-thirds of the remaining PCOS have FOH detectable by testosterone elevation after suppression of adrenal androgen production. About 3% of PCOS have a related isolated functional adrenal hyperandrogenism. The remaining PCOS cases are mild and lack evidence of steroid secretory abnormalities; most of these are obese, which we postulate to account for their atypical PCOS. Approximately half of normal women with polycystic ovarian morphology (PCOM) have subclinical FOH-related steroidogenic defects. Theca cells from polycystic ovaries of classic PCOS patients in long-term culture have an intrinsic steroidogenic dysregulation that can account for the steroidogenic abnormalities typical of FOH. These cells overexpress most steroidogenic enzymes, particularly cytochrome P450c17. Overexpression of a protein identified by genome-wide association screening, differentially expressed in normal and neoplastic development 1A.V2, in normal theca cells has reproduced this PCOS phenotype in vitro. A metabolic syndrome of obesity-related and/or intrinsic insulin resistance occurs in about half of PCOS patients, and the compensatory hyperinsulinism has tissue-selective effects, which include aggravation of hyperandrogenism. PCOS seems to arise as a complex trait that results from the interaction of diverse genetic and environmental factors. Heritable factors include PCOM, hyperandrogenemia, insulin resistance, and insulin secretory defects. Environmental factors include prenatal androgen exposure and poor fetal growth, whereas acquired obesity is a major postnatal factor. The variety of pathways involved and lack of a common thread attests to the multifactorial nature and heterogeneity of the syndrome. Further research into the fundamental basis of the disorder will be necessary to optimally correct androgen levels, ovulation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Robert L Rosenfield
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| | - David A Ehrmann
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| |
Collapse
|
19
|
Sathyapalan T, David R, Gooderham NJ, Atkin SL. Increased expression of circulating miRNA-93 in women with polycystic ovary syndrome may represent a novel, non-invasive biomarker for diagnosis. Sci Rep 2015; 5:16890. [PMID: 26582398 PMCID: PMC4652283 DOI: 10.1038/srep16890] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/12/2015] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNA) are a novel class of small noncoding single-stranded RNA molecules that regulate gene expression. There is increasing evidence of their importance in polycystic ovary syndrome (PCOS). The objective was to determine if miRNA-93 and miRNA-223 are differentially expressed in the circulation of women with PCOS compared to age matched women. A case-control study comparing women with PCOS (n = 25) to age and weight matched controls (n = 24) without PCOS was performed. MiRNA-93 and miRNA-223 were determined by total RNA reverse transcription. Both miRNA-93 and miRNA-223 were significantly increased relative to the control group (p < 0.01, p = 0.029 respectively). In both groups there was no correlation of either miRNA-93 or miRNA-223 with insulin, HOMA-IR, HOMA-β or testosterone levels. The area under the receiver operator characteristic curve for miR-223 and miR-93 was 0.66 and 0.72 respectively, suggesting miR-93 is a more efficient biomarker than miR-223 for diagnosis of PCOS. The combination of the two miRNAs together, tested using multiple logistic regression analysis, did not improve the diagnostic potential. In conclusion, circulating miRNA-93 and miRNA-223 were higher in women with PCOS compared to age and weight matched controls independent of insulin resistance and testosterone levels, and miR-93 may represent a novel diagnostic biomarker for PCOS.
Collapse
Affiliation(s)
- T Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK.,Faculty of Medicine, Department of Surgery &Cancer, Imperial College, London, UK
| | - R David
- Faculty of Medicine, Department of Surgery &Cancer, Imperial College, London, UK
| | - N J Gooderham
- Faculty of Medicine, Department of Surgery &Cancer, Imperial College, London, UK
| | - S L Atkin
- Weill Cornell Medical College Qatar, Education City PO Box 24144, Doha, Qatar
| |
Collapse
|
20
|
Streiter S, Fisch B, Sabbah B, Ao A, Abir R. The importance of neuronal growth factors in the ovary. Mol Hum Reprod 2015; 22:3-17. [DOI: 10.1093/molehr/gav057] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 10/14/2015] [Indexed: 12/29/2022] Open
|