1
|
Dai J, Hu Y, Liu W, Liu H, Wang S, Xia F, Lou X. Cell-Sensing Analogue Nanopore for Rapid Detection of Protein-Related Targets. Angew Chem Int Ed Engl 2025; 64:e202421721. [PMID: 39592429 DOI: 10.1002/anie.202421721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
Nanopores offer significant advantages in biosensing. Conventional nanopore sensors require probe modification within the pore, and there are two major obstacles: inhomogeneity of probe modification within the pore, and distortion of the detection signal due to the uncontrollable dynamics of the target within the pore. Here, we constructed a cell-sensing analogue nanopore (CeSa-nanopore), by coating the outer surface of the nanopore with cell membrane. The inhomogeneity of probe modification and the uncontrollable kinetics of target-probe binding were also addressed. Specific cells are selected to prepare CeSa-nanopore, for example, cells with high expression of angiotensin-converting enzyme 2 (ACE2) are used to achieve the detection of SARS-CoV-2. When SARS-CoV-2 binds to CeSa-nanopore the surface potential changes, causing a change in the ionic current, thus enabling its detection with a detection rate of 100 %. In addition, the detection of different proteins, such as follicle-stimulating hormone (FSH), can be achieved by changing the cell membrane coating. The identification of cancer cells in ascites can also be achieved by utilizing homologous targeting between cancer cells. Importantly, the use of CeSa-nanopores for the detection of these targets eliminates the need for pre-processing and significantly reduces detection time.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuxin Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Weiyong Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
2
|
Mate NA, Wadhwa G, Taliyan R, Banerjee A. Impact of polyamine supplementation on GnRH expression, folliculogenesis, and puberty onset in young mice. Theriogenology 2024; 229:202-213. [PMID: 39217649 DOI: 10.1016/j.theriogenology.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The hypothalamic-pituitary-gonadal (HPG) axis is pivotal in regulating reproductive functions, with gonadotropin-releasing hormone (GnRH) acting as a central regulator. Recently, polyamines have been shown to regulate the HPG axis, including GnRH expression and ovarian biology in old and adult rodents. The present study firstly highlights the age-specific variation in the polyamine and their corresponding biosynthetic enzymes in the ovary during aging, and further, the study focuses on the effect of polyamines, putrescine, and agmatine, in young female mice. METHOD AND RESULT Immunofluorescence analysis revealed age-related differences in the expression of ornithine decarboxylase 1 (ODC1), spermine (SPM), and spermidine (SPD) in the ovaries, with adult mice exhibiting significantly higher expression levels compared to young and old mice. Likewise, qPCR analysis showed the mRNA levels of Odc1, Spermidine synthase (Srm), and Spermine synthase (Sms) show a significant increase in adult ovaries, which is then followed by a significant decline in old age. Histological examination demonstrated morphological alterations in the ovaries with age, including decreased follicle numbers and increased stromal cells in old mice. Furthermore, treatment with putrescine, a polyamine, in young mice resulted in larger ovaries and increased follicle numbers compared to controls. Additionally, serum levels of gonadotropin-releasing hormone (GnRH) and progesterone (P4) were measured, showing elevated levels in polyamine-treated mice. GnRH mRNA expression also increased significantly. Gene expression analysis revealed upregulation of genes associated with folliculogenesis such as Fshr, Bmp15, Gdf9, Amh, Star, Hsdb3, and Plaur in the ovaries and onset of puberty such as Tac2, and Kiss1, and a decrease in Mkrn3 in the hypothalamus of polyamine-treated mice. CONCLUSION This study investigates the effect of polyamines in young immature female mice, shedding light on their role in upregulating GnRH, and enhancing folliculogenesis. Overall, these findings suggest that polyamines play a crucial role in ovarian aging and HPG axis regulation, offering potential therapeutics to reinstate fertility in reproductively challenged individuals.
Collapse
Affiliation(s)
- Nayan Anand Mate
- Department of Biological Sciences, Birla Institute of Technology and Science, K K Birla Goa Campus, Zuarinagar, Goa, India
| | - Geetika Wadhwa
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Arnab Banerjee
- Department of Biological Sciences, Birla Institute of Technology and Science, K K Birla Goa Campus, Zuarinagar, Goa, India.
| |
Collapse
|
3
|
Yang C, Yang Y, Zhao B, Gao E, Chen H, Li Y, Ma J, Wang J, Hu S, Song X, Chen Y, Yang G, Huo S, Luo W. Comparative analysis of differentially expressed genes and transcripts in the ovary of yak in estrus and anestrus. Anim Biotechnol 2024; 35:2427757. [PMID: 39558653 DOI: 10.1080/10495398.2024.2427757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Since most yaks have a long postpartum anestrus period, postpartum anestrus is the main factor affecting the reproductive efficiency of yaks. In this study, the third-generation sequencing technology was used to successfully screen differentially expressed genes (DEGs) and differentially expressed transcripts (DETs) in the ovarian tissues of yaks during estrus and anestrus. The functional references of DEGs and DETs were Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Genes database. A total of 1149 DEGs and 2294 DETs were successfully identified. These DEGs and DETs were mainly related to biological processes such as "reproduction", "reproductive process", "metabolic process" and "rhythmic process". Kisspeptin-G protein-coupled receptor was found to be involved in regulating the reproductive cycle of yaks. DEGs and DETs were also related to gonadotropin-releasing hormone (GnRH) signaling pathways such as oocyte meiosis, estrogen signaling pathway, and progesterone-mediated induced oocyte maturation. The results showed that SIRT1, CSNK1A1, SLIT3, INHBA, INSL3, ZP2, Clock, BMP15, Bmal1, KISS1, and LCHGR regulate the postpartum quiescent state and the reproductive cycle of yaks. This study will help to further clarify the reproductive mechanism of yaks at the molecular level and provide certain assistance for the development of animal husbandry.
Collapse
Affiliation(s)
- Chongfa Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yahua Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Bingzhu Zhao
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Enyu Gao
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Hao Chen
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yang Li
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Junyuan Ma
- Gannan Prefecture Animal Husbandry Technology Service Center, Gannan, Gansu, China
| | - Jine Wang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Songming Hu
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xiaochen Song
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Ying Chen
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Gengsacairang Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Shengdong Huo
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Wenxue Luo
- Tianzhu County Animal Husbandry Technology Extension Station, Wuwei, Gansu, China
| |
Collapse
|
4
|
Ghinea N, Liehn EA, Grommes J, Delattre DD, Olesen TK. Follicle-stimulating hormone receptor expression in advanced atherosclerotic plaques. Sci Rep 2024; 14:10176. [PMID: 38702476 PMCID: PMC11068877 DOI: 10.1038/s41598-024-60962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Experimental evidence indicates that follicle-stimulating hormone (FSH), an essential hormone for reproduction, can act directly on endothelial cells inducing atherosclerosis activation and development. However, it remains unknown whether the FSH-receptor (FSHR) is expressed in human atherosclerosis plaques. To demonstrate the FSHR presence, we used immunohistochemical and immunoelectron microscopy involving a specific monoclonal antibody FSHR1A02 that recognizes an epitope present in the FSHR-ectodomain. In all 55 patients with atherosclerotic plaques located in carotid, coronary, femoral arteries, and iliac aneurysm, FSHR was selectively expressed in arterial endothelium covering atherosclerotic plaques and endothelia lining intraplaque neovessels. Lymphatic neovessels were negative for FSHR. M1-macrophages, foam cells, and giant multinucleated cells were also FSHR-positive. FSHR was not detected in normal internal thoracic artery. Immunoelectron microscopy performed in ApoEKO/hFSHRKI mice with atherosclerotic plaques, after injection in vivo with mouse anti-hFSHR monoclonal antibody FSHR1A02 coupled to colloidal gold, showed FSHR presence on the luminal surface of arterial endothelial cells covering atherosclerotic plaques. Therefore, FSHR can bind, internalize, and deliver into the plaque circulating ligands to FSHR-positive cells. In conclusion, we report FSHR expression in endothelial cells, M1-macrophages, M1-derived foam cells, giant multinucleated macrophages, and osteoclasts associated with human atherosclerotic plaques.
Collapse
Affiliation(s)
- Nicolae Ghinea
- Département Recherche Translationnelle, Centre de Recherche, Institut Curie, 26 rue d'Ulm, 75005, Paris, France.
- FSHR Theranostics SAS, 11 Rue de Rungis, 75013, Paris, France.
| | - Elisa Anamaria Liehn
- Institute of Molecular Medicine, University of Southern Denmark, 25 J.B. Winslow Vej, 5230, Odense, Denmark
- National Institute of Pathology "Victor Babes", Splaiul Independentei 99-101, 050096, Bucharest, Romania
- National Heart Centre Singapore, 5 Hospital Dr, Singapore, 169609, Singapore
| | | | | | | |
Collapse
|
5
|
Ding W, Shangguan L, Li H, Bao Y, Noor F, Haseeb A, Sun P, Zhang H, Yin W, Fan K, Yang H, Zhang Z, Sun N. Dietary supplementation of osthole and icariin improves the production performance of laying hens by promoting follicular development. Poult Sci 2024; 103:103579. [PMID: 38430778 PMCID: PMC10920958 DOI: 10.1016/j.psj.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Osthole (Ost) and icariin (Ica) are extracted from traditional Chinese medicine Cnidium monnieri and Epimedii Folium, respectively, and both exhibit estrogen-like biological activity. This study aimed to determine the efficacy and safety of combining Ost with Ica on the production performance of laying hens and to explore their possible mechanisms. The production performance, egg quality, residues of Ost and Ica in eggs, serum reproductive hormone levels, expression of ovarian reproductive hormone receptor, proliferation of granulosa cells in small yellow follicles (SYF), and progesterone secretion in large yellow follicles (LYF) related genes and proteins expression were detected. The results showed that adding 2 mg/kg Ost + 2 mg/kg Ica to the feed increased the laying rate, average egg weight, Haugh unit, and protein height of laying hens. Serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and progesterone (P4) levels increased, and the expression of ovarian estrogen receptor (ER), follicle-stimulating hormone receptor (FSHR), and progesterone receptor (PGR) mRNA was up-regulated. Additionally, the mRNA and protein levels of steroidogenesis acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD) increased in LYF. Furthermore, mRNA and protein levels of proliferating cell nuclear antigen (PCNA), cyclin E1, and cyclin A2 were up-regulated in SYF. The residues of Ost and Ica in egg samples were not detected by high-performance liquid chromatography (HPLC). In conclusion, dietary supplementation of Ost and Ica increased granulosa cells proliferation in SYF and increased P4 secretion in granulosa cells of LYF, ultimately improving the production performance of laying hens.
Collapse
Affiliation(s)
- Wenwen Ding
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Linhui Shangguan
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hongquan Li
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yinghui Bao
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Huanshan Group Co., Ltd, Qingdao 266000, Shandong, China
| | - Fida Noor
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Abdul Haseeb
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Panpan Sun
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hua Zhang
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Wei Yin
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kuohai Fan
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Laboratory Animal Center, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Huizhen Yang
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Zhenbiao Zhang
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Na Sun
- Shanxi key laboratory for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
6
|
Guare L, Humphrey LA, Rush M, Pollie M, Luo Y, Weng C, Wei WQ, Kottyan L, Jarvik G, Elhadad N, Zondervan K, Missmer S, Vujkovic M, Velez-Edwards D, Senapati S, Setia-Verma S. Enhancing Genetic Association Power in Endometriosis through Unsupervised Clustering of Clinical Subtypes Identified from Electronic Health Records. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.22.24306092. [PMID: 38712122 PMCID: PMC11071578 DOI: 10.1101/2024.04.22.24306092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Endometriosis affects 10% of reproductive-age women, and yet, it goes undiagnosed for 3.6 years on average after symptoms onset. Despite large GWAS meta-analyses (N > 750,000), only a few dozen causal loci have been identified. We hypothesized that the challenges in identifying causal genes for endometriosis stem from heterogeneity across clinical and biological factors underlying endometriosis diagnosis. Methods We extracted known endometriosis risk factors, symptoms, and concomitant conditions from the Penn Medicine Biobank (PMBB) and performed unsupervised spectral clustering on 4,078 women with endometriosis. The 5 clusters were characterized by utilizing additional electronic health record (EHR) variables, such as endometriosis-related comorbidities and confirmed surgical phenotypes. From four EHR-linked genetic datasets, PMBB, eMERGE, AOU, and UKBB, we extracted lead variants and tag variants 39 known endometriosis loci for association testing. We meta-analyzed ancestry-stratified case/control tests for each locus and cluster in addition to a positive control (Total N endometriosis cases = 10,108). Results We have designated the five subtype clusters as pain comorbidities, uterine disorders, pregnancy complications, cardiometabolic comorbidities, and EHR-asymptomatic based on enriched features from each group. One locus, RNLS , surpassed the genome-wide significant threshold in the positive control. Thirteen more loci reached a Bonferroni threshold of 1.3 x 10 -3 (0.05 / 39) in the positive control. The cluster-stratified tests yielded more significant associations than the positive control for anywhere from 5 to 15 loci depending on the cluster. Bonferroni significant loci were identified for four out of five clusters, including WNT4 and GREB1 for the uterine disorders cluster, RNLS for the cardiometabolic cluster, FSHB for the pregnancy complications cluster, and SYNE1 and CDKN2B-AS1 for the EHR-asymptomatic cluster. This study enhances our understanding of the clinical presentation patterns of endometriosis subtypes, showcasing the innovative approach employed to investigate this complex disease.
Collapse
|
7
|
Fang H, Li Q, Wang H, Ren Y, Zhang L, Yang L. Maternal nutrient metabolism in the liver during pregnancy. Front Endocrinol (Lausanne) 2024; 15:1295677. [PMID: 38572473 PMCID: PMC10987773 DOI: 10.3389/fendo.2024.1295677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
The liver plays pivotal roles in nutrient metabolism, and correct hepatic adaptations are required in maternal nutrient metabolism during pregnancy. In this review, hepatic nutrient metabolism, including glucose metabolism, lipid and cholesterol metabolism, and protein and amino acid metabolism, is first addressed. In addition, recent progress on maternal hepatic adaptations in nutrient metabolism during pregnancy is discussed. Finally, the factors that regulate hepatic nutrient metabolism during pregnancy are highlighted, and the factors include follicle-stimulating hormone, estrogen, progesterone, insulin-like growth factor 1, prostaglandins fibroblast growth factor 21, serotonin, growth hormone, adrenocorticotropic hormone, prolactin, thyroid stimulating hormone, melatonin, adrenal hormone, leptin, glucagon-like peptide-1, insulin glucagon and thyroid hormone. Our vision is that more attention should be paid to liver nutrient metabolism during pregnancy, which will be helpful for utilizing nutrient appropriately and efficiently, and avoiding liver diseases during pregnancy.
Collapse
Affiliation(s)
- Hongxu Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Qingyang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Haichao Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ying Ren
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
8
|
Lv X, Chen W, Wang S, Cao X, Yuan Z, Getachew T, Mwacharo JM, Haile A, Sun W. Whole-genome resequencing of Dorper and Hu sheep to reveal selection signatures associated with important traits. Anim Biotechnol 2023; 34:3016-3026. [PMID: 36200839 DOI: 10.1080/10495398.2022.2127409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Dorper and Hu sheep exhibit different characteristics in terms of reproduction, growth, and meat quality. Comparison of the genomes of two breeds help to reveal important genomic information. In this study, whole genome resequencing of 30 individuals (Dorper, DB and Hu sheep, HY) identified 15,108,125 single nucleotide polymorphisms (SNPs). Population differentiation (Fst) and cross population extended haplotype homozygosity (XP-EHH) were performed for selective signal analysis. In total, 106 and 515 overlapped genes were present in both the Fst results and XP-EHH results in HY vs DB and in DB vs HY, respectively. In HY vs DB, 106 genes were enriched in 12 GO terms and 83 KEGG pathways, such as ATP binding (GO:0005524) and PI3K-Akt signaling pathway (oas04151). In DB vs HY, 515 genes were enriched in 109 GO terms and 215 KEGG pathways, such as skeletal muscle cell differentiation (GO:0035914) and MAPK signaling pathway (oas04010). According to the annotation results, we identified a series of candidate genes associated with reproduction (UNC5C, BMPR1B, and GLIS1), meat quality (MECOM, MEF2C, and MYF6), and immunity (GMDS, GALK1, and ITGB4). Our investigation has uncovered genomic information for important traits in sheep and provided a basis for subsequent studies of related traits.
Collapse
Affiliation(s)
- Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Weihao Chen
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shanhe Wang
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Tesfaye Getachew
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Joram M Mwacharo
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Aynalem Haile
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Szymanska K, Zaobidna E, Rytelewska E, Mlyczynska E, Kurowska P, Dobrzyn K, Kiezun M, Kaminska B, Smolinska N, Rak A, Kaminski T. Visfatin in the porcine pituitary gland: expression and regulation of secretion during the oestrous cycle and early pregnancy. Sci Rep 2023; 13:18253. [PMID: 37880346 PMCID: PMC10600231 DOI: 10.1038/s41598-023-45255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Visfatin is a multifunctional protein which, besides the control of energy homeostasis, seems to be also involved in the regulation of female fertility through the influence on the endocrine hypothalamus-pituitary-gonadal axis, including the pituitary. The aim of this study was to investigate the expression of visfatin mRNA and protein in the anterior (AP) and posterior pituitary lobes of the pig during the oestrous cycle and early pregnancy. In AP, we also examined colocalisation of visfatin with pituitary tropic hormones. Moreover, we aimed to evaluate the in vitro effects of GnRH, FSH, LH, and insulin on visfatin protein concentration and secretion in AP cells during the cycle. The study showed that visfatin is present in all types of porcine pituitary endocrine cells and its expression is reliant on stage of the cycle or pregnancy. GnRH, FSH, LH and insulin stimulated visfatin secretion by AP cells on days 17 to 19 of the cycle, while on days 2 to 3 visfatin release was enhanced only by LH. Summarising, visfatin is locally produced in the pituitary in a way dependent on hormonal milieu typical for reproductive status of pigs. Further research is required to clarify the role of visfatin in the pituitary gland.
Collapse
Affiliation(s)
- Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Mlyczynska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
10
|
Ko EJ, Shin JE, Lee JY, Ryu CS, Hwang JY, Kim YR, Ahn EH, Kim JH, Kim NK. Association of Polymorphisms in FSHR, INHA, ESR1, and BMP15 with Recurrent Implantation Failure. Biomedicines 2023; 11:biomedicines11051374. [PMID: 37239044 DOI: 10.3390/biomedicines11051374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Recurrent implantation failure (RIF) refers to two or more unsuccessful in vitro fertilization embryo transfers in the same individual. Embryonic characteristics, immunological factors, and coagulation factors are known to be the causes of RIF. Genetic factors have also been reported to be involved in the occurrence of RIF, and some single nucleotide polymorphisms (SNPs) may contribute to RIF. We examined SNPs in FSHR, INHA, ESR1, and BMP15, which have been associated with primary ovarian failure. A cohort of 133 RIF patients and 317 healthy controls consisting of all Korean women was included. Genotyping was performed by Taq-Man genotyping assays to determine the frequency of the following polymorphisms: FSHR rs6165, INHA rs11893842 and rs35118453, ESR1 rs9340799 and rs2234693, and BMP15 rs17003221 and rs3810682. The differences in these SNPs were compared between the patient and control groups. Our results demonstrate a decreased prevalence of RIF in subjects with the FSHR rs6165 A>G polymorphism [AA vs. AG adjusted odds ratio (AOR) = 0.432; confidence interval (CI) = 0.206-0.908; p = 0.027, AA+AG vs. GG AOR = 0.434; CI = 0.213-0.885; p = 0.022]. Based on a genotype combination analysis, the GG/AA (FSHR rs6165/ESR1 rs9340799: OR = 0.250; CI = 0.072-0.874; p = 0.030) and GG-CC (FSHR rs6165/BMP15 rs3810682: OR = 0.466; CI = 0.220-0.987; p = 0.046) alleles were also associated with a decreased RIF risk. Additionally, the FSHR rs6165GG and BMP15 rs17003221TT+TC genotype combination was associated with a decreased RIF risk (OR = 0.430; CI = 0.210-0.877; p = 0.020) and increased FSH levels, as assessed by an analysis of variance. The FSHR rs6165 polymorphism and genotype combinations are significantly associated with RIF development in Korean women.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Ji-Eun Shin
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam 13520, Republic of Korea
| | - Jung-Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Chang-Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Ji-Young Hwang
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06125, Republic of Korea
| | - Young-Ran Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam 13520, Republic of Korea
| | - Eun-Hee Ahn
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam 13520, Republic of Korea
| | - Ji-Hyang Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam 13520, Republic of Korea
| | - Nam-Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
11
|
Bailie E, Maidarti M, Hawthorn R, Jack S, Watson N, Telfer EE, Anderson RA. The ovaries of transgender men indicate effects of high dose testosterone on the primordial and early growing follicle pool. REPRODUCTION AND FERTILITY 2023; 4:e220102. [PMID: 37000633 PMCID: PMC10160535 DOI: 10.1530/raf-22-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/31/2023] [Indexed: 04/01/2023] Open
Abstract
Androgens are essential in normal ovarian function and follicle health but hyperandrogenism, as seen in polycystic ovary syndrome, is associated with disordered follicle development. There are few data on the effect of long-term exposure to high levels of testosterone as found in transgender men receiving gender-affirming endocrine therapy. In this study, we investigate the effect of testosterone on the development, morphological health and DNA damage and repair capacity of human ovarian follicles in vivo and their survival in vitro. Whole ovaries were obtained from transgender men (mean age: 27.6 ± 1.7 years; range 20-34 years, n = 8) at oophorectomy taking pre-operative testosterone therapy. This was compared to cortical biopsies from age-matched healthy women obtained at caesarean section (mean age: 31.8±1.5 years; range= 25-35 years, n=8). Cortical tissues were dissected into fragments and either immediately fixed for histological analysis or cultured for 6 days and subsequently fixed. Follicle classification and morphological health were evaluated from histological sections stained with H&E and expression of γH2AX as a marker of DNA damage by IHC. In uncultured tissue, testosterone exposure was associated with reduced follicle growth activation, poor follicle health and increased DNA damage. After 6 days of culture, there was enhanced follicle activation compared to control with further deterioration in morphological health and increased DNA damage. These data indicate that high circulating concentrations of testosterone have effects on the primordial and small-growing follicles of the ovary. These results may have implications for transgender men receiving gender-affirming therapy prior to considering pregnancy or fertility preservation measures.
Collapse
Affiliation(s)
- Emily Bailie
- Institute of Cell Biology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Mila Maidarti
- Institute of Cell Biology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | | | - Stuart Jack
- Simpson Centre for Reproductive Health, Royal Infirmary, Edinburgh, UK
| | - Neale Watson
- Spire Thames Valley Hospital, Wexham St, Slough, UK
| | - Evelyn E Telfer
- Institute of Cell Biology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Intra-pituitary follicle-stimulating hormone signaling regulates hepatic lipid metabolism in mice. Nat Commun 2023; 14:1098. [PMID: 36841874 PMCID: PMC9968338 DOI: 10.1038/s41467-023-36681-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Inter-organ communication is a major hallmark of health and is often orchestrated by hormones released by the anterior pituitary gland. Pituitary gonadotropes secrete follicle-stimulating hormone (FSH) and luteinizing hormone (LH) to regulate gonadal function and control fertility. Whether FSH and LH also act on organs other than the gonads is debated. Here, we find that gonadotrope depletion in adult female mice triggers profound hypogonadism, obesity, glucose intolerance, fatty liver, and bone loss. The absence of sex steroids precipitates these phenotypes, with the notable exception of fatty liver, which results from ovary-independent actions of FSH. We uncover paracrine FSH action on pituitary corticotropes as a mechanism to restrain the production of corticosterone and prevent hepatic steatosis. Our data demonstrate that functional communication of two distinct hormone-secreting cell populations in the pituitary regulates hepatic lipid metabolism.
Collapse
|
13
|
Synthesis, Regulatory Factors, and Signaling Pathways of Estrogen in the Ovary. Reprod Sci 2023; 30:350-360. [PMID: 35384637 DOI: 10.1007/s43032-022-00932-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
New insights have been thrown for understanding the significant role of estrogen on various systems of humans. Increasing evidences have determined the significant roles of estrogen in female reproductive system. So, the normal synthesis and secretion of estrogen play important roles in maintaining the function of tissues and organs. The ovaries are the main synthetic organs of estrogen. In this review, we summarized the current knowledge of the estrogen synthesis in the ovaries. A series of factors and signaling pathways that regulate the synthesis of estrogen are expounded in detail. Understanding the regulating factors and potential mechanism related to estrogen synthesis will be beneficial for understanding estrogen disorder related diseases and may provide novel therapeutic targets.
Collapse
|
14
|
Zhao S, Xu H, Wu X, Xia L, Li J, Zhang D, Zhang A, Xu B. The serum follicle stimulating hormone-to-luteinizing hormone ratios can predict assisted reproductive technology outcomes in women undergoing gonadotropin releasing hormone antagonist protocol. Front Endocrinol (Lausanne) 2023; 14:1093954. [PMID: 36793280 PMCID: PMC9922742 DOI: 10.3389/fendo.2023.1093954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The basal follicle stimulating hormone (FSH)/luteinizing hormone (LH) ratio is a useful predictor of ovarian response. In this study, we investigated whether the FSH/LH ratios during the entire controlled ovarian stimulation (COS) can be used as effective predictors of outcomes in women undergoing in vitro fertilization (IVF) treatment using the gonadotropin releasing hormone antagonist (GnRH-ant) protocol. METHODS A total of 1,681 women undergoing their first GnRH-ant protocol were enrolled in this retrospective cohort study. A Poisson regression model was used to analyze the association between the FSH/LH ratios during COS and embryological outcomes. Receiver operating characteristic analysis was performed to determine the optimal cutoff values for poor responders (≤ 5 oocytes) or poor reproductive potential (≤ 3 available embryos). A nomogram model was constructed to provide a tool for predicting the cycle outcomes of individual IVF treatments. RESULTS The FSH/LH ratios (at the basal day, stimulation day 6 (SD6) and trigger day) were significantly correlated with the embryological outcomes. The basal FSH/LH ratio was the most reliable predictor of poor responders with a cutoff value of 1.875 (area under the curve (AUC) = 72.3%, P < 0.05), or of poor reproductive potential with a cutoff value of 2.515 (AUC = 66.3%, P < 0.05). The SD6 FSH/LH ratio predicted poor reproductive potential with a cutoff value of 4.14 (AUC = 63.8%, P < 0.05). The trigger day FSH/LH ratio predicted poor responders with a cutoff value of 9.665 (AUC = 63.1%, P < 0.05). The basal FSH/LH ratio, combined with the SD6 and trigger day FSH/LH ratios, slightly increased these AUC values and improved the prediction sensitivity. The nomogram provides a reliable model with which to assess the risk of poor response or poor reproductive potential directly based on the combined indicators. CONCLUSIONS FSH/LH ratios are useful predictors of poor ovarian response or reproductive potential throughout the entire COS with the GnRH antagonist protocol. Our findings also provide insights into the potential for LH supplementation and regimen adjustment during COS to achieve improved outcomes.
Collapse
Affiliation(s)
- Shen Zhao
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huihui Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Wu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Xia
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Li
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bufang Xu, ; Aijun Zhang, ; Dan Zhang,
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bufang Xu, ; Aijun Zhang, ; Dan Zhang,
| | - Bufang Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bufang Xu, ; Aijun Zhang, ; Dan Zhang,
| |
Collapse
|
15
|
An HJ, Cho SH, Park HS, Kim JH, Kim YR, Lee WS, Lee JR, Joo SS, Ahn EH, Kim NK. Genetic Variations miR-10aA>T, miR-30cA>G, miR-181aT>C, and miR-499bA>G and the Risk of Recurrent Pregnancy Loss in Korean Women. Biomedicines 2022; 10:biomedicines10102395. [PMID: 36289656 PMCID: PMC9598437 DOI: 10.3390/biomedicines10102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
This study investigated the genetic association between recurrent pregnancy loss (RPL) and microRNA (miRNA) polymorphisms in miR-10aA>T, miR-30cA>G, miR-181aT>C, and miR-499bA>G in Korean women. Blood samples were collected from 381 RPL patients and 281 control participants, and genotyping of miR-10aA>T, miR-30cA>G, miR-181aT>C, and miR-499bA>G was carried out by TaqMan miRNA RT-Real Time polymerase chain reaction (PCR). Four polymorphisms were identified, including miR-10aA>T, miR-30cA>G, miR-181aT>C, and miR-499bA>G. MiR-10a dominant model (AA vs. AT + TT) and miR-499bGG genotypes were associated with increased RPL risk (adjusted odds ratio [AOR] = 1.520, 95% confidence interval [CI] = 1.038−2.227, p = 0.032; AOR = 2.956, 95% CI = 1.168−7.482, p = 0.022, respectively). Additionally, both miR-499 dominant (AA vs. AG + GG) and recessive (AA + AG vs. GG) models were significantly associated with increased RPL risk (AOR = 1.465, 95% CI = 1.062−2.020, p = 0.020; AOR = 2.677, 95% CI = 1.066−6.725, p = 0.036, respectively). We further propose that miR-10aA>T, miR-30cA>G, and miR-499bA>G polymorphisms effects could contribute to RPL and should be considered during RPL patient evaluation.
Collapse
Affiliation(s)
- Hui-Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Sung-Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
| | - Han-Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Ji-Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13488, Korea
| | - Young-Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13488, Korea
| | - Woo-Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea
| | - Jung-Ryeol Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Seong-Soo Joo
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Eun-Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13488, Korea
- Correspondence: (E.-H.A.); (N.-K.K.)
| | - Nam-Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- Correspondence: (E.-H.A.); (N.-K.K.)
| |
Collapse
|
16
|
Yang P, Chen X, Tian X, Zhou Z, Zhang Y, Tang W, Fu K, Zhao J, Ruan Y. A Proteomic Study of the Effect of N-acetylcysteine on the Regulation of Early Pregnancy in Goats. Animals (Basel) 2022; 12:ani12182439. [PMID: 36139298 PMCID: PMC9495164 DOI: 10.3390/ani12182439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Early pregnancy regulation is an extremely complex process that is influenced by various factors. We previously mined the differentially expressed genes affected by N-acetyl-L-cysteine (NAC) in early pregnancy in goats via transcriptome sequencing. We found that NAC increased the number of lambs by affecting the immune pathway in ewes and enhancing antioxidation. Based on this, we here explored the effect of NAC on early pregnancy in goats at the protein level. The results showed a difference in the expression of uterine keratin and increases in the levels of antioxidant indices and hormones in doe serum. Abstract Dietary supplementation with N-acetyl-L-cysteine (NAC) may support early pregnancy regulation and fertility in female animals. The purpose of this study was to investigate the effect of supplementation with 0.07% NAC on the expression of the uterine keratin gene and protein in Qianbei-pockmarked goats during early pregnancy using tandem mass spectrometry (TMT) relative quantitative proteomics. The results showed that there were significant differences in uterine keratin expression between the experimental group (NAC group) and the control group on day 35 of gestation. A total of 6271 proteins were identified, 6258 of which were quantified by mass spectrometry. There were 125 differentially expressed proteins (DEPs), including 47 upregulated and 78 downregulated proteins, in the NAC group. Bioinformatic analysis showed that these DEPs were mainly involved in the transport and biosynthesis of organic matter and were related to the binding of transition metal ions, DNA and proteins and the catalytic activity of enzymes. They were enriched in the Jak-STAT signalling pathway, RNA monitoring pathway, amino acid biosynthesis, steroid biosynthesis and other pathways that may affect the early pregnancy status of does through different pathways and thus influence early embryonic development. Immunohistochemistry, real-time quantitative PCR and Western blotting were used to verify the expression and localization of glial fibrillary acidic protein (GFAP) and pelota mRNA surveillance and ribosomal rescue factor (PELO) in uterine horn tissue. The results showed that both PELO and GFAP were localized to endometrial and stromal cells, consistent with the mass spectrometry data at the transcriptional and translational levels. Moreover, NAC supplementation increased the levels of the reproductive hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), oestradiol (E2), progesterone (P4), superoxide dismutase (SOD), glutamate peroxidase (GSH-Px) and nitric oxide (NO) in the serum of does. These findings provide new insight into the mechanism by which NAC regulates early pregnancy and embryonic development in goats.
Collapse
Affiliation(s)
- Peifang Yang
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction of Ministry of Education, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction of Ministry of Education, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence:
| | - Xingzhou Tian
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction of Ministry of Education, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhinan Zhou
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction of Ministry of Education, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yan Zhang
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction of Ministry of Education, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wen Tang
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction of Ministry of Education, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Kaibin Fu
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction of Ministry of Education, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiafu Zhao
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction of Ministry of Education, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yong Ruan
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction of Ministry of Education, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Li P, Gao M, Song B, Yan S, Zhao Y, Gong L, Liu Y, Lv Z, Guo Y. Soya saponin fails to improve the antioxidation and immune function of laying hens with antibiotics treated. Poult Sci 2022; 101:101921. [PMID: 35691239 PMCID: PMC9194864 DOI: 10.1016/j.psj.2022.101921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Soya saponin (SS) helps to improve antioxidant and immune function of body, and intestinal bacteria might play an important role here. In the present study, the co-occurring network of the ileal flora was analyzed with 50 mg/kg SS supplemented to the diet, and Romboutsia was found to have evolved into a dominant flora. In addition, the co-occurring network of the flora was changed with the combined antibiotic treated, and the unidentified-cyanobacteria developed into the dominant flora, whereas the relative abundance of Romboutsia was dropped. Dietary SS failed to elevate the relative abundance of Romboutsia with antibiotics treated, at the same time, it was not helpful for the antioxidant and immune function of laying hens. While dietary SS had a little help on the egg-laying performance. Intestinal bacteria did play a key role in the biological functions of SS on laying hens. In conclusion, SS failed to improve the antioxidation and immune function of laying hens with antibiotics treated.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Bochen Song
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Shaojia Yan
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Yizhu Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Lu Gong
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Yongfa Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Zhang W, Ren W, Han D, Zhao G, Wang H, Guo H, Zheng Y, Ji Z, Gao W, Yuan B. LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells. J Zhejiang Univ Sci B 2022; 23:502-514. [PMID: 35686528 DOI: 10.1631/jzus.b2101052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Long noncoding RNAs (lncRNAs) are expressed in different species and different tissues, and perform different functions, but little is known about their involvement in the synthesis or secretion of follicle-stimulating hormone (FSH). In general, we have revealed lncRNA‒microRNA (miRNA)‒messenger RNA (mRNA) interactions that may play important roles in rat primary pituitary cells. In this study, a new lncRNA was identified for the first time. First, we analyzed the gene expression of lncRNA-m18as1 in different tissues and different stages by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and observed the localization of lncRNA-m18as1 with fluorescence in situ hybridization, which indicated that this lncRNA was distributed mainly in the cytoplasm. Next, we used RT-qPCR and enzyme-linked immunosorbent assay (ELISA) to analyze the regulation of FSH synthesis and secretion after overexpression or knockdown of lncRNA-m18as1 and found that lncRNA-m18as1 was positively correlated with FSH synthesis and secretion. In addition, mothers against decapentaplegic homolog 2 (Smad2) was highly expressed in our sequencing results. We also screened miR-18a-5p from our sequencing results as a miRNA that may bind to lncRNA-m18as1 and Smad2. We used RNA immunoprecipitation-qPCR (RIP-qPCR) and/or dual luciferase assays to confirm that lncRNA-m18as1 interacted with miR-18a-5p and miR-18a-5p interacted with Smad2. Fluorescence in situ hybridization (FISH) showed that lncRNA-m18as1 and miR-18a-5p were localized mainly in the cytoplasm. Finally, we determined the relationship among lncRNA-m18as1, miR-18a-5p, and the Smad2/3 pathway. Overall, we found that lncRNA-m18as1 acts as a molecular sponge of miR-18a-5p to regulate the synthesis and secretion of FSH through the Smad2/3 pathway.
Collapse
Affiliation(s)
- Weidi Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wenzhi Ren
- Jilin Provincial Model Animal Engineering Research Center, Jilin University, Changchun 130062, China
| | - Dongxu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Guokun Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haoqi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haixiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Bao Yuan
- Jilin Provincial Model Animal Engineering Research Center, Jilin University, Changchun 130062, China. ,
| |
Collapse
|
19
|
Lai TH, Chen HT, Wu WB. Trophoblast Coculture Induces Intercellular Adhesion Molecule-1 Expression in Uterine Endometrial Epithelial Cells Through TNF-α Production: Implication of Role of FSH and ICAM-1 during Embryo Implantation. J Reprod Immunol 2022; 152:103650. [DOI: 10.1016/j.jri.2022.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022]
|
20
|
Medithi S, Kasa YD, Jee B, Venkaiah K, Jonnalagadda PR. Alterations in reproductive hormone levels among farm women and their children occupationally exposed to organophosphate pesticides. Women Health 2022; 62:454-464. [DOI: 10.1080/03630242.2022.2085844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Srujana Medithi
- Food Safety Division, Indian Council of Medical Research, National Institute of Nutrition, Hyderabad, Telangana, India
- Symbiosis Institute of Health Sciences (SIHS), Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Yogeswar Dayal Kasa
- Food Safety Division, Indian Council of Medical Research, National Institute of Nutrition, Hyderabad, Telangana, India
| | - Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Kodali Venkaiah
- Biostatics Division, Indian Council of Medical Research, National Institute of Nutrition, Hyderabad, Telangana, India
| | - Padmaja R Jonnalagadda
- Food Safety Division, Indian Council of Medical Research, National Institute of Nutrition, Hyderabad, Telangana, India
| |
Collapse
|
21
|
Andriyanto A, Widi LN, Subangkit M, Tarigan E, Irarang Y, Nengsih RF, Manalu W. Potential use of Indonesian basil (Ocimum basilicum) maceration to increase estradiol and progesterone synthesis and secretion to improve prenatal growth of offspring using female albino rats as an animal model. Vet World 2022; 15:1197-1207. [PMID: 35765474 PMCID: PMC9210833 DOI: 10.14202/vetworld.2022.1197-1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: Basil is well known as a medicinal plant that contains high essential oils and antioxidant compounds that have the potential to improve ovarian development. Thus, basil may have the potential to improve the growth and development of the uterus and placenta for optimal prenatal growth of offspring. This study aimed to evaluate the effect of Indonesian basil maceration on gonad development of mature female albino rats. Materials and Methods: Fifteen 8-week-old female Sprague-Dawley rats, at the diestrus stage of the estrus cycle, were divided into three different treatment groups: Control group (mineral water), bas-low group (1% of basil maceration), and bas-high group (5% of basil maceration). Basil maceration was dissolved and administered in mineral drinking water, and the treatments were given for 20 days (4 estrus cycles). At the end of the treatment period, serum follicle-stimulating hormone (FSH), estradiol, and progesterone (Pg) were measured using enzyme-linked immunosorbent assay. The relative weight of the ovary and uterus; diameter and length of uterine cornual; vascularization of uterus; the diameter of uterine glands; the number of primary, secondary, and tertiary de Graaf follicles; the number of corpora luteum; as well as the expression of vascular endothelial growth factor (VEGF) in the ovary were determined. Results: There was no significant difference (p>0.05) in the serum FSH level of rats treated with basil maceration drinking water doses of 1% and 5% compared to the control group. However, serum estradiol and Pg concentrations in the 1% and 5% basil maceration groups were significantly higher (p<0.05) than those of the control group. Furthermore, 1% and 5% basil maceration significantly increased the uterus’s relative weight, diameter, and vascularization. Serum estradiol concentrations contributed to the elevated expression of VEGF compared to Pg. Conclusion: Administration of basil maceration for 20 days before mating could improve follicle growth and development, eventually increasing estradiol synthesis and secretion, thus improving the uterus’s preparation for implantation. This makes basil maceration an attractive candidate in clinical research to enhance the growth and development of the uterus and placenta, which will better support the optimum prenatal growth and development of embryos and fetuses, resulting in superior offspring.
Collapse
Affiliation(s)
- Andriyanto Andriyanto
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Leliana Nugrahaning Widi
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Mawar Subangkit
- Department of Clinic, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Elpita Tarigan
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Yusa Irarang
- Graduate School of Veterinary Biomedical Science, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Rindy Fazni Nengsih
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Wasmen Manalu
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| |
Collapse
|
22
|
Kim J, You S. Comprehensive analysis of miRNA-mRNA interactions in ovaries of aged mice. Anim Sci J 2022; 93:e13721. [PMID: 35417047 PMCID: PMC9285582 DOI: 10.1111/asj.13721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
Abstract
Advanced maternal age and ovarian aging are deleterious to the quantity and quality of oocytes and epigenetic modifications, which can affect the health of offspring. However, relatively little is known about the regulation of microRNA-mediated transcription during ovarian aging. We therefore aimed to identify age-related mRNA and microRNA changes and their interactions in the ovaries of aged mice. We performed QuantSeq 3'mRNA and small RNA sequencing to compare their expression patterns in post-ovulation ovaries from young (12-week-old) and old (44-week-old) mice. Functional annotation and integrative analyses were performed to identify the potential functions of differentially expressed genes and identify binding sites for critical microRNAs. We found 343 differentially expressed genes and 9 microRNAs in our comparison of the two mouse groups, with fold changes >2.0 (P < 0.01). Furthermore, we identified possible direct interactions between 24 differentially expressed mRNAs and 8 microRNAs. The differentially expressed genes are involved in fat digestion and absorption, the PI3K-Akt signaling pathway, serotonergic synapse, and ovarian steroidogenesis, which are important for folliculogenesis and oocyte growth. During ovarian aging, changes in gene expression induce alterations in folliculogenesis, oocyte growth, and steroidogenesis, resulting in decreased oocyte quality and reproductive outcomes.
Collapse
Affiliation(s)
- Jihyun Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sooseong You
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| |
Collapse
|
23
|
Mahmud AA, Anu UH, Foysal KA, Hasan M, Sazib SM, Ragib AA, Taher AB, Hossain MS, Islam MS, Hossain S, Emran TB. Elevated serum malondialdehyde (MDA), insulin, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and thyroid- stimulating hormone (TSH), and reduced antioxidant vitamins in polycystic ovarian syndrome patients. NARRA J 2022; 2:e56. [PMID: 38450391 PMCID: PMC10914094 DOI: 10.52225/narra.v2i1.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/15/2022] [Indexed: 09/01/2023]
Abstract
Elevated oxidative stress and hormonal imbalance have been suggested to associate with polycystic ovarian syndromes (PCOS), a causal factor for unsuccessful pregnancy outcomes and other associated complications in women. The aim of this study was to compare the oxidative stress markers and different relevant hormones between pregnant women with and without PCOS. The levels of malondialdehyde (MDA), insulin, follicle- stimulating hormone (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH), vitamin A and vitamin C were measured in 80 pregnant women with PCOS and 80 healthy pregnancies. The mean MDA and insulin levels were significantly elevated in pregnant women with PCOS compared to healthy controls (1.98±0.07 vs. 1.06±0.02 nmol/mL and 11.15±0.25 vs. 6.67±0.25 mIU/L, respectively with p<0.001 for both). Compared to healthy controls, the mean concentrations of FSH (3.65±0.16 vs. 1.75±0.10 IU/L) and LH (15.67±0.63 vs. 3.65±0.16 IU/L) were significantly higher in pregnant women with PCOS, p<0.001 for both comparisons. Similarly, the concentration of serum TSH was also higher in PCOS cases compared to controls (2.79±0.22 vs. 2.34±0.06, p=0.048). In contrast, the levels of vitamin A and C were lower in PCOS cases compared to healthy pregnancy group, 0.45±0.01 vs. 1.05±0.01 and 0.26±0.01 vs. 0.53±0.02, respectively with p-values <0.001 for both comparations. In conclusion, in PCOS cases, serum MDA, insulin, FSH, LH and TSH levels were found to be elevated while the levels of antioxidant vitamins were lower compared to healthy pregnant women. Unusual hormonal imbalance and increase of oxidative stress markers during the pregnancy might be important to establish the PCOS diagnosis.
Collapse
Affiliation(s)
- Abdullah A. Mahmud
- Department of Pharmacy, Manarat International University, Ashulia Model Town, Ashulia, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, Bangladesh
| | - Umme H. Anu
- Department of Pharmacy, Manarat International University, Ashulia Model Town, Ashulia, Dhaka, Bangladesh
| | - Kazi A. Foysal
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mahedi Hasan
- Department of Pharmacy, Manarat International University, Ashulia Model Town, Ashulia, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, Bangladesh
| | - Sazaul M. Sazib
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abdullah A. Ragib
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, sBangladesh
| | - Asad B. Taher
- Department of Cardiac Anesthesiology and Cardiac Intensive Care Unit, Ibn Sina Specialized Hospital, Dhaka, Bangladesh
| | | | - Mohammad S. Islam
- Armed Forces Food and Drugs Laboratory, Dhaka Cantonment, Dhaka, Bangladesh
| | - Shohel Hossain
- Armed Forces Food and Drugs Laboratory, Dhaka Cantonment, Dhaka, Bangladesh
| | - Talha B. Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| |
Collapse
|
24
|
Urinary Phthalate Biomarkers during Pregnancy, and Maternal Endocrine Parameters in Association with Anthropometric Parameters of Newborns. CHILDREN 2022; 9:children9030413. [PMID: 35327785 PMCID: PMC8947339 DOI: 10.3390/children9030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Adverse birth outcomes present risk factors resulting in neonatal morbidity and mortality. Sufficient maternal hormonal concentrations are crucial for normal foetal development. Previous studies have shown a relationship between phthalate exposure and maternal hormonal levels during pregnancy. This study aims to investigate if neonatal anthropometric parameters are associated with maternal endocrine parameters during the ≤15th week of gestation and the third trimester of pregnancy concerning phthalate exposure in pregnant women from Nitra, Slovakia. We used high-performance liquid chromatography, tandem mass spectrometry (HPLC-MS/MS), and electro-chemiluminescence immunoassay to quantify urinary concentrations of phthalates and serum concentrations of hormones and sex hormone-binding globulin (SHBG), respectively. We observed a mostly positive correlation between neonatal anthropometric parameters (gestational age, birth length, birth weight, head circumference) and maternal concentration of phthalate metabolites (p ≤ 0.05). The hierarchical multivariate regression results showed a statistically significant association between Apgar score at 5 min after delivery, gestational age, birth weight, head circumference, and maternal endocrine parameters during pregnancy (p ≤ 0.05), adjusted to phthalate metabolites. To the best of our knowledge, our study is the first to indicate that prenatal exposure to phthalates may also affect birth outcomes through interaction with the maternal endocrine system.
Collapse
|
25
|
Liu Y, Bai S, Wang Y, Li X, Qu J, Han M, Zhai J, Li W, Liu J, Zhang Q. Intensive masculinization caused by chronic heat stress in juvenile Cynoglossus semilaevis: Growth performance, gonadal histology and gene responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113250. [PMID: 35121259 DOI: 10.1016/j.ecoenv.2022.113250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The sea temperature has been observed to chronically increase during the past decades, leaving unpredictable influences to the marine biological resources. Thus, it is of vital significance to study the biological responses of ocean inhabited organisms with the artificially stimulated heat stress environment. Cynoglossus semilaevis provides us with an ideal model to study the influence of chronic heat stress on the sexual differentiation in marine teleosts for its genetic sex determination (GSD) + environmental effected (EE) sex determination system. In this study, the comparative experiment was conducted employing heated seawater (HT group) and ambient seawater (CT group) to cultivate juvenile C. semilaevis respectively. Significant differences were exhibited in growth performance and a delayed germ cell development effect was found in pseudomales formed under chronic heat stress. Using transcriptome analysis, the transcription profile of 55 days post fertilization (dpf) and 100 dpf juveniles' gonads were studied. A total of 47 libraries were constructed with an average mapping rate of 94.63% after assembling. GO and KEGG enrichment were proceeded using DEGs screened out between (1) pseudomale gonads at 55 dpf and 100 dpf in HT and CT group (2) pseudomale and female gonads at 55 dpf and 100 dpf in HT and CT group. Terms and pathways involved in steroid stimulation, reproduction ability, germ cell proliferation et al. were shed light on. The expression pattern of 29 DEGs including amh, hsp90b1, pgr et al. were also provided to supplement the results of functional enrichment. Weighted gene co-expression networks analysis (WGCNA) was constructed and hspb8-like, histone H2A.V were exhibited to play vital roles in the heat-induced masculinization. Our findings facilitate the understanding for transcriptional variations in intensive masculinization cause by chronic heat stress of C. semilaevis and provide referable study of the influences on the teleosts in elevated sea temperature.
Collapse
Affiliation(s)
- Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Shujun Bai
- Laboratory of Fisheries Oceanography, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Xiaoqi Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jieming Zhai
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
26
|
Li P, Zhao Y, Yan S, Song B, Liu Y, Gao M, Tang D, Guo Y. Soya saponin improves egg-laying performance and immune function of laying hens. J Anim Sci Biotechnol 2022; 12:126. [PMID: 34986871 PMCID: PMC8729039 DOI: 10.1186/s40104-021-00647-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soya saponin (SS), an active compound in soybean meals, has been widely studied in the medical field. However, it was considered as an anti-nutritional factor in poultry diets. The objective of this experiment was to measure the effects of dietary SS using three dietary treatments on egg-laying performance and immune function of laying hens. Birds were fed a low soybean meal basal diet (CON), a low-SS diet (50 SS) containing 50 mg/kg SS, or a high-SS diet (500 SS) containing 500 mg/kg SS for 10 weeks. At the end of the 5th and 10th week of the trial, samples were collected for analysis. RESULTS Results showed that with 50 mg/kg SS supplementation, the egg production rate, feed conversion ratio (FCR), and eggshell quality tended to be improved. Serum follicle stimulating hormone (FSH) and Interleukin-4 (IL-4) levels were also elevated as well as the peripheral blood LPS stimulation index, the proportion of B lymphocytes, and antibody titer of bovine serum albumin (BSA). We also found that mRNA levels of follicle stimulating hormone receptor (FSHR) in ovarian, nuclear transcription factor kappa B (NF-κB), Transforming growth factor (TGF-β) and interferon γ (IFN-γ) in spleen were up-regulated at the end of the trial. Additionally, dietary 50 mg/kg SS improved the ileal flora via up-regulating the relative abundance of Lactobacillus, Romboutsia and Lactobacillus delbrueckii. Although the immune related indicators were improved with 500 mg/kg SS supplemented, it seemed to have a negative influence on the laying-performance. Specifically, serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), and the ratio of IFN-γ to IL-4 were increased in the 500 SS group at the end of the trial. The mRNA levels of gonadotropin releasing hormone 1 (GnRH1) in Hypothalamus, the estrogen related receptor (ERR) in ovaries were downregulated as well as the egg production rate during the trial with 500 mg/kg SS supplemented. CONCLUSIONS The egg production performance was improved by dietary supplemented with 50 mg/kg SS via increasing ovarian FSHR transcription level and serum estrogen level. A beneficial shift in intestinal microflora was recorded, and the immune function of laying hens was also improved with 50 mg/kg SS supplementation. Surprisingly, the long-term supplementation of 500 mg/kg SS exerted a negative impact on the laying performance and physiological functions of the liver of laying hens.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yizhu Zhao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Shaojia Yan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Bocheng Song
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yongfa Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Dazhi Tang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
27
|
Liu Y, Li Z, Wang Y, Cai Q, Liu H, Xu C, Zhang F. IL-15 Participates in the Pathogenesis of Polycystic Ovary Syndrome by Affecting the Activity of Granulosa Cells. Front Endocrinol (Lausanne) 2022; 13:787876. [PMID: 35250857 PMCID: PMC8894602 DOI: 10.3389/fendo.2022.787876] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Low-grade chronic inflammation may contribute to the pathogenesis of polycystic ovary syndrome (PCOS). Interleukin-15 (IL-15) is a proinflammatory cytokine involved in the development of chronic inflammation leading to obesity-associated metabolic syndrome. However, the concentration of IL-15 in follicular fluid of patients with PCOS has yet been evaluated. OBJECTIVES The aim of this study is to evaluate the expression level of IL-15 in both patients with PCOS and PCOS mice model and investigate the functional effect of IL-15 on ovarian granulosa cells. METHODS The level of IL-15 in follicular fluid (FF) was measured using cytokine array and enzyme linked immunosorbent assay (ELISA) in two cohorts from 23 PCOS patients and 18 normo-ovulatory controls. PCOS mice model was induced by subcutaneously implanted with letrozole pellet for 21 days. The expression level of IL-15 in serum, ovarian, and subcutaneous adipose tissue in PCOS mice model was measured by ELISA, real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and immunofluorescence. The effect of IL-15 on the proliferation and apoptosis of the KGN cells and mouse ovarian granulosa cells (GCs) were detected by CCK-8 assay and flow cytometry, respectively. Transcript expression of 17α-hydroxylase17,20-lyase (CYP17A1), cytochrome P450 family 19 subfamily A member 1(CYP19A1), FSH receptor (FSHR), steroidogenic acute regulatory protein (StAR), and proinflammatory cytokine were quantified using RT-PCR. The protein level and phosphorylation level of p38 MAPK and JNK are detected by Western blot. Concentration of dehydroepiandrosterone sulfate (DHEAS) and progesterone (P)were measured by ELISA. RESULTS IL-15 expression in follicular fluid of patients with PCOS was significantly elevated compared with the control group, and similar results were observed in the ovarian and subcutaneous adipose tissue of PCOS mice models. Furthermore, the elevated FF IL-15 levels have a positive correlation with the serum testosterone levels. FSHR co-localized with IL-15 indicating that IL-15 production originate from ovarian granulose cells. IL-15 treatment inhibited proliferation and promoted apoptosis of KGN cells and mouse GCs. Moreover, IL-15 upregulated the transcription levels of CYP17A1, IL-1b and Ifng KGN cells. Similar results were observed in mouse GCs except concentration of DHEAS was higher in IL-15 treatment. IL-15 promoted p38 MAPK and JNK phosphorylation in KGN cells, treating KGN cells with p38 MAPK inhibitor SP600125 and JNK inhibitor SB203580 could reverse the effect of IL-15 on the proliferation and function of KGN cells. CONCLUSION The results indicate that IL-15 is involved in the pathogenesis of PCOS potentially by affecting survival, the inflammation state and steroidogenesis of granulosa cells. The practical significance of this association between IL-15 and the pathogenesis of PCOS needs further investigation.
Collapse
Affiliation(s)
- Yan Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zhi Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yang Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qingqing Cai
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Haiou Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Feifei Zhang, ; Congjian Xu,
| | - Feifei Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Feifei Zhang, ; Congjian Xu,
| |
Collapse
|
28
|
Gao S, Zhao J, Xu Q, Guo Y, Liu M, Zhang C, Schinckel AP, Zhou B. MiR-31 targets HSD17B14 and FSHR, and miR-20b targets HSD17B14 to affect apoptosis and steroid hormone metabolism of porcine ovarian granulosa cells. Theriogenology 2021; 180:94-102. [PMID: 34959084 DOI: 10.1016/j.theriogenology.2021.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/18/2021] [Accepted: 12/15/2021] [Indexed: 01/21/2023]
Abstract
Porcine 17-hydroxysteroid dehydrogenase type 14 (HSD17B14) and FSH reporter (FSHR) genes play important roles in the metabolism of steroid hormones and the apoptosis of ovarian granulosa cells (GCs). Our bioinformatics analyses and the dual luciferase reporter assays indicated that porcine miR-20b and miR-31 target the 3'-UTR region of HSD17B14 gene, and miR-31 also targets the 3'-UTR region of FSHR gene. Overexpression of porcine HSD17B14 gene promoted the conversion from estradiol (E2) to estrone (E1) and increased the apoptosis of porcine GCs. Overexpression of miR-20b down-regulated the mRNA and protein expression level of HSD17B14 gene, decreased the concentration of progesterone (P4) and E1, increased E2, as well as reduced apoptosis of GCs. Moreover, overexpression of miR-31 also down-regulated the protein expression level of HSD17B14 gene, decreased the concentration of P4 and E1, and increased E2. However, miR-31 promoted apoptosis of GCs by targeting to the 3'-UTR of porcine FSHR gene. Taken together, we found that both porcine miR-20b and miR-31 target HSD17B14 gene, but miR-31 also targets FSHR gene to regulate the metabolism of steroid hormones and the apoptosis of porcine ovarian GCs. These findings expand the epigenetic regulatory mechanism of porcine miR-31 and miR-20b in ovarian GCs.
Collapse
Affiliation(s)
- Siyuan Gao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907-2054, USA
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
29
|
Dai XX, Jiang ZY, Wu YW, Sha QQ, Liu Y, Ding JY, Xi WD, Li J, Fan HY. CNOT6/6L-mediated mRNA degradation in ovarian granulosa cells is a key mechanism of gonadotropin-triggered follicle development. Cell Rep 2021; 37:110007. [PMID: 34788619 DOI: 10.1016/j.celrep.2021.110007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/27/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
CCR4-NOT deadenylase is a major regulator of mRNA turnover. It contains two heterogeneous catalytic subunits CNOT7/8 and CNOT6/6L in vertebrates. The physiological function of each catalytic subunit is unclear due to the gene redundancy. In this study, Cnot6/6l double knockout mice are generated. Cnot6l-/- female mice are infertile, with poor ovarian responses to gonadotropins. Follicle-stimulating hormone (FSH) stimulates the transcription and translation of Cnot6 and Cnot6l in ovarian granulosa cells. CNOT6/6L function as key effectors of FSH in granulosa cells and trigger the clearance of specific transcripts in granulosa cells during preantral to antral follicle transition. These results demonstrate that FSH modulates granulosa cell function by stimulating selective translational activation and degradation of existing mRNAs, in addition to inducing de novo gene transcription. Meanwhile, this study provides in vivo evidence that CNOT6/6L-mediated mRNA deadenylation is dispensable in most somatic cell types, but is essential for female reproductive endocrine regulation.
Collapse
Affiliation(s)
- Xing-Xing Dai
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Yan Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yun-Wen Wu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yang Liu
- Department of Assisted Reproduction, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226000, China
| | - Jia-Yi Ding
- Department of Assisted Reproduction, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226000, China
| | - Wen-Dong Xi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211100, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211100, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Johnson GP, Jonas KC. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling†. Biol Reprod 2021; 102:773-783. [PMID: 31882999 DOI: 10.1093/biolre/ioz228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Gonadotropin hormones and their receptors play a central role in the control of male and female reproduction. In recent years, there has been growing evidence surrounding the complexity of gonadotropin hormone/receptor signaling, with it increasingly apparent that the Gαs/cAMP/PKA pathway is not the sole signaling pathway that confers their biological actions. Here we review recent literature on the different receptor-receptor, receptor-scaffold, and receptor-signaling molecule complexes formed and how these modulate and direct gonadotropin hormone-dependent intracellular signal activation. We will touch upon the more controversial issue of extragonadal expression of FSHR and the differential signal pathways activated in these tissues, and lastly, highlight the open questions surrounding the role these gonadotropin hormone receptor complexes and how this will shape future research directions.
Collapse
Affiliation(s)
| | - Kim Carol Jonas
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
31
|
Waszkiewicz EM, Zmijewska A, Kozlowska W, Franczak A. Effects of LH and FSH on androgen and oestrogen release in the myometrium of pigs during the oestrous cycle and early pregnancy. Reprod Fertil Dev 2021; 32:1200-1211. [PMID: 33002394 DOI: 10.1071/rd20148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023] Open
Abstract
The porcine myometrium possesses steroidogenic activity. LH and FSH are hypothesised to regulate the myometrial production of androstenedione (A4), testosterone (T), oestrone (E1) and 17β-oestradiol (E2). In this study, we used myometrium collected from cycling (n=15) and pregnant (n=15) pigs on Days 10-11, 12-13 and 15-16 of the oestrous cycle or pregnancy to determine: (1) the abundance of LH and FSH receptor (LH/choriogonadotrophin receptor (CGR) and FSHR) mRNA and protein; (2) activity of 17β-hydroxysteroid dehydrogenase 1 (17βHSD1); and (3) A4, T, E1 and E2 release in response to LH and FSH treatment, used at doses 10 or 100ng mL-1 for 6h. In results, the myometrium possesses LH/CGR and FSHR with minor alterations in their expression in the course of the oestrous cycle or early pregnancy. 17βHSD1 activity was the highest on Days 12-13 of the oestrous cycle and the lowest on Days 15-16 of the oestrus cycle and pregnancy, when compared to the other studied days of the oestrous cycle or pregnancy. The LH and FSH treatment increased A4 release on Days 12-13 of the oestrous cycle, and E1 and E2 release on Days 15-16 of the oestrous cycle. Moreover, on Days 12-13 E2 release was increased in response to FSH treatment (100ng mL-1) in cycling pigs and in response to LH (100ng mL-1) in pregnant pigs. In conclusion, the myometrium of pregnant and non-pregnant pigs expresses LH/CGR and FSHR and has 17βHSD1 activity. In addition, the amount of A4, E1, and E2 release from the myometrium is altered in response to LH and FSH, especially in cycling pigs. LH and FSH appear to be important regulators of myometrial oestrogen release in pigs mostly during luteolysis.
Collapse
Affiliation(s)
- Ewa M Waszkiewicz
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Agata Zmijewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Wiktoria Kozlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Anita Franczak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland; and Corresponding author.
| |
Collapse
|
32
|
Agwuegbo UT, Colley E, Albert AP, Butnev VY, Bousfield GR, Jonas KC. Differential FSH Glycosylation Modulates FSHR Oligomerization and Subsequent cAMP Signaling. Front Endocrinol (Lausanne) 2021; 12:765727. [PMID: 34925235 PMCID: PMC8678890 DOI: 10.3389/fendo.2021.765727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023] Open
Abstract
Follicle-stimulating hormone (FSH) and its target G protein-coupled receptor (FSHR) are essential for reproduction. Recent studies have established that the hypo-glycosylated pituitary FSH glycoform (FSH21/18), is more bioactive in vitro and in vivo than the fully-glycosylated variant (FSH24). FSH21/18 predominates in women of reproductive prime and FSH24 in peri-post-menopausal women, suggesting distinct functional roles of these FSH glycoforms. The aim of this study was to determine if differential FSH glycosylation modulated FSHR oligomerization and resulting impact on cAMP signaling. Using a modified super-resolution imaging technique (PD-PALM) to assess FSHR complexes in HEK293 cells expressing FSHR, we observed time and concentration-dependent modulation of FSHR oligomerization by FSH glycoforms. High eFSH and FSH21/18 concentrations rapidly dissociated FSHR oligomers into monomers, whereas FSH24 displayed slower kinetics. The FSHR β-arrestin biased agonist, truncated eLHβ (Δ121-149) combined with asparagine56-deglycosylated eLHα (dg-eLHt), increased FSHR homomerization. In contrast, low FSH21/18 and FSH24 concentrations promoted FSHR association into oligomers. Dissociation of FSHR oligomers correlated with time points where higher cAMP production was observed. Taken together, these data suggest that FSH glycosylation may modulate the kinetics and amplitude of cAMP production, in part, by forming distinct FSHR complexes, highlighting potential avenues for novel therapeutic targeting of the FSHR to improve IVF outcomes.
Collapse
Affiliation(s)
- Uchechukwu T. Agwuegbo
- School of Life Course and Population Sciences, Department of Women and Children’s Health, Guy’s Campus, King’s College London, London, United Kingdom
| | - Emily Colley
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Anthony P. Albert
- Vascular Biology Research Centre, Molecular & Clinical Science Research Centre, St George’s University of London, London, United Kingdom
| | - Viktor Y. Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - Kim C. Jonas
- School of Life Course and Population Sciences, Department of Women and Children’s Health, Guy’s Campus, King’s College London, London, United Kingdom
- *Correspondence: Kim C. Jonas,
| |
Collapse
|
33
|
Grazul-Bilska AT, Dorsam ST, Reyaz A, Valkov V, Bass CS, Kaminski SL, Redmer DA. Follicle-stimulating hormone receptors expression in ovine corpora lutea during luteal phase: effect of nutritional plane and follicle-stimulating hormone treatment. Domest Anim Endocrinol 2020; 71:106391. [PMID: 31731250 DOI: 10.1016/j.domaniend.2019.106391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 11/18/2022]
Abstract
Corpus luteum (CL), a transient endocrine gland critical for reproductive cyclicity and pregnancy maintenance, is controlled by numerous regulatory factors. Although LH is widely recognized as the major regulator, other factors may also affect luteal functions. It has been demonstrated that FSH receptors (FSHR) are expressed not only in ovarian follicles but also in other tissues within the reproductive tract, including the CL. To evaluate FSHR expression in nontreated (nonsuperovulated; experiment 1) or FSH-treated (superovulated; experiment 2) sheep fed a control (C; maintenance), excess (O; 2 × C), or restricted (U; 0.6 × C) diet, CL were collected at the early, mid and/or late luteal phases (n = 5-7 per group). Protein and messenger RNA (mRNA) expression of FSHR were detected in the CL from all groups using immunohistochemistry followed by image analysis and quantitative RT-PCR, respectively. Follicle-stimulating hormone receptor was immunolocalized to steroidogenic small and large and nonsteroidogenic luteal cells. In both experiments, FSHR protein expression was not affected by stage of luteal development or diet. In experiment 1, expression of mRNA for all FSHR variants was greater (P <0.02 to 0.0003) at the late phase than mid or early luteal phase, and in experiment 2, it was greater (P < 0.001) at the mid than early luteal phase. Plane of nutrition did not affect FSHR mRNA expression. Comparison of FSH-treated with nontreated ewes demonstrated that FSH increased FSHR protein expression by 1.5- to 2-fold (P < 0.0001) in all groups, and mRNA expression by 7- to 30-fold (P < 0.001) for (1) FSHR-1 in all groups except U at the early luteal phase, (2) FSHR-2 in C, O, and U at the mid-phase, but not early luteal phase, and (3) FSHR-3 in U at the mid-luteal phase. Our data demonstrate that (1) FSHRs are expressed in ovine CL at several stages of luteal development, (2) FSHR protein expression does not change during the luteal phase and is not affected by diet, (3) FSHR mRNA expression not only depends on the stage of the estrous cycle but also not affected by diet in nonsuperovulated or superovulated ewes, and (4) in vivo FSH treatment enhanced FSHR protein and/or mRNA expression in the CL depending on diet and phase of the estrous cycle. Presence of FSHR in the CL indicates a regulatory role of FSH in luteal function in sheep. As very little is known about the possible role of FSH and FSHR in luteal functions, further studies should be undertaken to elucidate the endocrine, molecular, and cellular mechanisms of FSH effects on the CL.
Collapse
Affiliation(s)
- A T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA.
| | - S T Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - A Reyaz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - V Valkov
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - C S Bass
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - S L Kaminski
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - D A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
34
|
Coss D. Commentary on the Recent FSH Collection: Known Knowns and Known Unknowns. Endocrinology 2020; 161:5683667. [PMID: 31865385 PMCID: PMC6986550 DOI: 10.1210/endocr/bqz035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Follicle-stimulating hormone (FSH) is a dimeric glycoprotein secreted by the anterior pituitary gonadotrope that is necessary for reproductive function in mammals. FSH primarily regulates granulosa cells and follicular growth in females, and Sertoli cell function in males. Since its identification in the 1930s and sequencing in the 1970s, significant progress has been made in elucidating its regulation and downstream function. Recent advances provide deeper insight into FSH synthesis, and effects in the gonads suggest potential roles in extragonadal tissues and examine pharmacological approaches and clinical applications in infertility treatment that now affect 18% of couples. These advances were discussed in detail in a number of reviews published in the last 2 years in Endocrinology. In this brief commentary, we summarize these reviews and point to the outstanding questions that should be answered in the near future to bridge a gap in our understanding of this hormone.
Collapse
Affiliation(s)
- Djurdjica Coss
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside; Riverside, California
- Correspondence: Djurdjica Coss, Division of Biomedical Sciences, School of Medicine, University of California, Riverside; Riverside, California. E-mail:
| |
Collapse
|
35
|
Man Y, Zhao R, Gao X, Liu Y, Zhao S, Lu G, Chan WY, Leung PCK, Bian Y. TOX3 Promotes Ovarian Estrogen Synthesis: An RNA-Sequencing and Network Study. Front Endocrinol (Lausanne) 2020; 11:615846. [PMID: 33716953 PMCID: PMC7945945 DOI: 10.3389/fendo.2020.615846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/30/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Women who undergo chronic exposure to excessive estrogen are at a high risk of developing breast cancer. TOX3 has been reported to be highly expressed in breast tumors and is closely related to estrogen receptors. However, the effect of TOX3 on estrogen synthesis remains poorly understood. METHODS Using lentiviruses as a vector, we stably overexpressed TOX3 in the ovarian granulosa cell line KGN, the cells where estradiol is primarily produced, to investigate its role in estrogen production as well as cell viability and apoptosis. RNA-Sequencing was applied to uncover the global gene expression upon TOX3 overexpression. RESULTS We observed an increased level of cell viability and a reduced cell apoptosis rate after TOX3 overexpression, and the level of estradiol in the cell culture supernatant also increased significantly. Gene set enrichment analysis of the transcriptome showed that the ovarian steroidogenesis pathway was significantly enriched. Similarly, pathway mapping using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses also showed that TOX3 overexpression affects the ovarian steroidogenesis pathway. Further experiments showed that upregulated FSHR, CYP19A1, and BMP6 accounted for the enhanced estrogen synthesis. CONCLUSION Our study demonstrated that TOX3 quantitatively and qualitatively stimulates estrogen synthesis by enhancing estrogen signaling pathway-related gene expression in ovarian granulosa cells. These findings suggest that TOX3 may play a vital role in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Yuanyuan Man
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Rusong Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Xueying Gao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yue Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Peter C. K. Leung
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yuehong Bian
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- *Correspondence: Yuehong Bian,
| |
Collapse
|
36
|
Rai S, Ashish, Kumari P, Singh A, Singh R. Correlation of follicle-stimulating hormone receptor gene Asn 680 Ser (rs6166) polymorphism with female infertility. J Family Med Prim Care 2019; 8:3356-3361. [PMID: 31742168 PMCID: PMC6857416 DOI: 10.4103/jfmpc.jfmpc_685_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 08/30/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Female infertility is a complex multifactorial, and polygenic disease associated with genetic factors plays an essential role in its formation and follicle development, oocyte maturation, and steroidogenesis regulation in the ovary. The aim here is too study the genetic association between follicle-stimulating hormone receptor (FSHR) Asn680Ser; (rs6166) gene polymorphism with female Infertility in our population. METHODS In this prospective case-control study, we enrolled 106 infertile and 164 unrelated healthy control individuals. Genomic DNA was extracted from the 5 ml of venous blood using the modified salting-out method. A polymerase chain reaction-amplified exon 10 of FSHR and purified PCR products were sequenced on an ABI 3730XL DNA sequencer. The data were analyzed statistically. RESULTS We found that the presence of rare allele "G" and heterozygous and common homozygous genotypes significantly increased the risk of female infertility. No significant change in the FSHR 191756 G >A genotype frequency was observed, regardless of chromosomal integrity. The genotype frequency distribution of locus 680 was consistent with the Hardy-Weinberg Equilibrium (HWE) in both groups (P > 0.05). CONCLUSION No significant differences were found in allelic variants frequency and genotype distribution between each category of subjects when analyzing the FSHR SNPs in the exonic region (P value >0.05). FSHR Asn680Ser polymorphisms and female infertility (P > 0.05). Variations in FSHR gene have an essential influence on ovarian function and can account for several defects of female fertility. FSHR Asn680Ser (rs6166) gene polymorphism is associated with female infertility and can be used as a relevant molecular biomarker to identify the risk of infertility in our population. This finding can be important for disease pathogenesis.
Collapse
Affiliation(s)
- Sangeeta Rai
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Preeti Kumari
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anup Singh
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Royana Singh
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|