1
|
Wu F, Wang F, Tang Z, Yang X, Liu Y, Zhao M, Liu S, Han S, Chen B. Zearalenone causes ovarian damage and abnormal estradiol secretion in meat rabbits by inducing oxidative stress and inflammatory responses. Front Vet Sci 2025; 12:1566284. [PMID: 40297828 PMCID: PMC12035730 DOI: 10.3389/fvets.2025.1566284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Zearalenone (ZEA), a prevalent mycotoxin in animal feeds, is known to disrupt normal ovarian development and function due to its estrogenic activity. This study investigates the toxic effects of ZEA on the ovaries of meat rabbits and explores the underlying mechanisms. Ninety healthy 41-day-old Hyla male rabbits were randomly assigned into three groups. The control group received a basal diet, while the experimental groups were fed basal diets supplemented with 300 and 600 μg/kg ZEA, respectively. Each group consisted of 30 replicates, with one rabbit per replicate, and the experimental period lasted 42 days. The results showed that, compared to the control group, the ovarian index was significantly increased in the 600 μg/kg ZEA supplementation group (p < 0.05). In addition, ovarian tissue exhibited pathological changes, including follicular dilatation, thinning of the follicular granulosa, punctate necrosis of granulosa cells, deep stained cytosolic nuclei, and nuclear fragmentation. Compared to the control group, the 600 μg/kg ZEA supplementation group exhibited significantly elevated blood levels of gonadotropin-releasing hormone, luteinizing hormone, estradiol, malondialdehyde (MDA), and interleukin 1β (IL-1β) (p < 0.05). Conversely, total antioxidant power (TAOC) and glutathione peroxidase (GSH-Px) activities were significantly reduced in this group (p < 0.05). The level of MDA in the ovarian tissue of rabbits in the 600 μg/kg ZEA supplementation group was significantly elevated compared to the control group, while the activities of GSH-Px and TAOC were significantly reduced (p < 0.05). Moreover, the expression levels of luteinizing hormone receptor mRNA, heat shock protein 70 mRNA, tumor necrosis factor-α mRNA, and IL-1β mRNA in the ovarian tissue significantly increased, whereas the expression of copper and zinc superoxide dismutase mRNA was significantly decreased compared to the control group (p < 0.05). In conclusion, supplementation with 600 μg/kg ZEA induces oxidative stress and inflammatory responses in the ovaries of meat rabbits by modulating the expression of related genes. These effects disrupt ovarian development, cause pathological changes, and impair the secretion of reproductive hormones. This study is the first to report the toxic effects of ZEA on the ovaries of Hyla rabbits and provides preliminary insights into its underlying mechanisms.
Collapse
Affiliation(s)
- Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhaohong Tang
- Hebei Research Institute of Microbiology Co., Ltd., Baoding, China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanhua Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Man Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
2
|
Lu PS, Sun SC. Mycotoxin toxicity and its alleviation strategy on female mammalian reproduction and fertility. J Adv Res 2025:S2090-1232(25)00041-4. [PMID: 39814223 DOI: 10.1016/j.jare.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Mycotoxin, a secondary metabolite of fungus, found worldwide and concerning in crops and food, causes multiple acute and chronic toxicities. Its toxic profile includes hepatotoxicity, carcinogenicity, teratogenicity, estrogenicity, immunotoxicity, and neurotoxicity, leading to deleterious impact on human and animal health. Emerging evidence suggests that it adversely affects perinatal health and progeny by its ability to cross placental barriers. AIM OF REVIEW Due to its wide occurrence and potential toxicity on reproductive health, it is essential to understand the mechanisms of mycotoxin-related reproductive toxicity. This review summarizes the toxicities and mechanisms of mycotoxin on maternal and offspring reproduction among mammalian species. Approaches for effective mycotoxin alleviation are also discussed, providing strategies against mycotoxin contamination. KEY SCIENTIFIC CONCEPTS OF REVIEW The profound mycotoxin toxicities in female mammalian reproduction affect follicle assembly, embryo development, and fetus growth, thereby decreasing offspring fertility. Factors from endocrine system such as hypothalamic-pituitary-gonadal axis and gut-ovarian axis, placenta ABC transporters, organelle and cytoskeleton dynamics, cell cycle control, genomic stability, and redox homeostasis are found to be closely related to mycotoxin toxicities. Approaches from physical, chemical, biological, and supplementation of natural antioxidants are discussed for the mycotoxin elimination, while their applications are not widespread. Available ways for mycotoxin and its toxicities alleviation need further study. Since a species-, time-, and dose-specific response might exist in mycotoxin toxicities, more consideration should be given to the protocols for mycotoxin toxicity studies, such as experimental animal models, exposure duration, and dosage. Specific mechanism for mycotoxin, especially form a molecular biology perspective, could be investigated with multi-omics technologies and advanced imaging techniques. Mass spectrometry with algorithms may provide more accurate exposure assessments, and it may be further helpful to identify the high-risk individuals in the future.
Collapse
Affiliation(s)
- Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Research On Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
3
|
Papp PP, Hoffmann OI, Libisch B, Keresztény T, Gerőcs A, Posta K, Hiripi L, Hegyi A, Gócza E, Szőke Z, Olasz F. Effects of Polyvinyl Chloride (PVC) Microplastic Particles on Gut Microbiota Composition and Health Status in Rabbit Livestock. Int J Mol Sci 2024; 25:12646. [PMID: 39684357 DOI: 10.3390/ijms252312646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The widespread use of polyvinyl chloride (PVC) and its entry into humans and livestock is of serious concern. In our study, we investigated the impact of PVC treatments on physiological, pathological, hormonal, and microbiota changes in female rabbits. Trend-like alterations in weight were observed in the spleen, liver, and kidney in both low (P1) and high dose (P2) PVC treatment groups. Histopathological examination revealed exfoliation of the intestinal mucosa in the treated groups compared to the control, and microplastic particles were penetrated and embedded in the spleen. Furthermore, both P1 and P2 showed increased 17-beta-estradiol (E2) hormone levels, indicating early sexual maturation. Moreover, the elevated tumor necrosis factor alpha (TNF-α) levels suggest inflammatory reactions associated with PVC treatment. Genus-level analyses of the gut microbiota in group P2 showed several genera with increased or decreased abundance. In conclusion, significant or trend-like correlations were demonstrated between the PVC content of feed and physiological, pathological, and microbiota parameters. To our knowledge, this is the first study to investigate the broad-spectrum effects of PVC microplastic exposure in rabbits. These results highlight the potential health risks associated with PVC microplastic exposure, warranting further investigations in both animals and humans.
Collapse
Affiliation(s)
- Péter P Papp
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Orsolya Ivett Hoffmann
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Balázs Libisch
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Tibor Keresztény
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Annamária Gerőcs
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Katalin Posta
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - László Hiripi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Laboratory Animal Science Coordination Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Anna Hegyi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Zsuzsanna Szőke
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Ferenc Olasz
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
4
|
Zsarnovszky A, Alymbaeva D, Jocsak G, Szabo C, Mária Schilling-Tóth B, Sandor Kiss D. Endocrine disrupting effects on morphological synaptic plasticity. Front Neuroendocrinol 2024; 75:101157. [PMID: 39393417 DOI: 10.1016/j.yfrne.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary; Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary.
| | - Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Csaba Szabo
- Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | | | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
5
|
Lakatos I, Babarczi B, Molnár Z, Tóth A, Skoda G, Horváth GF, Horváth A, Tóth D, Sükösd F, Szemethy L, Szőke Z. First Results on the Presence of Mycotoxins in the Liver of Pregnant Fallow Deer ( Dama dama) Hinds and Fetuses. Animals (Basel) 2024; 14:1039. [PMID: 38612278 PMCID: PMC11011066 DOI: 10.3390/ani14071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Reproductive abnormalities have been observed in fallow deer populations in Hungary. We supposed mycotoxin contamination to be one of the possible causes because multi-mycotoxin contamination is known to be dangerous even at low toxin levels, especially for young animals. We investigated the spatial pattern of mycotoxin occurrences and the relationship between maternal and fetal mycotoxin levels. A total of 72 fallow deer embryos and their mothers were sampled in seven forested regions in Hungary in the 2020/2021 hunting season. We analyzed Aflatoxin (AF), Zearalenone (ZEA), Fumonizin B1 (FB1), DON, and T2-toxin concentrations in maternal and fetal livers by ELISA. AF was present in 70% and 82%, ZEA in 41% and 96%, DON in 90% and 98%, T2-toxin in 96% and 85%, and FB1 in 84% and 3% of hind and fetus livers, respectively. All mycotoxins passed into the fetus, but only Fumonizin B1 rarely passed. The individual variability of mycotoxin levels was extremely high, but the spatial differences were moderate. We could not prove a relation between the maternal and fetal mycotoxin concentrations, but we found an accumulation of ZEA and DON in the fetuses. These results reflect the possible threats of mycotoxins to the population dynamics and reproduction of wild fallow deer.
Collapse
Affiliation(s)
- István Lakatos
- Department of Regional Game Management, Ministry of Agriculture, 1052 Budapest, Hungary;
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (B.B.); (Z.M.); (A.T.); (G.S.); (Z.S.)
| | - Bianka Babarczi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (B.B.); (Z.M.); (A.T.); (G.S.); (Z.S.)
| | - Zsófia Molnár
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (B.B.); (Z.M.); (A.T.); (G.S.); (Z.S.)
| | - Arnold Tóth
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (B.B.); (Z.M.); (A.T.); (G.S.); (Z.S.)
| | - Gabriella Skoda
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (B.B.); (Z.M.); (A.T.); (G.S.); (Z.S.)
| | - Győző F. Horváth
- Institute of Biology, University of Pécs, 7624 Pécs, Hungary; (G.F.H.); (A.H.); (D.T.)
| | - Adrienn Horváth
- Institute of Biology, University of Pécs, 7624 Pécs, Hungary; (G.F.H.); (A.H.); (D.T.)
| | - Dániel Tóth
- Institute of Biology, University of Pécs, 7624 Pécs, Hungary; (G.F.H.); (A.H.); (D.T.)
| | - Farkas Sükösd
- Institute of Pathology, University of Szeged, 6720 Szeged, Hungary;
| | - László Szemethy
- Institute of Biology, University of Pécs, 7624 Pécs, Hungary; (G.F.H.); (A.H.); (D.T.)
| | - Zsuzsanna Szőke
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (B.B.); (Z.M.); (A.T.); (G.S.); (Z.S.)
| |
Collapse
|
6
|
Lei B, Yang Y, Xu L, Zhang X, Yu M, Yu J, Li N, Yu Y. Molecular insights into the effects of tetrachlorobisphenol A on puberty initiation in Wistar rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168643. [PMID: 37992829 DOI: 10.1016/j.scitotenv.2023.168643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Tetrachlorobisphenol A (TCBPA) is the chlorinated derivative of bisphenol A (BPA). Several studies have found that BPA adversely affects the reproductive activity largely through binding to estrogen receptors and the critical period of BPA exposure advances the vaginal opening time in the female offspring via the kisspeptin/G protein-coupled receptor 54 (KGG) system. However, whether TCBPA can affect puberty initiation via KGG and the roles of estrogen receptors in this process remain unknown. Therefore, this study investigated the influence of TCBPA on the onset time of puberty in Wistar rats and the related molecular mechanisms by combing in vitro GT1-7 cells and molecular docking. In female Wistar rats, TCBPA at ≥100 mg/kg bw/day (49.2 μmol/L in rat body) markedly advanced vaginal opening time and increased serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and gonadotropin-releasing hormone (GnRH). It also increased the relative gene expression of LH receptor (LHR), GnRH1, and FSH receptor (FSHR) in hypothalamic-pituitary-gonadal (HPG) axis tissues. In GT1-7 cells, TCBPA increased genes and proteins associated with KGG pathway and activated the extracellular-regulated protein kinase 1/2 (Erk1/2) and phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathways via G protein-coupled estrogen membrane receptor 1 (GPER1) and estrogen receptor alpha (ERα). Docking analyses supported its interactions with GPER1 and ERα, and treatment with specific inhibitors of ERα- and GPER1-modulated PI3K/Akt and Erk1/2 signaling suppressed its effects. Taken together, TCBPA-induced advancement of puberty initiation in Wistar rats thus results primarily from increased LH, GnRH, and FSH secretion together with GnRH1, FSHR, and LHR upregulation driven by ERα- and GPER1-modulated Erk1/2 and PI3K/Akt signaling. Our results provide new molecular insights into the reproductive toxicity of EDCs.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Drouault M, Rouge M, Hanoux V, Séguin V, Garon D, Bouraïma-Lelong H, Delalande C. Ex vivo effects of bisphenol A or zearalenone on the prepubertal rat testis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104203. [PMID: 37394082 DOI: 10.1016/j.etap.2023.104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Bisphenol A (BPA) and zearalenone (ZEA) are two widespread xenoestrogens involved in male reproductive disorders. Few studies investigated the effects of these compounds on the prepubertal testis, which is highly sensitive to endocrine disruptors such as xenoestrogens. An ex vivo approach was performed to evaluate the effects of BPA or ZEA (10-11, 10-9, 10-6 M) on the testes of 20 and 25 dpp rats. To investigate the involvement of classical nuclear ER-mediated estrogen signaling in these effects, pre-incubation with an antagonist (ICI 182.780 10-6M) was performed. BPA and ZEA have similar effects on spermatogenesis- and steroidogenesis-related endpoints in the immature testis, but our study highlights different age-dependent patterns of sensitivity to each compound during the prepubertal period. Moreover, our results indicate that the effects of BPA are likely to be induced by nuclear ER, whereas those of ZEA appear to involve other mechanisms.
Collapse
Affiliation(s)
- M Drouault
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France
| | - M Rouge
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - V Hanoux
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - V Séguin
- Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - D Garon
- Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - H Bouraïma-Lelong
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - C Delalande
- Normandie Univ, UNICAEN, OeReCa, 14000 Caen, France; Normandie Univ, UNICAEN, ABTE, 14000 Caen, France.
| |
Collapse
|
8
|
Thacharodi A, Hassan S, Hegde TA, Thacharodi DD, Brindhadevi K, Pugazhendhi A. Water a major source of endocrine-disrupting chemicals: An overview on the occurrence, implications on human health and bioremediation strategies. ENVIRONMENTAL RESEARCH 2023; 231:116097. [PMID: 37182827 DOI: 10.1016/j.envres.2023.116097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are toxic compounds that occur naturally or are the output of anthropogenic activities that negatively impact both humans and wildlife. A number of diseases are associated with these disruptors, including reproductive disorders, cardiovascular disorders, kidney disease, neurological disorders, autoimmune disorders, and cancer. Due to their integral role in pharmaceuticals and cosmetics, packaging companies, agro-industries, pesticides, and plasticizers, the scientific awareness on natural and artificial EDCs are increasing. As these xenobiotic compounds tend to bioaccumulate in body tissues and may also persist longer in the environment, the concentrations of these organic compounds may increase far from their original point of concentrations. Water remains as the major sources of how humans and animals are exposed to EDCs. However, these toxic compounds cannot be completely biodegraded nor bioremediated from the aqueous medium with conventional treatment strategies thereby requiring much more efficient strategies to combat EDC contamination. Recently, genetically engineered microorganism, genome editing, and the knowledge of protein and metabolic engineering has revolutionized the field of bioremediation thereby helping to breakdown EDCs effectively. This review shed lights on understanding the importance of aquatic mediums as a source of EDCs exposure. Furthermore, the review sheds light on the consequences of these EDCs on human health as well as highlights the importance of different remediation and bioremediation approaches. Particular attention is paid to the recent trends and perspectives in order to attain sustainable approaches to the bioremediation of EDCs. Additionally, rigorous restrictions to preclude the discharge of estrogenic chemicals into the environment should be followed in efforts to combat EDC pollution.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand; Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Saqib Hassan
- Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Thanushree A Hegde
- Civil Engineering Department, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - Dhanya Dilip Thacharodi
- Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Kathirvel Brindhadevi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
9
|
Phytoestrogens and Health Effects. Nutrients 2023; 15:nu15020317. [PMID: 36678189 PMCID: PMC9864699 DOI: 10.3390/nu15020317] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Phytoestrogens are literally estrogenic substances of plant origin. Although these substances are useful for plants in many aspects, their estrogenic properties are essentially relevant to their predators. As such, phytoestrogens can be considered to be substances potentially dedicated to plant-predator interaction. Therefore, it is not surprising to note that the word phytoestrogen comes from the early discovery of estrogenic effects in grazing animals and humans. Here, several compounds whose activities have been discovered at nutritional concentrations in animals and humans are examined. The substances analyzed belong to several chemical families, i.e., the flavanones, the coumestans, the resorcylic acid lactones, the isoflavones, and the enterolignans. Following their definition and the evocation of their role in plants, their metabolic transformations and bioavailabilities are discussed. A point is then made regarding their health effects, which can either be beneficial or adverse depending on the subject studied, the sex, the age, and the physiological status. Toxicological information is given based on official data. The effects are first presented in humans. Animal models are evoked when no data are available in humans. The effects are presented with a constant reference to doses and plausible exposure.
Collapse
|
10
|
Mindang ELN, Awounfack CF, Ndinteh DT, Krause RWM, Njamen D. Effects of Tartrazine on Some Sexual Maturation Parameters in Immature Female Wistar Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10410. [PMID: 36012044 PMCID: PMC9408620 DOI: 10.3390/ijerph191610410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Over the past century, the average age for onset of puberty has declined. Several additives present in our food are thought to contribute significantly to this early puberty which is recognized to also affect people's health in later life. On this basis, the impact of 40-days unique oral administration of the food dye tartrazine (7.5, 27, and 47 mg/kg BW doses) was evaluated on some sexual maturation parameters on immature female Wistar rats. Vaginal opening was evaluated during the treatment period. At the end of the treatments, animals were sacrificed (estrus phase) and the relative weight of reproductive organs, pituitary gonadotrophin and sexual steroids level, cholesterol level in ovaries and folliculogenesis were evaluated. Compared to the control group, animals receiving tartrazine (47 mg/kg BW) showed significantly high percentage of early vaginal opening from day 45 of age, and an increase in the number of totals, primaries, secondaries, and antral follicles; a significant increase in serum estrogen, LH and in uterine epithelial thickness. Our findings suggest that tartrazine considerably disturbs the normal courses of puberty. These results could validate at least in part the global observations on increasingly precocious puberty in girls feeding increasingly with industrially processed foods.
Collapse
Affiliation(s)
- Elisabeth Louise Ndjengue Mindang
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde P.O. Box 812, Cameroon
- Department of Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Rhodes University, Makhanda P.O. Box 94, South Africa
| | - Charline Florence Awounfack
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde P.O. Box 812, Cameroon
- Department of Psychology, Faculty of Arts, Letters and Social Sciences, University of Yaounde I, Yaounde P.O. Box 7011, Cameroon
| | - Derek Tantoh Ndinteh
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Johannesburg P.O. Box 17011, South Africa
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Rhodes University, Makhanda P.O. Box 94, South Africa
| | - Dieudonne Njamen
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, Yaounde P.O. Box 812, Cameroon
| |
Collapse
|
11
|
Belgacem H, Venditti M, Ben Salah-Abbès J, Minucci S, Abbès S. Potential protective effect of lactic acid bacteria against zearalenone causing reprotoxicity in male mice. Toxicon 2022; 209:56-65. [PMID: 35181403 DOI: 10.1016/j.toxicon.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEN) is a worldwide fusarotoxin that poses a threat to the consumer due to its chronic toxicity. Herein we examined the effects of ZEN on adult mouse testis, focusing on oxidative stress, biochemical and morphological parameters. In addition, since cytoskeletal remodeling is a key event for the production of good quality gametes, the expression and localization of two proteins, Dishevelled-associated activator of morphogenesis 1 (DAAM1) and Prolyl endopeptidase (PREP), involved in cytoskeletal dynamics during spermatogenesis were evaluated. To ameliorate the testicular dysfunction induced by ZEN we tested the eventual protective effects of lactic bacteria Lactobacillus plantarum MON03 (LP) on its reprotoxicity. Adult male mice were then treated daily for 2 wks by oral gavage with ZEN and/or LP. The results confirmed that ZEN altered sperm parameters, generated oxidative stress and provoked structural alteration, evidenced by the increased number of abnormal seminiferous tubules and of apoptotic cells, particularly Leydig cells. Interestingly, at molecular level we evaluated, for the first time, the ability of ZEN to alter DAAM1 and PREP protein level and localization. Moreover, the co-treatment with LP, thanks to its capacity to reduce ZEN bioavailability in the gastrointestinal tract, ameliorated all the considered parameters. These results suggest the use of this probiotic as food supplement to prevent/counteract ZEN-induced reprotoxicity.
Collapse
Affiliation(s)
- Hela Belgacem
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Massimo Venditti
- Department of Experimental Medicine, University Degli Studi Della Campania Luigi Vanvitelli, Napoli, Italy
| | - Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Sergio Minucci
- Department of Experimental Medicine, University Degli Studi Della Campania Luigi Vanvitelli, Napoli, Italy
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia.
| |
Collapse
|
12
|
Kim YM, Lim HH. Association of Early Pubertal Onset in Female Rats With Inhalation of Lavender Oil. J Korean Med Sci 2022; 37:e9. [PMID: 35014224 PMCID: PMC8748666 DOI: 10.3346/jkms.2022.37.e9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Central precocious puberty (CPP) is caused by early activation of the hypothalamic-pituitary-gonadal axis but its major cause remains unclear. Studies have indicated an association between chronic environmental exposure to endocrine-disrupting chemicals and pubertal onset. Essential oil is widely used in homes worldwide for relief of respiratory symptoms, stress, and/or sleep disturbance. METHODS To evaluate this association, we compared the hormone levels and timing of vaginal opening (VO) in female rats exposed to lavender oil (LO) through different routes (study groups: control, LO nasal spray [LS], and indoor exposure to LO [LE]) during the prepubertal period. The body weights of the animals were also compared every 3 days until the day of VO, at which time gonadotropin levels and internal organ weights were assessed. RESULTS The LS group showed early VO at 33.8 ± 1.8 days compared with the control (38.4 ± 2.9 days) and LE (36.6 ± 1.5 days) groups. Additionally, luteinizing hormone levels were significantly higher in the LE and LS groups than those in the control group. Body weights did not differ significantly among the groups. CONCLUSION Inhalation exposure to an exogenic simulant during the prepubertal period might trigger early pubertal onset in female rats. Further evaluation of exposure to other endocrine-disrupting chemicals capable of inducing CPP through the skin, orally, and/or nasally is warranted.
Collapse
Affiliation(s)
- Yoo-Mi Kim
- Department of Pediatrics, College of Medicine, Chungnam National University, Daejeon, Korea
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong, Korea.
| | - Han Hyuk Lim
- Department of Pediatrics, College of Medicine, Chungnam National University, Daejeon, Korea
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
13
|
The Effects of Zearalenone on the Localization and Expression of Reproductive Hormones in the Ovaries of Weaned Gilts. Toxins (Basel) 2021; 13:toxins13090626. [PMID: 34564630 PMCID: PMC8470812 DOI: 10.3390/toxins13090626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022] Open
Abstract
This study aims to investigate the effects of zearalenone (ZEA) on the localizations and expressions of follicle stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), gonadotropin releasing hormone (GnRH) and gonadotropin releasing hormone receptor (GnRHR) in the ovaries of weaned gilts. Twenty 42-day-old weaned gilts were randomly allocated into two groups, and treated with a control diet and a ZEA-contaminated diet (ZEA 1.04 mg/kg), respectively. After 7-day adjustment, gilts were fed individually for 35 days and euthanized for blood and ovarian samples collection before morning feeding on the 36th day. Serum hormones of E2, PRG, FSH, LH and GnRH were determined using radioimmunoassay kits. The ovaries were collected for relative mRNA and protein expression, and immunohistochemical analysis of FSHR, LHR, GnRH and GnRHR. The results revealed that ZEA exposure significantly increased the final vulva area (p < 0.05), significantly elevated the serum concentrations of estradiol, follicle stimulating hormone and GnRH (p < 0.05), and markedly up-regulated the mRNA and protein expressions of FSHR, LHR, GnRH and GnRHR (p < 0.05). Besides, the results of immunohistochemistry showed that the immunoreactive substances of ovarian FSHR, LHR, GnRH and GnRHR in the gilts fed the ZEA-contaminated diet were stronger than the gilts fed the control diet. Our findings indicated that dietary ZEA (1.04 mg/kg) could cause follicular proliferation by interfering with the localization and expression of FSHR, LHR, GnRH and GnRHR, and then affect the follicular development of weaned gilts.
Collapse
|
14
|
Zearalenone alters the excitability of rat neuronal networks after acute in vitro exposure. Neurotoxicology 2021; 86:139-148. [PMID: 34363844 DOI: 10.1016/j.neuro.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Zearalenone (ZEA) is a mycotoxin produced by Fusarium species, detectable in various cereals and processed food products worldwide. ZEA displays a significant estrogenic activity, thus its main health risk is the interference with sexual maturation and reproduction processes. However, in addition to being key hormonal regulators of reproductive function, estrogenic compounds have a widespread role in brain, as neurotrophic and neuroprotective factors, and they may influence the activity of several brain areas not directly linked to reproduction, as well. Therefore, in the present study, acute effects of ZEA were studied on certain neuronal functions in rats. Experiments were performed on rat brain slices or live rats. Slices were incubated in ZEA-containing (10-100 μM) solution for 30 min. Electrically evoked and spontaneous field potentials were studied in the neocortex and in the hippocampus. At higher concentrations, ZEA incubation of the slices altered excitability and the pattern of epileptiform activity in neocortex and inhibited the development of LTP in hippocampus. For the verification of these in vitro results, in vivo electrophysiological and immunohistochemical investigations were also performed. ZEA was administered systemically (5 mg/kg, i.p.) to male rats and somatosensory evoked potentials and neuronal activation studied by c-fos expression were analyzed. No neuronal activation could be demonstrated in the hippocampus within 2 h of the injection. In the somatosensory cortex, ZEA did not change in vivo evoked potential parameters, but the activation of a small neuronal population could be demonstrated with the c-fos technique in this brain area. This result could be associated with the ZEA-induced alteration of epileptiform activity observed in vitro. Altogether, the toxin altered the excitability and plasticity of neuronal networks after direct treatment in slices, but the effects were less prominent on the given brain areas after systemic treatment in vivo. A probable explanation for the partial lack of in vivo effects may be that after a single injection, ZEA did not cross the blood-brain barrier at sufficient rate to allow the build-up of comparable concentrations in the investigated brain areas. However, in case of compromised blood-brain barrier functions or long-term repeated exposure, alterations in cortical and hippocampal functions cannot be ruled out.
Collapse
|
15
|
Kinkade CW, Rivera-Núñez Z, Gorcyzca L, Aleksunes LM, Barrett ES. Impact of Fusarium-Derived Mycoestrogens on Female Reproduction: A Systematic Review. Toxins (Basel) 2021; 13:373. [PMID: 34073731 PMCID: PMC8225184 DOI: 10.3390/toxins13060373] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023] Open
Abstract
Contamination of the world's food supply and animal feed with mycotoxins is a growing concern as global temperatures rise and promote the growth of fungus. Zearalenone (ZEN), an estrogenic mycotoxin produced by Fusarium fungi, is a common contaminant of cereal grains and has also been detected at lower levels in meat, milk, and spices. ZEN's synthetic derivative, zeranol, is used as a growth promoter in United States (US) and Canadian beef production. Experimental research suggests that ZEN and zeranol disrupt the endocrine and reproductive systems, leading to infertility, polycystic ovarian syndrome-like phenotypes, pregnancy loss, and low birth weight. With widespread human dietary exposure and growing experimental evidence of endocrine-disrupting properties, a comprehensive review of the impact of ZEN, zeranol, and their metabolites on the female reproductive system is warranted. The objective of this systematic review was to summarize the in vitro, in vivo, and epidemiological literature and evaluate the potential impact of ZEN, zeranol, and their metabolites (commonly referred to as mycoestrogens) on female reproductive outcomes. We conducted a systematic review (PROSPERO registration CRD42020166469) of the literature (2000-2020) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The data sources were primary literature published in English obtained from searching PubMed, Web of Science, and Scopus. The ToxR tool was applied to assess risk of bias. In vitro and in vivo studies (n = 104) were identified and, overall, evidence consistently supported adverse effects of mycoestrogens on physiological processes, organs, and tissues associated with female reproduction. In non-pregnant animals, mycoestrogens alter follicular profiles in the ovary, disrupt estrus cycling, and increase myometrium thickness. Furthermore, during pregnancy, mycoestrogen exposure contributes to placental hemorrhage, stillbirth, and impaired fetal growth. No epidemiological studies fitting the inclusion criteria were identified.
Collapse
Affiliation(s)
- Carolyn W. Kinkade
- Joint Graduate Program in Exposure Science, Department of Environmental Sciences, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Ludwik Gorcyzca
- Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ 08554, USA;
| | - Lauren M. Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Emily S. Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
16
|
Tuddenham S, Ravel J, Marrazzo JM. Protection and Risk: Male and Female Genital Microbiota and Sexually Transmitted Infections. J Infect Dis 2021; 223:S222-S235. [PMID: 33576776 DOI: 10.1093/infdis/jiaa762] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Unique compositional and functional features of the cervicovaginal microbiota have been associated with protection against and risk for sexually transmitted infections (STI). In men, our knowledge of the interaction between the penile microbiota and STI is less developed. The current state of our understanding of these microbiota and their role in select STIs is briefly reviewed, along with strategies that leverage existing findings to manipulate genital microbiota and optimize protection against STIs. Finally, we focus on major research gaps and present a framework for future studies.
Collapse
Affiliation(s)
- Susan Tuddenham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeanne M Marrazzo
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
17
|
Neuroendocrine disruption is associated to infertility in chronically stressed female rats. Reprod Biol 2020; 20:474-483. [PMID: 32807716 DOI: 10.1016/j.repbio.2020.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Infertility is a growing worldwide public health problem, and stress is a main factor exerting detrimental effects on female reproduction. However, knowledge regarding the neuroendocrine changes caused by chronic stress in females is limited. Therefore, this study assessed the effects of stress on hormones that control female reproduction during the proestrus and diestrus stages of the estrous cycle, as well as its effects on fertility. Adult females were assigned to either a control or a stress group. Stress consisted of exposure, for 15 min, to cold-water immersion daily for 30 days. Estrous cyclicity, female sexual behavior, as well as hypothalamic kisspeptin, gonadotropin releasing hormone (GnRH) content, serum luteinizing hormone (LH), estradiol (E2), progesterone (P4), corticosterone (CORT) and fertility were assessed after chronic stress. The results show that chronically stressed females exhibited disrupted estrous cyclicity, decreased receptivity, low pregnancy rates and lower numbers of fetuses. The content of Kisspeptin and GnRH in the Anteroventral Periventricular/medial Preoptic Area decreased during proestrus, while Kisspeptin increased in the Arcuate nucleus in proestrus and diestrus. Serum LH decreased only during proestrus, whereas E2 and P4 concentrations decreased during proestrus and diestrus, with a concomitant increase in CORT levels in both stages. As a whole, these results indicate that chronic stress decreases Kisspeptin content in AVPV nucleus and GnRH in POA in females, and might induce disruption of the LH surge, consequently disrupting estrous cyclicity and fertility, leading to lower rates of pregnancy and number of fetuses.
Collapse
|
18
|
Amstislavsky SY, Brusentsev EY, Petrova OM, Naprimerov VA, Levinson AL. Development and Aging of the Mammalian Reproductive System. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Endocrine Disruptors in Water and Their Effects on the Reproductive System. Int J Mol Sci 2020; 21:ijms21061929. [PMID: 32178293 PMCID: PMC7139484 DOI: 10.3390/ijms21061929] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic contaminants in water can impose risks to reproductive health. Most of these compounds are known to be endocrine disrupting chemicals (EDCs). EDCs can impact the endocrine system and subsequently impair the development and fertility of non-human animals and humans. The source of chemical contamination in water is diverse, originating from byproducts formed during water disinfection processes, release from industry and livestock activity, or therapeutic drugs released into sewage. This review discusses the occurrence of EDCs in water such as disinfection byproducts, fluorinated compounds, bisphenol A, phthalates, pesticides, and estrogens, and it outlines their adverse reproductive effects in non-human animals and humans.
Collapse
|
20
|
Phosphatidylcholine could protect the defect of zearalenone exposure on follicular development and oocyte maturation. Aging (Albany NY) 2019; 10:3486-3506. [PMID: 30472698 PMCID: PMC6286824 DOI: 10.18632/aging.101660] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Zearalenone (ZEA) is a well-known exogenous endocrine disruptor and can lead to severe negative effects on the human and animal reproductive process. Using a follicle culture model, we have previously shown that ZEA exposure significantly affected the follicular development and antrum formation but the underlying mechanisms are not well known. Therefore, in this study, we explored the metabolomic changes of granulosa cell (GC) culture media with or without ZEA exposure. The results showed that ZEA significantly increased phosphatidylcholine or phosphatidyl ethanolamine adducts in culture medium. A comprehensive analysis with the metabolome data from follicular fluid of small and large antral follicles showed that lyso phosphatidylcholine (LPC) was accumulated during follicle growth, but was depleted by ZEA exposure. Exogenous supplement with LPC to the follicle growth media or oocyte maturation media can partly protect the defect of ZEA exposure on follicular antrum formation and oocyte maturation. Taken together, our results demonstrate that ZEA exposure hinders the follicular growth and exogenous LPC can practically protect the defect of ZEA on follicular development and oocyte maturation.
Collapse
|
21
|
Du G, Hu J, Huang Z, Yu M, Lu C, Wang X, Wu D. Neonatal and juvenile exposure to perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS): Advance puberty onset and kisspeptin system disturbance in female rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:412-421. [PMID: 30368134 DOI: 10.1016/j.ecoenv.2018.10.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) are widespread and persistent chemicals in the environment, and limited data about their effects on puberty development are available. In order to explore the effects of neonatal and juvenile PFOA/PFOS exposure on puberty maturation, female rats were injected with PFOA or PFOS at 0.1, 1 and 10 mg/kg/day during postnatal day (PND) 1-5 or 26-30. The day of vaginal opening (VO) and first estrus were significantly advanced in 10 mg/kg PFOA, 1 and 10 mg/kg PFOS groups after neonatal and juvenile exposure. Besides, neonatal PFOA/PFOS exposure increased body weight and anogenital distance (AGD) in a non-dose-dependent manner. Estradiol and luteinizing hormone levels were also increased with more frequent occurrences of irregular estrous cycles in 0.1 and 1 mg/kg PFOA/PFOS exposure groups. Although no altered ovarian morphology was observed, follicles numbers were reduced in neonatal groups. Kiss1, Kiss1r and ERα mRNA expressions were downregulated after two periods' exposure in the hypothalamic anteroventral periventricular (AVPV) and arcuate (ARC) nuclei. PFOA/PFOS exposure also suppressed kisspeptin fiber intensities, especially at the high dose. In conclusion, neonatal and juvenile are critical exposure periods, during which puberty maturation may be vulnerable to environmental exposure of PFOA/PFOS, and kisspeptin system plays a key role during these processes.
Collapse
Affiliation(s)
- Guizhen Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jialei Hu
- Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing 210009, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Yu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
22
|
Eze U, Routledge M, Okonofua F, Huntriss J, Gong Y. Mycotoxin exposure and adverse reproductive health outcomes in Africa: a review. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well established that mycotoxin exposure can have adverse effects on reproductive health resulting to poor reproductive potential. The most studied mycotoxin in relation to poor reproductive health in humans is aflatoxin, although fumonisins, trichothecenes and zearalenone have also been reported to impair reproductive function and cause abnormal foetal development. These potent fungal toxins contaminate many food products making them a prominent agricultural, food safety and public health challenge, especially in Africa due to little or lack of mycotoxin regulation in agricultural products. Neonates can be exposed to aflatoxins in utero, as the toxins pass from mother to the foetus through the placenta. This exposure may continue during breast feeding, to the introduction of weaning foods, and then foods taken by adults. The consequences of aflatoxin exposure in mothers, foetus and children are many, including anaemia in pregnancy, low birth weight, interference with nutrient absorption, suppression of immune function, child growth retardation and abnormal liver function. In males, reports have indicated a possible relationship between aflatoxin exposure and poor sperm quality culminating in infertility. Maternal exposure to fumonisin during early pregnancy has been associated with increased risk of neural tube defects among newborns in regions where maize is the common dietary staple with the possibility of chronic fumonisin exposure. Furthermore, zearalenone has been linked to precocious puberty and premature thelarche in girls, correlating with extremely high serum oestrogen levels. This review presents an overview of the several reports linking aflatoxins, fumonisins, trichothecenes, and zearalenone exposure to poor reproductive health outcomes in Africa, with emphasis on birth outcomes, foetal health and infertility.
Collapse
Affiliation(s)
- U.A. Eze
- School of Food Science and Nutrition, Food Science Building, University of Leeds, Woodhouse Ln, Leeds LS2 9JT, United Kingdom
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Ebonyi State University, P.M.B. 053, Abakaliki, Nigeria
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Woodhouse Ln, Leeds LS2 9JT, United Kingdom
| | - M.N. Routledge
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Woodhouse Ln, Leeds LS2 9JT, United Kingdom
| | - F.E. Okonofua
- University of Medical Sciences, Ondo Medical Village, Laje Road, Ondo, Nigeria
- Centre of Excellence in Reproductive Health Innovation [CERHI], University of Benin, P.M.B 1154, Benin City, Nigeria
| | - J. Huntriss
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Woodhouse Ln, Leeds LS2 9JT, United Kingdom
| | - Y.Y. Gong
- School of Food Science and Nutrition, Food Science Building, University of Leeds, Woodhouse Ln, Leeds LS2 9JT, United Kingdom
- Department of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Ministry of Health, 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China P.R
| |
Collapse
|
23
|
Balázsfi D, Fodor A, Török B, Ferenczi S, Kovács KJ, Haller J, Zelena D. Enhanced innate fear and altered stress axis regulation in VGluT3 knockout mice. Stress 2018; 21:151-161. [PMID: 29310485 DOI: 10.1080/10253890.2017.1423053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Glutamatergic neurons, characterized by vesicular glutamate transporters (VGluT1-3) provide the main excitation in the brain. Their disturbances have been linked to various brain disorders, which could be also modeled by the contextual fear test in rodents. We aimed to characterize the participation of VGluT3 in the development of contextual fear through its contribution to hypothalamic-pituitary-adrenocortical axis (HPA) regulation using knockout (KO) mice. Contextual fear conditioning was induced by foot shock and mice were examined 1 and 7 d later in the same environment comparing wild type with KO. Foot shock increased the immobility time without context specificity. Additionally, foot shock reduced open arm time in the elevated plus maze (EPM) test, and distance traveled in the open field (OF) test, representing the generalization of fear. Moreover, KO mice spent more time with freezing during the contextual fear test, less time in the open arm of the EPM, and traveled a smaller distance in the OF, with less entries into the central area. However, there was no foot shock and genotype interaction suggesting that VGluT3 does not influence the fear conditioning, rather determines anxiety-like characteristic of the mice. The resting hypothalamic CRH mRNA was higher in KO mice with reduced stressor-induced corticosterone elevations. Immunohistochemistry revealed the presence of VGluT3 positive fibers in the paraventricular nucleus of hypothalamus, but not on the hypophysis. As a summary, we confirmed the involvement of VGluT3 in innate fear, but not in the development of fear memory and generalization, with a significant contribution to HPA alterations. Highlights VGluT3 KO mice show innate fear without significant influence on fear memory and generalization. A putative background is the higher resting CRH mRNA level in their PVN and reduced stress-reactivity.
Collapse
Affiliation(s)
- Diána Balázsfi
- a Hungarian Academy of Sciences , Institute of Experimental Medicine , Budapest , Hungary
- b János Szentágothai School of Neurosciences , Semmelweis University , Budapest , Hungary
| | - Anna Fodor
- a Hungarian Academy of Sciences , Institute of Experimental Medicine , Budapest , Hungary
- b János Szentágothai School of Neurosciences , Semmelweis University , Budapest , Hungary
| | - Bibiána Török
- a Hungarian Academy of Sciences , Institute of Experimental Medicine , Budapest , Hungary
- b János Szentágothai School of Neurosciences , Semmelweis University , Budapest , Hungary
| | - Szilamér Ferenczi
- a Hungarian Academy of Sciences , Institute of Experimental Medicine , Budapest , Hungary
| | - Krisztina J Kovács
- a Hungarian Academy of Sciences , Institute of Experimental Medicine , Budapest , Hungary
| | - József Haller
- a Hungarian Academy of Sciences , Institute of Experimental Medicine , Budapest , Hungary
| | - Dóra Zelena
- a Hungarian Academy of Sciences , Institute of Experimental Medicine , Budapest , Hungary
| |
Collapse
|
24
|
Liu XL, Wu RY, Sun XF, Cheng SF, Zhang RQ, Zhang TY, Zhang XF, Zhao Y, Shen W, Li L. Mycotoxin zearalenone exposure impairs genomic stability of swine follicular granulosa cells in vitro. Int J Biol Sci 2018; 14:294-305. [PMID: 29559847 PMCID: PMC5859475 DOI: 10.7150/ijbs.23898] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/30/2017] [Indexed: 01/15/2023] Open
Abstract
Zearalenone (ZEA), a metabolite of Fusarium fungi, is commonly found on moldy grains. Because it can competitively combine to estrogen receptor to disrupt estrogenic signaling, it has been reported to have serious adverse effects on animal reproduction systems. In order to explore the genotoxic effects of ZEA exposure on ovarian somatic cells, porcine granulosa cells were exposed to 10 μM and 30 μM ZEA for 24 or 72 h in vitro. The results showed that ZEA exposure for 24 h remarkably reduced the proliferation of porcine granulosa cells in a dose-dependent manner as determined by MTT analysis and flow cytometry. Furthermore, exposure to ZEA for 72 h induced apoptosis, and RNA sequence analysis also revealed that the expression of apoptosis related genes were altered. RT-qPCR, immunofluorescence and western blot analysis further confirmed the expression of DNA damage and repair related genes (γ-H2AX, BRCA1, RAD51 and PRKDC) were increased in ZEA exposed granulosa cells. When the estrogen antagonist, tamoxifen, was added with ZEA in the culture medium, the DNA damage and repairment by ZEA returned to normal level. Collectively, these results illustrate that ZEA disrupts genome stability and inhibits growth of porcine granulosa cells via the estrogen receptors which may promote granulosa cell apoptosis when the DNA repair system is not enough to rescue this serious damage.
Collapse
Affiliation(s)
- Xue-Lian Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Rui-Ying Wu
- Center for Reproductive Medicine, Qingdao Women's and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Xiao-Feng Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Rui-Qian Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Tian-Yu Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.,Center for Reproductive Medicine, Qingdao Women's and Children's Hospital, Qingdao University, Qingdao 266034, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
25
|
Parandin R, Behnam-Rassouli M, Mahdavi-Shahri N. Effects of Neonatal Exposure to Zearalenone on Puberty Timing, Hypothalamic Nuclei of AVPV and ARC, and Reproductive Functions in Female Mice. Reprod Sci 2016; 24:1293-1303. [PMID: 28814190 DOI: 10.1177/1933719116683808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is now established that mycoestrogen zearalenone (ZEN) disrupts reproductive physiology, but the specific mechanisms by which this occurs remain unknown, especially in brain. Growing evidence suggests that populations of estradiol (E2)-sensitive neurons in anteroventral periventricular (AVPV) and arcuate (ARC) nuclei, especially kisspeptin neurons, play a pivotal role in the timing of puberty onset, ovulation, and normal reproduction. The present study was conducted to find whether the ZEN can cause estrogen-like actions during the critical period of neonatal differentiation. In this study, we compared the effect of neonatal exposure to sesame oil, E2 benzoate (EB, 20 µg/kg body weight [bw]), and 3 various doses: 0.2, 1, and 2 mg/kg bw of ZEN (0.2, 1, and 2 ZEN) on the onset of puberty and estrus cyclicity as well as ovarian follicular profile, kisspeptin expression, and neuronal density in AVPV and ARC hypothalamic nuclei and E2 and luteinizing hormone (LH) levels on postnatal day 70. Control mice received no treatment. Vaginal opening was significantly advanced by EB and 2 ZEN. Disrupted estrus cycles and decreased follicular profiles were observed in EB, 1 ZEN, and 2 ZEN animals. In addition, EB, 1 ZEN, and 2 ZEN reduced the expression of kisspeptin and neuronal density of AVPV and ARC nuclei and caused a decrease in the LH and an increase in E2 plasma levels. Taken together, our observations provide physiological evidence that neonatal exposure to ZEN exerts estrogen-like actions in the estrogen-sensitive hypothalamic AVPV and ARC nuclei, controlling reproductive functions in adult female mice.
Collapse
Affiliation(s)
- Rahmatollah Parandin
- 1 Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | | | - Nasser Mahdavi-Shahri
- 2 Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
26
|
Yang R, Wang YM, Zhang L, Zhao ZM, Zhao J, Peng SQ. Prepubertal exposure to an oestrogenic mycotoxin zearalenone induces central precocious puberty in immature female rats through the mechanism of premature activation of hypothalamic kisspeptin-GPR54 signaling. Mol Cell Endocrinol 2016; 437:62-74. [PMID: 27519634 DOI: 10.1016/j.mce.2016.08.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/19/2016] [Accepted: 08/08/2016] [Indexed: 01/12/2023]
Abstract
Sporadic epidemics and several researches in rodents indicated that zearalenone (ZEA) and its metabolites, the prevailing oestrogenic mycotoxins in foodstuffs, were a triggering factor for true precocious puberty development in girls. Nevertheless, the neuroendocrine mechanism through which ZEA mycoestrogens advance puberty onset is not fully understood. To elucidate this issue, hypothalamic kisspeptin-G-protein coupled receptor-54 (GPR54) signaling pathway that regulates the onset of puberty was focused on in the present study. Immature female SD rats were given a daily intragastric administration of corn oil (vehicle control), 50 μg/kg body weight (bw) of 17β-estradiol (E2, positive control), and 3 doses (0.2, 1 and 5 mg/kg bw) of ZEA for consecutive 5 days starting from postnatal day 15, respectively. Puberty onset was evaluated by detecting the physiological and hormonal responses, and hypothalamic kisspeptin-GPR54 pathway was determined to reveal the neuroendocrine mechanism. As the markers of puberty onset, vaginal opening was significantly accelerated and uterine weight was increased in both E2 and 5 mg/kg ZEA groups. Serum levels of follicle stimulating hormone, luteinizing hormone and estradiol were also markedly elevated by E2 and 5 mg/kg ZEA, which is compatible with the changes in peripheral reproductive organs. The mRNA and protein expressions of hypothalamic gonadotropin-releasing hormone (GnRH) were both obviously elevated by E2 and 5 mg/kg ZEA. GnRH expression changes occurred in parallel with increased expressions of hypothalamic Kiss1 and its receptor GPR54 at both mRNA and protein levels. Most of these changes were also noted in 1 mg/kg ZEA group, but none in 0.2 mg/kg group. Therefore, within the context of this study, the No Observed Adverse Effect Level (NOAEL) for ZEA in terms of oestrogenic activity and puberty-promoting effect in immature female rats was considered to be 0.2 mg/kg bw per day, and the Lowest Observed Adverse Effect Level (LOAEL) was 1 mg/kg bw per day. In conclusion, prepubertal exposure to dietary relevant levels of ZEA induced central precocious puberty in female rats by premature activation of hypothalamic kisspeptin-GPR54-GnRH signaling pathway, followed by the stimulation of gonadotropins release at an earlier age, resulting in the advancement of vaginal opening and enlargement of uterus at periphery.
Collapse
MESH Headings
- Animals
- Estrogens/toxicity
- Estrous Cycle/drug effects
- Female
- Genitalia, Female/drug effects
- Genitalia, Female/growth & development
- Genitalia, Female/pathology
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Hormones/blood
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Kisspeptins/metabolism
- Male
- Mycotoxins/toxicity
- Pituitary Gland/drug effects
- Pituitary Gland/metabolism
- Puberty, Precocious/blood
- Puberty, Precocious/chemically induced
- Puberty, Precocious/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Kisspeptin-1
- Receptors, LHRH/genetics
- Receptors, LHRH/metabolism
- Sexual Maturation/drug effects
- Signal Transduction/drug effects
- Zearalenone/toxicity
Collapse
Affiliation(s)
- Rong Yang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Yi-Mei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China.
| | - Li Zhang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Zeng-Ming Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Jun Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Shuang-Qing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China.
| |
Collapse
|
27
|
Müller DR, Soukup ST, Kurrat A, Liu X, Schmicke M, Xie MY, Kulling SE, Diel P. Neonatal isoflavone exposure interferes with the reproductive system of female Wistar rats. Toxicol Lett 2016; 262:39-48. [PMID: 27506417 DOI: 10.1016/j.toxlet.2016.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022]
Abstract
There is increasing concern about possible adverse effects of soy based infant formulas (SBIF) due to their high amount of isoflavones (ISO). The aim of the present study was to investigate effects of neonatal exposure to ISO on reproductive system of female Wistar rats. Animals were exposed to an ISO depleted diet or a diet enriched with an ISO extract (IRD; 508mg ISO/kg) during embryogenesis and adolescence. Pups of each group were fed daily by pipette with ISO-suspension (ISO+; 32mg ISO/kg bw) or placebo from postnatal day (PND) 1 until PND23 resulting in plasma concentrations similar to levels reported in infants fed SBIF. The visceral fat mass was reduced by long-term IRD. Vaginal epithelial height was increased at PND23 and vaginal opening was precocious in ISO+ groups. Later in life, more often irregular estrus cycles were observed in rats of ISO+ groups. In addition, FSH levels and uterine epithelial heights were increased at PND80 in ISO+ groups. In summary, the results indicate that neonatal ISO intake, resulting in plasma concentrations achievable through SBIF, has an estrogenic effect on prepubertal rats and influences female reproductive tract later in life.
Collapse
Affiliation(s)
- Dennis R Müller
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Cologne, Germany
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany, Germany
| | - Anne Kurrat
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Cologne, Germany
| | - Xin Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, China
| | - Marion Schmicke
- Clinic for Cattle, Endocrinology, University of Veterinary Medicine, Hannover, Germany
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, China
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany, Germany
| | - Patrick Diel
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Cologne, Germany.
| |
Collapse
|
28
|
Impact of endocrine disrupting chemicals on onset and development of female reproductive disorders and hormone-related cancer. Reprod Biol 2016; 16:243-254. [PMID: 27692877 DOI: 10.1016/j.repbio.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/30/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023]
Abstract
A growing body of evidence suggests that exposure to chemical substances designated as endocrine disrupting chemicals (EDCs) due to their ability to disturb endocrine (hormonal) activity in humans and animals, may contribute to problems with fertility, pregnancy, and other aspects of reproduction. The presence of EDCs has already been associated with reproductive malfunction in wildlife species, but it remains difficult to prove causal relationships between the presence of EDCs and specific reproductive problems in vivo, especially in females. On the other hand, the increasing number of experiments with laboratory animals and in vitro research indicate the ability of different EDCs to influence the normal function of female reproductive system, and even their association with cancer development or progression. Research shows that EDCs may pose the greatest risk during prenatal and early postnatal development when organ and neural systems are forming. In this review article, we aim to point out a possible contribution of EDCs to the onset and development of female reproductive disorders and endocrine-related cancers with regard to the period of exposure to EDCs and affected endpoints (organs or processes).
Collapse
|
29
|
Molecular identification of Kiss/GPR54 and function analysis with mRNA expression profiles exposure to 17α-ethinylestradiol in rare minnow Gobiocypris rarus. Mol Biol Rep 2016; 43:737-49. [DOI: 10.1007/s11033-016-4014-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/13/2016] [Indexed: 02/06/2023]
|
30
|
Appropriateness to set a group health‐based guidance value for zearalenone and its modified forms. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4425] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|