1
|
Wang D, Ling J, Tan R, Wang H, Qu Y, Li X, Lin J, Zhang Q, Hu Q, Liu Z, Lu Z, Lin Y, Sun L, Wang D, Zhou M, Shi Z, Gao W, Ye H, Lin X. CD169 + classical monocyte as an important participant in Graves' ophthalmopathy through CXCL12-CXCR4 axis. iScience 2024; 27:109213. [PMID: 38439953 PMCID: PMC10910260 DOI: 10.1016/j.isci.2024.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Patients with Graves' disease (GD) can develop Graves' ophthalmopathy (GO), but the underlying pathological mechanisms driving this development remain unclear. In our study, which included patients with GD and GO, we utilized single-cell RNA sequencing (scRNA-seq) and multiplatform analyses to investigate CD169+ classical monocytes, which secrete proinflammatory cytokines and are expanded through activated interferon signaling. We found that CD169+ clas_mono was clinically significant in predicting GO progression and prognosis, and differentiated into CD169+ macrophages that promote inflammation, adipogenesis, and fibrosis. Our murine model of early-stage GO showed that CD169+ classical monocytes accumulated in orbital tissue via the Cxcl12-Cxcr4 axis. Further studies are needed to investigate whether targeting circulating monocytes and the Cxcl12-Cxcr4 axis could alleviate GO progression.
Collapse
Affiliation(s)
- Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jie Ling
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - RongQiang Tan
- The First People’s Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Huishi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yixin Qu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jinshan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiuling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhaojing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Dingqiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ming Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wuyou Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
2
|
Giovannini D, Belbezier A, Baillet A, Bouillet L, Kawano M, Dumestre-Perard C, Clavarino G, Noble J, Pers JO, Sturm N, Huard B. Heterogeneity of antibody-secreting cells infiltrating autoimmune tissues. Front Immunol 2023; 14:1111366. [PMID: 36895558 PMCID: PMC9989216 DOI: 10.3389/fimmu.2023.1111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
The humoral response is frequently dysfunctioning in autoimmunity with a frequent rise in total serum immunoglobulins, among which are found autoantibodies that may be pathogenic by themselves and/or propagate the inflammatory reaction. The infiltration of autoimmune tissues by antibody-secreting cells (ASCs) constitutes another dysfunction. The known high dependency of ASCs on the microenvironment to survive combined to the high diversity of infiltrated tissues implies that ASCs must adapt. Some tissues even within a single clinical autoimmune entity are devoid of infiltration. The latter means that either the tissue is not permissive or ASCs fail to adapt. The origin of infiltrated ASCs is also variable. Indeed, ASCs may be commonly generated in the secondary lymphoid organ draining the autoimmune tissue, and home at the inflammation site under the guidance of specific chemokines. Alternatively, ASCs may be generated locally, when ectopic germinal centers are formed in the autoimmune tissue. Alloimmune tissues with the example of kidney transplantation will also be discussed own to their high similarity with autoimmune tissues. It should also be noted that antibody production is not the only function of ASCs, since cells with regulatory functions have also been described. This article will review all the phenotypic variations indicative of tissue adaptation described so for at the level of ASC-infiltrating auto/alloimmune tissues. The aim is to potentially define tissue-specific molecular targets in ASCs to improve the specificity of future autoimmune treatments.
Collapse
Affiliation(s)
- Diane Giovannini
- Department of Pathology, Grenoble University Hospital, Grenoble, France.,Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| | - Aude Belbezier
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Internal Medicine, Grenoble University Hospital, Grenoble, France
| | - Athan Baillet
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Rheumatology, Grenoble University Hospital, Grenoble, France
| | - Laurence Bouillet
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Internal Medicine, Grenoble University Hospital, Grenoble, France
| | - Mitsuhiro Kawano
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | | | | | - Johan Noble
- Department of Nephrology, Grenoble University Hospital, Grenoble, France
| | - Jacques-Olivier Pers
- B Lymphocytes, Autoimmunity and Immunotherapies, Brest University, INSERM, UMR1227, Brest, France.,Odontology Unit, Brest University Hospital, Brest, France
| | - Nathalie Sturm
- Department of Pathology, Grenoble University Hospital, Grenoble, France.,Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| | - Bertrand Huard
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| |
Collapse
|
3
|
Proctor ES, Smith TJ. Bone marrow fibrocytes: villain or white knight in thyroid-associated ophthalmopathy? Curr Opin Endocrinol Diabetes Obes 2022; 29:441-448. [PMID: 35950703 DOI: 10.1097/med.0000000000000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW We attempt to provide an historical perspective on progress made in understanding the pathogenesis of thyroid-associated ophthalmopathy (TAO), focusing on the roles of orbital fibroblasts (OF) in the diseased orbit (termed GD-OF) and how these cells differ from those residing in the healthy orbit. GD-OF comprise both residential OF and those apparently derived from CD34 + fibrocytes. RECENT FINDINGS CD34 + fibrocytes of the monocyte lineage putatively traffic to the TAO orbit from bone marrow. We believe that these fibroblastic cell populations dictate the activity and severity of TAO. Their impact on disease may be moderated by Slit2, a neuron axon guidance repellent synthesized by and released from residential CD34 - OF. Approximately 50% of patients with GD develop clinically meaningful TAO. Relatively few require systemic medical and surgical therapies, while milder disease can be managed with conservative, local care. Determining the intrinsic properties of GD-OF and their expression of Slit2 may explain why some patients with GD develop severe, vision-threatening TAO while others virtually escape any of its manifestations. Such insights should allow for improved and better-tolerated therapies. SUMMARY Identifying unique characteristics of fibrocytes and GD-OF subsets reveals their apparent roles in tissue activation, inflammation, and remodeling associated with TAO. Better understanding of these cells, their origins, behavior, and factors modulating their activities remains necessary for the development of more targeted, effective, and safe treatments.
Collapse
Affiliation(s)
- Erin S Proctor
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
4
|
Gupta V, Hammond CL, Roztocil E, Gonzalez MO, Feldon SE, Woeller CF. Thinking inside the box: Current insights into targeting orbital tissue remodeling and inflammation in thyroid eye disease. Surv Ophthalmol 2022; 67:858-874. [PMID: 34487739 PMCID: PMC8891393 DOI: 10.1016/j.survophthal.2021.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022]
Abstract
Thyroid eye disease (TED) is an autoimmune disorder that manifests in the orbit. In TED, the connective tissue behind the eye becomes inflamed and remodels with increased fat accumulation and/or increased muscle and scar tissue. As orbital tissue expands, patients develop edema, exophthalmos, diplopia, and optic neuropathy. In severe cases vision loss may occur secondary to corneal scarring from exposure or optic nerve compression. Currently there is no cure for TED, and treatments are limited. A major breakthrough in TED therapy occurred with the FDA approval of teprotumumab, a monoclonal insulin-like growth factor 1 receptor (IGF1R) blocking antibody. Yet, teprotumumab therapy has limitations, including cost, infusion method of drug delivery, variable response, and relapse. We describe approaches to target orbital fibroblasts and the complex pathophysiology that underlies tissue remodeling and inflammation driving TED. Further advances in the elucidation of the mechanisms of TED may lead to prophylaxis based upon early biomarkers as well as lead to more convenient, less expensive therapies.
Collapse
Affiliation(s)
- Vardaan Gupta
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Christine L Hammond
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Mithra O Gonzalez
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Steven E Feldon
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester, 210 Crittenden Boulevard, Rochester, New York 14642, USA.
| |
Collapse
|
5
|
Yoon J, Kikkawa D. Thyroid eye disease: From pathogenesis to targeted therapies. Taiwan J Ophthalmol 2022; 12:3-11. [PMID: 35399971 PMCID: PMC8988977 DOI: 10.4103/tjo.tjo_51_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/30/2021] [Indexed: 11/18/2022] Open
Abstract
Thyroid eye disease (TED) is the most common extrathyroidal manifestation of autoimmune Graves’ hyperthyroidism. TED is a debilitating and potentially blinding disease with unclear pathogenesis. Autoreactive inflammatory reactions targeting orbital fibroblasts (OFs) lead to the expansion of orbital adipose tissues and extraocular muscle swelling within the fixed bony orbit. There are many recent advances in the understating of molecular pathogenesis of TED. The production of autoantibodies to cross-linked thyroid-stimulating hormone receptor and insulin-like growth factor-1 receptor (IGF-1R) activates OFs to produce significant cytokines and chemokines and hyaluronan production and to induce adipocyte differentiation. In moderately severe active TED patients, multicenter clinical trials showed that inhibition of IGF-1R with teprotumumab was unprecedentedly effective with minimal side effects. The emergence of novel biologics resulted in a paradigm shift in the treatment of TED. We here review the literature on advances of pathogenesis of TED and promising therapeutic targets and drugs.
Collapse
|
6
|
Fang S, Lu Y, Huang Y, Zhou H, Fan X. Mechanisms That Underly T Cell Immunity in Graves' Orbitopathy. Front Endocrinol (Lausanne) 2021; 12:648732. [PMID: 33868176 PMCID: PMC8049604 DOI: 10.3389/fendo.2021.648732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Graves' orbitopathy (GO), also known as thyroid-associated ophthalmopathy, is the most common ocular abnormality of Graves' disease. It is a disfiguring, invalidating, and potentially blinding orbital disease mediated by an interlocking and complicated immune network. Self-reactive T cells directly against thyroid-stimulating hormone receptor-bearing orbital fibroblasts contribute to autoimmune inflammation and tissue remodeling in GO orbital connective tissues. To date, T helper (Th) 1 (cytotoxic leaning) and Th2 (antibody leaning) cell subsets and an emerging role of Th17 (fibrotic leaning) cells have been implicated in GO pathogenesis. The potential feedback loops between orbital native residential CD34- fibroblasts, CD34+ infiltrating fibrocytes, and effector T cells may affect the T cell subset bias and the skewed pattern of cytokine production in the orbit, thereby determining the outcomes of GO autoimmune reactions. Characterization of the T cell subsets that drive GO and the cytokines they express may significantly advance our understanding of orbital autoimmunity and the development of promising therapeutic strategies against pathological T cells.
Collapse
Affiliation(s)
- Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yazhuo Huang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- *Correspondence: Xianqun Fan, ; Huifang Zhou,
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- *Correspondence: Xianqun Fan, ; Huifang Zhou,
| |
Collapse
|
7
|
Smith TJ. Teprotumumab as a Novel Therapy for Thyroid-Associated Ophthalmopathy. Front Endocrinol (Lausanne) 2020; 11:610337. [PMID: 33391187 PMCID: PMC7774640 DOI: 10.3389/fendo.2020.610337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) has remained a vexing and poorly managed autoimmune component of Graves' disease where the tissues surrounding the eye and in the upper face become inflamed and undergo remodeling. This leads to substantial facial disfigurement while in its most severe forms, TAO can threaten eye sight. In this brief paper, I review some of the background investigation that has led to development of teprotumumab as the first and only US FDA approved medical therapy for TAO. This novel treatment was predicated on recognition that the insulin-like growth factor I receptor plays an important role in the pathogenesis of TAO. It is possible that a similar involvement of that receptor in other autoimmune disease may lead to additional indications for this and alternative insulin-like growth factor I receptor-inhibiting strategies.
Collapse
Affiliation(s)
- Terry J. Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Ann Arbor, MI, United States
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- *Correspondence: Terry J. Smith,
| |
Collapse
|
8
|
Smith TJ. Potential Roles of CD34+ Fibrocytes Masquerading as Orbital Fibroblasts in Thyroid-Associated Ophthalmopathy. J Clin Endocrinol Metab 2019; 104:581-594. [PMID: 30445529 PMCID: PMC6320239 DOI: 10.1210/jc.2018-01493] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
CONTEXT Orbital tissues in thyroid-associated ophthalmopathy exhibit particular reactivity and undergo characteristic remodeling. Mechanisms underlying these changes have remained largely unexplained. Studies have characterized orbital connective tissues and derivative fibroblasts to gain insights into local manifestations of a systemic autoimmune syndrome. EVIDENCE ACQUISITION A systematic search of PubMed was undertaken for studies related to thyroid-associated ophthalmopathy (TAO), orbital fibroblasts, and fibrocytes involved in pathogenesis. EVIDENCE SYNTHESIS Orbital tissues display marked cellular heterogeneity. Fibroblast subsets, putatively derived from multiple precursors, inhabit the orbit in TAO. Among them are cells displaying the CD34+CXC chemokine receptor 4+collagen I+ phenotype, identifying them as fibrocytes, derived from the monocyte lineage. Their unique presence in the TAO orbit helps explain the tissue reactivity and characteristic remodeling that occurs in the disease. Their unanticipated expression of several proteins traditionally thought to be thyroid gland specific, including the TSH receptor and thyroglobulin, may underlie orbital involvement in Graves disease. Although no currently available information unambiguously establishes that CD34+ orbital fibroblasts originate from circulating fibrocytes, inferences from animal models of lung disease suggest that they derive from bone marrow. Further studies are necessary to determine whether fibrocyte abundance and activity in the orbit determine the clinical behavior of TAO. CONCLUSION Evidence supports a role for fibrocytes in the pathogenesis of TAO. Recognition of their presence in the orbit now allows development of therapies specifically targeting these cells that ultimately could allow the restoration of immune tolerance within the orbit and perhaps systemically.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Ann Arbor, Michigan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Correspondence and Reprint Requests: Terry J. Smith, MD, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Kellogg Eye Center, Brehm Tower, 1000 Wall Street, Ann Arbor, Michigan 48105. E-mail:
| |
Collapse
|
9
|
Zhu F, Yang L. BIOINFORMATIC ANALYSIS IDENTIFIES POTENTIALLY KEY DIFFERENTIALLY EXPRESSED GENES AND PATHWAYS IN ORBITAL ADIPOSE TISSUES OF PATIENTS WITH THYROID EYE DISEASE. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2019; -5:1-8. [PMID: 31149053 PMCID: PMC6535319 DOI: 10.4183/aeb.2019.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
CONTEXT Thyroid eye disease (TED), an orbital inflammatory status, generally occurred in Graves' disease. OBJECTIVE This study aimed to acquire further insight into molecular mechanisms of TED, especially several key involved genes and pathways. DESIGN The microarray dataset GSE58331 including expression data for orbital adipose tissue samples, isolated from TED patients and normal controls, was downloaded from a publicly accessible Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified from 23 adipose tissues of TED patients versus 20 samples from normal controls. SUBJECTS AND METHODS A protein-protein interaction network of DEGs was constructed by using Search Tool for the Retrieval of Interacting Genes and Cytoscape 3.6.0. Several hub genes/proteins were extracted from the protein-protein interaction network based on connectivity degree. Furthermore, we used the iRegulon plugin of Cytoscape3.6.0 to predict the transcription factors (TFs). RESULTS A total of 678 DEGs (538 up- and 140 down-regulated genes) were identified in TED patients. Proopiomelanocortin (POMC), interleukin 2 (IL-2), G protein subunit gamma 3 (GNG3), CXC motif chemokine receptor 4 (CXCR4), toll like receptor 4 (TLR4), colony stimulating factor 1 receptor (CSF1R), lysophosphatidic acid receptor 3 (LPAR3), CXC motif chemokine ligand-8 (CXCL8), etc., were considered as the hub genes among the DEGs. There were 6 TFs predicted to be differentially expressed in regulating the DEGs related to TED. A total of 71 DEGs had been reported to be associated with TED in the Comparative Toxicogenomics Database. CONCLUSIONS Through this analysis, we have identified plenty of potential biomarkers and pathways which may have an important role in the pathogenesis of TED. However, these findings require verification by more detailed future experimental studies.
Collapse
Affiliation(s)
- F.F. Zhu
- Shanghai Ninth People’s Hospital, affiliated Shanghai Jiaotong University School of Medicine - Division of Endocrinology and Metabolism, Shanghai, China
| | - L.Z. Yang
- Shanghai Ninth People’s Hospital, affiliated Shanghai Jiaotong University School of Medicine - Division of Endocrinology and Metabolism, Shanghai, China
| |
Collapse
|
10
|
Tao W, Ayala-Haedo JA, Field MG, Pelaez D, Wester ST. RNA-Sequencing Gene Expression Profiling of Orbital Adipose-Derived Stem Cell Population Implicate HOX Genes and WNT Signaling Dysregulation in the Pathogenesis of Thyroid-Associated Orbitopathy. Invest Ophthalmol Vis Sci 2017; 58:6146-6158. [PMID: 29214313 PMCID: PMC5718600 DOI: 10.1167/iovs.17-22237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022] Open
Abstract
Purpose The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Methods Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell-specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Results Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Conclusion Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways.
Collapse
Affiliation(s)
- Wensi Tao
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Juan A. Ayala-Haedo
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Matthew G. Field
- The Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Daniel Pelaez
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Department of Biomedical Engineering, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sara T. Wester
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|