1
|
Kesler SR, Cuevas H, Lewis KA, Franco-Rocha OY, Flowers E. The expression of insulin signaling and N-methyl-D-aspartate receptor genes in areas of gray matter atrophy is associated with cognitive function in type 2 diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.26.25324696. [PMID: 40236395 PMCID: PMC11998827 DOI: 10.1101/2025.03.26.25324696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Type 2 diabetes (T2DM) is associated with brain abnormalities and cognitive dysfunction, including increased risk for Alzheimer's disease. However, the mechanisms of T2DM-related dementia remain poorly understood. We obtained retrospective data from the Mayo Clinic Study of Aging for 271 individuals with T2DM and 542 demographically matched non-diabetic controls (age 51-89, 62% male). We identified regions of significant gray matter atrophy in the T2DM group and then determined which genes were significantly expressed in these brain regions using imaging transcriptomics. We selected 15 candidate genes involved in insulin signaling, lipid metabolism, amyloid processing, N-methyl-D-aspartate-mediated neurotransmission, and calcium signaling. The T2DM group demonstrated significant gray matter atrophy in regions of the default mode, frontal-parietal, and sensorimotor networks (p < 0.05 cluster threshold corrected for false discovery rate, FDR). IRS1, AKT1, PPARG, PRKAG2, and GRIN2B genes were significantly expressed in these same regions (R2 > 0.10, p < 0.03, FDR corrected). Bayesian network analysis indicated significant directional paths among all 5 genes as well as the Clinical Dementia Rating score. Directional paths among genes were significantly altered in the T2DM group (Structural Hamming Distance = 12, p = 0.004), with PPARG expression becoming more important in the context of T2DM-related pathophysiology. Alterations of brain transcriptome patterns occurred in the absence of significant cognitive deficit or amyloid accumulation, potentially representing an early biomarker of T2DM-related dementia.
Collapse
Affiliation(s)
- Shelli R Kesler
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
- Department of Diagnostic Medicine, Dell School of Medicine, University of Texas at Austin, Austin, TX, USA
| | - Heather Cuevas
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
| | - Kimberly A Lewis
- Department of Nursing Excellence, Kaiser Permanente Richmond Medical Center, Richmond, CA, USA
| | - Oscar Y Franco-Rocha
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
| | - Elena Flowers
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Lv H, Liu L, Zou W, Yang Y, Li Y, Yang S, Liang A, Yang L. Isorhamnetin Ameliorates Non-Esterified Fatty Acid-Induced Apoptosis, Lipid Accumulation, and Oxidative Stress in Bovine Endometrial Epithelial Cells via Inhibiting the MAPK Signaling Pathway. Antioxidants (Basel) 2025; 14:156. [PMID: 40002343 PMCID: PMC11852151 DOI: 10.3390/antiox14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
High concentrations of non-esterified fatty acids (NEFA) in the blood contribute to various metabolic disorders and are linked to endometritis in dairy cows. Isorhamnetin (ISO), a flavonoid found in many plants, is known for its antioxidant, anti-inflammatory, and anti-obesity properties. This study systematically assessed NEFA-induced damage in bovine endometrial epithelial cells (bEECs) and investigated whether ISO alleviates NEFA-induced cell damage and its underlying molecular mechanisms. Our observations revealed that excessive NEFA inhibited proliferation and induced apoptosis in bEECs, accompanied by an increase in the expression of BAX and cleaved caspase-3. We further observed that NEFA could induce lipid accumulation, reactive oxygen species (ROS) generation, and the release of pro-inflammatory factors IL-1β, IL-6, and TNF-α in bEECs. RNA sequencing and Western blot analysis revealed that NEFA induced damage in bEECs by activating MAPK signaling pathway. Notably, ISO treatment ameliorated these effects induced by NEFA, as evidenced by decreased protein levels of BAX, cleaved caspase-3, and PPAR-γ, along with reductions in triglyceride content, ROS generation, and levels of IL-1β, IL-6, and TNF-α. Mechanistically, our experimental results demonstrated that ISO inhibited NEFA-induced activation of MAPK signaling. Overall, ISO shows promise for therapeutic development to address NEFA-related endometritis in dairy cows.
Collapse
Affiliation(s)
- Haimiao Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Lijuan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Wenna Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Ying Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Yuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Shengji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (L.L.); (W.Z.); (Y.Y.); (Y.L.); (S.Y.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Wang C, Zeng W, Wang L, Xiong X, Chen S, Huang Q, Zeng G, Huang Q. Asprosin aggravates nonalcoholic fatty liver disease via inflammation and lipid metabolic disturbance mediated by reactive oxygen species. Drug Dev Res 2024; 85:e22213. [PMID: 38798186 DOI: 10.1002/ddr.22213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/07/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
Asprosin (ASP) is a newly-identified adipokine and plays important roles in energy metabolism homeostasis. However, there is no report on whether and how ASP is involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Therefore, in the study, we investigated the protective effects of ASP-deficiency on the liver in the NAFLD model mice and the detrimental effects of ASP treatment on the human normal hepatocytes (LO2 cell line). More important, we explored the underlying mechanism from the perspective of lipid metabolism and inflammation. In the in vivo experiments, our data showed that the ASP-deficiency significantly alleviated the high-fat diet-induced inflammation and NAFLD, inhibited the hepatic fat deposition and downregulated the expressions of fat acid synthase (FASN), peroxisome proliferator-activated receptor γ (PPARγ) and forkhead box protein O1 (FOXO1); moreover, the ASP-deficiency attenuated the inflammatory state and inhibited the activation of the IKK/NF-κBp65 inflammation pathway. In the in vitro experiments, our results revealed that ASP treatment caused and even exacerbated the injury of LO2 cells induced by FFA; In contrast, the ASP treatment upregulated the expressions of PPARγ, FOXO1, FASN, ACC and acyl-CoA oxidase 1 (ACOX1) and elevated the reactive oxygen species (ROS) levels. Accordingly, these results demonstrate that ASP causes NAFLD through disrupting lipid metabolism and promoting the inflammation mediated by ROS.
Collapse
Affiliation(s)
- Chaowen Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Wenjing Zeng
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Li Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Xiaowei Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Sheng Chen
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Qianqian Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Guohua Zeng
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| | - Qiren Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Dysregulation of Mir-193B and Mir-376A as a Biomarker of Prediabetes in Offspring of Gestational Diabetic Mice. Processes (Basel) 2022. [DOI: 10.3390/pr10122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a type of diabetes initiated during pregnancy and is characterized by maternal hyperglycemia that induces complications in mothers and children. In the current study, we used a GDM mouse model (through i.p. injection of a single dose of streptozocin, STZ, 60 mg/kg/bw) to investigate the biochemical and immunological changes in the blood and brain of diabetic mothers and their offspring relative to their appropriate controls. In addition, we estimated the expression levels of a set of microRNAs (miRNAs) to link between the dysregulation in the levels of miRNAs and the exposure to oxidative stress during embryonic development, as well as metabolic changes that occur after birth and during puberty in offspring (5-weeks-old). At the biochemical level, newborn pups appeared mostly to suffer from the same oxidative stress conditions of their mothers as shown by the significant increase in nitric oxide (NO) and malondialdehyde (MDA) in blood and brain of diabetic mothers and their pups. However, the 5-week-old offspring showed a significant increase in proinflammatory cytokines, IL-1β, IL-6, and TNF-α, and based on their blood glucose levels, could be considered as prediabetic (with glucose mean value of 165 mg/dl). In the meantime, the tested miRNAs, especially miR-15b, miR-146a, and miR-138 showed mostly similar expression levels in diabetic mothers and newborn pups. In this regard, miR-15a and -15b, miR-146a, and miR-138 are downregulated in diabetic mothers and their newborn pups relative to their appropriate controls. However, in offspring of diabetic mothers at puberty age, these miRNAs displayed different expression levels relative to mothers and control offspring. Interestingly, miR-193 and miR-763 expression levels were significantly lower in diabetic mothers but upregulated in their 5-week-old offspring, suggesting that miR-193 and miR-763 could be used as biomarkers to differentiate between prediabetes and diabetes.
Collapse
|
5
|
Wang F, Guo L, Wu Z, Zhang T, Dong D, Wu B. The Clock gene regulates kainic acid-induced seizures through inhibiting ferroptosis in mice. J Pharm Pharmacol 2022; 74:1640-1650. [PMID: 35704277 DOI: 10.1093/jpp/rgac042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/20/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Temporal lobe epilepsy (TLE) is a common and intractable form of epilepsy. There is a strong need to better understand molecular events underlying TLE and to find novel therapeutic agents. Here we aimed to investigate the role of Clock and ferroptosis in regulating TLE. METHODS TLE model was established by treating mice with kainic acid (KA). Regulatory effects of the Clock gene on KA-induced seizures and ferroptosis were evaluated using Clock knockout (Clock-/-) mice. mRNA and protein levels were determined by quantitative real-time PCR and western blotting, respectively. Ferroptosis was assessed by measuring the levels of iron, GSH and ROS. Transcriptional regulation was studied using a combination of luciferase reporter, mobility shift and chromatin immunoprecipitation (ChIP) assays. KEY FINDINGS We found that Clock ablation exacerbated KA-induced seizures in mice, accompanied by enhanced ferroptosis in the hippocampus. Clock ablation reduced the hippocampal expression of GPX4 and PPAR-γ, two ferroptosis-inhibitory factors, in mice and in N2a cells. Moreover, Clock regulates diurnal expression of GPX4 and PPAR-γ in mouse hippocampus and rhythmicity in KA-induced seizures. Consistent with this finding, Clock overexpression up-regulated GPX4 and PPAR-γ and protected against ferroptosis in N2a cells. In addition, luciferase reporter, mobility shift and ChIP assays showed that CLOCK trans-activated Gpx4 and Ppar-γ through direct binding to the E-box elements in the gene promoters. CONCLUSION CLOCK protects against KA-induced seizures through increased expression of GPX4 and PPAR-γ and inhibition of ferroptosis.
Collapse
Affiliation(s)
- Fei Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianxia Guo
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhengping Wu
- School of Medicine, Yichun University, Yichun, China
| | - Tianpeng Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
PPAR Gamma and Viral Infections of the Brain. Int J Mol Sci 2021; 22:ijms22168876. [PMID: 34445581 PMCID: PMC8396218 DOI: 10.3390/ijms22168876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a master regulator of metabolism, adipogenesis, inflammation and cell cycle, and it has been extensively studied in the brain in relation to inflammation or neurodegeneration. Little is known however about its role in viral infections of the brain parenchyma, although they represent the most frequent cause of encephalitis and are a major threat for the developing brain. Specific to viral infections is the ability to subvert signaling pathways of the host cell to ensure virus replication and spreading, as deleterious as the consequences may be for the host. In this respect, the pleiotropic role of PPARγ makes it a critical target of infection. This review aims to provide an update on the role of PPARγ in viral infections of the brain. Recent studies have highlighted the involvement of PPARγ in brain or neural cells infected by immunodeficiency virus 1, Zika virus, or human cytomegalovirus. They have provided a better understanding on PPARγ functions in the infected brain, and revealed that it can be a double-edged sword with respect to inflammation, viral replication, or neuronogenesis. They unraveled new roles of PPARγ in health and disease and could possibly help designing new therapeutic strategies.
Collapse
|
7
|
Fang S, Livergood MC, Nakagawa P, Wu J, Sigmund CD. Role of the Peroxisome Proliferator Activated Receptors in Hypertension. Circ Res 2021; 128:1021-1039. [PMID: 33793338 DOI: 10.1161/circresaha.120.318062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors represent a large family of ligand-activated transcription factors which sense the physiological environment and make long-term adaptations by mediating changes in gene expression. In this review, we will first discuss the fundamental mechanisms by which nuclear receptors mediate their transcriptional responses. We will focus on the PPAR (peroxisome proliferator-activated receptor) family of adopted orphan receptors paying special attention to PPARγ, the isoform with the most compelling evidence as an important regulator of arterial blood pressure. We will review genetic data showing that rare mutations in PPARγ cause severe hypertension and clinical trial data which show that PPARγ activators have beneficial effects on blood pressure. We will detail the tissue- and cell-specific molecular mechanisms by which PPARs in the brain, kidney, vasculature, and immune system modulate blood pressure and related phenotypes, such as endothelial function. Finally, we will discuss the role of placental PPARs in preeclampsia, a life threatening form of hypertension during pregnancy. We will close with a viewpoint on future research directions and implications for developing novel therapies.
Collapse
Affiliation(s)
- Shi Fang
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee.,Department of Neuroscience and Pharmacology, University of Iowa (S.F.)
| | - M Christine Livergood
- Department of Obstetrics and Gynecology (M.C.L.), Medical College of Wisconsin, Milwaukee
| | - Pablo Nakagawa
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Jing Wu
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center (S.F., P.N., J.W., C.D.S.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
8
|
Browning KN, Carson KE. Central Neurocircuits Regulating Food Intake in Response to Gut Inputs-Preclinical Evidence. Nutrients 2021; 13:nu13030908. [PMID: 33799575 PMCID: PMC7998662 DOI: 10.3390/nu13030908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of energy balance requires the complex integration of homeostatic and hedonic pathways, but sensory inputs from the gastrointestinal (GI) tract are increasingly recognized as playing critical roles. The stomach and small intestine relay sensory information to the central nervous system (CNS) via the sensory afferent vagus nerve. This vast volume of complex sensory information is received by neurons of the nucleus of the tractus solitarius (NTS) and is integrated with responses to circulating factors as well as descending inputs from the brainstem, midbrain, and forebrain nuclei involved in autonomic regulation. The integrated signal is relayed to the adjacent dorsal motor nucleus of the vagus (DMV), which supplies the motor output response via the efferent vagus nerve to regulate and modulate gastric motility, tone, secretion, and emptying, as well as intestinal motility and transit; the precise coordination of these responses is essential for the control of meal size, meal termination, and nutrient absorption. The interconnectivity of the NTS implies that many other CNS areas are capable of modulating vagal efferent output, emphasized by the many CNS disorders associated with dysregulated GI functions including feeding. This review will summarize the role of major CNS centers to gut-related inputs in the regulation of gastric function with specific reference to the regulation of food intake.
Collapse
|
9
|
Poon K. Behavioral Feeding Circuit: Dietary Fat-Induced Effects of Inflammatory Mediators in the Hypothalamus. Front Endocrinol (Lausanne) 2020; 11:591559. [PMID: 33324346 PMCID: PMC7726204 DOI: 10.3389/fendo.2020.591559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive dietary fat intake has extensive impacts on several physiological systems and can lead to metabolic and nonmetabolic disease. In animal models of ingestion, exposure to a high fat diet during pregnancy predisposes offspring to increase intake of dietary fat and causes increase in weight gain that can lead to obesity, and without intervention, these physiological and behavioral consequences can persist for several generations. The hypothalamus is a region of the brain that responds to physiological hunger and fullness and contains orexigenic neuropeptide systems that have long been associated with dietary fat intake. The past fifteen years of research show that prenatal exposure to a high fat diet increases neurogenesis of these neuropeptide systems in offspring brain and are correlated to behavioral changes that induce a pro-consummatory and obesogenic phenotype. Current research has uncovered several potential molecular mechanisms by which excessive dietary fat alters the hypothalamus and involve dietary fatty acids, the immune system, gut microbiota, and transcriptional and epigenetic changes. This review will examine the current knowledge of dietary fat-associated changes in the hypothalamus and the potential pathways involved in modifying the development of orexigenic peptide neurons that lead to changes in ingestive behavior, with a special emphasis on inflammation by chemokines.
Collapse
|
10
|
Mukohda M, Fang S, Wu J, Agbor LN, Nair AR, Ibeawuchi SRC, Hu C, Liu X, Lu KT, Guo DF, Davis DR, Keen HL, Quelle FW, Sigmund CD. RhoBTB1 protects against hypertension and arterial stiffness by restraining phosphodiesterase 5 activity. J Clin Invest 2019; 129:2318-2332. [PMID: 30896450 DOI: 10.1172/jci123462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mice selectively expressing PPARγ dominant negative mutation in vascular smooth muscle exhibit RhoBTB1-deficiency and hypertension. Our rationale was to employ genetic complementation to uncover the mechanism of action of RhoBTB1 in vascular smooth muscle. Inducible smooth muscle-specific restoration of RhoBTB1 fully corrected the hypertension and arterial stiffness by improving vasodilator function. Notably, the cardiovascular protection occurred despite preservation of increased agonist-mediated contraction and RhoA/Rho kinase activity, suggesting RhoBTB1 selectively controls vasodilation. RhoBTB1 augmented the cGMP response to nitric oxide by restraining the activity of phosphodiesterase 5 (PDE5) by acting as a substrate adaptor delivering PDE5 to the Cullin-3 E3 Ring ubiquitin ligase complex for ubiquitination inhibiting PDE5. Angiotensin-II infusion also caused RhoBTB1-deficiency and hypertension which was prevented by smooth muscle specific RhoBTB1 restoration. We conclude that RhoBTB1 protected from hypertension, vascular smooth muscle dysfunction, and arterial stiffness in at least two models of hypertension.
Collapse
Affiliation(s)
- Masashi Mukohda
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shi Fang
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jing Wu
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Larry N Agbor
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Anand R Nair
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stella-Rita C Ibeawuchi
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chunyan Hu
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Xuebo Liu
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ko-Ting Lu
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Deng-Fu Guo
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Deborah R Davis
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Henry L Keen
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Frederick W Quelle
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Curt D Sigmund
- Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
11
|
Keilhoff G, Mbou RP, Lucas B, Schild L. The Differentiation of Spinal Cord Motor Neurons is Associated with Changes of the Mitochondrial Phospholipid Cardiolipin. Neuroscience 2019; 400:169-183. [DOI: 10.1016/j.neuroscience.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/09/2023]
|
12
|
D'Angelo M, Antonosante A, Castelli V, Catanesi M, Moorthy N, Iannotta D, Cimini A, Benedetti E. PPARs and Energy Metabolism Adaptation during Neurogenesis and Neuronal Maturation. Int J Mol Sci 2018; 19:ijms19071869. [PMID: 29949869 PMCID: PMC6073366 DOI: 10.3390/ijms19071869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator activated receptors (PPARs) are a class of ligand-activated transcription factors, belonging to the superfamily of receptors for steroid and thyroid hormones, retinoids, and vitamin D. PPARs control the expression of several genes connected with carbohydrate and lipid metabolism, and it has been demonstrated that PPARs play important roles in determining neural stem cell (NSC) fate. Lipogenesis and aerobic glycolysis support the rapid proliferation during neurogenesis, and specific roles for PPARs in the control of different phases of neurogenesis have been demonstrated. Understanding the changes in metabolism during neuronal differentiation is important in the context of stem cell research, neurodegenerative diseases, and regenerative medicine. In this review, we will discuss pivotal evidence that supports the role of PPARs in energy metabolism alterations during neuronal maturation and neurodegenerative disorders.
Collapse
Affiliation(s)
- Michele D'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - NandhaKumar Moorthy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Dalila Iannotta
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
13
|
Lamichane S, Dahal Lamichane B, Kwon SM. Pivotal Roles of Peroxisome Proliferator-Activated Receptors (PPARs) and Their Signal Cascade for Cellular and Whole-Body Energy Homeostasis. Int J Mol Sci 2018; 19:ijms19040949. [PMID: 29565812 PMCID: PMC5979443 DOI: 10.3390/ijms19040949] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), members of the nuclear receptor superfamily, are important in whole-body energy metabolism. PPARs are classified into three isoforms, namely, PPARα, β/δ, and γ. They are collectively involved in fatty acid oxidation, as well as glucose and lipid metabolism throughout the body. Importantly, the three isoforms of PPARs have complementary and distinct metabolic activities for energy balance at a cellular and whole-body level. PPARs also act with other co-regulators to maintain energy homeostasis. When endogenous ligands bind with these receptors, they regulate the transcription of genes involved in energy homeostasis. However, the exact molecular mechanism of PPARs in energy metabolism remains unclear. In this review, we summarize the importance of PPAR signals in multiple organs and focus on the pivotal roles of PPAR signals in cellular and whole-body energy homeostasis.
Collapse
Affiliation(s)
- Shreekrishna Lamichane
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea.
| | - Babita Dahal Lamichane
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea.
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea.
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| |
Collapse
|
14
|
Mukohda M, Lu KT, Guo DF, Wu J, Keen HL, Liu X, Ketsawatsomkron P, Stump M, Rahmouni K, Quelle FW, Sigmund CD. Hypertension-Causing Mutation in Peroxisome Proliferator-Activated Receptor γ Impairs Nuclear Export of Nuclear Factor-κB p65 in Vascular Smooth Muscle. Hypertension 2017; 70:174-182. [PMID: 28507170 DOI: 10.1161/hypertensionaha.117.09276] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/08/2017] [Accepted: 04/08/2017] [Indexed: 12/31/2022]
Abstract
Selective expression of dominant negative (DN) peroxisome proliferator-activated receptor γ (PPARγ) in vascular smooth muscle cells (SMC) results in hypertension, atherosclerosis, and increased nuclear factor-κB (NF-κB) target gene expression. Mesenteric SMC were cultured from mice designed to conditionally express wild-type (WT) or DN-PPARγ in response to Cre recombinase to determine how SMC PPARγ regulates expression of NF-κB target inflammatory genes. SMC-specific overexpression of WT-PPARγ or agonist-induced activation of endogenous PPARγ blunted tumor necrosis factor α (TNF-α)-induced NF-κB target gene expression and activity of an NF-κB-responsive promoter. TNF-α-induced gene expression responses were enhanced by DN-PPARγ in SMC. Although expression of NF-κB p65 was unchanged, nuclear export of p65 was accelerated by WT-PPARγ and prevented by DN-PPARγ in SMC. Leptomycin B, a nuclear export inhibitor, blocked p65 nuclear export and inhibited the anti-inflammatory action of PPARγ. Consistent with a role in facilitating p65 nuclear export, WT-PPARγ coimmunoprecipitated with p65, and WT-PPARγ was also exported from the nucleus after TNF-α treatment. Conversely, DN-PPARγ does not bind to p65 and was retained in the nucleus after TNF-α treatment. Transgenic mice expressing WT-PPARγ or DN-PPARγ specifically in SMC (S-WT or S-DN) were bred with mice expressing luciferase controlled by an NF-κB-responsive promoter to assess effects on NF-κB activity in whole tissue. TNF-α-induced NF-κB activity was decreased in aorta and carotid artery from S-WT but was increased in vessels from S-DN mice. We conclude that SMC PPARγ blunts expression of proinflammatory genes by inhibition of NF-κB activity through a mechanism promoting nuclear export of p65, which is abolished by DN mutation in PPARγ.
Collapse
Affiliation(s)
- Masashi Mukohda
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Ko-Ting Lu
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Deng-Fu Guo
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Jing Wu
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Henry L Keen
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Xuebo Liu
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Pimonrat Ketsawatsomkron
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Madeliene Stump
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Kamal Rahmouni
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Frederick W Quelle
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| | - Curt D Sigmund
- From the Department of Pharmacology and UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa.
| |
Collapse
|
15
|
Agbor LN, Ibeawuchi SRC, Hu C, Wu J, Davis DR, Keen HL, Quelle FW, Sigmund CD. Cullin-3 mutation causes arterial stiffness and hypertension through a vascular smooth muscle mechanism. JCI Insight 2016; 1:e91015. [PMID: 27882355 DOI: 10.1172/jci.insight.91015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cullin-3 (CUL3) mutations (CUL3Δ9) were previously identified in hypertensive patients with pseudohypoaldosteronism type-II (PHAII), but the mechanism causing hypertension and whether this is driven by renal tubular or extratubular mechanisms remains unknown. We report that selective expression of CUL3Δ9 in smooth muscle acts by interfering with expression and function of endogenous CUL3, resulting in impaired turnover of the CUL3 substrate RhoA, increased RhoA activity, and augmented RhoA/Rho kinase signaling. This caused vascular dysfunction and increased arterial pressure under baseline conditions and a marked increase in arterial pressure, collagen deposition, and vascular stiffness in response to a subpressor dose of angiotensin II, which did not cause hypertension in control mice. Inhibition of total cullin activity increased the level of CUL3 substrates cyclin E and RhoA, and expression of CUL3Δ9 decreased the level of the active form of endogenous CUL3 in human aortic smooth muscle cells. These data indicate that selective expression of the Cul3Δ9 mutation in vascular smooth muscle phenocopies the hypertension observed in Cul3Δ9 human subjects and suggest that mutations in CUL3 cause human hypertension in part through a mechanism involving smooth muscle dysfunction initiated by a loss of CUL3-mediated degradation of RhoA.
Collapse
Affiliation(s)
| | | | | | - Jing Wu
- Department of Pharmacology and
| | | | | | | | - Curt D Sigmund
- Department of Pharmacology and.,UIHC for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|