1
|
Kineman RD, Del Rio-Moreno M, Waxman DJ. Liver-specific actions of GH and IGF1 that protect against MASLD. Nat Rev Endocrinol 2025; 21:105-117. [PMID: 39322791 DOI: 10.1038/s41574-024-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; also known as nonalcoholic fatty liver disease) is a chronic condition associated with metabolic syndrome, a group of conditions that includes obesity, insulin resistance, hyperlipidaemia and cardiovascular disease. Primary growth hormone (GH) deficiency is associated with MASLD, and the decline in circulating levels of GH with weight gain might contribute to the development of MASLD. Raising endogenous GH secretion or administering GH replacement therapy in the context of MASLD enhances insulin-like growth factor 1 (IGF1) production and reduces steatosis and the severity of liver injury. GH and IGF1 indirectly control MASLD progression by regulating systemic metabolic function. Evidence supports the proposal that GH and IGF1 also have a direct role in regulating liver metabolism and health. This Review focuses on how GH acts on the hepatocyte in a sex-dependent manner to limit lipid accumulation, reduce stress, and promote survival and regeneration. In addition, we discuss how GH and IGF1 might regulate non-parenchymal cells of the liver to control inflammation and fibrosis, which have a major effect on hepatocyte survival and regeneration. Development of a better understanding of how GH and IGF1 coordinate the functions of specific, individual liver cell types might provide insight into the aetiology of MASLD initiation and progression and suggest novel approaches for the treatment of MASLD.
Collapse
Affiliation(s)
- Rhonda D Kineman
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA.
| | - Mercedes Del Rio-Moreno
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
2
|
Brie B, Sarmento-Cabral A, Pascual F, Cordoba-Chacon J, Kineman RD, Becu-Villalobos D. Modifications of the GH Axis Reveal Unique Sexually Dimorphic Liver Signatures for Lcn13, Asns, Hamp2, Hao2, and Pgc1a. J Endocr Soc 2024; 8:bvae015. [PMID: 38370444 PMCID: PMC10872697 DOI: 10.1210/jendso/bvae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 02/20/2024] Open
Abstract
Growth hormone (GH) modifies liver gene transcription in a sexually dimorphic manner to meet liver metabolic demands related to sex; thus, GH dysregulation leads to sex-biased hepatic disease. We dissected the steps of the GH regulatory cascade modifying GH-dependent genes involved in metabolism, focusing on the male-predominant genes Lcn13, Asns, and Cyp7b1, and the female-predominant genes Hao2, Pgc1a, Hamp2, Cyp2a4, and Cyp2b9. We explored mRNA expression in 2 settings: (i) intact liver GH receptor (GHR) but altered GH and insulin-like growth factor 1 (IGF1) levels (NeuroDrd2KO, HiGH, aHepIGF1kd, and STAT5bCA mouse lines); and (ii) liver loss of GHR, with or without STAT5b reconstitution (aHepGHRkd, and aHepGHRkd + STAT5bCA). Lcn13 was downregulated in males in most models, while Asns and Cyp7b1 were decreased in males by low GH levels or action, or constant GH levels, but unexpectedly upregulated in both sexes by the loss of liver Igf1 or constitutive Stat5b expression. Hao, Cyp2a4, and Cyp2b9 were generally decreased in female mice with low GH levels or action (NeuroDrd2KO and/or aHepGHRkd mice) and increased in HiGH females, while in contrast, Pgc1a was increased in female NeuroDrd2KO but decreased in STAT5bCA and aHepIGF1kd females. Bioinformatic analysis of RNAseq from aHepGHRkd livers stressed the greater impact of GHR loss on wide gene expression in males and highlighted that GH modifies almost completely different gene signatures in each sex. Concordantly, we show that altering different steps of the GH cascade in the liver modified liver expression of Lcn13, Asns, Cyp7b1, Hao2, Hamp2, Pgc1a, Cyp2a4, and Cyp2b9 in a sex- and gene-specific manner.
Collapse
Affiliation(s)
- Belen Brie
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Andre Sarmento-Cabral
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Florencia Pascual
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Jose Cordoba-Chacon
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rhonda Denise Kineman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| |
Collapse
|
3
|
Pusec CM, Ilievski V, De Jesus A, Farooq Z, Zapater JL, Sweis N, Ismail H, Khan MW, Ardehali H, Cordoba-Chacon J, Layden BT. Liver-specific overexpression of HKDC1 increases hepatocyte size and proliferative capacity. Sci Rep 2023; 13:8034. [PMID: 37198225 PMCID: PMC10192376 DOI: 10.1038/s41598-023-33924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
A primary role of the liver is to regulate whole body glucose homeostasis. Glucokinase (GCK) is the main hexokinase (HK) expressed in hepatocytes and functions to phosphorylate the glucose that enters via GLUT transporters to become glucose-6-phosphate (G6P), which subsequently commits glucose to enter downstream anabolic and catabolic pathways. In the recent years, hexokinase domain-containing-1 (HKDC1), a novel 5th HK, has been characterized by our group and others. Its expression profile varies but has been identified to have low basal expression in normal liver but increases during states of stress including pregnancy, nonalcoholic fatty liver disease (NAFLD), and liver cancer. Here, we have developed a stable overexpression model of hepatic HKDC1 in mice to examine its effect on metabolic regulation. We found that HKDC1 overexpression, over time, causes impaired glucose homeostasis in male mice and shifts glucose metabolism towards anabolic pathways with an increase in nucleotide synthesis. Furthermore, we observed these mice to have larger liver sizes due to greater hepatocyte proliferative potential and cell size, which in part, is mediated via yes-associated protein (YAP) signaling.
Collapse
Affiliation(s)
- Carolina M Pusec
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Vladimir Ilievski
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Adam De Jesus
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zeenat Farooq
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph L Zapater
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Nadia Sweis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Hagar Ismail
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Md Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Hossein Ardehali
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jose Cordoba-Chacon
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Brian T Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
4
|
Lee SM, Muratalla J, Karimi S, Diaz-Ruiz A, Frutos MD, Guzman G, Ramos-Molina B, Cordoba-Chacon J. Hepatocyte PPARγ contributes to the progression of non-alcoholic steatohepatitis in male and female obese mice. Cell Mol Life Sci 2023; 80:39. [PMID: 36629912 PMCID: PMC10082675 DOI: 10.1007/s00018-022-04629-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 01/12/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is associated with obesity and increased expression of hepatic peroxisome proliferator-activated receptor γ (PPARγ). However, the relevance of hepatocyte PPARγ in NASH associated with obesity is still poorly understood. In this study, hepatocyte PPARγ was knocked out (PpargΔHep) in male and female mice after the development of high-fat diet-induced obesity. The diet-induced obese mice were then maintained on their original diet or switched to a high fat, cholesterol, and fructose (HFCF) diet to induce NASH. Hepatic PPARγ expression was mostly derived from hepatocytes and increased by high fat diets. PpargΔHep reduced HFCF-induced NASH progression without altering steatosis, reduced the expression of key genes involved in hepatic fibrosis in HFCF-fed male and female mice, and decreased the area of collagen-stained fibrosis in the liver of HFCF-fed male mice. Moreover, transcriptomic and metabolomic data suggested that HFCF-diet regulated hepatic amino acid metabolism in a hepatocyte PPARγ-dependent manner. PpargΔHep increased betaine-homocysteine s-methyltransferase expression and reduced homocysteine levels in HFCF-fed male mice. In addition, in a cohort of 102 obese patients undergoing bariatric surgery with liver biopsies, 16 cases were scored with NASH and were associated with increased insulin resistance and hepatic PPARγ expression. Our study shows that hepatocyte PPARγ expression is associated with NASH in mice and humans. In male mice, hepatocyte PPARγ negatively regulates methionine metabolism and contributes to the progression of fibrosis.
Collapse
Affiliation(s)
- Samuel M Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave (North Entrance) Suite E625, M/C 640, Chicago, IL, USA
| | - Jose Muratalla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave (North Entrance) Suite E625, M/C 640, Chicago, IL, USA
| | - Saman Karimi
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Maria Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de La Arrixaca University Hospital, Murcia, Spain
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Bruno Ramos-Molina
- Obesity and Metabolism Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Jose Cordoba-Chacon
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave (North Entrance) Suite E625, M/C 640, Chicago, IL, USA.
| |
Collapse
|
5
|
Lee SM, Muratalla J, Diaz-Ruiz A, Remon-Ruiz P, McCann M, Liew CW, Kineman RD, Cordoba-Chacon J. Rosiglitazone Requires Hepatocyte PPARγ Expression to Promote Steatosis in Male Mice With Diet-Induced Obesity. Endocrinology 2021; 162:6356057. [PMID: 34417811 PMCID: PMC8428295 DOI: 10.1210/endocr/bqab175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Thiazolidinediones (TZD) are peroxisome proliferator-activated receptor γ (PPARγ) agonists that may reduce hepatic steatosis through their effects in adipose tissue and therefore have been assessed as potential therapies to treat nonalcoholic fatty liver disease (NAFLD) in humans. However, some studies suggest that expression and activation of hepatocyte PPARγ promotes steatosis and that would limit the benefits of TZD as a NAFLD therapy. To further explore this possibility, we examined the impact of short-term rosiglitazone maleate treatment after the development of moderate or severe diet-induced obesity, in both control and adult-onset hepatocyte-specific PPARγ knockout (PpargΔHep) mice. Independent of the level of obesity and hepatic PPARγ expression, the TZD treatment enhanced insulin sensitivity, associated with an increase in white adipose tissue (WAT) fat accumulation, consistent with clinical observations. However, TZD treatment increased hepatic triglyceride content only in control mice with severe obesity. Under these conditions, PpargΔHep reduced diet-induced steatosis and prevented the steatogenic effects of short-term TZD treatment. In these mice, subcutaneous WAT was enlarged and associated with increased levels of adiponectin, while hepatic levels of phosphorylated adenosine 5'-monophosphate-activated protein kinase were also increased. In addition, in mice with severe obesity, the expression of hepatic Cd36, Cidea, Cidec, Fabp4, Fasn, and Scd-1 was increased by TZD in a PPARγ-dependent manner. Taken together, these results demonstrate that hepatocyte PPARγ expression offsets the antisteatogenic actions of TZD in mice with severe obesity. Therefore, in obese and insulin resistant humans, TZD-mediated activation of hepatocyte PPARγ may limit the therapeutic potential of TZD to treat NAFLD.
Collapse
Affiliation(s)
- Samuel M Lee
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose Muratalla
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Pablo Remon-Ruiz
- Endocrinology and Clinical Nutrition Department, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (IBIS), Seville, Spain
| | - Maximilian McCann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Chong W Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Rhonda D Kineman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Research and Development Division. Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Jose Cordoba-Chacon
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Correspondence: Jose Cordoba-Chacon, PhD, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism. 835 S. Wolcott Ave (North Entrance) Suite E625. M/C 640. Chicago, IL, USA.
| |
Collapse
|
6
|
Towards Understanding the Direct and Indirect Actions of Growth Hormone in Controlling Hepatocyte Carbohydrate and Lipid Metabolism. Cells 2021; 10:cells10102532. [PMID: 34685512 PMCID: PMC8533955 DOI: 10.3390/cells10102532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Growth hormone (GH) is critical for achieving normal structural growth. In addition, GH plays an important role in regulating metabolic function. GH acts through its GH receptor (GHR) to modulate the production and function of insulin-like growth factor 1 (IGF1) and insulin. GH, IGF1, and insulin act on multiple tissues to coordinate metabolic control in a context-specific manner. This review will specifically focus on our current understanding of the direct and indirect actions of GH to control liver (hepatocyte) carbohydrate and lipid metabolism in the context of normal fasting (sleep) and feeding (wake) cycles and in response to prolonged nutrient deprivation and excess. Caveats and challenges related to the model systems used and areas that require further investigation towards a clearer understanding of the role GH plays in metabolic health and disease are discussed.
Collapse
|
7
|
Evaluating the effect of a mixture of two main conjugated linoleic acid isomers on hepatic steatosis in HepG2 cellular model. Mol Biol Rep 2021; 48:1359-1370. [PMID: 33580458 DOI: 10.1007/s11033-021-06203-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023]
Abstract
Hepatic steatosis is an early form of non-alcoholic fatty liver disease (NAFLD), caused by abnormal fat deposition in the hepatocytes. Conjugated linoleic acid (CLA) is a group of positional and geometric dienoic isomers of linoleic acid that attract significant attention because of its beneficial effects on chronic diseases such as cancer, obesity, and metabolic syndrome. This study examined the influence of a mixture of two main CLA isomers (CLA-mix) on lipid accumulation and lipid metabolism-related genes using HepG2 cells treated with palmitic acid (PA) as an in vitro model for hepatic steatosis. Methods and Results: HepG2 cells were treated for 24 h: control (BSA), model (BSA + PA), and treated groups (BSA-PA + non-toxic concentrations of CLA-mix). Intracellular lipid deposition, triglyceride (TG), total cholesterol (TC) and gene expression were measured by Oil-Red O staining, colorimetric assay kits and real-time PCR, respectively. CLA-mix at high concentrations had significantly decreased intracellular total lipid and TG deposition compared to the model group. However, none of the CLA-mix concentrations had a significant effect on the intracellular TC level. CLA-mix significantly increased the expression of some genes mainly regulated by PPARα but did not alter the expression of lipogenesis-related genes. Conclusions: These results demonstrate that high concentrations of CLA-mix protect against hepatic steatosis and play a role in regulating fatty acid oxidation and bile excretion through the PPARα pathway. It is suggested that the effect of different ratios of two main CLA isomers on the amount and ratio of bile compounds be investigated in future studies.
Collapse
|
8
|
Lee SM, Pusec CM, Norris GH, De Jesus A, Diaz-Ruiz A, Muratalla J, Sarmento-Cabral A, Guzman G, Layden BT, Cordoba-Chacon J. Hepatocyte-Specific Loss of PPARγ Protects Mice From NASH and Increases the Therapeutic Effects of Rosiglitazone in the Liver. Cell Mol Gastroenterol Hepatol 2021; 11:1291-1311. [PMID: 33444819 PMCID: PMC8005819 DOI: 10.1016/j.jcmgh.2021.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is commonly observed in patients with type 2 diabetes, and thiazolidinediones (TZD) are considered a potential therapy for NASH. Although TZD increase insulin sensitivity and partially reduce steatosis and alanine aminotransferase, the efficacy of TZD on resolving liver pathology is limited. In fact, TZD may activate peroxisome proliferator-activated receptor gamma (PPARγ) in hepatocytes and promote steatosis. Therefore, we assessed the role that hepatocyte-specific PPARγ plays in the development of NASH, and how it alters the therapeutic effects of TZD on the liver of mice with diet-induced NASH. METHODS Hepatocyte-specific PPARγ expression was knocked out in adult mice before and after the development of NASH induced with a high fat, cholesterol, and fructose (HFCF) diet. RESULTS HFCF diet increased PPARγ expression in hepatocytes, and rosiglitazone further activated PPARγ in hepatocytes of HFCF-fed mice in vivo and in vitro. Hepatocyte-specific loss of PPARγ reduced the progression of HFCF-induced NASH in male mice and increased the benefits derived from the effects of TZD on extrahepatic tissues and non-parenchymal cells. RNAseq and metabolomics indicated that HFCF diet promoted inflammation and fibrogenesis in a hepatocyte PPARγ-dependent manner and was associated with dysregulation of hepatic metabolism. Specifically, hepatocyte-specific loss of PPARγ plays a positive role in the regulation of methionine metabolism, and that could reduce the progression of NASH. CONCLUSIONS Because of the negative effect of hepatocyte PPARγ in NASH, inhibition of mechanisms promoted by endogenous PPARγ in hepatocytes may represent a novel strategy that increases the efficiency of therapies for NAFLD.
Collapse
Affiliation(s)
- Samuel M. Lee
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, Illinois
| | - Carolina M. Pusec
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, Illinois
| | - Gregory H. Norris
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, Illinois
| | | | | | - Jose Muratalla
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, Illinois
| | - Andre Sarmento-Cabral
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, Illinois
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Brian T. Layden
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, Illinois,Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois
| | - Jose Cordoba-Chacon
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, Illinois,Correspondence Address correspondence to: Jose Cordoba-Chacon, PhD, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 835 South Wolcott Avenue (North Entrance), Suite E625, M/C 640, Chicago, Illinois 60612. fax (312) 413-0437.
| |
Collapse
|
9
|
Sarmento-Cabral A, del Rio-Moreno M, Vazquez-Borrego MC, Mahmood M, Gutierrez-Casado E, Pelke N, Guzman G, Subbaiah PV, Cordoba-Chacon J, Yakar S, Kineman RD. GH directly inhibits steatosis and liver injury in a sex-dependent and IGF1-independent manner. J Endocrinol 2021; 248:31-44. [PMID: 33112796 PMCID: PMC7785648 DOI: 10.1530/joe-20-0326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
A reduction in hepatocyte growth hormone (GH)-signaling promotes non-alcoholic fatty liver disease (NAFLD). However, debate remains as to the relative contribution of the direct effects of GH on hepatocyte function vs indirect effects, via alterations in insulin-like growth factor 1 (IGF1). To isolate the role of hepatocyte GH receptor (GHR) signaling, independent of changes in IGF1, mice with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd) were treated with a vector expressing rat IGF1 targeted specifically to hepatocytes. Compared to GHR-intact mice, aHepGHRkd reduced circulating IGF1 and elevated GH. In male aHepGHRkd, the shift in IGF1/GH did not alter plasma glucose or non-esterified fatty acids (NEFA), but was associated with increased insulin, enhanced systemic lipid oxidation and reduced white adipose tissue (WAT) mass. Livers of male aHepGHRkd exhibited steatosis associated with increased de novo lipogenesis, hepatocyte ballooning and inflammation. In female aHepGHRkd, hepatic GHR protein levels were not detectable, but moderate levels of IGF1 were maintained, with minimal alterations in systemic metabolism and no evidence of steatosis. Reconstitution of hepatocyte IGF1 in male aHepGHRkd lowered GH and normalized insulin, whole body lipid utilization and WAT mass. However, IGF1 reconstitution did not reduce steatosis or eliminate liver injury. RNAseq analysis showed IGF1 reconstitution did not impact aHepGHRkd-induced changes in liver gene expression, despite changes in systemic metabolism. These results demonstrate the impact of aHepGHRkd is sexually dimorphic and the steatosis and liver injury observed in male aHepGHRkd mice is autonomous of IGF1, suggesting GH acts directly on the adult hepatocyte to control NAFLD progression.
Collapse
Affiliation(s)
- Andre Sarmento-Cabral
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Mercedes del Rio-Moreno
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Mari C. Vazquez-Borrego
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Mariyah Mahmood
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Elena Gutierrez-Casado
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Natalie Pelke
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago,
College of Medicine, Chicago, IL
| | - Papasani V. Subbaiah
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Jose Cordoba-Chacon
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| | - Shoshana Yakar
- Department of Molecular Pathobiology, New York University
College of Dentistry, New York, NY
| | - Rhonda D. Kineman
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, University of Illinois at Chicago and Research and Development
Division, Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
10
|
Loss of Hepatocyte-Specific PPAR γ Expression Ameliorates Early Events of Steatohepatitis in Mice Fed the Methionine and Choline-Deficient Diet. PPAR Res 2020; 2020:9735083. [PMID: 32411189 PMCID: PMC7211257 DOI: 10.1155/2020/9735083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. To date, there is not a specific and approved treatment for NAFLD yet, and therefore, it is important to understand the molecular mechanisms that lead to the progression of NAFLD. Methionine- and choline-deficient (MCD) diets are used to reproduce some features of NAFLD in mice. MCD diets increase the expression of hepatic peroxisome proliferator-activated receptor gamma (PPARγ, Pparg) and the fatty acid translocase (CD36, Cd36) which could increase hepatic fatty acid uptake and promote the progression of NAFLD in mice and humans. In this study, we assessed the contribution of hepatocyte-specific PPARγ and CD36 expression to the development of early events induced by the MCD diet. Specifically, mice with adult-onset, hepatocyte-specific PPARγ knockout with and without hepatocyte CD36 overexpression were fed a MCD diet for three weeks. Hepatocyte PPARγ and/or CD36 expression did not contribute to the development of steatosis induced by the MCD diet. However, the expression of inflammatory and fibrogenic genes seems to be dependent on the expression of hepatocyte PPARγ and CD36. The expression of PPARγ and CD36 in hepatocytes may be relevant in the regulation of some features of NAFLD and steatohepatitis.
Collapse
|
11
|
Cordoba-Chacon J, Sugasini D, Yalagala PCR, Tummala A, White ZC, Nagao T, Kineman RD, Subbaiah PV. Tissue-dependent effects of cis-9,trans-11- and trans-10,cis-12-CLA isomers on glucose and lipid metabolism in adult male mice. J Nutr Biochem 2019; 67:90-100. [PMID: 30856468 DOI: 10.1016/j.jnutbio.2019.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/22/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022]
Abstract
Mixtures of the two major conjugated linoleic acid (CLA) isomers trans-10,cis-12-CLA and cis-9,trans-11-CLA are used as over the counter supplements for weight loss. Because of the reported adverse effects of CLA on insulin sensitivity in some mouse studies, we sought to compare the impact of dietary t10c12-CLA and c9t11-CLA on liver, adipose tissue, and systemic metabolism of adult lean mice. We fed 8 week-old C57Bl/6J male mice with low fat diets (10.5% Kcal from fat) containing 0.8% t10c12-CLA or c9t11-CLA for 9 or 38 days. Diets containing c9t11-CLA had minimal impact on the endpoints studied. However, 7 days after starting the t10c12-CLA diet, we observed a dramatic reduction in fat mass measured by NMR spectroscopy, which interestingly rebounded by 38 days. This rebound was apparently due to a massive accumulation of lipids in the liver, because adipose tissue depots were visually undetectable. Hepatic steatosis and the disappearance of adipose tissue after t10c12-CLA feeding was associated with elevated plasma insulin levels and insulin resistance, compared to mice fed a control diet or c9t11-CLA diet. Unexpectedly, despite being insulin resistant, mice fed t10c12-CLA had normal levels of blood glucose, without signs of impaired glucose clearance. Hepatic gene expression and fatty acid composition suggested enhanced hepatic de novo lipogenesis without an increase in expression of gluconeogenic genes. These data indicate that dietary t10c12-CLA may alter hepatic glucose and lipid metabolism indirectly, in response to the loss of adipose tissue in mice fed a low fat diet.
Collapse
Affiliation(s)
- Jose Cordoba-Chacon
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL.
| | - Dhavamani Sugasini
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL
| | - Poorna C R Yalagala
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL
| | - Apoorva Tummala
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL
| | - Zachary C White
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL
| | - Toshihiro Nagao
- Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Rhonda D Kineman
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL; Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Papasani V Subbaiah
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL; Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL.
| |
Collapse
|
12
|
Cordoba-Chacon J, Sarmento-Cabral A, del Rio-Moreno M, Diaz-Ruiz A, Subbaiah PV, Kineman RD. Adult-Onset Hepatocyte GH Resistance Promotes NASH in Male Mice, Without Severe Systemic Metabolic Dysfunction. Endocrinology 2018; 159:3761-3774. [PMID: 30295789 PMCID: PMC6202859 DOI: 10.1210/en.2018-00669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which includes nonalcoholic steatohepatitis (NASH), is associated with reduced GH input/signaling, and GH therapy is effective in the reduction/resolution of NAFLD/NASH in selected patient populations. Our laboratory has focused on isolating the direct vs indirect effects of GH in preventing NAFLD/NASH. We reported that chow-fed, adult-onset, hepatocyte-specific, GH receptor knockdown (aHepGHRkd) mice rapidly (within 7 days) develop steatosis associated with increased hepatic de novo lipogenesis (DNL), independent of changes in systemic metabolic function. In this study, we report that 6 months after induction of aHepGHRkd early signs of NASH develop, which include hepatocyte ballooning, inflammation, signs of mild fibrosis, and elevated plasma alanine aminotransferase. These changes occur in the presence of enhanced systemic lipid utilization, without evidence of white adipose tissue lipolysis, indicating that the liver injury that develops after aHepGHRkd is due to hepatocyte-specific loss of GH signaling and not due to secondary defects in systemic metabolic function. Specifically, enhanced hepatic DNL is sustained with age in aHepGHRkd mice, associated with increased hepatic markers of lipid uptake/re-esterification. Because hepatic DNL is a hallmark of NAFLD/NASH, these studies suggest that enhancing hepatocyte GH signaling could represent an effective therapeutic target to reduce DNL and treat NASH.
Collapse
Affiliation(s)
- Jose Cordoba-Chacon
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Andre Sarmento-Cabral
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Mercedes del Rio-Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, Cordoba, Spain
| | - Alberto Diaz-Ruiz
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
- Nutritional Interventions Group, Precision Nutrition and Aging, Institute IMDEA Food, Madrid, Spain
| | - Papasani V Subbaiah
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Rhonda D Kineman
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
13
|
Dodington DW, Desai HR, Woo M. JAK/STAT - Emerging Players in Metabolism. Trends Endocrinol Metab 2018; 29:55-65. [PMID: 29191719 DOI: 10.1016/j.tem.2017.11.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is crucial for transducing signals from a variety of metabolically relevant hormones and cytokines including growth hormone, leptin, erythropoietin, IL4, IL6 and IFNγ. A growing body of evidence suggests that this pathway is dysregulated in the context of obesity and metabolic disease. Recent development of animal models has been instrumental in identifying the role of JAK/STAT signaling in the peripheral metabolic organs including adipose, liver, muscle, pancreas, and the immune system. In this review we summarize current knowledge about the function of JAK/STAT proteins in the regulation of metabolism, and highlight new potential therapeutic targets for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- David W Dodington
- Toronto General Hospital Research Institute, University Health Network, Toronto, M5G 1L7, Canada
| | - Harsh R Desai
- Toronto General Hospital Research Institute, University Health Network, Toronto, M5G 1L7, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, M5G 1L7, Canada; Division of Endocrinology and Metabolism, Department of Medicine, University Health Network and University of Toronto, Toronto, M5G 2C4, Canada.
| |
Collapse
|
14
|
Gong Z, Tas E, Yakar S, Muzumdar R. Hepatic lipid metabolism and non-alcoholic fatty liver disease in aging. Mol Cell Endocrinol 2017; 455:115-130. [PMID: 28017785 DOI: 10.1016/j.mce.2016.12.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/23/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Aging is associated with dysregulation of glucose and lipid metabolism. Various factors that contribute to the dysregulation include both modifiable (e.g. obesity, insulin resistance) and non-modifiable risk factors (age-associated physiologic changes). Although there is no linear relationship between aging and prevalence of non-alcoholic fatty liver disease, current data strongly suggests that advanced age leads to more severe histological changes and poorer clinical outcomes. Hepatic lipid accumulation could lead to significant hepatic and systemic consequences including steatohepatitis, cirrhosis, impairment of systemic glucose metabolism and metabolic syndrome, thereby contributing to age-related diseases. Insulin, leptin and adiponectin are key regulators of the various physiologic processes that regulate hepatic lipid metabolism. Recent advances have expanded our understanding in this field, highlighting the role of novel mediators such as FGF 21, and mitochondria derived peptides. In this review, we will summarize the mediators of hepatic lipid metabolism and how they are altered in aging.
Collapse
Affiliation(s)
- Zhenwei Gong
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Emir Tas
- Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Radhika Muzumdar
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, 5362 Biomedical Sciences Tower, Pittsburgh, PA 15261, USA.
| |
Collapse
|
15
|
Geisler CE, Renquist BJ. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. J Endocrinol 2017; 234:R1-R21. [PMID: 28428362 DOI: 10.1530/joe-16-0513] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
Abstract
Fatty liver can be diet, endocrine, drug, virus or genetically induced. Independent of cause, hepatic lipid accumulation promotes systemic metabolic dysfunction. By acting as peroxisome proliferator-activated receptor (PPAR) ligands, hepatic non-esterified fatty acids upregulate expression of gluconeogenic, beta-oxidative, lipogenic and ketogenic genes, promoting hyperglycemia, hyperlipidemia and ketosis. The typical hormonal environment in fatty liver disease consists of hyperinsulinemia, hyperglucagonemia, hypercortisolemia, growth hormone deficiency and elevated sympathetic tone. These endocrine and metabolic changes further encourage hepatic steatosis by regulating adipose tissue lipolysis, liver lipid uptake, de novo lipogenesis (DNL), beta-oxidation, ketogenesis and lipid export. Hepatic lipid accumulation may be induced by 4 separate mechanisms: (1) increased hepatic uptake of circulating fatty acids, (2) increased hepatic de novo fatty acid synthesis, (3) decreased hepatic beta-oxidation and (4) decreased hepatic lipid export. This review will discuss the hormonal regulation of each mechanism comparing multiple physiological models of hepatic lipid accumulation. Nonalcoholic fatty liver disease (NAFLD) is typified by increased hepatic lipid uptake, synthesis, oxidation and export. Chronic hepatic lipid signaling through PPARgamma results in gene expression changes that allow concurrent activity of DNL and beta-oxidation. The importance of hepatic steatosis in driving systemic metabolic dysfunction is highlighted by the common endocrine and metabolic disturbances across many conditions that result in fatty liver. Understanding the mechanisms underlying the metabolic dysfunction that develops as a consequence of hepatic lipid accumulation is critical to identifying points of intervention in this increasingly prevalent disease state.
Collapse
Affiliation(s)
- Caroline E Geisler
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| |
Collapse
|
16
|
Wolf Greenstein A, Majumdar N, Yang P, Subbaiah PV, Kineman RD, Cordoba-Chacon J. Hepatocyte-specific, PPARγ-regulated mechanisms to promote steatosis in adult mice. J Endocrinol 2017; 232:107-121. [PMID: 27799461 PMCID: PMC5120553 DOI: 10.1530/joe-16-0447] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/25/2016] [Indexed: 12/15/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is the target for thiazolidinones (TZDs), drugs that improve insulin sensitivity and fatty liver in humans and rodent models, related to a reduction in hepatic de novo lipogenesis (DNL). The systemic effects of TZDs are in contrast to reports suggesting hepatocyte-specific activation of PPARγ promotes DNL, triacylglycerol (TAG) uptake and fatty acid (FA) esterification. As these hepatocyte-specific effects of PPARγ could counterbalance the positive therapeutic actions of systemic delivery of TZDs, the current study used a mouse model of adult-onset, liver (hepatocyte)-specific PPARγ knockdown (aLivPPARγkd). This model has advantages over existing congenital knockout models, by avoiding compensatory changes related to embryonic knockdown, thus better modeling the impact of altering PPARγ on adult physiology, where metabolic diseases most frequently develop. The impact of aLivPPARγkd on hepatic gene expression and endpoints in lipid metabolism was examined after 1 or 18 weeks (Chow-fed) or after 14 weeks of low- or high-fat (HF) diet. aLivPPARγkd reduced hepatic TAG content but did not impact endpoints in DNL or TAG uptake. However, aLivPPARγkd reduced the expression of the FA translocase (Cd36), in 18-week Chow- and HF-fed mice, associated with increased NEFA after HF feeding. Also, aLivPPARγkd dramatically reduced Mogat1 expression, that was reflected by an increase in hepatic monoacylglycerol (MAG) levels, indicative of reduced MOGAT activity. These results, coupled with previous reports, suggest that Cd36-mediated FA uptake and MAG pathway-mediated FA esterification are major targets of hepatocyte PPARγ, where loss of this control explains in part the protection against steatosis observed after aLivPPARγkd.
Collapse
Affiliation(s)
- Abigail Wolf Greenstein
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Biologic Resources LaboratoryUniversity of Illinois at Chicago, Chicago, Illinois, USA
| | - Neena Majumdar
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Peng Yang
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Papasani V Subbaiah
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rhonda D Kineman
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jose Cordoba-Chacon
- Research and Development DivisionJesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
- Section of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
17
|
Liu Z, Cordoba-Chacon J, Kineman RD, Cronstein BN, Muzumdar R, Gong Z, Werner H, Yakar S. Growth Hormone Control of Hepatic Lipid Metabolism. Diabetes 2016; 65:3598-3609. [PMID: 27679560 PMCID: PMC5127251 DOI: 10.2337/db16-0649] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022]
Abstract
In humans, low levels of growth hormone (GH) and its mediator, IGF-1, associate with hepatic lipid accumulation. In mice, congenital liver-specific ablation of the GH receptor (GHR) results in reductions in circulating IGF-1 and hepatic steatosis, associated with systemic insulin resistance. Due to the intricate relationship between GH and IGF-1, the relative contribution of each hormone to the development of hepatic steatosis is unclear. Our goal was to dissect the mechanisms by which hepatic GH resistance leads to steatosis and overall insulin resistance, independent of IGF-1. We have generated a combined mouse model with liver-specific ablation of GHR in which we restored liver IGF-1 expression via the hepatic IGF-1 transgene. We found that liver GHR ablation leads to increases in lipid uptake, de novo lipogenesis, hyperinsulinemia, and hyperglycemia accompanied with severe insulin resistance and increased body adiposity and serum lipids. Restoration of IGF-1 improved overall insulin sensitivity and lipid profile in serum and reduced body adiposity, but was insufficient to protect against steatosis-induced hepatic inflammation or oxidative stress. We conclude that the impaired metabolism in states of GH resistance results from direct actions of GH on lipid uptake and de novo lipogenesis, whereas its actions on extrahepatic tissues are mediated by IGF-1.
Collapse
Affiliation(s)
- Zhongbo Liu
- Department of Basic Science & Craniofacial Biology, David B. Kriser Dental Center, NYU College of Dentistry, New York, NY
| | - Jose Cordoba-Chacon
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL
| | - Rhonda D Kineman
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL
| | | | - Radhika Muzumdar
- Division of Pediatric Endocrinology, Diabetes and Metabolism Consultation, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Zhenwei Gong
- Division of Pediatric Endocrinology, Diabetes and Metabolism Consultation, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, The Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Shoshana Yakar
- Department of Basic Science & Craniofacial Biology, David B. Kriser Dental Center, NYU College of Dentistry, New York, NY
| |
Collapse
|