1
|
Li W, Li T, Ali T, Mou S, Gong Q, Yu ZJ, Li S. Uncoupling serotonin (2C) and dopamine (D2) receptor heterodimers ameliorate PTSD-like behaviors. J Affect Disord 2025; 380:63-77. [PMID: 40122260 DOI: 10.1016/j.jad.2025.03.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND G-protein-coupled receptors (GPCRs), crucial for various physiological functions, can form complexes with themselves or other GPCRs, influencing their signaling and drug interactions. GPCR oligomerization remains an active area of research in neurological diseases, including Post-Traumatic Stress Disorder (PTSD). Here, we illuminated a novel serotonin and dopamine receptor heterodimerization that played an etiological role in fear conditioning behaviors associated with memory defects in the single prolonger stress (SPS) mice and reverting effects of receptors interaction interfering with peptide. METHODS To assess our projected goal, we prepared a single prolonged stress (SPS) mice model followed by peptide treatment, behavior assays, and biochemical analysis. RESULTS Our study revealed a direct interaction between dopamine D2 receptors (D2R) and serotonin 5-HT2C receptors (5-HT2CR) via the K226-L240 region in the brains of SPS mice. This D2R/5-HT2CR interaction modulated downstream PI3K-AKT signaling and contributed to cognitive deficits in a mouse model of SPS. An interfering peptide (TAT-D2R-KL) designed to disrupt D2R/5-HT2CR heterodimerization reduced the excitatory/inhibitory neuron firing frequency ratio, attenuated PI3K/AKT signaling impairment, and alleviated cognitive deficits in SPS mice. Furthermore, treatment with the PI3K inhibitor, Bisperoxovanadium Compound bpV (pic), reversed the effects of the peptide, confirming the critical role of PI3K/AKT signaling in D2R/5-HT2CR dimerization and the associated pathophysiology of SPS. CONCLUSION These findings revealed a causative role of D2R/5-HT2CR hetero-dimer in PTSD and could be reversed by TAT-D2R-KL treatment.
Collapse
MESH Headings
- Animals
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/drug therapy
- Stress Disorders, Post-Traumatic/psychology
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D2/genetics
- Mice
- Male
- Disease Models, Animal
- Receptor, Serotonin, 5-HT2C/metabolism
- Mice, Inbred C57BL
- Fear/physiology
- Fear/drug effects
- Signal Transduction/drug effects
- Behavior, Animal
Collapse
Affiliation(s)
- Weifen Li
- School of Pharmacy, Shenzhen University, Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Tianxiang Li
- Department of Infectious Diseases and Shenzhen key laboratory for endogenous infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518000, China.
| | - Shengnan Mou
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qichao Gong
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen key laboratory for endogenous infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518000, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Yao K, Yang L, Zhang Q, Li C, Tian H, Zhuo C. Aripiprazole alleviates the high prolactin levels induced by amisulpride via distinct molecular mechanisms: a network pharmacology and molecular docking study. BMC Psychiatry 2025; 25:373. [PMID: 40229786 PMCID: PMC11995546 DOI: 10.1186/s12888-025-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Amisulpride, a unique atypical antipsychotic, significantly increases prolactin secretion during schizophrenia treatment, resulting in adverse effects that reduce patient quality of life and treatment adherence. Aripiprazole, a partial dopamine D2 receptor agonist, reduces prolactin elevation induced by antipsychotic drugs used for schizophrenia treatment. The molecular targets and mechanisms underlying the contrasting effects of these two drugs on prolactin regulation are unclear. The objective of this study was to systematically explore the molecular mechanisms of prolactin regulation by aripiprazole and amisulpride using network pharmacology and molecular docking techniques. METHODS Relevant targets of amisulpride and aripiprazole and for schizophrenia and elevated prolactin treatment were obtained from online databases and screened for significance. A protein-protein interaction network was constructed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of the core targets were performed to identify key biological processes and signaling pathways, and a target-pathway-drug integrated network was established. The binding affinities of amisulpride and aripiprazole with core targets were predicted using molecular docking analyses. RESULTS Screening and matching drug and disease targets combined with GO and KEGG pathway enrichment analyses revealed several key signaling pathways involved in prolactin regulation, including MAPK, PI3K/AKT, and dopamine receptor pathways. The core targets of aripiprazole include MAPK3, PPARG, DRD2, and ESR1, and amisulpride primarily targets MMP9, CDC42, mTOR, and AKT1. Molecular docking analysis demonstrated that aripiprazole and amisulpride have high binding affinities for their respective targets, supporting the hypothesis that these drugs regulate prolactin levels through target-ligand interactions. CONCLUSION These findings highlight the distinct signaling pathways and molecular networks involved in prolactin regulation by aripiprazole and amisulpride and provide new insights into the mechanisms of these drugs in schizophrenia treatment. Further pharmacological and clinical research is needed to validate the complex regulatory networks and in vivo effects.
Collapse
Affiliation(s)
- Kaifang Yao
- Computational Biology and Animal Imaging Centre (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, 300222, China
| | - Lei Yang
- Computational Biology and Animal Imaging Centre (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, 300222, China
| | - Qiuyu Zhang
- Computational Biology and Animal Imaging Centre (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, 300222, China
| | - Chao Li
- Computational Biology and Animal Imaging Centre (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
- Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, 300222, China
| | - Hongjun Tian
- Department of Psychiatry and Psychology, Tianjin Fourth Center Hospital, Tianjin, 300041, China
| | - Chuanjun Zhuo
- Computational Biology and Animal Imaging Centre (CBAC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China.
- Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, 300222, China.
- Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, People's Republic of China.
| |
Collapse
|
3
|
de Li M, Yang J, Wu X, Chen SS. miR-21-5p Targets PIK3R1 to Regulate the NF- κB Signaling Pathway, Inhibiting the Invasion and Progression of Prolactinoma. Int J Endocrinol 2025; 2025:7741091. [PMID: 39949569 PMCID: PMC11824381 DOI: 10.1155/ije/7741091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 10/15/2024] [Accepted: 11/29/2024] [Indexed: 02/16/2025] Open
Abstract
Prolactinomas (PRLs) are benign tumors with malignant characteristics that can invade the surrounding tissue structures and are challenging to treat. It has been reported that miR-21-5p expression in pituitary adenomas is correlated with tumor invasion and size. However, the mechanism of action of miR-21-5p in PRL remains unclear. Dysregulation of the phosphoinositide-3-kinase (PI3K) regulatory Subunit 1 pathway occurs frequently in cancer and plays an important role in tumor progression as an important component of the PI3K pathway. However, the role of PIK3R1 in PRL and its regulatory mechanism are unknown. In this study, we first explored the effect of miR-21-5p in PRL and then confirmed that PIK3R1 is a direct target of miR-21-5p using bioinformatics and cellular experiments. Subsequent in vitro experiments demonstrated that overexpression of PIK3R1 significantly attenuated the biological effects of miR-21-5p in PRL cells, such as promoting proliferation and invasion. Finally, we explored the mechanism by which PIK3R1 affects PRL progression and found that the inhibition of IκBa degradation by PIK3R1 impacts PRL progression via the miR-21-5p/PIK3R1/MMP pathway.
Collapse
Affiliation(s)
- Min de Li
- Department of Rehabilitation Medicine, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Juan Yang
- Department of Rehabilitation Medicine, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shang Si Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
4
|
Flores-Martínez Á, Ramos-Herrero VD, Barroso A, Moreno A, G-García ME, Venegas-Moreno E, Dios E, Martínez-Barberá JP, Luque RM, Soto-Moreno A, Cano DA. Conditional Pten inactivation in pituitary results in sex-specific prolactinoma formation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167543. [PMID: 39428000 DOI: 10.1016/j.bbadis.2024.167543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Pituitary tumors, including prolactinomas, present significant clinical challenges that require a deeper understanding of their molecular roots for improved diagnostics and therapies. Here, we investigate the role of the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K) pathway in pituitary tumorigenesis using a mouse model. Conditional knockout of Pten in all pituitary cell lineages resulted in prolactinoma formation exclusively in female mice, demonstrating the critical role of PTEN in pituitary homeostasis. While Pten inactivation induced Akt activation in all pituitary cells, only prolactin-producing cells exhibited tumorigenic changes, suggesting specific cell-type effects. Histological and molecular analyses of prolactinomas revealed similarities with human pituitary tumors, such as decreased vascularization and cell adhesion proteins and increased accumulation of cell cycle proteins. Notably, prolactinomas displayed diminished levels of phosphorylated extracellular signal-regulated kinase (ERK), implicating downregulation of ERK in tumorigenesis. Finally, we analyzed PTEN/PI3K activation in a collection of human pituitary tumors. Overall, our study delineates the intricate interplay between the PTEN and ERK signaling pathways, providing insights into sex-specific mechanisms of pituitary tumorigenesis and potential therapeutic strategies for prolactinomas.
Collapse
Affiliation(s)
- Álvaro Flores-Martínez
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon 1 University, Lyon, France
| | - Víctor Darío Ramos-Herrero
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Alexia Barroso
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Alicia Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Miguel E G-García
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain
| | - Eva Venegas-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Elena Dios
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Juan Pedro Martínez-Barberá
- Developmental Biology and Cancer Programme, GOS Institute of Child Health, University College London, London, UK
| | - Raúl M Luque
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain
| | - Alfonso Soto-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - David A Cano
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
5
|
Sun H, Feng Y, Tu S, Zhou J, Wang Y, Wei J, Zhang S, Hou Y, Shao Y, Ai H, Chen Z. Dopamine promotes osteogenic differentiation of PDLSCs by activating DRD1 and DRD2 during orthodontic tooth movement via ERK1/2 signaling pathway. Regen Ther 2024; 27:268-278. [PMID: 38617443 PMCID: PMC11015103 DOI: 10.1016/j.reth.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Introduction Orthodontic tooth movement (OTM) involves complex interactions between mechanical forces and periodontal tissue adaptation, mainly mediated by periodontal ligament cells, including periodontal ligament stem cells (PDLSCs), osteoblasts, and osteoclasts. Dopamine (DA), a neurotransmitter known for its critical role in bone metabolism, is investigated in this study for its potential to enhance osteogenic differentiation in PDLSCs, which are pivotal in OTM. This study examined the potential of DA to facilitate OTM by binding to DA receptors (D1R and D2R) and activating the ERK1/2 signaling pathway. We propose that DA's interaction with these receptors on PDLSCs could enhance osteogenic differentiation, thereby accelerating bone remodeling and reducing the duration of orthodontic treatments, which offering a novel approach to improve clinical outcomes in orthodontic care. Methods This study utilized a rat OTM model, micro-CT, histological analyses, and in vitro assays to investigate dopamine's effect on osteogenesis. PDLSCs were cultured and treated with DA, and cytotoxicity, osteogenic differentiation, gene and protein expression assessed. Results Dopamine administration significantly increased trabecular bone density and osteogenic marker expression in an OTM rat model. In vitro, DA at 10 nM optimally promoted human PDLSCs osteogenesis without affecting proliferation. Blocking DA receptors or inhibiting the ERK1/2 pathway attenuated these effects, underscoring the importance of dopaminergic signaling in tension-induced osteogenesis during OTM. Conclusion Taken together, our study reveals that local dopamine administration at a concentration of 10 nM not only enhances tension-induced osteogenesis in vivo but also significantly promotes osteogenic differentiation of PDLSCs in vitro through D1 and D2 receptor-mediated ERK1/2 signaling pathway activation.
Collapse
Affiliation(s)
| | | | | | - Jianwu Zhou
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuxuan Wang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiaming Wei
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Sai Zhang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuluan Hou
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yiting Shao
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
6
|
Ferraris J. Is prolactin receptor signaling a target in dopamine-resistant prolactinomas? Front Endocrinol (Lausanne) 2023; 13:1057749. [PMID: 36714572 PMCID: PMC9877409 DOI: 10.3389/fendo.2022.1057749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
The hypothalamic neuroendocrine catecholamine dopamine regulates the lactotroph function, including prolactin (PRL) secretion, proliferation, and apoptosis. The treatment of PRL-secreting tumors, formerly known as prolactinomas, has relied mainly on this physiological characteristic, making dopamine agonists the first therapeutic alternative. Nevertheless, the group of patients that do not respond to this treatment has few therapeutical options. Prolactin is another physiological regulator of lactotroph function, acting as an autocrine/paracrine factor that controls PRL secretion and cellular turnover, inducing apoptosis and decreasing proliferation. Furthermore, the signaling pathways related to these effects, mainly JAK/STAT and PI3K/Akt, and MAPK, have been extensively studied in prolactinomas and other tumors as therapeutic targets. In the present work, the relationship between PRL pathophysiology and prolactinoma development is explored, aiming to comprehend the value of PRL and PRLR-associated pathways as exploratory fields alternative to dopamine-related approaches, which are worth physiological characteristics that might be impaired and can be potentially restored or upregulated to provide more options to the patients.
Collapse
Affiliation(s)
- Jimena Ferraris
- Department of Biophysics and Biochemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Cai L, Wu ZR, Cao L, Xu JD, Lu JL, Wang CD, Jin JH, Wu ZB, Su ZP. ACT001 inhibits pituitary tumor growth by inducing autophagic cell death via MEK4/MAPK pathway. Acta Pharmacol Sin 2022; 43:2386-2396. [PMID: 35082393 PMCID: PMC9433416 DOI: 10.1038/s41401-021-00856-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023]
Abstract
ACT001, derived from traditional herbal medicine, is a novel compound with effective anticancer activity in clinical trials. However, little is known regarding its role in pituitary adenomas. Here, we demonstrated that ACT001 suppressed cell proliferation and induced cell death of pituitary tumor cells in vitro and in vivo. ACT001 was also effective in suppressing the growth of different subtypes of human pituitary adenomas. The cytotoxic mechanism ACT001 employed was mainly related to autophagic cell death (ACD), indicated by autophagosome formation and LC3-II accumulation. In addition, ACT001-mediated inhibitory effect decreased when either ATG7 was downregulated or cells were cotreated with autophagy inhibitor 3-methyladenine (3-MA). RNA-seq analysis showed that mitogen-activated protein kinase (MAPK) pathway was a putative target of ACT001. Specifically, ACT001 treatment promoted the phosphorylation of JNK and P38 by binding to mitogen-activated protein kinase kinase 4 (MEK4). Our study indicated that ACT001-induced ACD of pituitary tumor cells via activating JNK and P38 phosphorylation by binding with MEK4, and it might be a novel and effective anticancer drug for pituitary adenomas.
Collapse
Affiliation(s)
- Lin Cai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ze-Rui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lei Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Jia-Dong Xu
- Department of Cardio‑Thoracic Surgery, Zhoushan Hospital, Zhoushan, 316021, China
| | - Jiang-Long Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Cheng-de Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jing-Hao Jin
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhe-Bao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhi-Peng Su
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
8
|
Pivonello R, Pivonello C, Simeoli C, De Martino MC, Colao A. The dopaminergic control of Cushing's syndrome. J Endocrinol Invest 2022; 45:1297-1315. [PMID: 35460460 PMCID: PMC9184412 DOI: 10.1007/s40618-021-01661-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Cushing's Syndrome (CS), or chronic endogenous hypercortisolism, is a rare and serious disease due to corticotroph pituitary (Cushing's disease, CD) and extra-pituitary (ectopic CS) tumours overproducing ACTH, or cortisol-secreting adrenal tumours or lesions (adrenal CS). The first-line treatment for CS is represented by the surgical removal of the responsible tumour, but surgery might be unfeasible or ineffective and medical treatment can be required in a relevant percentage of patients with CS, especially CD and ectopic CS. Corticotroph pituitary and extra-pituitary tumours, as well as adrenal tumours and lesions responsible for CS express dopamine receptors (DRs), which have been found to mediate inhibition of hormone secretion and/or cell proliferation in experimental setting, suggesting that dopaminergic system, particularly DRs, might represent a target for the treatment of CS. Dopamine agonists (DAs), particularly cabergoline (CAB), are currently used as off-label treatment for CD, the most common form of CS, demonstrating efficacy in controlling hormone secretion and tumour growth in a relevant number of cases, with the improvement of clinical picture, and displaying good safety profile. Therefore, CAB may be considered a reasonable alternative treatment for persistent or recurrent CD after pituitary surgery failure, but occasionally also before pituitary surgery, as adjuvant treatment, or even instead of pituitary surgery as first-line treatment in case of surgery contraindications or refusal. A certain beneficial effect of CAB has been also reported in ectopic CS. However, the role of DAs in the clinical management of the different types of CS requires further evaluations.
Collapse
Affiliation(s)
- R Pivonello
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Università Federico II Di Napoli, Naples, Italy.
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy.
| | - C Pivonello
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Università Federico II Di Napoli, Naples, Italy
| | - C Simeoli
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Università Federico II Di Napoli, Naples, Italy
| | - M C De Martino
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Università Federico II Di Napoli, Naples, Italy
| | - A Colao
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Università Federico II Di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| |
Collapse
|
9
|
Grant CE, Flis A, Ryan BM. Understanding the Role of Dopamine in Cancer: Past, Present, and Future. Carcinogenesis 2022; 43:517-527. [PMID: 35616105 DOI: 10.1093/carcin/bgac045] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Dopamine (DA, 3-hydroxytyramine) is member of the catecholamine family and is classically characterized according to its role in the central nervous system as a neurotransmitter. In recent decades, many novel and intriguing discoveries have been made about the peripheral expression of DA receptors (DRs) and the role of DA signaling in both normal and pathological processes. Drawing from decades of evidence suggesting a link between DA and cancer, the DA pathway (DAP) has recently emerged as a potential target in antitumor therapies. Due to the onerous, expensive, and frequently unsuccessful nature of drug development, the repurposing of dopaminergic drugs for cancer therapy has the potential to greatly benefit patients and drug developers alike. However, the lack of clear mechanistic data supporting the direct involvement of DRs and their downstream signaling components in cancer represents an ongoing challenge that has limited the translation of these drugs to the clinic. Despite this, the breadth of evidence linking DA to cancer and non-tumor cells in the tumor microenvironment (TME) justifies further inquiry into the potential applications of this treatment modality in cancer. Herein, we review the literature characterizing the interplay between the DA signaling axis and cancer, highlighting key findings, and then propose rational lines of investigation to follow.
Collapse
Affiliation(s)
- Christopher E Grant
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Amy Flis
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
10
|
Current and Emerging Medical Therapies in Pituitary Tumors. J Clin Med 2022; 11:jcm11040955. [PMID: 35207228 PMCID: PMC8877616 DOI: 10.3390/jcm11040955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
Pituitary tumors (PT) represent in, the majority of cases, benign tumors for which surgical treatment still remains, except for prolactin-secreting PT, the first-line therapeutic option. Nonetheless, the role played by medical therapies for the management of such tumors, before or after surgery, has evolved considerably, due in part to the recent development of well-tolerated and highly efficient molecules. In this review, our aim was to present a state-of-the-art of the current medical therapies used in the field of PT and the benefits and caveats for each of them, and further specify their positioning in the therapeutic algorithm of each phenotype. Finally, we discuss the future of PT medical therapies, based on the most recent studies published in this field.
Collapse
|
11
|
Wan X, Yan Z, Tan Z, Cai Z, Qi Y, Lu L, Xu Y, Chen J, Lei T. MicroRNAs in Dopamine Agonist-Resistant Prolactinoma. Neuroendocrinology 2022; 112:417-426. [PMID: 34034260 DOI: 10.1159/000517356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022]
Abstract
Dopamine agonists (DAs) are preferred for the treatment of prolactinomas and are usually very effective. Nonetheless, 20-30% of bromocriptine- and approximately 10% of cabergoline-treated individuals exhibit resistance to DAs. In addition, the mechanism underlying this phenomenon remains elusive. In this study, we summarize the major findings regarding the role of microRNAs (miRNAs) in the pathogenesis of DA-resistant prolactinoma (DARP). Currently available evidence suggests that miRNAs are usually dysregulated in DARP and that, although controversial, the dysregulated miRNAs target the transforming growth factor (TGF)-β, dopamine 2 receptor (D2R), or estradiol (E2)/estrogen receptor (ER) signaling pathways to mediate the therapeutic effect of DAs. These findings provide new incentives for research on innovative strategies for predicting patients' responsiveness to dopamine therapies and for developing treatment approaches. Unfortunately, recent studies tended to focus exclusively on the differential miRNA expression profiles between DARP and dopamine-sensitive prolactinoma, and no definitive consensus has been reached regarding the role of these miRNAs in the modulation mechanism. Therefore, current and future efforts should be directed toward the exploration of the mechanism underlying the dysregulation of miRNAs as well as of the target proteins that are affected by the dysregulated miRNAs. Furthermore, the modulation of the expression of dysregulated miRNAs, which target the D2R, TGF-β, or E2/ER signaling pathways, might be a promising alternative to treat patients with DARP and improve their prognosis.
Collapse
Affiliation(s)
- Xueyan Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zisheng Yan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhoubin Tan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Cai
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwei Qi
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Lu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Controlled release of dopamine coatings on titanium bidirectionally regulate osteoclastic and osteogenic response behaviors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112376. [PMID: 34579895 DOI: 10.1016/j.msec.2021.112376] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
Bone diseases, for example, osteoporosis, cause excessive differentiation of osteoclasts and decreased bone formation, resulting in imbalance of bone remodeling and poor osseointegration, which can be considered a relative contraindication for titanium implants. Dopamine (DA) might provide a solution to this problem by inhibiting osteoclasts and promoting osteoblasts at different concentrations. However, current commercial implants cannot load bone-active molecules, such as DA. Therefore, this study aimed to develop a surface modification method for implants to achieve a controlled release of DA and enhance the resistance of titanium implants to bone resorption and bone regeneration. DA-loaded alginate-arginine-glycine-aspartic acid (RGD) (AlgR) coatings on a vaterite-modified titanium surface were successfully assembled, which continuously and steadily released DA. In vitro studies have shown that materials showing good biocompatibility can not only inhibit receptor activator of nuclear factor-kappa B (NFκB) ligand (RANKL)-induced osteoclastogenesis but also enhance the adhesion and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The optimal DA-loaded concentration of this bidirectional regulation is 100 μM. Interestingly, DA more effectively attenuated osteoclastogenesis when released in a sustained manner from titanium coatings than it did via traditional, free administration, and the alginate-RGD coating and DA clearly exhibited great synergy. This study provides a design of titanium implant surface modification to improve bone remodeling around implants.
Collapse
|
13
|
Decoding signaling pathways involved in prolactin-induced neuroprotection: A review. Front Neuroendocrinol 2021; 61:100913. [PMID: 33766566 DOI: 10.1016/j.yfrne.2021.100913] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022]
Abstract
It has been well recognized that prolactin (PRL), a pleiotropic hormone, has many functions in the brain, such as maternal behavior, neurogenesis, and neuronal plasticity, among others. Recently, it has been reported to have a significant role in neuroprotection against excitotoxicity. Glutamate excitotoxicity is a common alteration in many neurological and neurodegenerative diseases, leading to neuronal death. In this sense, several efforts have been made to decrease the progression of these pathologies. Despite various reports of PRL's neuroprotective effect against excitotoxicity, the signaling pathways that underlie this mechanism remain unclear. This review aims to describe the most recent and relevant studies on the molecular signaling pathways, particularly, PI3K/AKT, NF-κB, and JAK2/STAT5, which are currently under investigation and might be implicated in the molecular mechanisms that explain the PRL effects against excitotoxicity and neuroprotection. Remarkable neuroprotective effects of PRL might be useful in the treatment of some neurological diseases.
Collapse
|
14
|
Pivonello C, Patalano R, Negri M, Pirchio R, Colao A, Pivonello R, Auriemma RS. Resistance to Dopamine Agonists in Pituitary Tumors: Molecular Mechanisms. Front Endocrinol (Lausanne) 2021; 12:791633. [PMID: 35095761 PMCID: PMC8789681 DOI: 10.3389/fendo.2021.791633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Pituitary neuroendocrine tumors (PitNET) are commonly benign tumors accounting for 10-25% of intracranial tumors. Prolactin-secreting adenomas represent the most predominant type of all PitNET and for this subtype of tumors, the medical therapy relies on the use of dopamine agonists (DAs). DAs yield an excellent therapeutic response in reducing tumor size and hormonal secretion targeting the dopamine receptor type 2 (D2DR) whose higher expression in prolactin-secreting adenomas compared to other PitNET is now well established. Moreover, although DAs therapy does not represent the first-line therapy for other PitNET, off-label use of DAs is considered in PitNET expressing D2DR. Nevertheless, DAs primary or secondary resistance, occurring in a subset of patients, may involve several molecular mechanisms, presently not fully elucidated. Dopamine receptors (DRs) expression is a prerequisite for a proper DA function in PitNET and several molecular events may negatively modify DR membrane expression, through the DRs down-regulation and intracellular trafficking, and DR signal transduction pathway. The current mini-review will summarise the presently known molecular events that underpin the unsuccessful therapy with DAs.
Collapse
Affiliation(s)
- Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
- *Correspondence: Claudia Pivonello, ;
| | - Roberta Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
- Dipartimento di Sanità Pubblica, Università di Napoli (Federico II), Naples, Italy
| | - Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
| | - Rosa Pirchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università di Napoli (Federico II), Naples, Italy
| |
Collapse
|
15
|
Vázquez-Borrego MC, Gupta V, Ibáñez-Costa A, Gahete MD, Venegas-Moreno E, Toledano-Delgado Á, Cano DA, Blanco-Acevedo C, Ortega-Salas R, Japón MA, Barrera-Martín A, Vasiljevic A, Hill J, Zhang S, Halem H, Solivera J, Raverot G, Gálvez MA, Soto-Moreno A, Paez-Pereda M, Culler MD, Castaño JP, Luque RM. A Somatostatin Receptor Subtype-3 (SST 3) Peptide Agonist Shows Antitumor Effects in Experimental Models of Nonfunctioning Pituitary Tumors. Clin Cancer Res 2020; 26:957-969. [PMID: 31624102 DOI: 10.1158/1078-0432.ccr-19-2154] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/08/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Somatostatin analogues (SSA) are efficacious and safe treatments for a variety of neuroendocrine tumors, especially pituitary neuroendocrine tumors (PitNET). Their therapeutic effects are mainly mediated by somatostatin receptors SST2 and SST5. Most SSAs, such as octreotide/lanreotide/pasireotide, are either nonselective or activate mainly SST2. However, nonfunctioning pituitary tumors (NFPTs), the most common PitNET type, mainly express SST3 and finding peptides that activate this particular somatostatin receptor has been very challenging. Therefore, the main objective of this study was to identify SST3-agonists and characterize their effects on experimental NFPT models. EXPERIMENTAL DESIGN Binding to SSTs and cAMP level determinations were used to screen a peptide library and identify SST3-agonists. Key functional parameters (cell viability/caspase activity/chromogranin-A secretion/mRNA expression/intracellular signaling pathways) were assessed on NFPT primary cell cultures in response to SST3-agonists. Tumor growth was assessed in a preclinical PitNET mouse model treated with a SST3-agonist. RESULTS We successfully identified the first SST3-agonist peptides. SST3-agonists lowered cell viability and chromogranin-A secretion, increased apoptosis in vitro, and reduced tumor growth in a preclinical PitNET model. As expected, inhibition of cell viability in response to SST3-agonists defined two NFPT populations: responsive and unresponsive, wherein responsive NFPTs expressed more SST3 than unresponsive NFPTs and exhibited a profound reduction of MAPK, PI3K-AKT/mTOR, and JAK/STAT signaling pathways upon SST3-agonist treatments. Concurrently, SSTR3 silencing increased cell viability in a subset of NFPTs. CONCLUSIONS This study demonstrates that SST3-agonists activate signaling mechanisms that reduce NFPT cell viability and inhibit pituitary tumor growth in experimental models that expresses SST3, suggesting that targeting this receptor could be an efficacious treatment for NFPTs.
Collapse
Affiliation(s)
- Mari C Vázquez-Borrego
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | | | - Alejandro Ibáñez-Costa
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Eva Venegas-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
| | - Álvaro Toledano-Delgado
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,Service of Neurosurgery, HURS, Cordoba, Spain
| | - David A Cano
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
| | - Cristóbal Blanco-Acevedo
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,Service of Neurosurgery, HURS, Cordoba, Spain
| | - Rosa Ortega-Salas
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Miguel A Japón
- Department of Pathology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Ana Barrera-Martín
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,Service of Endocrinology and Nutrition, IMIBIC, HURS, Cordoba, Spain
| | - Alexandre Vasiljevic
- Faculté de Médecine Lyon Est, Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Cancer Research Centre of Lyon, Lyon, France.,Centre de Pathologie et de Biologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Jason Hill
- IPSEN Bioscience, Cambridge, Massachusetts
| | | | | | - Juan Solivera
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,Service of Neurosurgery, HURS, Cordoba, Spain
| | - Gérald Raverot
- Faculté de Médecine Lyon Est, Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Cancer Research Centre of Lyon, Lyon, France.,Fédération d'endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - María A Gálvez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,Service of Endocrinology and Nutrition, IMIBIC, HURS, Cordoba, Spain
| | - Alfonso Soto-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
| | | | | | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| |
Collapse
|
16
|
Wang CX, Ge XY, Wang MY, Ma T, Zhang Y, Lin Y. Dopamine D1 receptor-mediated activation of the ERK signaling pathway is involved in the osteogenic differentiation of bone mesenchymal stem cells. Stem Cell Res Ther 2020; 11:12. [PMID: 31900224 PMCID: PMC6942280 DOI: 10.1186/s13287-019-1529-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Osteogenic differentiation of bone mesenchymal stem cells (BMSCs) is regulated by numerous signaling pathways. Dopamine (DA), a neurotransmitter, has previously been demonstrated to induce new bone formation by stimulating the receptors on BMSCs, but the essential mediators of DA-induced osteogenic signaling remain unclear. METHODS In this work, we evaluated the influence of both dopamine D1 and D2 receptor activation on BMSC osteogenic differentiation. Gene and protein expression of osteogenic-related markers were tested. The direct binding of transcriptional factor, Runx2, to those markers was also investigated. Additionally, cellular differentiation-associated signaling pathways were evaluated. RESULTS We showed that the expression level of the D1 receptor on BMSCs increased during osteogenic differentiation. A D1 receptor agonist, similar to DA, induced the osteogenic differentiation of BMSCs, and this phenomenon was effectively inhibited by a D1 receptor antagonist or by D1 receptor knockdown. Furthermore, the suppression of protein kinase A (PKA), an important kinase downstream of the D1 receptor, successfully inhibited DA-induced BMSC osteogenic differentiation and decreased the phosphorylation of ERK1/2. Compared with P38, MAPK, and JNK, DA mainly induced the phosphorylation of ERK1/2 and led to the upregulation of Runx2 transcriptional activity, thus facilitating BMSC osteogenic differentiation. On the other hand, an ERK1/2 inhibitor could reverse these effects. CONCLUSIONS Taken together, these results suggest that ERK signaling may play an essential role in coordinating the DA-induced osteogenic differentiation of BMSCs by D1 receptor activation.
Collapse
Affiliation(s)
- Chen-Xi Wang
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Xi-Yuan Ge
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Ming-Yue Wang
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Ting Ma
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Yu Zhang
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China.
| | - Ye Lin
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
17
|
Vázquez-Borrego MC, Fuentes-Fayos AC, Herrera-Martínez AD, L-López F, Ibáñez-Costa A, Moreno-Moreno P, Alhambra-Expósito MR, Barrera-Martín A, Blanco-Acevedo C, Dios E, Venegas-Moreno E, Solivera J, Gahete MD, Soto-Moreno A, Gálvez-Moreno MA, Castaño JP, Luque RM. Biguanides Exert Antitumoral Actions in Pituitary Tumor Cells Through AMPK-Dependent and -Independent Mechanisms. J Clin Endocrinol Metab 2019; 104:3501-3513. [PMID: 30860580 DOI: 10.1210/jc.2019-00056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Abstract
CONTEXT Pituitary neuroendocrine tumors (PitNETs) are a commonly underestimated pathology in terms of incidence and associated morbimortality. Currently, an appreciable subset of patients are resistant or poorly responsive to the main current medical treatments [i.e., synthetic somatostatin analogs (SSAs) and dopamine agonists]. Thus, development and optimization of novel and available medical therapies is necessary. Biguanides (metformin, buformin, and phenformin) are antidiabetic drugs that exert antitumoral actions in several tumor types, but their pharmacological effects on PitNETs are poorly known. OBJECTIVE We aimed to explore the direct effects of biguanides on key functions (cell viability, hormone release, apoptosis, and signaling pathways) in primary cell cultures from human PitNETs and cell lines. Additionally, we evaluated the effect of combined metformin with SSAs on cell viability and hormone secretion. DESIGN A total of 13 corticotropinomas, 13 somatotropinomas, 13 nonfunctioning PitNETs, 3 prolactinomas, and 2 tumoral pituitary cell lines (AtT-20 and GH3) were used to evaluate the direct effects of biguanides on cell viability, hormone release, apoptosis, and signaling pathways. RESULTS Biguanides reduced cell viability in all PitNETs and cell lines (with phenformin being the most effective biguanide) and increased apoptosis in somatotropinomas. Moreover, buformin and phenformin, but not metformin, reduced hormone secretion in a cell type-specific manner. Combination metformin/SSA therapy did not increase SSA monotherapy effectiveness. Effects of biguanides on PitNETs could involve the modulation of AMP-activated protein kinase-dependent ([Ca2+]i, PI3K/Akt) and independent (MAPK) mechanisms. CONCLUSION Altogether, our data unveil clear antitumoral effects of biguanides on PitNET cells, opening avenues to explore their potential as drugs to treat these pathologies.
Collapse
Affiliation(s)
- Mari C Vázquez-Borrego
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, Reina Sofia University Hospital, Cordoba, Spain
| | - Fernando L-López
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| | - Paloma Moreno-Moreno
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, Reina Sofia University Hospital, Cordoba, Spain
| | - María R Alhambra-Expósito
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, Reina Sofia University Hospital, Cordoba, Spain
| | - Ana Barrera-Martín
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, Reina Sofia University Hospital, Cordoba, Spain
| | - Cristóbal Blanco-Acevedo
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Neurosurgery, Reina Sofia University Hospital, Cordoba, Spain
| | - Elena Dios
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Eva Venegas-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Juan Solivera
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Neurosurgery, Reina Sofia University Hospital, Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| | - Alfonso Soto-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - María A Gálvez-Moreno
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- Service of Endocrinology and Nutrition, IMIBIC, Reina Sofia University Hospital, Cordoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition, Cordoba, Spain
| |
Collapse
|
18
|
Sahakian N, Castinetti F, Dufour H, Graillon T, Romanet P, Barlier A, Brue T, Cuny T. Clinical management of difficult to treat macroprolactinomas. Expert Rev Endocrinol Metab 2019; 14:179-192. [PMID: 30913932 DOI: 10.1080/17446651.2019.1596024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/13/2019] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Prolactinomas represent the most common pituitary adenomas encountered in the clinic. While a majority of these tumors will be successfully treated by dopamine agonist (DA) such as cabergoline, their management becomes problematic since a resistance to DA can occur and/or if the tumor displays features of aggressiveness, two conditions that are closely related. AREAS COVERED Epidemiology and medical treatment of prolactinomas; resistance to DA and molecular basis of DA-resistance; therapeutical alternatives in case of DA-resistant Prolactinomas and therapies in development; summarizing conclusions. EXPERT OPINION The management of DA-resistant prolactinomas requires a multidisciplinary approach by an expert team. Along with discussions about surgery with or without gamma knife radiosurgery, genetic screening for multiple endocrine neoplasia type 1 (MEN1) syndrome is actively discussed in a case-by-case approach. In case of surgery, a careful analysis of the tumor sample can provide information about its aggressivity potential according to recent criteria. Ultimately, temozolomide can be indicated if the tumor is rapidly growing and/or threatening for the patient.
Collapse
Affiliation(s)
- Nicolas Sahakian
- a Marseille Medical Genetics, Inserm U1251, Hôpital de la Conception, Service d'Endocrinologie , Aix Marseille Univ, APHM , Marseille , France
| | - Frederic Castinetti
- a Marseille Medical Genetics, Inserm U1251, Hôpital de la Conception, Service d'Endocrinologie , Aix Marseille Univ, APHM , Marseille , France
| | - Henry Dufour
- b Marseille Medical Genetics, Inserm U1251, Hôpital de la Timone, Service de Neurochirurgie , Aix Marseille Univ, APHM , Marseille , France
| | - Thomas Graillon
- b Marseille Medical Genetics, Inserm U1251, Hôpital de la Timone, Service de Neurochirurgie , Aix Marseille Univ, APHM , Marseille , France
| | - Pauline Romanet
- c Marseille Medical Genetics, Inserm U1251, Hôpital de la Conception, Laboratoire de Biologie Moléculaire et Biochimie , Aix Marseille Univ, APHM , Marseille , France
| | - Anne Barlier
- c Marseille Medical Genetics, Inserm U1251, Hôpital de la Conception, Laboratoire de Biologie Moléculaire et Biochimie , Aix Marseille Univ, APHM , Marseille , France
| | - Thierry Brue
- a Marseille Medical Genetics, Inserm U1251, Hôpital de la Conception, Service d'Endocrinologie , Aix Marseille Univ, APHM , Marseille , France
| | - Thomas Cuny
- a Marseille Medical Genetics, Inserm U1251, Hôpital de la Conception, Service d'Endocrinologie , Aix Marseille Univ, APHM , Marseille , France
| |
Collapse
|
19
|
de Dios N, Orrillo S, Irizarri M, Theas MS, Boutillon F, Candolfi M, Seilicovich A, Goffin V, Pisera D, Ferraris J. JAK2/STAT5 Pathway Mediates Prolactin-Induced Apoptosis of Lactotropes. Neuroendocrinology 2019; 108:84-97. [PMID: 30376668 DOI: 10.1159/000494975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023]
Abstract
Prolactinomas are increasingly viewed as a "problem of signal transduction." Consequently, the identification of factors and signaling pathways that control lactotrope cell turnover is needed in order to encourage new therapeutic developments. We have previously shown that prolactin (PRL) acts as a proapoptotic and antiproliferative factor on lactotropes, maintaining anterior pituitary cell homeostasis, which contrasts with the classical antiapoptotic and/or proliferative actions exerted by PRL in most other target tissues. We aimed to investigate the PRLR-triggered signaling pathways mediating these nonclassical effects of PRL in the pituitary. Our results suggest that (i) the PRLR/Jak2/STAT5 pathway is constitutively active in GH3 cells and contributes to PRL-induced apoptosis by increasing the Bax/Bcl-2 ratio, (ii) PRL inhibits ERK1/2 and Akt phosphorylation, thereby contributing to its proapoptotic effect, and (iii) the PI3K/Akt pathway participates in the PRL-mediated control of lactotrope proliferation. We hypothesize that the alteration of PRL actions in lactotrope homeostasis due to the dysregulation of any of the mechanisms of actions described above may contribute to the pathogenesis of prolactinomas.
Collapse
Affiliation(s)
- Nataly de Dios
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Santiago Orrillo
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Irizarri
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Susana Theas
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florence Boutillon
- Inserm Unit 1151, Institut Necker-Enfants Malades (INEM), Université Paris Descartes, Paris, France
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vincent Goffin
- Inserm Unit 1151, Institut Necker-Enfants Malades (INEM), Université Paris Descartes, Paris, France
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina-Universidad de Buenos Aires, Buenos Aires,
| |
Collapse
|
20
|
Liu X, Tang C, Wen G, Zhong C, Yang J, Zhu J, Ma C. The Mechanism and Pathways of Dopamine and Dopamine Agonists in Prolactinomas. Front Endocrinol (Lausanne) 2018; 9:768. [PMID: 30740089 PMCID: PMC6357924 DOI: 10.3389/fendo.2018.00768] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
Dopamine agonists such as bromocriptine and cabergoline are the predominant treatment drugs for prolactinoma by inhibiting prolactin secretion and shrinking tumor size. However, the pathways of either dopamine or its agonists that lead to the death of cells are incompletely understood and some are even conflicting conclusions. The main aim of this paper is to review the different pathways of dopamine and its agonists in prolactinomas to help to gain a better understanding of their functions and drug resistance mechanisms.
Collapse
Affiliation(s)
- Xiaoshuang Liu
- The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Science, NJU Advanced Institute for Life Sciences, Nanjing University, Nanjing, China
| | - Chao Tang
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Guodao Wen
- Tungwah Hospital of Sun Yat-Sen University, Dongguan, China
| | - Chunyu Zhong
- School of Medicine, Nanjing Medical University, Nanjing, China
| | - Jin Yang
- School of Medicine, Nanjing Medical University, Nanjing, China
| | - Junhao Zhu
- School of Medicine, Nanjing Medical University, Nanjing, China
| | - Chiyuan Ma
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
- *Correspondence: Chiyuan Ma
| |
Collapse
|
21
|
Gonzaga MDFDM, de Castro LF, Naves LA, Mendonça JL, Oton de Lima B, Kessler I, Casulari LA. Prolactinomas Resistant to Treatment With Dopamine Agonists: Long-Term Follow-Up of Six Cases. Front Endocrinol (Lausanne) 2018; 9:625. [PMID: 30542321 PMCID: PMC6277870 DOI: 10.3389/fendo.2018.00625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction: Prolactinomas are preferentially treated with dopamine agonists. However, a few adenomas are resistant to this treatment. Objective: To evaluate the characteristics of patients with resistance to dopamine agonists in the long-term. Method: A retrospective study of six cases was made. Patients who did not achieve normalized prolactin blood concentrations and a reduction of more than 50% of the tumor volume with the minimum dose of 3.5 mg per week of cabergoline for 3 months or the maximum supported dose of bromocriptine for 6 months were considered resistant to dopamine agonists. Patients were followed up at the Clinic of Neurology and Endocrinology or the University Hospital of Brasilia. Results: Six patients were selected. Three patients were initially treated with bromocriptine prior to treatment with cabergoline. Four patients were men, and two were women. At the time of diagnosis, ages ranged from 9 to 62 years. Initial prolactin concentrations ranged from 430 to 14,992 ng/mL and in the last assessment ranged from 29.6 to 2,169 ng/mL. The tumor volume ranged from 0.77 to 24.0 mm3. Tumor regression occurred in all patients, ranging from 20 to 100%, but total disappearance of the adenoma with an empty sella occurred in one patient. The maximum weekly doses of cabergoline ranged from 3.0 to 4.5 mg. Follow-up time ranged from seven to 17 years. Normalization of prolactin concentrations occurred only in one woman after 17 years of treatment. Three patients also underwent surgery, but only one woman was cured of the disease. Conclusion: This study confirms that tumors resistant to dopamine agonists are more aggressive, since we did not have any microadenoma; treatment with high dose of cabergoline may reduce the size of the tumor without its disappearance, and that normalization of prolactin concentration rarely occurs. To our knowledge, this is the longest follow-up of a series of cases with resistance to dopamine agonists.
Collapse
Affiliation(s)
| | | | - Luciana Ansaneli Naves
- Endocrinology Service, Brasilia University Hospital, Brasília, Brazil
- Medical Clinic Service, Brasilia University Hospital, Brasília, Brazil
| | | | | | - Iruena Kessler
- Medical Clinic Service, Brasilia University Hospital, Brasília, Brazil
- Institute of Cardiology of the Federal District, University Foundation of Cardiology, Brasília, Brazil
- University of Brasilia, Brasília, Brazil
| | - Luiz Augusto Casulari
- Endocrinology Service, Brasilia University Hospital, Brasília, Brazil
- Clinic of Neurology and Endocrinology, Brasília, Brazil
- *Correspondence: Luiz Augusto Casulari
| |
Collapse
|