1
|
Wraith DC. Antigen-specific immunotherapy of multiple sclerosis and other autoimmune diseases. Semin Arthritis Rheum 2025; 72S:152682. [PMID: 40024855 DOI: 10.1016/j.semarthrit.2025.152682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
Current therapies for autoimmune diseases do not address the underlying cause of disease, the failure of immune tolerance to self. The non-specific therapies currently used to treat autoimmune diseases increase the risk of infections and cancers. Antigen-specific therapies target pathogenic autoreactive lymphocytes while preserving protective immune responses. This short synthesis will review our laboratory's work on the design and development of antigen-specific immunotherapies for multiple sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical Sciences, University of Birmingham, UK.
| |
Collapse
|
2
|
Streeter HB, Lucas LG, West RM, Krishna MT, Wraith DC. A dominant, pan-DR binding epitope of Der p 1 in house dust mite allergy induces tolerance in HLA-DR4 transgenic mice. Front Immunol 2025; 16:1569283. [PMID: 40292297 PMCID: PMC12021919 DOI: 10.3389/fimmu.2025.1569283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Background Peptides were designed to induce immune tolerance to the major antigen associated with house dust mite (HDM) allergy, Der p 1. HDM is commonly associated with allergic responses in allergic rhinitis and asthma, with Der p 1 specific T-cells implicated in ongoing disease. Tolerogenic peptide immunotherapy can induce tolerance in pathogenic T-cells, bypass mast cell activation and hence reduce the risk of anaphylaxis. A pan-DR binding epitope of Der p 1, covering the broad population, was tested for efficacy in HLA-DR transgenic mice. Methods Potential pan-HLA-DR binding tolerogenic T-cell epitopes from Der p 1 were predicted in silico and manufactured (synthetic peptides A-E). Participants included HDM sensitised (allergic rhinitis/asthma, n=25), non-HDM sensitised (atopic controls sensitised to ≥1 other aero-allergens, n=10) and non-atopic healthy controls, n=10). Peripheral blood mononuclear cells (PBMC) were collected and screened for immune responses to Der p 1 or test peptides A-E. Mapping of minimal T-cell epitopes, apitope (antigen-processing independent epitope) validation and tolerance induction were tested in HLA-DR transgenic mice. Results HDM-sensitised subjects have an elevated response to pan-DR binding peptide D 30mer. Peptide analogue D121B, containing the minimal epitope and optimised for solubility, was verified as a tolerogenic apitope and induced tolerance against Der p 1 antigens in HLA-DR4 transgenic mice in vivo. Conclusion A tolerogenic peptide, apitope D121B, reduces T-cell immune responses to Der p 1 and is a promising candidate for further development as an immunotherapy for HDM-associated allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Heather B. Streeter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Lora G. Lucas
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Robert M. West
- Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Mamidipudi T. Krishna
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Allergy and Immunology, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - David C. Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Viola N, Colleo A, Casula M, Mura C, Boi F, Lanzolla G. Graves' Disease: Is It Time for Targeted Therapy? A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:500. [PMID: 40142311 PMCID: PMC11943693 DOI: 10.3390/medicina61030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025]
Abstract
Current therapies for Graves' disease (GD) primarily aim to manage hyperthyroidism through synthetic antithyroid drugs, radioiodine, or surgery. However, these approaches are often limited by their incomplete efficacy and the risk of inducing hypothyroidism. The latest advances in understanding the autoimmune mechanisms driving GD have paved the way for novel therapies targeting the thyrotropin receptor (TSH-R) or immune pathways. Overall, key targets include cluster of differentiation 20 (CD20), cluster of differentiation 40 (CD40), protein tyrosine phosphatase non-receptor type 22 (PTPN22), cytotoxic T lymphocyte antigen-4 (CTLA-4), B cell-activating factor (BAFF), and the Fc receptor-like protein 3 (FcRL3). Recent preclinical studies and clinical trials testing targeted therapies have shown promising results in terms of efficacy and safety. Here, we present a narrative review of the literature on emerging therapeutic approaches for GD that are currently under investigation.
Collapse
Affiliation(s)
- Nicola Viola
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, University Hospital of Pisa, 56100 Pisa, Italy; (N.V.); (M.C.)
| | - Alessandro Colleo
- Endocrinology Unit, Department of Medical Science and Public Health, University of Cagliari, University Hospital of Cagliari, 09124 Cagliari, Italy; (A.C.); (C.M.); (F.B.)
| | - Mauro Casula
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, University Hospital of Pisa, 56100 Pisa, Italy; (N.V.); (M.C.)
| | - Chiara Mura
- Endocrinology Unit, Department of Medical Science and Public Health, University of Cagliari, University Hospital of Cagliari, 09124 Cagliari, Italy; (A.C.); (C.M.); (F.B.)
| | - Francesco Boi
- Endocrinology Unit, Department of Medical Science and Public Health, University of Cagliari, University Hospital of Cagliari, 09124 Cagliari, Italy; (A.C.); (C.M.); (F.B.)
| | - Giulia Lanzolla
- Endocrinology Unit, Department of Medical Science and Public Health, University of Cagliari, University Hospital of Cagliari, 09124 Cagliari, Italy; (A.C.); (C.M.); (F.B.)
| |
Collapse
|
4
|
Lee ACH, Kahaly GJ. Targeted immunotherapies for Graves' thyroidal & orbital diseases. Front Immunol 2025; 16:1571427. [PMID: 40145088 PMCID: PMC11936961 DOI: 10.3389/fimmu.2025.1571427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Background Graves' hyperthyroidism and its associated Graves' orbitopathy are common autoimmune disorders associated with significant adverse health impact. Current standard treatments have limitations regarding efficacy and safety, and most do not specifically target the pathogenic mechanisms. We aim to review the latest development of targeted immunotherapies in these two closely related disorders. Summary Targeted immunotherapies of Graves' hyperthyroidism have recently demonstrated clinical efficacy in early phase clinical studies. They include rituximab, an anti-CD20 monoclonal antibody which causes rapid B cell depletion; ATX-GD-59, an antigen specific immunotherapy which restores immune tolerance to thyrotropin receptor; iscalimab, an anti-CD40 monoclonal antibody which blocks the CD40-CD154 co-stimulatory pathway in B-T cell interaction; and K1-70, a thyrotropin receptor blocking monoclonal antibody. Furthermore, there have been major therapeutic advances in the management of Graves' orbitopathy. Mycophenolate has a dual mechanism of action both inhibiting the proliferation of activated B & T cells as well as the mammalian target of rapamycin growth intracellular pathway. Rituximab appears to be effective in active disease of recent onset without impending dysthyroid optic neuropathy. Both tocilizumab (anti-interleukin 6 receptor monoclonal antibody) and sirolimus (mammalian target of rapamycin inhibitor) showed promise in glucocorticoid resistant active disease. Teprotumumab, an anti-insulin-like growth factor-1 receptor monoclonal antibody, demonstrated remarkable all-round efficacy across a wide disease spectrum. Linsitinib, a dual small molecule inhibitor of insulin-like growth factor-1 receptor and insulin receptor, displayed significant proptosis reduction in its phase 2b/3 study. Finally, Batoclimab, an anti-neonatal fragment crystallizable receptor monoclonal antibody, which blocks recycling of pathogenic thyrotropin receptor antibody, showed promising signals for significant proptosis reduction, disease inactivation, overall response, and improvement of quality of life. Conclusion Therapeutic advances will continue to optimize our management of Graves' hyperthyroidism and its associated orbitopathy in an effective and safe manner.
Collapse
Affiliation(s)
- Alan Chun Hong Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - George J. Kahaly
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Centre, Mainz, Germany
| |
Collapse
|
5
|
Lanzolla G, Marinò M, Menconi F. Graves disease: latest understanding of pathogenesis and treatment options. Nat Rev Endocrinol 2024; 20:647-660. [PMID: 39039206 DOI: 10.1038/s41574-024-01016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/24/2024]
Abstract
Graves disease is the most common cause of hyperthyroidism in iodine-sufficient areas. The main responsible mechanism is related to autoantibodies that bind and activate the thyrotropin receptor (TSHR). Although Graves hyperthyroidism is relatively common, no causal treatment options are available. Established treatment modalities are antithyroid drugs, which reduce thyroid hormone synthesis, radioactive iodine and surgery. However, emerging drugs that target the main autoantigen (monoclonal antibodies, small molecules, peptides) or block the immune pathway have been recently tested in clinical trials. Graves disease can involve the thyroid exclusively or it can be associated with extrathyroidal manifestations, among which Graves orbitopathy is the most common. The presence of Graves orbitopathy can change the management of the disease. An established treatment for moderate-to-severe Graves orbitopathy is intravenous glucocorticoids. However, recent advances in understanding the pathogenesis of Graves orbitopathy have allowed the development of new target-based therapies by blocking pro-inflammatory cytokine receptors, lymphocytic infiltration or the insulin-like growth factor 1 receptor (IGF1R), with several clinical trials providing promising results. This article reviews the new discoveries in the pathogenesis of Graves hyperthyroidism and Graves orbitopathy that offer several important tools in disease management.
Collapse
Affiliation(s)
- Giulia Lanzolla
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Michele Marinò
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Francesca Menconi
- U.O. Endocrinologia II, Azienda Ospedaliero Universitaria Pisana, University Hospital of Pisa, Pisa, Italy.
| |
Collapse
|
6
|
Weisbrod L, Capriotti L, Hofmann M, Spieler V, Dersch H, Voedisch B, Schmidt P, Knake S. FASTMAP-a flexible and scalable immunopeptidomics pipeline for HLA- and antigen-specific T-cell epitope mapping based on artificial antigen-presenting cells. Front Immunol 2024; 15:1386160. [PMID: 38779658 PMCID: PMC11109385 DOI: 10.3389/fimmu.2024.1386160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
The study of peptide repertoires presented by major histocompatibility complex (MHC) molecules and the identification of potential T-cell epitopes contribute to a multitude of immunopeptidome-based treatment approaches. Epitope mapping is essential for the development of promising epitope-based approaches in vaccination as well as for innovative therapeutics for autoimmune diseases, infectious diseases, and cancer. It also plays a critical role in the immunogenicity assessment of protein therapeutics with regard to safety and efficacy concerns. The main challenge emerges from the highly polymorphic nature of the human leukocyte antigen (HLA) molecules leading to the requirement of a peptide mapping strategy for a single HLA allele. As many autoimmune diseases are linked to at least one specific antigen, we established FASTMAP, an innovative strategy to transiently co-transfect a single HLA allele combined with a disease-specific antigen into a human cell line. This approach allows the specific identification of HLA-bound peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using FASTMAP, we found a comparable spectrum of endogenous peptides presented by the most frequently expressed HLA alleles in the world's population compared to what has been described in literature. To ensure a reliable peptide mapping workflow, we combined the HLA alleles with well-known human model antigens like coagulation factor VIII, acetylcholine receptor subunit alpha, protein structures of the SARS-CoV-2 virus, and myelin basic protein. Using these model antigens, we have been able to identify a broad range of peptides that are in line with already published and in silico predicted T-cell epitopes of the specific HLA/model antigen combination. The transient co-expression of a single affinity-tagged MHC molecule combined with a disease-specific antigen in a human cell line in our FASTMAP pipeline provides the opportunity to identify potential T-cell epitopes/endogenously processed MHC-bound peptides in a very cost-effective, fast, and customizable system with high-throughput potential.
Collapse
Affiliation(s)
- Luisa Weisbrod
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Luigi Capriotti
- Analytical Biochemistry, Research and Development, CSL Behring AG, Bern, Switzerland
| | - Marco Hofmann
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Valerie Spieler
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Herbert Dersch
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Bernd Voedisch
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Peter Schmidt
- Protein Biochemistry, Bio21 Institute, CSL Limited, Parkville, VIC, Australia
| | - Susanne Knake
- Department of Neurology, Epilepsy Center Hessen, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
7
|
Hansen M, Cheever A, Weber KS, O’Neill KL. Characterizing the Interplay of Lymphocytes in Graves' Disease. Int J Mol Sci 2023; 24:6835. [PMID: 37047805 PMCID: PMC10094834 DOI: 10.3390/ijms24076835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Graves' disease (GD) is a thyroid-specific autoimmune disease with a high prevalence worldwide. The disease is primarily mediated by B cells, which produce autoantibodies against the thyroid-stimulating hormone receptor (TSHR), chronically stimulating it and leading to high levels of thyroid hormones in the body. Interest in characterizing the immune response in GD has motivated many phenotyping studies. The immunophenotype of the cells involved and the interplay between them and their secreted factors are crucial to understanding disease progression and future treatment options. T cell populations are markedly distinct, including increased levels of Th17 and follicular helper T cells (Tfh), while Treg cells appear to be impaired. Some B cells subsets are autoreactive, and anti-TSHR antibodies are the key disease-causing outcome of this interplay. Though some consensus across phenotyping studies will be discussed here, there are also complexities that are yet to be resolved. A better understanding of the immunophenotype of Graves' disease can lead to improved treatment strategies and novel drug targets.
Collapse
Affiliation(s)
| | | | | | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (M.H.); (A.C.); (K.S.W.)
| |
Collapse
|
8
|
Zala A, Thomas R. Antigen-specific immunotherapy to restore antigen-specific tolerance in Type 1 diabetes and Graves' disease. Clin Exp Immunol 2023; 211:164-175. [PMID: 36545825 PMCID: PMC10019129 DOI: 10.1093/cei/uxac115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes and Graves' disease are chronic autoimmune conditions, characterized by a dysregulated immune response. In Type 1 diabetes, there is beta cell destruction and subsequent insulin deficiency whereas in Graves' disease, there is unregulated excessive thyroid hormone production. Both diseases result in significant psychosocial, physiological, and emotional burden. There are associated risks of diabetic ketoacidosis and hypoglycaemia in Type 1 diabetes and risks of thyrotoxicosis and orbitopathy in Graves' disease. Advances in the understanding of the immunopathogenesis and response to immunotherapy in Type 1 diabetes and Graves' disease have facilitated the introduction of targeted therapies to induce self-tolerance, and subsequently, the potential to induce long-term remission if effective. We explore current research surrounding the use of antigen-specific immunotherapies, with a focus on human studies, in Type 1 diabetes and Graves' disease including protein-based, peptide-based, dendritic-cell-based, and nanoparticle-based immunotherapies, including discussion of factors to be considered when translating immunotherapies to clinical practice.
Collapse
Affiliation(s)
- Aakansha Zala
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Ranjeny Thomas
- Correspondence: Ranjeny Thomas, Frazer Institute, The University of Queensland.
| |
Collapse
|
9
|
Abstract
CONTEXT Thyroid eye disease (TED), a vision-threatening and disfiguring autoimmune process, has thwarted our efforts to understand its pathogenesis and develop effective and safe treatments. Recent scientific advances have facilitated improved treatment options. OBJECTIVE Review historically remote and recent advances in understanding TED. DESIGN/SETTING/PARTICIPANTS PubMed was scanned using search terms including thyroid-associated ophthalmopathy, thyroid eye disease, Graves' orbitopathy, autoimmune thyroid disease, and orbital inflammation. MAIN OUTCOME MEASURES Strength of scientific evidence, size, scope, and controls of clinical trials/observations. RESULTS Glucocorticoid steroids are widely prescribed systemic medical therapy. They can lessen inflammation-related manifestations of TED but fail to reliably reduce proptosis and diplopia, 2 major causes of morbidity. Other current therapies include mycophenolate, rituximab (anti-CD20 B cell-depleting monoclonal antibody), tocilizumab (interleukin-6 receptor antagonist), and teprotumumab (IGF-I receptor inhibitor). Several new therapeutic approaches have been proposed including targeting prostaglandin receptors, vascular endothelial growth factor, mTOR, and cholesterol pathways. Of potentially greater long-term importance are attempts to restore immune tolerance. CONCLUSION Despite their current wide use, steroids may no longer enjoy first-tier status for TED as more effective and better tolerated medical options become available. Multiple current and emerging therapies, the rationales for which are rooted in theoretical and experimental science, promise better options. These include teprotumumab, rituximab, and tocilizumab. Restoration of immune tolerance could ultimately become the most effective and safe medical management for TED.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
10
|
Bartalena L, Piantanida E, Gallo D, Ippolito S, Tanda ML. Management of Graves' hyperthyroidism: present and future. Expert Rev Endocrinol Metab 2022; 17:153-166. [PMID: 35287535 DOI: 10.1080/17446651.2022.2052044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Graves' disease (GD) is an autoimmune disorder due to loss of tolerance to the thyrotropin receptor (TSHR) and ultimately caused by stimulatory TSHR antibodies (TSHR-Ab). GD may be associated with extrathyroidal manifestations, mainly Graves' orbitopathy. Treatment of GD relies on antithyroid drugs (ATDs), radioactive iodine (RAI), thyroidectomy. The major ATD limitation is the high recurrence rate after treatment. The major drawback of RAI and thyroidectomy is the inevitable development of permanent hypothyroidism. AREAS COVERED Original articles, clinical trials, systematic reviews, meta-analyses from 1980 to 2021 were searched using the following terms: Graves' disease, management of Graves' disease, antithyroid drugs, radioactive iodine, thyroidectomy, Graves' orbitopathy, thyroid-eye disease. EXPERT OPINION ATDs are the first-line treatment worldwide, are overall safe and usually given for 18-24 months, long-term treatment may decrease relapses. RAI is safe, although associated with a low risk of GO progression, particularly in smokers. Thyroidectomy requires skilled and high-volume surgeons. Patients play a central role in the choice of treatment within a shared decision-making process. Results from targeted therapies acting on different steps of the autoimmune process, including iscalimab, ATX-GD-59, rituximab, blocking TSHR-Ab, small molecules acting as antagonists of the TSHR, are preliminary or preclinical, but promising in medium-to-long perspective.
Collapse
Affiliation(s)
- Luigi Bartalena
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Eliana Piantanida
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Daniela Gallo
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Silvia Ippolito
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Maria Laura Tanda
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
11
|
Wraith DC. Adaptive T cell tuning in immune regulation and immunotherapy of autoimmune diseases. Immunol Lett 2022; 244:12-18. [DOI: 10.1016/j.imlet.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022]
|
12
|
Zhang M, Jiang W, Lu G, Wang R, Lv Z, Li D. Insight Into Mouse Models of Hyperthyroidism. Front Endocrinol (Lausanne) 2022; 13:929750. [PMID: 35813642 PMCID: PMC9257255 DOI: 10.3389/fendo.2022.929750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
Hyperthyroidism is characterized by an increase in the synthesis and secretion of thyroid hormones in the thyroid gland, and the most common cause of overproduction of thyroid hormones is Graves' disease (GD). Long-term disease models of hyperthyroidism have been established. In general, methods to induce GD include transfection of fibroblasts, injecting plasmids or adenovirus containing thyroid stimulating hormone receptor (TSHR) or TSHR subunit, and exogenous artificial thyroid hormone supplementation. Fortunately, in mouse studies, novel treatments for GD and Graves' orbitopathy (GO) were discovered. It has been reported that prophylactic administration of TSHR A subunit protein in genetically susceptible individuals could induce immune tolerance and provide protection for the future development of GD. Biologically active monoclonal antibody against intracellular adhesion molecule-1 (ICAM-1 mAb) and siRNA targeting TSHR can also be used to treat GD. Moreover, new potential therapeutic targets have been identified in GO mouse models, and these targets could present novel therapeutic approaches. Besides, human placental mesenchymal stem cells (hPMSCs) into the orbit, fucoxanthin and icariin may be new alternative therapies that could be used in addition to the existing drugs, although further research is needed.
Collapse
Affiliation(s)
- Mengyu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Jiang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ganghua Lu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ru Wang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Imaging Clinical Medical Center, Tongji University School of Medicine, Shanghai, China
- Clinical Nuclear Medicine Center, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Dan Li, ; Zhongwei Lv,
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Imaging Clinical Medical Center, Tongji University School of Medicine, Shanghai, China
- Clinical Nuclear Medicine Center, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Dan Li, ; Zhongwei Lv,
| |
Collapse
|
13
|
Meehan GR, Thomas R, Al Khabouri S, Wehr P, Hilkens CM, Wraith DC, Sieghart D, Bonelli M, Nagy G, Garside P, Tough DF, Lewis HD, Brewer JM. Preclinical models of arthritis for studying immunotherapy and immune tolerance. Ann Rheum Dis 2021; 80:1268-1277. [PMID: 34380700 PMCID: PMC8458054 DOI: 10.1136/annrheumdis-2021-220043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023]
Abstract
Increasingly earlier identification of individuals at high risk of rheumatoid arthritis (RA) (eg, with autoantibodies and mild symptoms) improves the feasibility of preventing or curing disease. The use of antigen-specific immunotherapies to reinstate immunological self-tolerance represent a highly attractive strategy due to their potential to induce disease resolution, in contrast to existing approaches that require long-term treatment of underlying symptoms.Preclinical animal models have been used to understand disease mechanisms and to evaluate novel immunotherapeutic approaches. However, models are required to understand critical processes supporting disease development such as the breach of self-tolerance that triggers autoimmunity and the progression from asymptomatic autoimmunity to joint pain and bone loss. These models would also be useful in evaluating the response to treatment in the pre-RA period.This review proposes that focusing on immune processes contributing to initial disease induction rather than end-stage pathological consequences is essential to allow development and evaluation of novel immunotherapies for early intervention. We will describe and critique existing models in arthritis and the broader field of autoimmunity that may fulfil these criteria. We will also identify key gaps in our ability to study these processes in animal models, to highlight where further research should be targeted.
Collapse
Affiliation(s)
- Gavin R Meehan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Shaima Al Khabouri
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Pascale Wehr
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Catharien Mu Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniela Sieghart
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - György Nagy
- Department of Rheumatology & Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Paul Garside
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - David F Tough
- GlaxoSmithKline Research and Development, Stevenage, Hertfordshire, UK
| | - Huw D Lewis
- GlaxoSmithKline Research and Development, Stevenage, Hertfordshire, UK
| | - James M Brewer
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Schurgers E, Wraith DC. Induction of Tolerance to Therapeutic Proteins With Antigen-Processing Independent T Cell Epitopes: Controlling Immune Responses to Biologics. Front Immunol 2021; 12:742695. [PMID: 34567009 PMCID: PMC8459012 DOI: 10.3389/fimmu.2021.742695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022] Open
Abstract
The immune response to exogenous proteins can overcome the therapeutic benefits of immunotherapies and hamper the treatment of protein replacement therapies. One clear example of this is haemophilia A resulting from deleterious mutations in the FVIII gene. Replacement with serum derived or recombinant FVIII protein can cause anti-drug antibodies in 20-50% of individuals treated. The resulting inhibitor antibodies override the benefit of treatment and, at best, make life unpredictable for those treated. The only way to overcome the inhibitor issue is to reinstate immunological tolerance to the administered protein. Here we compare the various approaches that have been tested and focus on the use of antigen-processing independent T cell epitopes (apitopes) for tolerance induction. Apitopes are readily designed from any protein whether this is derived from a clotting factor, enzyme replacement therapy, gene therapy or therapeutic antibody.
Collapse
Affiliation(s)
| | - David C Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Teprotumumab in Thyroid-Associated Ophthalmopathy: Rationale for Therapeutic Insulin-Like Growth Factor-I Receptor Inhibition. J Neuroophthalmol 2021; 40:74-83. [PMID: 32040069 DOI: 10.1097/wno.0000000000000890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is an autoimmune component of Graves' disease for which no currently available medical therapy provides reliable and safe benefit. Based on insights generated experimentally over the past several decades, the insulin-like growth factor-I receptor (IGF-IR) has been implicated in the pathogenesis of TAO. Furthermore, an IGF-IR inhibitor, teprotumumab, has emerged from 2 clinical trials as a promising treatment for active, moderate to severe TAO. This brief review intends to provide an overview of the rationale underlying the development of teprotumumab for this disease. It is possible that teprotumumab will soon take its place in our therapeutic armamentarium for active TAO.
Collapse
|
16
|
Richardson N, Wraith DC. Advancement of antigen-specific immunotherapy: knowledge transfer between allergy and autoimmunity. IMMUNOTHERAPY ADVANCES 2021; 1:ltab009. [PMID: 35919740 PMCID: PMC9327121 DOI: 10.1093/immadv/ltab009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Targeted restoration of immunological tolerance to self-antigens or innocuous environmental allergens represents the ultimate aim of treatment options in autoimmune and allergic disease. Antigen-specific immunotherapy (ASI) is the only intervention that has proven disease-modifying efficacy as evidenced by induction of long-term remission in a number of allergic conditions. Mounting evidence is now indicating that specific targeting of pathogenic T cells in autoinflammatory and autoimmune settings enables effective restoration of immune homeostasis between effector and regulatory cells and alters the immunological course of disease. Here, we discuss the key lessons learned during the development of antigen-specific immunotherapies and how these can be applied to inform future interventions. Armed with this knowledge and current high-throughput technology to track immune cell phenotype and function, it may no longer be a matter of ‘if’ but ‘when’ this ultimate aim of targeted tolerance restoration is realised.
Collapse
Affiliation(s)
- Naomi Richardson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David Cameron Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
17
|
Streeter HB, Wraith DC. Manipulating antigen presentation for antigen-specific immunotherapy of autoimmune diseases. Curr Opin Immunol 2021; 70:75-81. [PMID: 33878516 PMCID: PMC8376632 DOI: 10.1016/j.coi.2021.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/14/2022]
Abstract
Specific immunotherapy is the ‘holy grail’ for treatment of autoimmunity. Antigens are delivered by either direct or indirect presentation mechanisms. Liver APC and steady state DC mediate distinct forms of immune regulation. Tr1 cell induction involves epigenetic modification of tolerance associated genes. Trials reveal that antigen-specific immunotherapy can control autoimmune diseases.
Current treatments for autoimmune diseases do not address the immune pathology underlying their initiation and progression and too often rely on non-specific immunosuppressive drugs for control of symptoms. Antigen-specific immunotherapy aims to induce tolerance selectively among the cells causing the disease while leaving the rest of the adaptive immune system capable of protecting against infectious diseases and cancers. Here we describe how novel approaches for antigen-specific immunotherapy are designed to manipulate antigen presentation and promote tolerance to specific self-antigens. This analysis points to liver antigen presenting cells, targeted by carrier particles, and steady-state dendritic cells, to which antigen-processing independent T-cell epitopes (apitopes) bind directly, as the principal targets for antigen-specific immunotherapy. Delivery of antigens to these cells holds great promise for effective control of this rapidly expanding group of diseases.
Collapse
Affiliation(s)
- Heather B Streeter
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT, United Kingdom
| | - David C Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
18
|
Shepard ER, Wegner A, Hill EV, Burton BR, Aerts S, Schurgers E, Hoedemaekers B, Ng STH, Streeter HB, Jansson L, Wraith DC. The Mechanism of Action of Antigen Processing Independent T Cell Epitopes Designed for Immunotherapy of Autoimmune Diseases. Front Immunol 2021; 12:654201. [PMID: 33936079 PMCID: PMC8079784 DOI: 10.3389/fimmu.2021.654201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy with antigen-processing independent T cell epitopes (apitopes) targeting autoreactive CD4+ T cells has translated to the clinic and been shown to modulate progression of both Graves’ disease and multiple sclerosis. The model apitope (Ac1-9[4Y]) renders antigen-specific T cells anergic while repeated administration induces both Tr1 and Foxp3+ regulatory cells. Here we address why CD4+ T cell epitopes should be designed as apitopes to induce tolerance and define the antigen presenting cells that they target in vivo. Furthermore, we reveal the impact of treatment with apitopes on CD4+ T cell signaling, the generation of IL-10-secreting regulatory cells and the systemic migration of these cells. Taken together these findings reveal how apitopes induce tolerance and thereby mediate antigen-specific immunotherapy of autoimmune diseases.
Collapse
Affiliation(s)
- Ella R Shepard
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Anja Wegner
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Elaine V Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Bronwen R Burton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Sarah Aerts
- Apitope International NV, Diepenbeek, Belgium
| | | | | | - Sky T H Ng
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Heather B Streeter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - David C Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
19
|
Lane LC, Cheetham TD, Perros P, Pearce SHS. New Therapeutic Horizons for Graves' Hyperthyroidism. Endocr Rev 2020; 41:5897403. [PMID: 32845332 PMCID: PMC7567404 DOI: 10.1210/endrev/bnaa022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 11/19/2022]
Abstract
Graves' hyperthyroidism is characterized by the presence of autoantibodies that stimulate the thyroid-stimulating hormone receptor (TSHR), resulting in uncontrolled secretion of excessive thyroid hormone. Conventional treatments, including antithyroid medication, radioiodine, or surgery have remained largely unchanged for the past 70 years and either lack efficacy for many patients, or result in lifelong thyroid hormone replacement therapy, in the case of the latter 2 options. The demand for new therapeutic options, combined with greater insight into basic immunobiology, has led to the emergence of novel approaches to treat Graves' hyperthyroidism. The current therapies under investigation include biologics, small molecules, and peptide immunomodulation. There is a growing focus on TSHR-specific treatment modalities, which carry the advantage of eliciting a specific, targeted approach, with the aim of avoiding disruption of the functioning immune system. These therapies present a new opportunity to supersede the inadequate treatments currently available for some Graves' patients, offering hope of successful restoration of euthyroidism without the need for ongoing therapy. Several of these therapeutic options have the potential to translate into clinical practice in the near future. This review provides a comprehensive summary of the recent advances and various stages of development of the novel therapeutic approaches to treat Graves' hyperthyroidism.
Collapse
Affiliation(s)
- Laura C Lane
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Endocrine unit, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK.,Department of Paediatric Endocrinology, The Great North Children's Hospital, Newcastle-upon-Tyne, UK
| | - Tim D Cheetham
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Department of Paediatric Endocrinology, The Great North Children's Hospital, Newcastle-upon-Tyne, UK
| | - Petros Perros
- Endocrine unit, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Simon H S Pearce
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Endocrine unit, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| |
Collapse
|
20
|
Lee ACH, Kahaly GJ. Novel Approaches for Immunosuppression in Graves' Hyperthyroidism and Associated Orbitopathy. Eur Thyroid J 2020; 9:17-30. [PMID: 33511082 PMCID: PMC7802437 DOI: 10.1159/000508789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Both Graves' hyperthyroidism (GH) and Graves' orbitopathy (GO) are associated with significant adverse health consequences. All conventional treatment options have limitations regarding efficacy and safety. Most importantly, they do not specifically address the underlying immunological mechanisms. We aim to review the latest development of treatment approaches in these two closely related disorders. SUMMARY Immunotherapies of GH have recently demonstrated clinical efficacy in preliminary studies. They include ATX-GD-59, an antigen-specific immunotherapy which restores immune tolerance to the thyrotropin receptor; iscalimab, an anti-CD40 monoclonal antibody which blocks the CD40-CD154 costimulatory pathway in B-T cell interaction; and K1-70, a thyrotropin receptor-blocking monoclonal antibody. Novel treatment strategies have also become available in GO. Mycophenolate significantly increased the overall response rate combined with standard glucocorticoid (GC) treatment compared to GC monotherapy. Tocilizumab, an anti-interleukin 6 receptor monoclonal antibody, displayed strong anti-inflammatory action in GC-resistant cases. Teprotumumab, an anti-insulin-like growth factor 1 receptor monoclonal antibody, resulted in remarkable improvement in terms of disease activity, proptosis, and diplopia. Further, rituximab appears to be useful in active disease of recent onset without impending dysthyroid optic neuropathy. KEY MESSAGES Therapeutic advances will continue to optimize our management of GH and associated orbitopathy in an effective and safe manner.
Collapse
Affiliation(s)
- Alan Chun Hong Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Queen Mary Hospital, Hong Kong, China
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - George J. Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
- *George J. Kahaly, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstraße 1, DE–55131 Mainz (Germany),
| |
Collapse
|
21
|
Kahaly GJ. Management of Graves Thyroidal and Extrathyroidal Disease: An Update. J Clin Endocrinol Metab 2020; 105:5905591. [PMID: 32929476 PMCID: PMC7543578 DOI: 10.1210/clinem/dgaa646] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT Invited update on the management of systemic autoimmune Graves disease (GD) and associated Graves orbitopathy (GO). EVIDENCE ACQUISITION Guidelines, pertinent original articles, systemic reviews, and meta-analyses. EVIDENCE SYNTHESIS Thyrotropin receptor antibodies (TSH-R-Abs), foremost the stimulatory TSH-R-Abs, are a specific biomarker for GD. Their measurement assists in the differential diagnosis of hyperthyroidism and offers accurate and rapid diagnosis of GD. Thyroid ultrasound is a sensitive imaging tool for GD. Worldwide, thionamides are the favored treatment (12-18 months) of newly diagnosed GD, with methimazole (MMI) as the preferred drug. Patients with persistently high TSH-R-Abs and/or persistent hyperthyroidism at 18 months, or with a relapse after completing a course of MMI, can opt for a definitive therapy with radioactive iodine (RAI) or total thyroidectomy (TX). Continued long-term, low-dose MMI administration is a valuable and safe alternative. Patient choice, both at initial presentation of GD and at recurrence, should be emphasized. Propylthiouracil is preferred to MMI during the first trimester of pregnancy. TX is best performed by a high-volume thyroid surgeon. RAI should be avoided in GD patients with active GO, especially in smokers. Recently, a promising therapy with an anti-insulin-like growth factor-1 monoclonal antibody for patients with active/severe GO was approved by the Food and Drug Administration. COVID-19 infection is a risk factor for poorly controlled hyperthyroidism, which contributes to the infection-related mortality risk. If GO is not severe, systemic steroid treatment should be postponed during COVID-19 while local treatment and preventive measures are offered. CONCLUSIONS A clear trend towards serological diagnosis and medical treatment of GD has emerged.
Collapse
Affiliation(s)
- George J Kahaly
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
- Correspondence and Reprint Requests: George J. Kahaly, MD, PhD, JGU Medical Center, Mainz 55101, Germany. E-mail:
| |
Collapse
|
22
|
Neumann S, Krieger CC, Gershengorn MC. Targeting TSH and IGF-1 Receptors to Treat Thyroid Eye Disease. Eur Thyroid J 2020; 9:59-65. [PMID: 33511086 PMCID: PMC7802449 DOI: 10.1159/000511538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
Graves' disease (GD) is an autoimmune disease caused in part by thyroid-stimulating antibodies (TSAbs) that activate the thyroid-stimulating hormone receptor (TSHR). In Graves' hyperthyroidism (GH), TSAbs cause persistent stimulation of thyroid cells leading to continuous thyroid hormone synthesis and secretion. Thyroid eye disease (TED), also called Graves' orbitopathy, is an orbital manifestation of GD. We review the important roles of the TSHR and the insulin-like growth factor 1 receptor (IGF-1R) in the pathogenesis of TED and discuss a model of TSHR/IGF-1R crosstalk that considers two pathways initiated by TSAb activation of TSHR in the eye, an IGF-1R-independent and an IGF-1R-dependent signaling pathway leading to hyaluronan (HA) secretion in orbital fibroblasts. We discuss current and future therapeutic approaches targeting the IGF-1R and TSHR. Teprotumumab, a human monoclonal anti-IGF-1R-blocking antibody, has been approved as an effective treatment in patients with TED. However, as the TSHR seems to be the primary target for TSAbs in patients with GD, future therapeutic interventions directly targeting the TSHR, e.g. blocking antibodies and small molecule antagonists, are being developed and have the advantage to inhibit the IGF-1R-independent as well as the IGF-1R-dependent component of TSAb-induced HA secretion. Antigen-specific immunotherapies using TSHR peptides to reduce serum TSHR antibodies are being developed also. These TSHR-targeted strategies also have the potential to treat both GH and TED with the same drug. We propose that combination therapy targeting TSHR and IGF-1R may be an effective and better tolerated treatment strategy for TED.
Collapse
Affiliation(s)
| | | | - Marvin C. Gershengorn
- *Marvin C. Gershengorn, 50 South Dr., Building 50, Room 4134, Bethesda, MD 20892 (USA),
| |
Collapse
|
23
|
Abstract
Immune tolerance is defined by an active state of immune system unresponsiveness to foreign and self-antigens. Loss of immune tolerance to self-antigens and the resulting overexpression of autoantibodies can lead to tissue injury and development of various autoimmune diseases. In drug development, the goal of newly emerging immune tolerance therapies is to treat autoimmune disorders by restoring the immunoregulatory capacity of the immune system. Development of immune tolerance targets is initiated with the establishment of pharmacological efficacy in relevant disease animal models, followed by their stepwise translation to humans. This review discusses the major challenges to developing tolerance inducing pharmaceutical drugs, including the selection of appropriate disease models to establish efficacy, adequate, and acceptable in vitro and in vivo safety assessments, relevant biomarkers of human safety and efficacy, and finally, some regulatory guidelines to successfully develop immune tolerance therapeutics. [Box: see text].
Collapse
Affiliation(s)
- Zaher A Radi
- Pfizer Worldwide Research, Development and Medical, 2253Pfizer Inc, Cambridge, MA, USA
| | - Thomas A Wynn
- Pfizer Worldwide Research, Development and Medical, 2253Pfizer Inc, Cambridge, MA, USA
| |
Collapse
|
24
|
Richardson N, Ng STH, Wraith DC. Antigen-Specific Immunotherapy for Treatment of Autoimmune Liver Diseases. Front Immunol 2020; 11:1586. [PMID: 32793226 PMCID: PMC7385233 DOI: 10.3389/fimmu.2020.01586] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The liver is a critical organ in controlling immune tolerance. In particular, it is now clear that targeting antigens for presentation by antigen presenting cells in the liver can induce immune tolerance to either autoantigens from the liver itself or tissues outside of the liver. Here we review immune mechanisms active within the liver that contribute both to the control of infectious diseases and tolerance to self-antigens. Despite its extraordinary capacity for tolerance induction, the liver remains a target organ for autoimmune diseases. In this review, we compare and contrast known autoimmune diseases of the liver. Currently patients tend to receive strong immunosuppressive treatments and, in many cases, these treatments are associated with deleterious side effects, including a significantly higher risk of infection and associated health complications. We propose that, in future, antigen-specific immunotherapies are adopted for treatment of liver autoimmune diseases in order to avoid such adverse effects. We describe various therapeutic approaches that either are in or close to the clinic, highlight their mechanism of action and assess their suitability for treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
| | | | - David C. Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
25
|
Davies TF, Andersen S, Latif R, Nagayama Y, Barbesino G, Brito M, Eckstein AK, Stagnaro-Green A, Kahaly GJ. Graves' disease. Nat Rev Dis Primers 2020; 6:52. [PMID: 32616746 DOI: 10.1038/s41572-020-0184-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
Graves' disease (GD) is an autoimmune disease that primarily affects the thyroid gland. It is the most common cause of hyperthyroidism and occurs at all ages but especially in women of reproductive age. Graves' hyperthyroidism is caused by autoantibodies to the thyroid-stimulating hormone receptor (TSHR) that act as agonists and induce excessive thyroid hormone secretion, releasing the thyroid gland from pituitary control. TSHR autoantibodies also underlie Graves' orbitopathy (GO) and pretibial myxoedema. Additionally, the pathophysiology of GO (and likely pretibial myxoedema) involves the synergism of insulin-like growth factor 1 receptor (IGF1R) with TSHR autoantibodies, causing retro-orbital tissue expansion and inflammation. Although the aetiology of GD remains unknown, evidence indicates a strong genetic component combined with random potential environmental insults in an immunologically susceptible individual. The treatment of GD has not changed substantially for many years and remains a choice between antithyroid drugs, radioiodine or surgery. However, antithyroid drug use can cause drug-induced embryopathy in pregnancy, radioiodine therapy can exacerbate GO and surgery can result in hypoparathyroidism or laryngeal nerve damage. Therefore, future studies should focus on improved drug management, and a number of important advances are on the horizon.
Collapse
Affiliation(s)
- Terry F Davies
- Thyroid Research Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,James J. Peters VA Medical Center, New York, NY, USA. .,Mount Sinai Thyroid Center, Mount Sinai Downtown at Union Sq, New York, NY, USA.
| | - Stig Andersen
- Department of Geriatric and Internal Medicine and Arctic Health Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Rauf Latif
- Thyroid Research Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,James J. Peters VA Medical Center, New York, NY, USA
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Giuseppe Barbesino
- Thyroid Unit, Division of Endocrinology, Massachusetts General Hospital, Boston, MA, USA
| | - Maria Brito
- Mount Sinai Thyroid Center, Mount Sinai Downtown at Union Sq, New York, NY, USA
| | - Anja K Eckstein
- Department of Ophthalmology, University Duisburg Essen, Essen, Germany
| | - Alex Stagnaro-Green
- Departments of Medicine, Obstetrics and Gynecology and Medical Education, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - George J Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Centre, Mainz, Germany
| |
Collapse
|
26
|
Eckstein A, Philipp S, Goertz G, Banga JP, Berchner-Pfannschmidt U. Lessons from mouse models of Graves' disease. Endocrine 2020; 68:265-270. [PMID: 32399893 PMCID: PMC7266836 DOI: 10.1007/s12020-020-02311-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/07/2020] [Indexed: 11/27/2022]
Abstract
Graves' disease (GD) is an autoimmune condition with the appearance of anti-TSH receptor (TSHR) autoantibodies in the serum. The consequence is the development of hyperthyroidism in most of the patients. In addition, in the most severe cases, patients can develop orbitopathy (GO), achropachy and dermopathy. The central role of the TSHR for the disease pathology has been well accepted. Therefore immunization against the TSHR is pivotal for the creation of in vivo models for the disease. However, TSHR is well preserved among the species and therefore the immune system is highly tolerant. Many differing attempts have been performed to break tolerance and to create a proper animal model in the last decades. The most successful have been achieved by introducing the human TSHR extracellular domain into the body, either by injection of plasmid or adenoviruses. Currently available models develop the whole spectrum of Graves' disease-autoimmune thyroid disease and orbitopathy and are suitable to study disease pathogenesis and to perform treatment studies. In recent publications new immunomodulatory therapies have been assessed and also diseaseprevention by inducing tolerance using small cyclic peptides from the antigenic region of the extracellular subunit of the TSHR.
Collapse
Affiliation(s)
- A Eckstein
- Department of Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany.
| | - S Philipp
- Laboratory of Molecular Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - G Goertz
- Laboratory of Molecular Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - J P Banga
- Laboratory of Molecular Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany
- Emeritus Professor, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - U Berchner-Pfannschmidt
- Laboratory of Molecular Ophthalmology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Smith TJ. Thyroid-associated ophthalmopathy: Emergence of teprotumumab as a promising medical therapy. Best Pract Res Clin Endocrinol Metab 2020; 34:101383. [PMID: 32088116 PMCID: PMC7344338 DOI: 10.1016/j.beem.2020.101383] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid-associated ophthalmopathy (TAO) remains a vexing autoimmune component of Graves' disease that can diminish the quality of life as a consequence of its impact on visual function, physical appearance and emotional well-being. Because of its relative rarity and variable presentation, the development of highly effective and well-tolerated medical therapies for TAO has been slow relative to other autoimmune diseases. Contributing to the barriers of greater insight into TAO has been the historical absence of high-fidelity preclinical animal models. Despite these challenges, several agents, most developed for treatment of other diseases, have found their way into consideration for use in active TAO through repurposing. Among these, teprotumumab is a fully human inhibitory monoclonal antibody against the insulin-like growth factor I receptor. It has shown remarkable effectiveness in moderate to severe, active TAO in two completed multicenter, double masked, and placebo controlled clinical trials. The drug exhibits a favorable safety profile. Teprotumumab has recently been approved by the U.S. F.D.A, and may rapidly become the first line therapy for this disfiguring and potentially blinding condition.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Room 7112, Brehm Tower, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
28
|
Smith TJ, Bartalena L. Will biological agents supplant systemic glucocorticoids as the first-line treatment for thyroid-associated ophthalmopathy? Eur J Endocrinol 2019; 181:D27-D43. [PMID: 31370005 PMCID: PMC7398270 DOI: 10.1530/eje-19-0389] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
Abstract
In this article, the two authors present their opposing points of view concerning the likelihood that glucocorticoids will be replaced by newly developed biological agents in the treatment of active, moderate-to-severe thyroid-associated ophthalmopathy (TAO). TAO is a vexing, disfiguring and potentially blinding autoimmune manifestation of thyroid autoimmunity. One author expresses the opinion that steroids are nonspecific, frequently fail to improve the disease and can cause sometimes serious side effects. He suggests that glucocorticoids should be replaced as soon as possible by more specific and safer drugs, once they become available. The most promising of these are biological agents. The other author argues that glucocorticoids are proven effective and are unlikely to be replaced by biologicals. He reasons that while they may not uniformly result in optimal benefit, they have been proven effective in many reports. He remains open minded about alternative therapies such as biologicals but remains skeptical that they will replace steroids as the first-line therapy for active, moderate-to-severe TAO without head-to-head comparative clinical trials demonstrating superiority. Despite these very different points of view, both authors are optimistic about the availability of improved medical therapies for TAO, either as single agents or in combination. Further, both agree that better treatment options are needed to improve the care of our patients with active moderate-to-severe TAO.
Collapse
Affiliation(s)
- Terry J. Smith
- Department of Ophthalmology and Visual Sciences, Division of metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Luigi Bartalena
- Department of Medicine & Surgery,University of Insubria, Endocrine Unit, ASST dei Sette Laghi, Viale Borri, 57, 21100 Varese, Italy
| |
Collapse
|
29
|
McLachlan SM, Rapoport B. A transgenic mouse that spontaneously develops pathogenic TSH receptor antibodies will facilitate study of antigen-specific immunotherapy for human Graves' disease. Endocrine 2019; 66:137-148. [PMID: 31560118 DOI: 10.1007/s12020-019-02083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Graves' hyperthyroidism can be treated but not cured. Antigen-specific immunotherapy would accomplish this goal, for which purpose an animal model is an invaluable tool. Two types of animal models are available. First, pathogenic TSHR antibodies (TSHRAb) can be induced by injecting mice with fibroblasts co-expressing the human TSHR (hTSHR) and MHC class II, or in mammals using plasmid or adenovirus vectors encoding the hTSHR or its A-subunit. Second, a mouse model that spontaneously develops pathogenic TSHRAb resembling those in human disease was recently described. This outcome was accomplished by transgenic intrathyroidal expression of the hTSHR A-subunit in NOD.H2h4 mice that are genetically predisposed to develop thyroiditis but, without the transgene, do not generate TSHRAb. Recently, novel approaches to antigen-specific immunotherapy have been tested, primarily in the induced model, by injecting TSHR A-subunit protein or cyclic TSHR peptides. T-cell tolerance has also been induced in "humanized" HLA-DR3 mice by injecting synthetic peptides predicted in silico to mimic naturally processed TSHR T-cell epitopes. Indeed, a phase 1 study based on the latter approach has been conducted in humans. In the spontaneous model (hTSHR/NOD.H2h mice), injection of soluble or nanoparticle-bearing hTSHR A-subunits had the unwanted effect of exacerbating pathogenic TSHRAb levels. A promising avenue for tolerance induction, successful in other conditions and yet to be tested with the TSHR, involves encapsulating the antigen. In conclusion, these studies provide insight into the potential outcome of immunotherapeutic approaches and emphasize the importance of a spontaneous model to test future novel, antigen-specific immunotherapies for Graves' disease.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Department of Medicine, University of California Los Angeles, 100 Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Basil Rapoport
- Department of Medicine, University of California Los Angeles, 100 Medical Plaza Driveway, Los Angeles, CA, 90095, USA.
| |
Collapse
|
30
|
Inaba H, Ariyasu H, Takeshima K, Iwakura H, Akamizu T. Comprehensive research on thyroid diseases associated with autoimmunity: autoimmune thyroid diseases, thyroid diseases during immune-checkpoint inhibitors therapy, and immunoglobulin-G4-associated thyroid diseases. Endocr J 2019; 66:843-852. [PMID: 31434818 DOI: 10.1507/endocrj.ej19-0234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Various thyroid diseases are associated with autoimmunity. Major autoimmune thyroid diseases are Graves' disease (GD) and Hashimoto's thyroiditis (HT). Thyrotropin receptor is an autoantigen in GD, and its immunogenicity has been examined. Immune-checkpoint inhibitor (ICI) is recently widely used for treatment of malignant tumors, but cases of thyroid diseases during ICI treatment have been increasing. Thyroid diseases during ICI therapy have been investigated in immunological and clinical aspects, and their Japanese official diagnostic guidelines were established. In addition, serum and tissue immunoglobulin-G4 levels have been examined in association with clinicopathological characteristics in GD, HT, and Riedel's thyroiditis. We review these diseases associated with thyroid autoimmunity and comprehensively discuss their potential application in future research and therapeutic options.
Collapse
Affiliation(s)
- Hidefumi Inaba
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Hiroyuki Ariyasu
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Ken Takeshima
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Hiroshi Iwakura
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Takashi Akamizu
- The First Department of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| |
Collapse
|
31
|
Plöhn S, Hose M, Schlüter A, Michel L, Diaz-Cano S, Hendgen-Cotta UB, Banga JP, Bechrakis NE, Hansen W, Eckstein A, Berchner-Pfannschmidt U. Fingolimod Improves the Outcome of Experimental Graves' Disease and Associated Orbitopathy by Modulating the Autoimmune Response to the Thyroid-Stimulating Hormone Receptor. Thyroid 2019; 29:1286-1301. [PMID: 31237525 DOI: 10.1089/thy.2018.0754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Graves' disease (GD) and Graves' orbitopathy are associated with stimulating thyrotropin receptor (TSHR) autoantibodies and autoreactive T cells. Recent in vitro studies suggested that sphingosine-1-phosphate (S1P) signaling is involved in the pathogenesis of orbitopathy. In this study, we explored the immune modulatory potential of S1P receptor antagonist fingolimod in a murine model for GD. Fingolimod was orally administered preventively during disease onset or therapeutically after disease onset. Administration of fingolimod during disease onset completely prevented the formation of TSHR-stimulating autoantibodies. Intervention after disease onset rarely reduced TSHR-stimulating autoantibodies and blocking autoantibodies were induced in some animals. Consequently, autoimmune hyperthyroidism characterized by elevated serum thyroxin levels, hyperplastic thyroid morphology accompanied by T cell infiltration, weight gain, enhanced body temperature, and tachycardia did not manifest preventively and showed milder manifestation in therapeutically treated animals. Importantly, examination of orbital tissue showed significant amelioration of orbitopathy manifestations through reduction of T cell infiltration, adipogenesis, and hyaluronan deposition. Autoimmune hyperthyroidism and orbitopathy were accompanied by changes in peripheral and splenic T cell proportions with high CD3+, CD4+, and CD8+ T cells. Activated T cells CD4+CD25+ were elevated whereas regulatory T cells CD4+Foxp3+ cells remained unchanged in spleens. Fingolimod decreased elevated T cell levels and increased CD4+CD25+Foxp3+ regulatory T cell populations. Analysis of total disease outcome revealed that treatment during disease onset protected animals against autoimmune hyperthyroidism and orbitopathy. Of note, therapeutic intervention after disease onset suppressed disease in half of the animals and in the other half disease remained at mild stages. The results of this study support a clinical trial to investigate the immunologic and clinical benefits of early treatment with S1P-based drugs in GD.
Collapse
Affiliation(s)
- Svenja Plöhn
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Hose
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anke Schlüter
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Salvador Diaz-Cano
- Department of Histopathology, King's College Hospital, King's College, London, United Kingdom
| | - Ulrike B Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jasvinder Paul Banga
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolaos E Bechrakis
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Utta Berchner-Pfannschmidt
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Despite major advances in since the discovery of the phospholipase A2 receptor (PLA2R) as the major autoantigen on podocytes in primary membranous nephropathy, there are still several unanswered questions as highlighted here. RECENT FINDINGS A substantial body of literature, included in more than 680 articles since 2009, has documented genetic susceptibility to primary membranous nephropathy involving PLA2R1 and class II MHC alleles, the clinical value of anti-PLA2R assays, the significance of epitope spreading of the anti-PLA2R response, discovery of thrombospondin type I domain-containing 7A (THSD7A) as a minor antigen in primary membranous nephropathy, and the ability to transfer disease into mice by infusion of anti-THSD7A sera. However, the normal physiology and pathophysiology of PLA2R and THSD7A in podocytes is still unknown and the genetic influence on disease susceptibility is unexplained. We still do not know what causes loss of self-tolerance to PLA2R and THSD7A or how the autoantibodies, which are predominantly of the IgG4 subclass, cause podocyte injury and proteinuria. Complement deposits are prominent in membranous nephropathy but we are still uncertain how the complement system is activated and whether or not it plays a role in podocyte damage. Notwithstanding the advances over the past decade, our treatments have not changed substantially. SUMMARY This review identifies opportunities to extend the advances that have been made to better understand the immunopathogenesis and genetic basis of primary membranous nephropathy and apply the knowledge to design more specific therapies.
Collapse
|
33
|
Pearce SH, Dayan C, Wraith DC, Barrell K, Olive N, Jansson L, Walker-Smith T, Carnegie C, Martin KF, Boelaert K, Gilbert J, Higham CE, Muller I, Murray RD, Perros P, Razvi S, Vaidya B, Wernig F, Kahaly GJ. Antigen-Specific Immunotherapy with Thyrotropin Receptor Peptides in Graves' Hyperthyroidism: A Phase I Study. Thyroid 2019; 29:1003-1011. [PMID: 31194638 PMCID: PMC6648194 DOI: 10.1089/thy.2019.0036] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Graves' disease is one of the most common autoimmune conditions, but treatment remains imperfect. This study explores the first-in-human use of antigen-specific immunotherapy with a combination of two thyrotropin receptor (TSHR) peptides (termed ATX-GD-59) in Graves' hyperthyroidism. Methods: Twelve participants (11 female) with previously untreated mild to moderate Graves' hyperthyroidism were enrolled in a Phase I open label trial to receive 10 doses of ATX-GD-59 administered intradermally over an 18-week period. Adverse events, tolerability, changes in serum free thyroid hormones, and TSHR autoantibodies were measured. Results: Ten subjects received all 10 doses of ATX-GD-59, five (50%) of whom had free triiodothyronine within the reference interval by the 18-week visit. Two further subjects had improved free thyroid hormones by the end of the study (7/10 responders), whereas three subjects showed worsening thyrotoxicosis during the study. Serum TSHR autoantibody concentrations reduced during the study and correlated with changes in free thyroid hormones (r = 0.85, p = 0.002 for TSHR autoantibody vs. free triiodothyronine). Mild injection-site swelling and pain were the most common adverse events. Conclusions: These preliminary data suggest that ATX-GD-59 is a safe and well-tolerated treatment. The improvement in free thyroid hormones in 70% of subjects receiving the medication suggests potential efficacy as a novel treatment for Graves' hyperthyroidism.
Collapse
Affiliation(s)
- Simon H.S. Pearce
- Institute for Genetic Medicine, Newcastle University, and Newcastle Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Colin Dayan
- Thyroid Research Group, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David C. Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham United Kingdom
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
- Apitope International NV, Diepenbeek, Belgium
| | - Kevin Barrell
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
| | - Natalie Olive
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
| | | | | | | | | | - Kristien Boelaert
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham United Kingdom
| | - Jackie Gilbert
- Department of Endocrinology, King's College Hospital, London, United Kingdom
| | - Claire E. Higham
- Department of Endocrinology, Christie Hospital NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ilaria Muller
- Thyroid Research Group, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Robert D. Murray
- Department of Endocrinology, St. James's University Hospital, Leeds, United Kingdom
| | - Petros Perros
- Endocrine Unit, Newcastle Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Salman Razvi
- Institute for Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bijay Vaidya
- Macleod Diabetes & Endocrine Centre, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Florian Wernig
- Department of Endocrinology, Imperial College, London, United Kingdom
| | - George J. Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
34
|
McLachlan SM, Aliesky HA, Rapoport B. Nanoparticles Bearing TSH Receptor Protein and a Tolerogenic Molecule Do Not Induce Immune Tolerance but Exacerbate Thyroid Autoimmunity in hTSHR/NOD. H2h4 Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:2570-2577. [PMID: 30944161 PMCID: PMC6478544 DOI: 10.4049/jimmunol.1900038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/03/2019] [Indexed: 02/06/2023]
Abstract
Transgenic NOD.H2h4 mice that express the human (h) TSHR A-subunit in the thyroid gland spontaneously develop pathogenic TSHR autoantibodies resembling those in patients with Graves disease. Nanoparticles coupled to recombinant hTSHR A-subunit protein and a tolerogenic molecule (ligand for the endogenous aryl-hydrocarbon receptor; ITE) were injected i.p. four times at weekly intervals into hTSHR/NOD.H2h4 mice with the goal of blocking TSHR Ab development. Unexpectedly, in transgenic mice, injecting TSHR A-subunit-ITE nanoparticles (not ITE-nanoparticles or buffer) accelerated and enhanced the development of pathogenic TSHR Abs measured by inhibition of TSH binding to the TSHR. Nonpathogenic TSHR Abs (ELISA) were enhanced in transgenics and induced in wild-type littermates. Serendipitously, these findings have important implications for disease pathogenesis: development of Graves TSHR Abs is limited by the availability of A-subunit protein, which is shed from membrane bound TSHR, expressed at low levels in the thyroid. The enhanced TSHR Ab response following injected TSHR A-subunit protein-nanoparticles is reminiscent of the transient increase in pathogenic TSHR Abs following the release of thyroid autoantigens after radio-iodine therapy in Graves patients. However, in the hTSHR/NOD.H2h4 model, enhancement is specific for TSHR Abs, with Abs to thyroglobulin and thyroid peroxidase remaining unchanged. In conclusion, despite the inclusion of a tolerogenic molecule, injected nanoparticles coated with TSHR A-subunit protein enhanced and accelerated development of pathogenic TSHR Abs in hTSHR/NOD. NOD.H2h4 These findings emphasize the need for sufficient TSHR A-subunit protein to activate the immune system and the generation of stimulatory TSHR Abs in genetically predisposed individuals.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Basil Rapoport
- Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
35
|
Sun W, Zhang X, Wu J, Zhao W, Zhao S, Li M. Correlation of TSHR and CTLA-4 Single Nucleotide Polymorphisms with Graves Disease. Int J Genomics 2019; 2019:6982623. [PMID: 31565653 PMCID: PMC6745126 DOI: 10.1155/2019/6982623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/16/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
This study was designed to explore the association between Graves disease (GD) and thyroid-stimulating hormone receptor (TSHR) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) single nucleotide polymorphisms (SNPs). We studied a total of 1217 subjects from a Han population in northern Anhui province in China. Six SNPs within TSHR (rs179247, rs12101261, rs2284722, rs4903964, rs2300525, and rs17111394) and four SNPs within CTLA-4 (rs10197319, rs231726, rs231804, and rs1024161) were genotyped via a Taqman probe technique using a Fluidigm EP1 platform. The TSHR alleles rs179247-G, rs12101261-C, and rs4903964-G were negatively correlated with GD, whereas the rs2284722-A and rs17111394-C alleles were positively correlated with GD. Analyzing TSHR SNPs at rs179247, rs2284722, rs12101261, and rs4903964 yielded 8 different haplotypes. There were positive correlations between GD risk and the haplotypes AGTA and AATA (OR = 1.27, 95%CI = 1.07-1.50, P = 0.005; OR = 1.45, 95%CI = 1.21-1.75, P < 0.001, respectively). There were negative correlations between GD risk and the haplotype GGCG (OR = 0.56, 95%CI = 0.46-0.67, P < 0.001). With respect to haplotypes based on SNPs at the TSHR rs2300525 and rs17111394 loci, the CC haplotype was positively correlated with GD risk (OR = 1.32, 95%CI = 1.08-1.60, P = 0.006). Analyzing CTLA-4 SNPs at rs231804, rs1024161, and rs231726 yielded four haplotypes, of which AAA was positively correlated with GD risk (OR = 1.21, 95%CI = 1.02-1.43, P = 0.029). Polymorphisms at rs179247, rs12101261, rs2284722, rs4903964, and rs17111394 were associated with GD susceptibility. Haplotypes of both TSHR and CTLA-4 were additionally related to GD risk.
Collapse
Affiliation(s)
- Weihua Sun
- 1Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250000 Shandong Province, China
- 2Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Xiaomei Zhang
- 2Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Jing Wu
- 2Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Wendi Zhao
- 2Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Shuangxia Zhao
- 3The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Minglong Li
- 1Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250000 Shandong Province, China
| |
Collapse
|