1
|
Flannery JC, Tirrell PS, Baumgartner NE, Daniel JM. Neuroestrogens, the hippocampus, and female cognitive aging. Horm Behav 2025; 170:105710. [PMID: 40036999 DOI: 10.1016/j.yhbeh.2025.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/30/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Research conducted over the last several decades implicates ovarian estrogens as important modulators of hippocampal function. More recently however, the importance of estrogens synthesized in the brain de novo for hippocampal function has been recognized. These brain-derived neuroestrogens act in the hippocampus to regulate dendritic spine dynamics and synaptic plasticity as well as hippocampus-dependent memory. The current report provides an overview of research conducted in model systems elucidating the actions of neuroestrogens in the hippocampus and the subsequent consequences for cognition. We highlight the relationship between ovarian estrogens and brain-derived estrogens and discuss implications for female cognitive aging of the putative decline in hippocampal levels of neuroestrogens following loss of ovarian function. Finally, we propose a model of menopause in which a short-term period of midlife estradiol treatment changes the trajectory of hippocampal neuroestrogen production long-term, resulting in sustained interactions of neuroestrogens, insulin-like growth factor-1, and estrogen receptor signaling in the hippocampus, interactions that support successful brain and cognitive aging.
Collapse
Affiliation(s)
- Jill C Flannery
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America
| | - Parker S Tirrell
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America
| | - Nina E Baumgartner
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, United States of America
| | - Jill M Daniel
- Brain Institute, Tulane University, New Orleans, LA 70118, United States of America; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States of America; Department of Psychology, Tulane University, New Orleans, LA, 70118, United States of America.
| |
Collapse
|
2
|
Piao YR, Li MR, Sun MZ, Liu Y, Chen CY, Chu CP, Todo Y, Tang Z, Wang CY, Jin WZ, Qiu DL. Estradiol Enhances Cerebellar Molecular Layer Interneuron-Purkinje Cell Synaptic Transmission and Improves Motor Learning Through ER-β in Vivo in Mice. CEREBELLUM (LONDON, ENGLAND) 2025; 24:51. [PMID: 39979512 DOI: 10.1007/s12311-025-01805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
In the cerebellar cortex, 17β-estradiol (E2) binds to estrogen receptors (ERs) and plays a role in regulating cerebellar synaptic plasticity and motor learning behaviors. However, the underlying mechanisms remain unclear. In this study, we investigated the effects of E2 on synaptic transmission between cerebellar molecular layer interneurons (MLIs) and Purkinje cells (PCs) in urethane-anesthetized mice. Using in vivo cell-attached and whole-cell recordings combined with immunohistochemistry, we examined MLI-PC synaptic responses elicited by facial air-puff stimulation. Cell-attached recordings from PCs demonstrated that air-puff stimulation of the ipsilateral whisker pad elicited MLI-PC synaptic currents (P1), which were significantly enhanced by local micro-application of E2 to the cerebellar molecular layer. The E2-induced potentiation of P1 amplitude exhibited dose dependency, with a 50% effective concentration (EC50) of 30 nM. The effects of E2 on amplitude of P1 and pause of simple spike firing were completely prevented by blockade of ERs or ERβ, but not by blockade of ERα or a G-protein coupled receptor (GPER). Application of a selective ERβ agonist mimicked and overwhelmed the E2-induced enhancement of the MLI-PC synaptic transmission. Whole-cell recording with biocytin staining showing that E2 does not change the spontaneous and the evoked spike firing properties of basket-type MLIs. Rotarod test indicated that microinjection of E2 onto the cerebellar surface significantly promotes initial motor learning ability, which is abolished by blockade of ERβ. ERβ immunoreactivity was expressed in the ML and PC layer, especially around the PC somata in the mouse cerebellar cortex. These results indicate that E2 binds to ERβ, resulting in an enhance in the cerebellar MLI-PC synaptic transmission and an improvement of initial motor learning ability in vivo in mice.
Collapse
Affiliation(s)
- Yong-Rui Piao
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China
| | - Mei-Rui Li
- Faculty of Electrical, Information and Communication Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Ming-Ze Sun
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin Province, 132013, China
| | - Yang Liu
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin Province, 132013, China
| | - Chao-Yue Chen
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin Province, 132013, China
| | - Chun-Ping Chu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin Province, 132013, China
| | - Yuki Todo
- Faculty of Electrical, Information and Communication Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Zheng Tang
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Chun-Yan Wang
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin Province, 132013, China
| | - Wen-Zhe Jin
- Department of Pain, Affiliated Hospital of Yanbian University, 1325, JuZi Street, Yanji City, Jilin Province, 133000, China.
| | - De-Lai Qiu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China.
- Brain Science Institute, Jilin Medical University, Jilin City, Jilin Province, 132013, China.
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin City, Jilin Province, 132013, China.
| |
Collapse
|
3
|
Verpeut JL, Oostland M. The significance of cerebellar contributions in early-life through aging. Front Comput Neurosci 2024; 18:1449364. [PMID: 39258107 PMCID: PMC11384999 DOI: 10.3389/fncom.2024.1449364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Marlies Oostland
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
De Michele G, Maione L, Cocozza S, Tranfa M, Pane C, Galatolo D, De Rosa A, De Michele G, Saccà F, Filla A. Ataxia and Hypogonadism: a Review of the Associated Genes and Syndromes. CEREBELLUM (LONDON, ENGLAND) 2024; 23:688-701. [PMID: 36997834 DOI: 10.1007/s12311-023-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/01/2023]
Abstract
The association of hypogonadism and cerebellar ataxia was first recognized in 1908 by Gordon Holmes. Since the seminal description, several heterogeneous phenotypes have been reported, differing for age at onset, associated features, and gonadotropins levels. In the last decade, the genetic bases of these disorders are being progressively uncovered. Here, we review the diseases associating ataxia and hypogonadism and the corresponding causative genes. In the first part of this study, we focus on clinical syndromes and genes (RNF216, STUB1, PNPLA6, AARS2, SIL1, SETX) predominantly associated with ataxia and hypogonadism as cardinal features. In the second part, we mention clinical syndromes and genes (POLR3A, CLPP, ERAL1, HARS, HSD17B4, LARS2, TWNK, POLG, ATM, WFS1, PMM2, FMR1) linked to complex phenotypes that include, among other features, ataxia and hypogonadism. We propose a diagnostic algorithm for patients with ataxia and hypogonadism, and we discuss the possible common etiopathogenetic mechanisms.
Collapse
Affiliation(s)
- Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Luigi Maione
- Department of Endocrinology and Reproductive Diseases, Paris-Saclay University, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicetre, Paris, France
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Daniele Galatolo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Stella Maris, Pisa, Italy
| | - Anna De Rosa
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| |
Collapse
|
5
|
Bendis PC, Zimmerman S, Onisiforou A, Zanos P, Georgiou P. The impact of estradiol on serotonin, glutamate, and dopamine systems. Front Neurosci 2024; 18:1348551. [PMID: 38586193 PMCID: PMC10998471 DOI: 10.3389/fnins.2024.1348551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
Estradiol, the most potent and prevalent member of the estrogen class of steroid hormones and is expressed in both sexes. Functioning as a neuroactive steroid, it plays a crucial role in modulating neurotransmitter systems affecting neuronal circuits and brain functions including learning and memory, reward and sexual behaviors. These neurotransmitter systems encompass the serotonergic, dopaminergic, and glutamatergic signaling pathways. Consequently, this review examines the pivotal role of estradiol and its receptors in the regulation of these neurotransmitter systems in the brain. Through a comprehensive analysis of current literature, we investigate the multifaceted effects of estradiol on key neurotransmitter signaling systems, namely serotonin, dopamine, and glutamate. Findings from rodent models illuminate the impact of hormone manipulations, such as gonadectomy, on the regulation of neuronal brain circuits, providing valuable insights into the connection between hormonal fluctuations and neurotransmitter regulation. Estradiol exerts its effects by binding to three estrogen receptors: estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G protein-coupled receptor (GPER). Thus, this review explores the promising outcomes observed with estradiol and estrogen receptor agonists administration in both gonadectomized and/or genetically knockout rodents, suggesting potential therapeutic avenues. Despite limited human studies on this topic, the findings underscore the significance of translational research in bridging the gap between preclinical findings and clinical applications. This approach offers valuable insights into the complex relationship between estradiol and neurotransmitter systems. The integration of evidence from neurotransmitter systems and receptor-specific effects not only enhances our understanding of the neurobiological basis of physiological brain functioning but also provides a comprehensive framework for the understanding of possible pathophysiological mechanisms resulting to disease states. By unraveling the complexities of estradiol's impact on neurotransmitter regulation, this review contributes to advancing the field and lays the groundwork for future research aimed at refining understanding of the relationship between estradiol and neuronal circuits as well as their involvement in brain disorders.
Collapse
Affiliation(s)
- Peyton Christine Bendis
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Sydney Zimmerman
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
- Laboratory of Epigenetics and Gene Regulation, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
6
|
Ballard HK, Jackson TB, Hicks TH, Cox SJ, Symm A, Maldonado T, Bernard JA. Hormone-sleep interactions predict cerebellar connectivity and behavior in aging females. Psychoneuroendocrinology 2023; 150:106034. [PMID: 36709633 PMCID: PMC10149037 DOI: 10.1016/j.psyneuen.2023.106034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Sex hormones fluctuate over the course of the female lifespan and are associated with brain health and cognition. Thus, hormonal changes throughout female adulthood, and with menopause in particular, may contribute to sex differences in brain function and behavior. Further, sex hormones have been correlated with sleep patterns, which also exhibit sex-specific impacts on the brain and behavior. As such, the interplay between hormones and sleep may contribute to late-life brain and behavioral outcomes in females. Here, in a sample of healthy adult females (n = 79, ages 35-86), we evaluated the effect of hormone-sleep interactions on cognitive and motor performance as well as cerebellar-frontal network connectivity. Salivary samples were used to measure 17β-estradiol, progesterone, and testosterone levels while overnight actigraphy was used to quantify sleep patterns. Cognitive behavior was quantified using the composite average of standardized scores on memory, processing speed, and attentional tasks, and motor behavior was indexed with sequence learning, balance, and dexterity tasks. We analyzed resting-state connectivity correlations for two specific cerebellar-frontal networks: a Crus I to dorsolateral prefrontal cortex network and a Lobule V to primary motor cortex network. In sum, results indicate that sex hormones and sleep patterns interact to predict cerebellar-frontal connectivity and behavior in aging females. Together, the current findings further highlight the potential consequences of endocrine aging in females and suggest that the link between sex hormones and sleep patterns may contribute, in part, to divergent outcomes between sexes in advanced age.
Collapse
Affiliation(s)
- Hannah K Ballard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA.
| | - T Bryan Jackson
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Tracey H Hicks
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Sydney J Cox
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Abigail Symm
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Ted Maldonado
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA; Department of Psychology, Indiana State University, Terre Haute, IN, USA
| | - Jessica A Bernard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Ballard HK, Jackson TB, Hicks TH, Bernard JA. The association of reproductive stage with lobular cerebellar network connectivity across female adulthood. Neurobiol Aging 2022; 117:139-150. [PMID: 35738086 PMCID: PMC10149146 DOI: 10.1016/j.neurobiolaging.2022.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023]
Abstract
Sex-specific differences in the aging cerebellum may be related to hormone changes with menopause. We evaluated the association between reproductive stage and lobular cerebellar network connectivity using data from the Cambridge Centre for Ageing and Neuroscience repository. We used raw structural and resting state neuroimaging data and information regarding age, sex, and menopause-related variables. Crus I and II and Lobules V and VI were our cerebellar seeds of interest. We characterized reproductive stage using the Stages of Reproductive Aging Workshop criteria. Results show that postmenopausal females have lower cerebello-striatal and cerebello-cortical connectivity, particularly in frontal regions, along with lower connectivity within the cerebellum, compared to reproductive females. Postmenopausal females also exhibit greater connectivity in some brain areas as well. Differences begin to emerge across transitional stages of menopause. Further, results reveal sex-specific differences in connectivity between female reproductive groups and age-matched male control groups. This suggests that menopause may be associated with cerebellar network connectivity in aging females, and sex differences in the aging brain may be related to this biological process.
Collapse
Affiliation(s)
- Hannah K Ballard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| | - T Bryan Jackson
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Tracey H Hicks
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Jessica A Bernard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Scarpa GB, Starrett JR, Li GL, Brooks C, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Estrogens rapidly shape synaptic and intrinsic properties to regulate the temporal precision of songbird auditory neurons. Cereb Cortex 2022; 33:3401-3420. [PMID: 35849820 PMCID: PMC10068288 DOI: 10.1093/cercor/bhac280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/14/2023] Open
Abstract
Sensory neurons parse millisecond-variant sound streams like birdsong and speech with exquisite precision. The auditory pallial cortex of vocal learners like humans and songbirds contains an unconventional neuromodulatory system: neuronal expression of the estrogen synthesis enzyme aromatase. Local forebrain neuroestrogens fluctuate when songbirds hear a song, and subsequently modulate bursting, gain, and temporal coding properties of auditory neurons. However, the way neuroestrogens shape intrinsic and synaptic properties of sensory neurons remains unknown. Here, using a combination of whole-cell patch clamp electrophysiology and calcium imaging, we investigate estrogenic neuromodulation of auditory neurons in a region resembling mammalian auditory association cortex. We found that estradiol rapidly enhances the temporal precision of neuronal firing via a membrane-bound G-protein coupled receptor and that estradiol rapidly suppresses inhibitory synaptic currents while sparing excitation. Notably, the rapid suppression of intrinsic excitability by estradiol was predicted by membrane input resistance and was observed in both males and females. These findings were corroborated by analysis of in vivo electrophysiology recordings, in which local estrogen synthesis blockade caused acute disruption of the temporal correlation of song-evoked firing patterns. Therefore, on a modulatory timescale, neuroestrogens alter intrinsic cellular properties and inhibitory neurotransmitter release to regulate the temporal precision of higher-order sensory neurons.
Collapse
Affiliation(s)
- Garrett B Scarpa
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| | - Joseph R Starrett
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| | - Geng-Lin Li
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd, Xuhui District, Shanghai 200031, China
| | - Colin Brooks
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| | - Yuichi Morohashi
- Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa, Japan
| | - Yoko Yazaki-Sugiyama
- Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa, Japan
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| |
Collapse
|
9
|
Chen Z, Long H, Guo J, Wang Y, He K, Tao C, Li X, Jiang K, Guo S, Pi Y. Autism-Risk Gene necab2 Regulates Psychomotor and Social Behavior as a Neuronal Modulator of mGluR1 Signaling. Front Mol Neurosci 2022; 15:901682. [PMID: 35909444 PMCID: PMC9326220 DOI: 10.3389/fnmol.2022.901682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDe novo deletion of the neuronal calcium-binding protein 2 (NECAB2) locus is associated with idiopathic autism spectrum disorders (ASDs). The in vivo function of NECAB2 in the brain remains largely elusive.MethodsWe investigated the morphological and behavioral profiles of both necab2 knock-out and overexpression zebrafish models. The expression pattern and molecular role of necab2 were probed through a combination of in vitro and in vivo assays.ResultsWe show that Necab2 is a neuronal specific, cytoplasmic, and membrane-associated protein, abundantly expressed in the telencephalon, habenula, and cerebellum. Necab2 is distributed peri-synaptically in subsets of glutamatergic and GABAergic neurons. CRISPR/Cas9-generated necab2 knock-out zebrafish display normal morphology but exhibit a decrease in locomotor activity and thigmotaxis with impaired social interaction only in males. Conversely, necab2 overexpression yields behavioral phenotypes opposite to the loss-of-function. Proteomic profiling uncovers a role of Necab2 in modulating signal transduction of G-protein coupled receptors. Specifically, co-immunoprecipitation, immunofluorescence, and confocal live-cell imaging suggest a complex containing NECAB2 and the metabotropic glutamate receptor 1 (mGluR1). In vivo measurement of phosphatidylinositol 4,5-bisphosphate further substantiates that Necab2 promotes mGluR1 signaling.ConclusionsNecab2 regulates psychomotor and social behavior via modulating a signaling cascade downstream of mGluR1.
Collapse
Affiliation(s)
- Zexu Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Han Long
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiran Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Kezhe He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Chenchen Tao
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiong Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Keji Jiang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Su Guo,
| | - Yan Pi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Yan Pi,
| |
Collapse
|
10
|
Spool JA, Bergan JF, Remage-Healey L. A neural circuit perspective on brain aromatase. Front Neuroendocrinol 2022; 65:100973. [PMID: 34942232 PMCID: PMC9667830 DOI: 10.1016/j.yfrne.2021.100973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
This review explores the role of aromatase in the brain as illuminated by a set of conserved network-level connections identified in several vertebrate taxa. Aromatase-expressing neurons are neurochemically heterogeneous but the brain regions in which they are found are highly-conserved across the vertebrate lineage. During development, aromatase neurons have a prominent role in sexual differentiation of the brain and resultant sex differences in behavior and human brain diseases. Drawing on literature primarily from birds and rodents, we delineate brain regions that express aromatase and that are strongly interconnected, and suggest that, in many species, aromatase expression essentially defines the Social Behavior Network. Moreover, in several cases the inputs to and outputs from this core Social Behavior Network also express aromatase. Recent advances in molecular and genetic tools for neuroscience now enable in-depth and taxonomically diverse studies of the function of aromatase at the neural circuit level.
Collapse
Affiliation(s)
- Jeremy A Spool
- Center for Neuroendocrine Studies, Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
| | - Joseph F Bergan
- Center for Neuroendocrine Studies, Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
| | - Luke Remage-Healey
- Center for Neuroendocrine Studies, Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
11
|
Panichi R, Dieni CV, Sullivan JA, Biscarini A, Contemori S, Faralli M, Pettorossi VE. Inhibition of androgenic pathway impairs encoding of cerebellar‐dependent motor learning in male rats. J Comp Neurol 2022; 530:2014-2032. [DOI: 10.1002/cne.25318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Roberto Panichi
- Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Cristina V. Dieni
- Department of Neurobiology and Evelyn McKnight Brain Institute University of Alabama at Birmingham Birmingham Alabama USA
| | | | - Andrea Biscarini
- Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Samuele Contemori
- Center for Sensorimotor Performance, School of Human Movement and Nutrition Sciences The University of Queensland Brisbane Queensland Australia
| | - Mario Faralli
- Department of Medical‐Surgical Specialization, Otolaryngology and Cervicofacial Surgery Division University of Perugia Perugia Italy
| | | |
Collapse
|
12
|
Johnson CS, Micevych PE, Mermelstein PG. Membrane estrogen signaling in female reproduction and motivation. Front Endocrinol (Lausanne) 2022; 13:1009379. [PMID: 36246891 PMCID: PMC9557733 DOI: 10.3389/fendo.2022.1009379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptors were initially identified in the uterus, and later throughout the brain and body as intracellular, ligand-regulated transcription factors that affect genomic change upon ligand binding. However, rapid estrogen receptor signaling initiated outside of the nucleus was also known to occur via mechanisms that were less clear. Recent studies indicate that these traditional receptors, estrogen receptor-α and estrogen receptor-β, can also be trafficked to act at the surface membrane. Signaling cascades from these membrane-bound estrogen receptors (mERs) not only rapidly effect cellular excitability, but can and do ultimately affect gene expression, as seen through the phosphorylation of CREB. A principal mechanism of neuronal mER action is through glutamate-independent transactivation of metabotropic glutamate receptors (mGluRs), which elicits multiple signaling outcomes. The interaction of mERs with mGluRs has been shown to be important in many diverse functions in females, including, but not limited to, reproduction and motivation. Here we review membrane-initiated estrogen receptor signaling in females, with a focus on the interactions between these mERs and mGluRs.
Collapse
Affiliation(s)
- Caroline S. Johnson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Caroline S. Johnson,
| | - Paul E Micevych
- Laboratory of Neuroendocrinology, Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul G. Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
13
|
Gross KS, Mermelstein PG. Estrogen receptor signaling through metabotropic glutamate receptors. VITAMINS AND HORMONES 2020; 114:211-232. [PMID: 32723544 DOI: 10.1016/bs.vh.2020.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the non-nuclear initiated effects of steroid hormone signaling have become more widely accepted, there has been a need to define the novel mechanisms of hormone receptor action that account for these outcomes. One mechanism that has emerged is the coupling of classical estrogen receptors (ERα and ERβ) with metabotropic glutamate receptors (mGluRs) to initiate G protein signaling cascades that ultimately influence neuronal physiology, structure, and behavior. Since its initial discovery in hippocampal neurons, evidence of ER/mGluR associations have been found throughout the nervous system, and the heterogeneity of possible receptor pairings afforded by multiple ER and mGluR subtypes appears to drive diverse molecular outcomes that can impact processes like cognition, motivation, movement, and pain. Recent evidence also suggests that the role of mGluRs in steroid hormone signaling may not be unique to ERs, but rather a conserved mechanism of membrane-initiated hormone receptor action.
Collapse
Affiliation(s)
- Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
14
|
Proaño SB, Krentzel AA, Meitzen J. Differential and synergistic roles of 17β-estradiol and progesterone in modulating adult female rat nucleus accumbens core medium spiny neuron electrophysiology. J Neurophysiol 2020; 123:2390-2405. [PMID: 32401164 DOI: 10.1152/jn.00157.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Naturally occurring cyclical changes in sex steroid hormones such as 17β-estradiol and progesterone can modulate neuron function and behavior in female mammals. One example is the estrous cycle in rats, which is composed of multiple phases. We previously reported evidence of differences between estrous cycle phases in excitatory synapse and intrinsic electrophysiological properties of rat nucleus accumbens core (AcbC) medium spiny neurons (MSNs). The AcbC is a nexus between the limbic and premotor systems and is integral for controlling motivated and reward-associated behaviors and disorders, which are sensitive to the estrous cycle and hormones. The present study expands our prior findings by testing whether circulating levels of estradiol and progesterone correlate with changes in MSN electrophysiology across estrous cycle phases. As part of this project, the excitatory synapse and intrinsic excitability properties of MSNs in late proestrus of adult female rats were assessed. Circulating levels of estradiol correlate with resting membrane potential, the time constant of the membrane, and rheobase. Circulating levels of progesterone correlate with miniature excitatory postsynaptic current (mEPSC) frequency and amplitude. Circulating levels of estradiol and progesterone together correlate with mEPSC amplitude, resting membrane potential, and input resistance. The late proestrus phase features a prominent and unique decrease in mEPSC frequency. These data indicate that circulating levels of estradiol and progesterone alone or in combination interact with specific MSN electrophysiological properties, indicating differential and synergistic roles of these hormones. Broadly, these findings illustrate the underlying endocrine actions regarding how the estrous cycle modulates MSN electrophysiology.NEW & NOTEWORTHY This research indicates that estradiol and progesterone act both differentially and synergistically to modulate neuron physiology in the nucleus accumbens core. These actions by specific hormones provide key data indicating the endocrine mechanisms underlying how the estrous cycle modulates neuron physiology in this region. Overall, these data reinforce that hormones are an important influence on neural physiology.
Collapse
Affiliation(s)
- Stephanie B Proaño
- Graduate Program in Biology, North Carolina State University, Raleigh, North Carolina.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina.,Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Amanda A Krentzel
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina.,Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - John Meitzen
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina.,Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
15
|
Dieni CV, Contemori S, Biscarini A, Panichi R. De Novo Synthesized Estradiol: A Role in Modulating the Cerebellar Function. Int J Mol Sci 2020; 21:ijms21093316. [PMID: 32392845 PMCID: PMC7247543 DOI: 10.3390/ijms21093316] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022] Open
Abstract
The estrogen estradiol is a potent neuroactive steroid that may regulate brain structure and function. Although the effects of estradiol have been historically associated with gonadal secretion, the discovery that this steroid may be synthesized within the brain has expanded this traditional concept. Indeed, it is accepted that de novo synthesized estradiol in the nervous system (nE2) may modulate several aspects of neuronal physiology, including synaptic transmission and plasticity, thereby influencing a variety of behaviors. These modulations may be on a time scale of minutes via non-classical and often membrane-initiated mechanisms or hours and days by classical actions on gene transcription. Besides the high level, recent investigations in the cerebellum indicate that even a low aromatase expression can be related to the fast nE2 effect on brain functioning. These pieces of evidence point to the importance of an on-demand and localized nE2 synthesis to rapidly contribute to regulating the synaptic transmission. This review is geared at exploring a new scenario for the impact of estradiol on brain processes as it emerges from the nE2 action on cerebellar neurotransmission and cerebellum-dependent learning.
Collapse
Affiliation(s)
- Cristina V. Dieni
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (C.V.D.); (R.P.); Tel.: +1-(205)-996-8660 (C.V.D.); +39-075-5858205 (R.P.)
| | - Samuele Contemori
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane 4072, Australia;
| | - Andrea Biscarini
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06129 Perugia, Italy;
| | - Roberto Panichi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, 06129 Perugia, Italy;
- Correspondence: (C.V.D.); (R.P.); Tel.: +1-(205)-996-8660 (C.V.D.); +39-075-5858205 (R.P.)
| |
Collapse
|
16
|
Reichman RD, Gaynor SC, Monson ET, Gaine ME, Parsons MG, Zandi PP, Potash JB, Willour VL. Targeted sequencing of the LRRTM gene family in suicide attempters with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2020; 183:128-139. [PMID: 31854516 PMCID: PMC8380126 DOI: 10.1002/ajmg.b.32767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Glutamatergic signaling is the primary excitatory neurotransmission pathway in the brain, and its relationship to neuropsychiatric disorders is of considerable interest. Our previous attempted suicide genome-wide association study, and numerous studies investigating gene expression, genetic variation, and DNA methylation have implicated aberrant glutamatergic signaling in suicide risk. The glutamatergic pathway gene LRRTM4 was an associated gene identified in our attempted suicide genome-wide association study, with association support seen primarily in females. Recent evidence has also shown that glutamatergic signaling is partly regulated by sex-related hormones. The LRRTM gene family encodes neuronal leucine-rich transmembrane proteins that localize to and promote glutamatergic synapse development. In this study, we sequenced the coding and regulatory regions of all four LRRTM gene members plus a large intronic region of LRRTM4 in 476 bipolar disorder suicide attempters and 473 bipolar disorder nonattempters. We identified two male-specific variants, one female- and five male-specific haplotypes significantly associated with attempted suicide in LRRTM4. Furthermore, variants within significant haplotypes may be brain expression quantitative trait loci for LRRTM4 and some of these variants overlap with predicted hormone response elements. Overall, these results provide supporting evidence for a sex-specific association of genetic variation in LRRTM4 with attempted suicide.
Collapse
Affiliation(s)
- Rachel D. Reichman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Sophia C. Gaynor
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Eric T. Monson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Marie E. Gaine
- Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Meredith G. Parsons
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Peter P. Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - James B. Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Virginia L. Willour
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
17
|
El-Tahawy NFG, Abdel Hafez SMN, Ramzy MM, Zenhom NM, Abdel-Hamid HA. Effect of experimentally induced hypertension on cerebellum of postmenopausal rat. J Cell Physiol 2019; 234:12941-12955. [PMID: 30536406 DOI: 10.1002/jcp.27961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 08/01/2024]
Abstract
Cerebellum seems to be a specific target for both the decrease of estrogen and hypertension in menopause. The aim of this study was to investigate the hypertension and menopause-induced changes in rat's cerebellar cortex and the possible mechanisms of these changes. Rats were divided into four groups: the sham-operated control (SC-group), the ovariectomized (OVX-group), the hypertensive (H-group), and the ovariectomized-hypertensive (OVX-H-group) group. The mean arterial pressure (MAP), serum nitric oxide (NO), lipid peroxides and antioxidant catalase enzyme levels were assayed. Cerebellar tissue homogenization for analysis of lipid peroxides, antioxidant catalase enzyme, tumor necrosis factor-α (TNF-α), and estradiol was done. Quantification of adrenomedullin (AM) and interleukin-10 (IL-10) mRNA was also done. Cerebella were processed for histological, immunohistochemical and transmission electron microscopic examination. In the OVX-group, insignificant structural and biochemical changes were observed compared with the SC-group apart from the significantly increased lipid peroxides and decreased NO and catalase levels in serum. The H-group showed an elevated lipid peroxides and TNF-α levels, reduced catalase level, numerous degenerated Purkinje cells, vacuolations of the neuropil, some axonal degeneration, and few ghosts in the granular cell layer (GL). However, in OVX-H-group, oxidative stress, inflammation, and cerebellar damage were exacerbated and cerebellar estrogen was reduced associated with reduction in GL thickness and decreased Purkinje cells number. Most axoplasms had degenerated neurofilaments with abnormal myelination. The immunoexpression of glial fibrillary acidic protein were significantly increased in both OVX-group and H-group and significantly decreased in OVX-H group. Gene expression of AM and IL-10 were increased in cerebellar tissues of H-group compared with the SC-group but it was significantly decreased in OVX-H-group compared with H-group. Taken together, postmenopausal rats with hypertension suffered from structural cerebellar changes than rats with only hypertension or estrogen deficiency separately due to augmentation of the increased oxidative stress markers and the proinflammatory cytokines (TNF-α) with down regulation of the anti-inflammatory cytokine (IL-10) and the blood pressure regulator, AM. These suggested that high blood pressure is a critical factor for postmenopausal cerebellum.
Collapse
Affiliation(s)
| | | | - Maggie M Ramzy
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba A Abdel-Hamid
- Department of Physiology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
18
|
Brocca ME, Garcia-Segura LM. Non-reproductive Functions of Aromatase in the Central Nervous System Under Physiological and Pathological Conditions. Cell Mol Neurobiol 2019; 39:473-481. [PMID: 30084008 PMCID: PMC11469900 DOI: 10.1007/s10571-018-0607-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
The modulation of brain function and behavior by steroid hormones was classically associated with their secretion by peripheral endocrine glands. The discovery that the brain expresses the enzyme aromatase, which produces estradiol from testosterone, expanded this traditional concept. One of the best-studied roles of brain estradiol synthesis is the control of reproductive behavior. In addition, there is increasing evidence that estradiol from neural origin is also involved in a variety of non-reproductive functions. These include the regulation of neurogenesis, neuronal development, synaptic transmission, and plasticity in brain regions not directly related with the control of reproduction. Central aromatase is also involved in the modulation of cognition, mood, and non-reproductive behaviors. Furthermore, under pathological conditions aromatase is upregulated in the central nervous system. This upregulation represents a neuroprotective and likely also a reparative response by increasing local estradiol levels in order to maintain the homeostasis of the neural tissue. In this paper, we review the non-reproductive functions of neural aromatase and neural-derived estradiol under physiological and pathological conditions. We also consider the existence of sex differences in the role of the enzyme in both contexts.
Collapse
Affiliation(s)
- Maria Elvira Brocca
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Tonn Eisinger KR, Woolfrey KM, Swanson SP, Schnell SA, Meitzen J, Dell'Acqua M, Mermelstein PG. Palmitoylation of caveolin-1 is regulated by the same DHHC acyltransferases that modify steroid hormone receptors. J Biol Chem 2018; 293:15901-15911. [PMID: 30158247 PMCID: PMC6187622 DOI: 10.1074/jbc.ra118.004167] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Palmitoylation is a reversible post-translational addition of a 16-carbon lipid chain involved in trafficking and compartmentalizing target proteins. It is important for many cellular functions, including signaling via membrane-localized estrogen receptors (ERs). Within the nervous system, palmitoylation of ERα is necessary for membrane surface localization and mediation of downstream signaling through the activation of metabotropic glutamate receptors (mGluRs). Substitution of the single palmitoylation site on ERα prevents its physical association with the integral membrane protein caveolin-1 (CAV1), required for the formation of the ER/mGluR signaling complex. Interestingly, siRNA knockdown of either of two palmitoyl acyltransferases, zinc finger DHHC type-containing 7 (DHHC7) or DHHC21, also eliminates this signaling mechanism. Because ERα has only one palmitoylation site, we hypothesized that one of these DHHCs palmitoylates CAV1. We investigated this possibility by using an acyl-biotin exchange assay in HEK293 cells in conjunction with DHHC overexpression and found that DHHC7 increases CAV1 palmitoylation. Substitution of the palmitoylation sites on CAV1 eliminated this effect but did not disrupt the ability of the DHHC enzyme to associate with CAV1. In contrast, siRNA-mediated knockdown of DHHC7 alone was not sufficient to decrease CAV1 palmitoylation but rather required simultaneous knockdown of DHHC21. These findings provide additional information about the overall influence of palmitoylation on the membrane-initiated estrogen signaling pathway and highlight the importance of considering the influence of palmitoylation on other CAV1-dependent processes.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- From the Department of Neuroscience and
- the Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kevin M Woolfrey
- the Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045, and
| | | | | | - John Meitzen
- the Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Mark Dell'Acqua
- the Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045, and
| | - Paul G Mermelstein
- From the Department of Neuroscience and
- the Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
20
|
Hua H, Zhang H, Kong Q, Jiang Y. Mechanisms for estrogen receptor expression in human cancer. Exp Hematol Oncol 2018; 7:24. [PMID: 30250760 PMCID: PMC6148803 DOI: 10.1186/s40164-018-0116-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen is a steroid hormone that has critical roles in reproductive development, bone homeostasis, cardiovascular remodeling and brain functions. However, estrogen also promotes mammary, ovarian and endometrial tumorigenesis. Estrogen antagonists and drugs that reduce estrogen biosynthesis have become highly successful therapeutic agents for breast cancer patients. The effects of estrogen are largely mediated by estrogen receptor (ER) α and ERβ, which are members of the nuclear receptor superfamily of transcription factors. The mechanisms underlying the aberrant expression of ER in breast cancer and other types of human tumors are complex, involving considerable alternative splicing of ERα and ERβ, transcription factors, epigenetic and post-transcriptional regulation of ER expression. Elucidation of mechanisms for ER expression may not only help understand cancer progression and evolution, but also shed light on overcoming endocrine therapy resistance. Herein, we review the complex mechanisms for regulating ER expression in human cancer.
Collapse
Affiliation(s)
- Hui Hua
- 1Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Tonn Eisinger KR, Gross KS, Head BP, Mermelstein PG. Interactions between estrogen receptors and metabotropic glutamate receptors and their impact on drug addiction in females. Horm Behav 2018; 104:130-137. [PMID: 29505763 PMCID: PMC6131090 DOI: 10.1016/j.yhbeh.2018.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogen receptors α and β (ERα and ERβ) have a unique relationship with metabotropic glutamate receptors (mGluRs) in the female rodent brain such that estradiol is able to recruit intracellular G-protein signaling cascades to influence neuronal physiology, structure, and ultimately behavior. While this association between ERs and mGluRs exists in many cell types and brain regions, its effects are perhaps most striking in the nucleus accumbens (NAc). This review will discuss the original characterization of ER/mGluR signaling and how estradiol activity in the NAc confers increased sensitivity to drugs of abuse in females through this mechanism.
Collapse
Affiliation(s)
- Katherine R Tonn Eisinger
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Brian P Head
- Department of Anesthesiology, University of California-San Diego, La Jolla, CA 92093, USA
| | - Paul G Mermelstein
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|