1
|
Bal T. Scaffold-free endocrine tissue engineering: role of islet organization and implications in type 1 diabetes. BMC Endocr Disord 2025; 25:107. [PMID: 40259265 PMCID: PMC12010671 DOI: 10.1186/s12902-025-01919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/17/2025] [Indexed: 04/23/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic hyperglycemia disorder emerging from beta-cell (insulin secreting cells of the pancreas) targeted autoimmunity. As the blood glucose levels significantly increase and the insulin secretion is gradually lost, the entire body suffers from the complications. Although various advances in the insulin analogs, blood glucose monitoring and insulin application practices have been achieved in the last few decades, a cure for the disease is not obtained. Alternatively, pancreas/islet transplantation is an attractive therapeutic approach based on the patient prognosis, yet this treatment is also limited mainly by donor shortage, life-long use of immunosuppressive drugs and risk of disease transmission. In research and clinics, such drawbacks are addressed by the endocrine tissue engineering of the pancreas. One arm of this engineering is scaffold-free models which often utilize highly developed cell-cell junctions, soluble factors and 3D arrangement of islets with the cellular heterogeneity to prepare the transplant formulations. In this review, taking T1D as a model autoimmune disease, techniques to produce so-called pseudoislets and their applications are studied in detail with the aim of understanding the role of mimicry and pointing out the promising efforts which can be translated from benchside to bedside to achieve exogenous insulin-free patient treatment. Likewise, these developments in the pseudoislet formation are tools for the research to elucidate underlying mechanisms in pancreas (patho)biology, as platforms to screen drugs and to introduce immunoisolation barrier-based hybrid strategies.
Collapse
Affiliation(s)
- Tugba Bal
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, 34662, Turkey.
| |
Collapse
|
2
|
Kühn K, Meyer-Lindenberg A, Reese S, Wolf G, Walter B, Leykam C, Flock U, Otzdorff C. [Flushing the canine prepuce before mating, useful or not?]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2024; 52:346-358. [PMID: 39637917 DOI: 10.1055/a-2461-8756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Various facultative pathogenic bacteria have been detected in the dog's prepuce. To prevent the transmission of these bacteria, some breeders flush the prepuce of their stud dogs before mating. The purpose of this study is to find out whether preputial flushing is medically useful before mating. MATERIAL AND METHODS 20 male dogs participated in the study. Their prepuce was flushed with physiological saline and minimum 4 weeks later with Caniprevent. The effect of the different solutions was compared using microbiological examinations of swab samples taken before and after flushing. RESULTS The most frequently identified bacterial species were Escherichia coli, Staphylococcus pseudintermedius, Streptococcus canis and mycoplasma. There was no significant difference in the number of bacteria detected in dogs with and without preputial discharge (p=0.878). After the flushing there was a significant decrease in bacterial growth. The bacterial reduction after preputial flushing with Caniprevent was 20.8% (p<0.001) and in that more pronounced than after flushing with NaCl (p=0.004). CONCLUSION Although a reduction in bacteria through preputial flushing could be detected in this study, the medical benefits of prophylactic flushing cannot yet be assessed. CLINICAL RELEVANCE With regard to preputial discharge and preputial flushing solutions, further research is needed in order to be able to better inform and advice pet owners.
Collapse
Affiliation(s)
- Katharina Kühn
- Chirurgische und Gynäkologische Kleintierklinik, Ludwig-Maximilians-Universität München
| | | | - Sven Reese
- Tierärztliche Fakultät, Lehrstuhl für Anatomie, Histologie und Embryologie, Ludwig-Maximilians-Universität München
| | - Georg Wolf
- Tierärztliche Fakultät, Lehrstuhl für Bakteriologie und Mykologie, Ludwig-Maximilians-Universität München
| | - Beate Walter
- Chirurgische und Gynäkologische Kleintierklinik, Ludwig-Maximilians-Universität München
| | - Christian Leykam
- Chirurgische und Gynäkologische Kleintierklinik, Ludwig-Maximilians-Universität München
| | - Ulrike Flock
- Chirurgische und Gynäkologische Kleintierklinik, Ludwig-Maximilians-Universität München
| | - Christiane Otzdorff
- Chirurgische und Gynäkologische Kleintierklinik, Ludwig-Maximilians-Universität München
| |
Collapse
|
3
|
Yule DI, Takano T. Pacing intracellular Ca 2+ signals in exocrine acinar cells. J Physiol 2024:10.1113/JP284755. [PMID: 38197224 PMCID: PMC11233423 DOI: 10.1113/jp284755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
An increase in intracellular [Ca2+ ] in exocrine acinar cells resident in the salivary glands or pancreas is a fundamental event that drives fluid secretion and exocytosis of proteins. Stimulation with secretagogues initiates Ca2+ signals with precise spatiotemporal properties thought to be important for driving physiological output. Both in vitro, in acutely isolated acini, and in vivo, in animals expressing genetically encoded indicators, individual cells appear specialized to initiate Ca2+ signals upon stimulation. Furthermore, these signals appear to spread to neighbouring cells. These properties are present in the absence of a conventional pacemaker mechanism dependent on the cyclical activation of Ca2+ -dependent or Ca2+ -conducting plasma membrane ion channels. In this article, we propose a model for 'pacing' intracellular Ca2+ signals in acinar cells based on the enhanced sensitivity of a subpopulation of individual cells and the intercellular diffusion through gap junctions of inositol 1,4,5-trisphosphate and Ca2+ to neighbouring cells.
Collapse
Affiliation(s)
- David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14526. USA
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14526. USA
| |
Collapse
|
4
|
Guérineau NC. Adaptive remodeling of the stimulus-secretion coupling: Lessons from the 'stressed' adrenal medulla. VITAMINS AND HORMONES 2023; 124:221-295. [PMID: 38408800 DOI: 10.1016/bs.vh.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Stress is part of our daily lives and good health in the modern world is offset by unhealthy lifestyle factors, including the deleterious consequences of stress and associated pathologies. Repeated and/or prolonged stress may disrupt the body homeostasis and thus threatens our lives. Adaptive processes that allow the organism to adapt to new environmental conditions and maintain its homeostasis are therefore crucial. The adrenal glands are major endocrine/neuroendocrine organs involved in the adaptive response of the body facing stressful situations. Upon stress episodes and in response to activation of the sympathetic nervous system, the first adrenal cells to be activated are the neuroendocrine chromaffin cells located in the medullary tissue of the adrenal gland. By releasing catecholamines (mainly epinephrine and to a lesser extent norepinephrine), adrenal chromaffin cells actively contribute to the development of adaptive mechanisms, in particular targeting the cardiovascular system and leading to appropriate adjustments of blood pressure and heart rate, as well as energy metabolism. Specifically, this chapter covers the current knowledge as to how the adrenal medullary tissue remodels in response to stress episodes, with special attention paid to chromaffin cell stimulus-secretion coupling. Adrenal stimulus-secretion coupling encompasses various elements taking place at both the molecular/cellular and tissular levels. Here, I focus on stress-driven changes in catecholamine biosynthesis, chromaffin cell excitability, synaptic neurotransmission and gap junctional communication. These signaling pathways undergo a collective and finely-tuned remodeling, contributing to appropriate catecholamine secretion and maintenance of body homeostasis in response to stress.
Collapse
Affiliation(s)
- Nathalie C Guérineau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
5
|
Falleni A, Moscato S, Fulvio G, Polizzi E, Bernardeschi M, Bianchi F, Donati V, Cabiati M, Ippolito C, Del Ry S, Baldini C, Mattii L. Connexin Expression in Human Minor Salivary Glands: An Immunohistochemical Microscopy Study. Molecules 2022; 27:molecules27185926. [PMID: 36144660 PMCID: PMC9505306 DOI: 10.3390/molecules27185926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Connexins (Cxs) are transmembrane proteins involved in the formation of hemichannels and gap junctions (GJs). GJs are involved in various physiological functions, including secretion in glandular tissue. It has been demonstrated that Cx26, Cx32, and Cx43 are mainly expressed in glands, but no data are available in human salivary glands to date. The aim of our study was to investigate the presence and the localization of Cxs in human minor labial salivary glands. Immunofluorescence and immunoelectron microscopy were employed to evaluate the Cx26, Cx32, and Cx43 protein in human labial salivary gland biopsies (hLSGBs). RT-PCR was also used to detect their mRNA expression. Cx expression was found at both the mRNA and protein levels in all hLSGBs analysed. Cxs were observed at the level of the duct and acinar cells, as well as in myoepithelial cells. The localization of the three Cx types was very similar, suggesting colocalization of these Cxs in the same connexons. These results demonstrated the presence of Cxs in human salivary glands for the first time. Moreover, the few samples with primary Sjögren’s Syndrome analysed only by immunofluorescence showed an alteration of the Cx expression, indicating that these proteins could be involved in salivary gland dysfunctions.
Collapse
Affiliation(s)
- Alessandra Falleni
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence: (A.F.); (L.M.); Tel.: +39-050-221-9106 (A.F.); +39-050-221-8615 (L.M.)
| | - Stefania Moscato
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giovanni Fulvio
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Enza Polizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Francesco Bianchi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Valentina Donati
- Pathological Anatomy Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Manuela Cabiati
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Del Ry
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy
| | - Chiara Baldini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence: (A.F.); (L.M.); Tel.: +39-050-221-9106 (A.F.); +39-050-221-8615 (L.M.)
| |
Collapse
|
6
|
Nunes B, Pópulo H, Lopes JM, Reis M, Nascimento G, Nascimento AG, Fernandes J, Faria M, de Carvalho DP, Soares P, Miranda-Alves L. Connexin Expression in Pituitary Adenomas and the Effects of Overexpression of Connexin 43 in Pituitary Tumor Cell Lines. Genes (Basel) 2022; 13:genes13040674. [PMID: 35456480 PMCID: PMC9032236 DOI: 10.3390/genes13040674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Gap junction intercellular communication (GJIC) is considered a key mechanism in the regulation of tissue homeostasis. GJIC structures are organized in two transmembrane channels, with each channel formed by connexins (Cxs). GJIC and Cxs expression alterations are related to the process of tumorigenesis in different cell types. Pituitary neuroendocrine tumors (PitNETs) represent 15–20% of intracranial neoplasms, and usually display benign behavior. Nevertheless, some may have aggressive behavior, invading adjacent tissues, and featuring a high proliferation rate. We aimed to assess the expression and relevance of GJIC and Cxs proteins in PitNETs. We evaluated the mRNA expression levels of Cx26, 32, and 43, and the protein expression of Cx43 in a series of PitNETs. In addition, we overexpressed Cx43 in pituitary tumor cell lines. At the mRNA level, we observed variable expression of all the connexins in the tumor samples. Cx43 protein expression was absent in most of the pituitary tumor samples that were studied. Moreover, in vitro studies revealed that the overexpression of Cx43 decreases cell growth and induces apoptosis in pituitary tumor cell lines. Our results indicate that the downregulation of Cx43 protein might be involved in the tumorigenesis of most pituitary adenomas and have a potential therapeutic value for pituitary tumor therapy.
Collapse
Affiliation(s)
- Bruno Nunes
- Laboratory of Experimental Endocrinology—LEEx, Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (B.N.); (D.P.d.C.); (L.M.-A.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratory of Endocrine Physiology, Doris Rosenthal, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Helena Pópulo
- Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (H.P.); (J.M.L.); (M.R.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)—Cancer Signalling & Metabolism, 4200-135 Porto, Portugal
- Department of Pathology, Medical Faculty of the University of Porto, 4200-319 Porto, Portugal
| | - José Manuel Lopes
- Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (H.P.); (J.M.L.); (M.R.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)—Cancer Signalling & Metabolism, 4200-135 Porto, Portugal
- Department of Pathology, Medical Faculty of the University of Porto, 4200-319 Porto, Portugal
| | - Marta Reis
- Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (H.P.); (J.M.L.); (M.R.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)—Cancer Signalling & Metabolism, 4200-135 Porto, Portugal
| | - Gilvan Nascimento
- Centre of Clinical Research (CEPEC), President Dutra Hospital of Federal University of Maranhão (UFMA), São Luís 65020-600, Brazil; (G.N.); (M.F.)
- Endocrinology Service, President Dutra Hospital of Federal University of Maranhão (UFMA), São Luís 65060-600, Brazil
| | - Ana Giselia Nascimento
- Pathology Service, President Dutra Hospital of Federal University of Maranhão (UFMA), São Luís 65020-070, Brazil;
| | - Janaína Fernandes
- NUPEX, Polo Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25240-005, Brazil;
| | - Manuel Faria
- Centre of Clinical Research (CEPEC), President Dutra Hospital of Federal University of Maranhão (UFMA), São Luís 65020-600, Brazil; (G.N.); (M.F.)
- Endocrinology Service, President Dutra Hospital of Federal University of Maranhão (UFMA), São Luís 65060-600, Brazil
| | - Denise Pires de Carvalho
- Laboratory of Experimental Endocrinology—LEEx, Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (B.N.); (D.P.d.C.); (L.M.-A.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratory of Endocrine Physiology, Doris Rosenthal, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Paula Soares
- Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (H.P.); (J.M.L.); (M.R.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)—Cancer Signalling & Metabolism, 4200-135 Porto, Portugal
- Department of Pathology, Medical Faculty of the University of Porto, 4200-319 Porto, Portugal
- Correspondence:
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology—LEEx, Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (B.N.); (D.P.d.C.); (L.M.-A.)
- Postgraduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratory of Endocrine Physiology, Doris Rosenthal, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Postgraduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
7
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
8
|
Ng XW, Chung YH, Piston DW. Intercellular Communication in the Islet of Langerhans in Health and Disease. Compr Physiol 2021; 11:2191-2225. [PMID: 34190340 PMCID: PMC8985231 DOI: 10.1002/cphy.c200026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood glucose homeostasis requires proper function of pancreatic islets, which secrete insulin, glucagon, and somatostatin from the β-, α-, and δ-cells, respectively. Each islet cell type is equipped with intrinsic mechanisms for glucose sensing and secretory actions, but these intrinsic mechanisms alone cannot explain the observed secretory profiles from intact islets. Regulation of secretion involves interconnected mechanisms among and between islet cell types. Islet cells lose their normal functional signatures and secretory behaviors upon dispersal as compared to intact islets and in vivo. In dispersed islet cells, the glucose response of insulin secretion is attenuated from that seen from whole islets, coordinated oscillations in membrane potential and intracellular Ca2+ activity, as well as the two-phase insulin secretion profile, are missing, and glucagon secretion displays higher basal secretion profile and a reverse glucose-dependent response from that of intact islets. These observations highlight the critical roles of intercellular communication within the pancreatic islet, and how these communication pathways are crucial for proper hormonal and nonhormonal secretion and glucose homeostasis. Further, misregulated secretions of islet secretory products that arise from defective intercellular islet communication are implicated in diabetes. Intercellular communication within the islet environment comprises multiple mechanisms, including electrical synapses from gap junctional coupling, paracrine interactions among neighboring cells, and direct cell-to-cell contacts in the form of juxtacrine signaling. In this article, we describe the various mechanisms that contribute to proper islet function for each islet cell type and how intercellular islet communications are coordinated among the same and different islet cell types. © 2021 American Physiological Society. Compr Physiol 11:2191-2225, 2021.
Collapse
Affiliation(s)
- Xue W Ng
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - Yong H Chung
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
9
|
Santiago-Andres Y, Golan M, Fiordelisio T. Functional Pituitary Networks in Vertebrates. Front Endocrinol (Lausanne) 2021; 11:619352. [PMID: 33584547 PMCID: PMC7873642 DOI: 10.3389/fendo.2020.619352] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
The pituitary is a master endocrine gland that developed early in vertebrate evolution and therefore exists in all modern vertebrate classes. The last decade has transformed our view of this key organ. Traditionally, the pituitary has been viewed as a randomly organized collection of cells that respond to hypothalamic stimuli by secreting their content. However, recent studies have established that pituitary cells are organized in tightly wired large-scale networks that communicate with each other in both homo and heterotypic manners, allowing the gland to quickly adapt to changing physiological demands. These networks functionally decode and integrate the hypothalamic and systemic stimuli and serve to optimize the pituitary output into the generation of physiologically meaningful hormone pulses. The development of 3D imaging methods and transgenic models have allowed us to expand the research of functional pituitary networks into several vertebrate classes. Here we review the establishment of pituitary cell networks throughout vertebrate evolution and highlight the main perspectives and future directions needed to decipher the way by which pituitary networks serve to generate hormone pulses in vertebrates.
Collapse
Affiliation(s)
- Yorgui Santiago-Andres
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Matan Golan
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Rishon Lezion, Israel
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
10
|
The Connexin 43 Regulator Rotigaptide Reduces Cytokine-Induced Cell Death in Human Islets. Int J Mol Sci 2020; 21:ijms21124311. [PMID: 32560352 PMCID: PMC7352593 DOI: 10.3390/ijms21124311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/23/2023] Open
Abstract
Background: Intercellular communication mediated by cationic fluxes through the Connexin family of gap junctions regulates glucose-stimulated insulin secretion and beta cell defense against inflammatory stress. Rotigaptide (RG, ZP123) is a peptide analog that increases intercellular conductance in cardiac muscle cells by the prevention of dephosphorylation and thereby uncoupling of Connexin-43 (Cx43), possibly via action on unidentified protein phosphatases. For this reason, it is being studied in human arrhythmias. It is unknown if RG protects islet cell function and viability against inflammatory or metabolic stress, a question of considerable translational interest for the treatment of diabetes. Methods: Apoptosis was measured in human islets shown to express Cx43, treated with RG or the control peptide ZP119 and exposed to glucolipotoxicity or IL-1β + IFNɣ. INS-1 cells shown to lack Cx43 were used to examine if RG protected human islet cells via Cx43 coupling. To study the mechanisms of action of Cx43-independent effects of RG, NO, IkBα degradation, mitochondrial activity, ROS, and insulin mRNA levels were determined. Results: RG reduced cytokine-induced apoptosis ~40% in human islets. In Cx43-deficient INS-1 cells, this protective effect was markedly blunted as expected, but unexpectedly, RG still modestly reduced apoptosis, and improved mitochondrial function, insulin-2 gene levels, and accumulated insulin release. RG reduced NO production in Cx43-deficient INS-1 cells associated with reduced iNOS expression, suggesting that RG blunts cytokine-induced NF-κB signaling in insulin-producing cells in a Cx43-independent manner. Conclusion: RG reduces cytokine-induced cell death in human islets. The protective action in Cx43-deficient INS-1 cells suggests a novel inhibitory mechanism of action of RG on NF-κB signaling.
Collapse
|
11
|
Direct Intercellular Communications and Cancer: A Snapshot of the Biological Roles of Connexins in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11091370. [PMID: 31540089 PMCID: PMC6770088 DOI: 10.3390/cancers11091370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Tissue homeostasis is the result of a complex intercellular network controlling the behavior of every cell for the survival of the whole organism. In mammalian tissues, cells do communicate via diverse long- and short-range communication mechanisms. While long-range communication involves hormones through blood circulation and neural transmission, short-range communication mechanisms include either paracrine diffusible factors or direct interactions (e.g., gap junctions, intercellular bridges and tunneling nanotubes) or a mixture of both (e.g., exosomes). Tumor growth represents an alteration of tissue homeostasis and could be the consequence of intercellular network disruption. In this network, direct short-range intercellular communication seems to be particularly involved. The first type of these intercellular communications thought to be involved in cancer progression were gap junctions and their protein subunits, the connexins. From these studies came the general assumption that global decreased connexin expression is correlated to tumor progression and increased cell proliferation. However, this assumption appeared more complicated by the fact that connexins may act also as pro-tumorigenic. Then, the concept that direct intercellular communication could be involved in cancer has been expanded to include new forms of intercellular communication such as tunneling nanotubes (TNTs) and exosomes. TNTs are intercellular bridges that allow free exchange of small molecules or even mitochondria depending on the presence of gap junctions. The majority of current research shows that such exchanges promote cancer progression by increasing resistance to hypoxia and chemotherapy. If exosomes are also involved in these mechanisms, more studies are needed to understand their precise role. Prostate cancer (PCa) represents a type of malignancy with one of the highest incidence rates worldwide. The precise role of these types of direct short-range intercellular communication has been considered in the progression of PCa. However, even though data are in favor of connexins playing a key role in PCa progression, a clear understanding of the role of TNTs and exosomes is needed to define their precise role in this malignancy. This review article summarizes the current view of the main mechanisms involved in short-range intercellular communication and their implications in cancer and delves into the biological, predictive and therapeutic role of connexins in PCa.
Collapse
|
12
|
Connexins and Gap Junctions in Cancer of the Urinary Tract. Cancers (Basel) 2019; 11:cancers11050704. [PMID: 31121877 PMCID: PMC6563010 DOI: 10.3390/cancers11050704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
This review focuses on connexins and nexus or gap junctions in the genesis, progression, and therapy of carcinomas of the human urinary tract. Some decades ago, the idea was born that gap junctional intercellular communication might prevent both the onset and the progression of cancer. Later evidence indicated that, on the contrary, synthesis and the presence of connexins as a prerequisite for gap junctional intercellular communication might promote the occurrence of cancer and metastases. The research history of urinary bladder cancer is a good example of the development of scientific perception. So far, the role of gap junctional intercellular communication in carcinogenesis and cancer progression, as well as in therapeutical approaches, remains unclear.
Collapse
|
13
|
Abstract
Acute and chronic pancreatitises are gastrointestinal inflammatory diseases, the incidence of which is increasing worldwide. Most (~ 80%) acute pancreatitis (AP) patients have mild disease, and about 20% have severe disease, which causes multiple organ failure and has a high mortality rate. Chronic pancreatitis (CP) is characterized by chronic inflammation and destruction of normal pancreatic parenchyma, which leads to loss of exocrine and endocrine tissues. Patients with CP also have a higher incidence of pancreatic ductal adenocarcinoma. Although a number of factors are associated with the development and progression of AP and CP, the underlying mechanism is unclear. Adhesion molecules play important roles in cell migration, proliferation, and signal transduction, as well as in development and tissue repair. Loosening of cell-cell adhesion between pancreatic acinar cells and/or endothelial cells increases solute permeability, resulting in interstitial edema, which promotes inflammatory cell migration and disrupts tissue structure. Oxidative stress, which is one of the important pathogenesis of pancreatitis, leads to upregulation of adhesion molecules. Soluble adhesion molecules are reportedly involved in AP. In this review, we focus on the roles of tight junctions (occludin, tricellulin, claudin, junctional adhesion molecule, and zonula occludin), adherens junctions (E-cadherin and p120-, α-, and β-catenin), and other adhesion molecules (selectin and intercellular adhesion molecules) in the progression of AP and CP. Maintaining the normal function of adhesion molecules and preventing their abnormal activation maintain the structure of the pancreas and prevent the development of pancreatitis.
Collapse
Affiliation(s)
- Takeshi Sato
- 0000 0001 1033 6139grid.268441.dDepartment of Gastroenterology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Wataru Shibata
- 0000 0001 1033 6139grid.268441.dDepartment of Gastroenterology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan ,0000 0001 1033 6139grid.268441.dDivision of Translational Research, Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Shin Maeda
- 0000 0001 1033 6139grid.268441.dDepartment of Gastroenterology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| |
Collapse
|
14
|
Vitale ML, Pelletier RM. The anterior pituitary gap junctions: potential targets for toxicants. Reprod Toxicol 2018; 79:72-78. [PMID: 29906538 DOI: 10.1016/j.reprotox.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/16/2023]
Abstract
The anterior pituitary regulates endocrine organs and physiological activities in the body. Environmental pollutants and drugs deleterious to the endocrine system may affect anterior pituitary activity through direct action on anterior pituitary cells. Within the gland, endocrine and folliculostellate cells are organized into and function as individual tridimensional networks, each network regulating its activity by coordinating the connected cells' responses to physiological or pathological cues. The gap junctions connecting endocrine cells and/or folliculostellate cells allow transmission of information among cells that is necessary for adequate network function. Toxicants may affect gap junctions as well as the physiology of the anterior pituitary. However, whether toxicants effects on anterior pituitary hormone secretion involve gap junctions is unknown. The folliculostellate cell gap junctions are sensitive to hormones, cytokines and growth factors. These cells may be an interesting experimental model for evaluating whether toxicants target anterior pituitary gap junctions.
Collapse
Affiliation(s)
- María Leiza Vitale
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC Canada.
| | - R-Marc Pelletier
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC Canada
| |
Collapse
|
15
|
Meda P. Gap junction proteins are key drivers of endocrine function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:124-140. [PMID: 28284720 DOI: 10.1016/j.bbamem.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
It has long been known that the main secretory cells of exocrine and endocrine glands are connected by gap junctions, made by a variety of connexin species that ensure their electrical and metabolic coupling. Experiments in culture systems and animal models have since provided increasing evidence that connexin signaling contributes to control the biosynthesis and release of secretory products, as well as to the life and death of secretory cells. More recently, genetic studies have further provided the first lines of evidence that connexins also control the function of human glands, which are central to the pathogenesis of major endocrine diseases. Here, we summarize the recent information gathered on connexin signaling in these systems, since the last reviews on the topic, with particular regard to the pancreatic beta cells which produce insulin, and the renal cells which produce renin. These cells are keys to the development of various forms of diabetes and hypertension, respectively, and combine to account for the exploding, worldwide prevalence of the metabolic syndrome. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland.
| |
Collapse
|
16
|
Karademir LB, Aoyama H, Yue B, Chen H, Bai D. Engineered Cx26 variants established functional heterotypic Cx26/Cx43 and Cx26/Cx40 gap junction channels. Biochem J 2016; 473:1391-403. [PMID: 26987811 DOI: 10.1042/bcj20160200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2016] [Indexed: 12/16/2023]
Abstract
Gap junction (GJ) channels mediate direct intercellular communication and are composed of two docked hemichannels (connexin oligomers). It is well documented that the docking and formation of GJs are possible only between compatible hemichannels (or connexins). The mechanisms of heterotypic docking compatibility are not fully clear. We aligned the protein sequences of docking-compatible and -incompatible connexins with that of connexin26 (Cx26). We found that two docking hydrogen bond (HB)-forming residues on the second extracellular domain (E2) of Cx26 and their equivalent residues are well conserved within docking-compatible connexins, but different between docking-incompatible connexins. Replacing one or both of these residues of Cx26 into the corresponding residues in the docking incompatible connexins (K168V, N176H or K168V-N176H) increased the formation of morphological and functional heterotypic GJs with connexin43 (Cx43) or connexin40 (Cx40), indicating that these two residues are important for docking incompatibility between Cx26 and these connexins. Our homology structure models predict that both HBs and hydrophobic interactions at the E2 docking interface are important docking mechanisms in heterotypic Cx26 K168V-N176H/Cx43 GJs and probably other docking compatible connexins. Revealing the key residues and mechanisms of heterotypic docking compatibility will assist us in understanding why these putative docking residues are hotspots of disease-linked mutants.
Collapse
Affiliation(s)
- Levent B Karademir
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Benny Yue
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Honghong Chen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
17
|
Umazume T, Thomas WM, Campbell S, Aluri H, Thotakura S, Zoukhri D, Makarenkova HP. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci 2016; 56:8392-402. [PMID: 26747770 DOI: 10.1167/iovs.15-17477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The adult lacrimal gland (LG) is highly regenerative and is able to repair itself even after substantial damage; however, this ability to regenerate is lost with the development of dry eye conditions in chronically inflamed LGs.This study compares changes in the cell adhesion and cell matrix molecules and stem cell transcription factors in the LGs of healthy mice and of two mouse models of Sjögren's syndrome: nonobese diabetic (NOD) and MRL-lpr/lpr (MRL/lpr) mice during the early stage of inflammation. METHODS The LGs from 12- to 13-week-old female MRL/lpr and male NOD mice along with their respective control strains were harvested and divided into three pieces and processed for quantitative (q) RT-PCR and qRT-PCR Arrays, histology, immunohistochemistry, and Western blotting. RESULTS The extracellular matrix (ECM) and adhesion molecules RT2-PCR array combined with protein expression data revealed changes in the expression of integrins, matrix metalloproteinases, and other molecules, which are associated largely with invasion, attachment, and expansion of the lymphocytic cells, whereas changes in the stem cell transcription factors revealed substantial decrease in expression of transcription factors associated with epithelial stem/progenitor cell lineage. CONCLUSIONS We concluded that the expression of several important ECM components is significantly deregulated in the LG of two murine models of Sjögren's syndrome, suggesting an alteration of the epithelial stem/progenitor cell niche. This may result in profound effects on localization, activation, proliferation, and differentiation of the LG stem/progenitor cells and, therefore, LG regeneration.
Collapse
Affiliation(s)
- Takeshi Umazume
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - William M Thomas
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Sabrina Campbell
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Hema Aluri
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Suharika Thotakura
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Driss Zoukhri
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Helen P Makarenkova
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
18
|
Connexin 43 expression is associated with increased malignancy in prostate cancer cell lines and functions to promote migration. Oncotarget 2016; 6:11640-51. [PMID: 25960544 PMCID: PMC4484482 DOI: 10.18632/oncotarget.3449] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/24/2015] [Indexed: 12/13/2022] Open
Abstract
Impaired expression of connexins, the gap junction subunits that facilitate direct cell-cell communication, have been implicated in prostate cancer growth. To elucidate the crucial role of connexins in prostate cancer progression, we performed a systematic quantitative RT-PCR screening of connexin expression in four representative prostate cancer cell lines across the spectrum of malignancy. Transcripts of several connexin subunits were detected in all four cell lines, and connexin 43 (Cx43) showed marked elevation at both RNA and protein levels in cells with increased metastatic potential. Analysis of gap-junction-mediated intercellular communication revealed homocellular coupling in PC-3 cells, which had the highest Cx43 expression, with minimal coupling in LNCaP cells where Cx43 expression was very low. Treatment with the gap junction inhibitor carbenoxolone or connexin mimetic peptide ACT-1 did not impair cell growth, suggesting that growth is independent of functional gap junctions. PC-3 cells with Cx43 expression reduced by shRNA showed decreased migration in monolayer wound healing assay, as well as decreased transwell invasion capacities when compared to control cells expressing non-targeting shRNA. These results, together with the correlation between Cx43 expression levels and the metastatic capacity of the cell lines, suggest a role of Cx43 in prostate cancer invasion and metastasis.
Collapse
|
19
|
Bell CL, Murray SA. Adrenocortical Gap Junctions and Their Functions. Front Endocrinol (Lausanne) 2016; 7:82. [PMID: 27445985 PMCID: PMC4925680 DOI: 10.3389/fendo.2016.00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell-cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided.
Collapse
Affiliation(s)
- Cheryl L. Bell
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sandra A. Murray
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- *Correspondence: Sandra A. Murray,
| |
Collapse
|
20
|
Yamada A, Futagi M, Fukumoto E, Saito K, Yoshizaki K, Ishikawa M, Arakaki M, Hino R, Sugawara Y, Ishikawa M, Naruse M, Miyazaki K, Nakamura T, Fukumoto S. Connexin 43 Is Necessary for Salivary Gland Branching Morphogenesis and FGF10-induced ERK1/2 Phosphorylation. J Biol Chem 2015; 291:904-12. [PMID: 26565022 DOI: 10.1074/jbc.m115.674663] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 11/06/2022] Open
Abstract
Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43(-/-) salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43(-/-) samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43(-/-) phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis.
Collapse
Affiliation(s)
- Aya Yamada
- From the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences
| | - Masaharu Futagi
- From the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences
| | - Emiko Fukumoto
- From the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences
| | - Kan Saito
- From the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences
| | - Keigo Yoshizaki
- Division of Orthodontics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Masaki Ishikawa
- Operative Dentistry, Department of Restorative Dentistry Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan and
| | - Makiko Arakaki
- From the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences
| | - Ryoko Hino
- From the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences
| | - Yu Sugawara
- From the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences
| | - Momoko Ishikawa
- From the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences
| | - Masahiro Naruse
- From the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences
| | - Kanako Miyazaki
- Division of Orthodontics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Nakamura
- From the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences
| | - Satoshi Fukumoto
- From the Division of Pediatric Dentistry, Department of Oral Health and Development Sciences,
| |
Collapse
|
21
|
Abstract
The pancreas produces enzymes with a digestive function and hormones with a metabolic function, which are produced by distinct cell types of acini and islets, respectively. Within these units, secretory cells coordinate their functioning by exchanging information via signals that flow in the intercellular spaces and are generated either at distance (several neural and hormonal inputs) or nearby the pancreatic cells themselves (inputs mediated by membrane ionic-specific channels and by ionic- and metabolite-permeant pannexin channels and connexin "hemichannels"). Pancreatic secretory cells further interact via the extracellular matrix of the pancreas (inputs mediated by integrins) and directly with neighboring cells, by mechanisms that do not require extracellular mediators (inputs mediated by gap and tight junction channels). Here, we review the expression and function of the connexins and pannexins that are expressed by the main secretory cells of the exocrine and endocrine pancreatic cells. Available data show that the patterns of expression of these proteins differ in acini and islets, supporting distinct functions in the physiological secretion of pancreatic enzymes and hormones. Circumstantial evidence further suggests that alterations in the signaling provided by these proteins are involved in pancreatic diseases.
Collapse
|
22
|
Kibschull M, Gellhaus A, Carette D, Segretain D, Pointis G, Gilleron J. Physiological roles of connexins and pannexins in reproductive organs. Cell Mol Life Sci 2015; 72:2879-98. [PMID: 26100514 PMCID: PMC11114083 DOI: 10.1007/s00018-015-1965-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
Reproductive organs are complex and well-structured tissues essential to perpetuate the species. In mammals, the male and female reproductive organs vary on their organization, morphology and function. Connectivity between cells in such tissues plays pivotal roles in organogenesis and tissue functions through the regulation of cellular proliferation, migration, differentiation and apoptosis. Connexins and pannexins can be seen as major regulators of these physiological processes. In the present review, we assembled several lines of evidence demonstrating that these two families of proteins are essential for male and female reproduction.
Collapse
Affiliation(s)
- Mark Kibschull
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Toronto, M5T 3H7 Canada
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Diane Carette
- UMR S1147, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
- University of Versailles, 78035 Saint Quentin, France
- INSERM U 1065, University of Nice Sophia-Antipolis, 151 Route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Dominique Segretain
- UMR S1147, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
- University of Versailles, 78035 Saint Quentin, France
| | - Georges Pointis
- INSERM U 1065, University of Nice Sophia-Antipolis, 151 Route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Jerome Gilleron
- INSERM U 1065, University of Nice Sophia-Antipolis, 151 Route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| |
Collapse
|
23
|
Hodson DJ, Legros C, Desarménien MG, Guérineau NC. Roles of connexins and pannexins in (neuro)endocrine physiology. Cell Mol Life Sci 2015; 72:2911-28. [PMID: 26084873 DOI: 10.1007/s00018-015-1967-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 12/12/2022]
Abstract
To ensure appropriate secretion in response to demand, (neuro)endocrine tissues liberate massive quantities of hormones, which act to coordinate and synchronize biological signals in distant secretory and nonsecretory cell populations. Intercellular communication plays a central role in this control. With regard to molecular identity, junctional cell-cell communication is supported by connexin-based gap junctions. In addition, connexin hemichannels, the structural precursors of gap junctions, as well as pannexin channels have recently emerged as possible modulators of the secretory process. This review focuses on the expression of connexins and pannexins in various (neuro)endocrine tissues, including the adrenal cortex and medulla, the anterior pituitary, the endocrine hypothalamus and the pineal, thyroid and parathyroid glands. Upon a physiological or pathological stimulus, junctional intercellular coupling can be acutely modulated or persistently remodeled, thus offering multiple regulatory possibilities. The functional roles of gap junction-mediated intercellular communication in endocrine physiology as well as the involvement of connexin/pannexin-related hemichannels are also discussed.
Collapse
Affiliation(s)
- David J Hodson
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|
24
|
Bloch CL, Kedar N, Golan M, Gutnick MJ, Fleidervish IA, Levavi-Sivan B. Long-term GnRH-induced gonadotropin secretion in a novel hypothalamo-pituitary slice culture from tilapia brain. Gen Comp Endocrinol 2014; 207:21-7. [PMID: 24859253 DOI: 10.1016/j.ygcen.2014.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 12/19/2022]
Abstract
Organotypic cultures, prepared from hypothalamo-pituitary slices of tilapia, were developed to enable long-term study of secretory cells in the pituitary of a teleost. Values of membrane potential at rest were similar to those recorded from acute slices, and cells presented similar spontaneous spikes and spikelets. Some cells also exhibited slow spontaneous oscillations in membrane potential, which may be network-driven. Long-term (6days) continuous exposure to GnRH induced increases in LH and FSH secretion. FSH levels reached the highest levels after 24h of exposure to GnRH, and the highest secretion of LH was observed in days 4 and 5 of the experiment. Since slices were viable for several weeks in culture, maintaining the original cytoarchitecture, electrical membrane properties and the ability to secrete hormones in response to exogenous GnRH, this technique is ideal for studying the mechanisms regulating cell-to-cell communication under conditions resembling the in vivo tissue organization.
Collapse
Affiliation(s)
- Corinne L Bloch
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel; Koret School of Veterinary Medicine, Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Noa Kedar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Matan Golan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Michael J Gutnick
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Ilya A Fleidervish
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Berta Levavi-Sivan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
25
|
Reed AM, Kolodecik T, Husain SZ, Gorelick FS. Low pH enhances connexin32 degradation in the pancreatic acinar cell. Am J Physiol Gastrointest Liver Physiol 2014; 307:G24-32. [PMID: 24812055 PMCID: PMC4080162 DOI: 10.1152/ajpgi.00010.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/22/2014] [Indexed: 01/31/2023]
Abstract
Decreased extracellular pH is observed in a number of clinical conditions and can sensitize to the development and worsen the severity of acute pancreatitis. Because intercellular communication through gap junctions is pH-sensitive and modulates pancreatitis responses, we evaluated the effects of low pH on gap junctions in the rat pancreatic acinar cell. Decreasing extracellular pH from 7.4 to 7.0 significantly inhibited gap junctional intracellular communication. Acidic pH also significantly reduced levels of connexin32, the predominant gap junction protein in acinar cells, and altered its localization. Increased degradation through the proteasomal, lysosomal, and autophagic pathways mediated the decrease in connexin32 under low-pH conditions. These findings provide the first evidence that low extracellular pH can regulate gap junctional intercellular communication by enhancing connexin degradation.
Collapse
Affiliation(s)
- Anamika M Reed
- Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut;
| | - Thomas Kolodecik
- Veterans Affairs Healthcare System, West Haven, Connecticut; and
| | - Sohail Z Husain
- Division of Pediatric Gastroenterology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Fred S Gorelick
- Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut; Veterans Affairs Healthcare System, West Haven, Connecticut; and
| |
Collapse
|
26
|
Lee KH. Differential Expression of Multiple Connexins in Rat Corpus and Cauda Epididymis at Various Postnatal Stages. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2013. [DOI: 10.5187/jast.2013.55.6.521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Changes in connexin43 expression and localization during pancreatic cancer progression. J Membr Biol 2012; 245:255-62. [PMID: 22729649 DOI: 10.1007/s00232-012-9446-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/01/2012] [Indexed: 12/11/2022]
Abstract
Gap junctions and gap junction communication have long been recognized to play roles in tissue organization and remodeling through both cell autonomous and intercellular means. We hypothesized that these processes become dysregulated during pancreas cancer progression. Molecular and histological characterization of the gap junction protein, connexin43, during progression of pancreatic ductal adenocarcinoma could yield insight into how these events may contribute to or be modulated during carcinogenesis. In a mouse model of pancreatic ductal adenocarcinoma generated through targeted endogenous expression of Kras(G12D) in the murine pancreas, we examined the evolving expression and localization of connexin43. Overall, connexin43 expression increased over time, and its localization became more widespread. At early stages, connexin43 is found almost exclusively in association with the basolateral membrane of duct cells found in invasive lesions. Connexin43 became increasingly associated with the surrounding stroma over time. Connexin43 phosphorylation was also altered during tumorigenesis, as assessed by migrational changes of the protein in immunoblots. These data suggest a potential role for gap junctions and connexin43 in mediating interactions between and amongst the stromal and epithelial cells in pancreatic ductal adenocarcinoma.
Collapse
|
28
|
Horiguchi K, Ilmiawati C, Fujiwara K, Tsukada T, Kikuchi M, Yashiro T. Expression of chemokine CXCL12 and its receptor CXCR4 in folliculostellate (FS) cells of the rat anterior pituitary gland: the CXCL12/CXCR4 axis induces interconnection of FS cells. Endocrinology 2012; 153:1717-24. [PMID: 22355073 DOI: 10.1210/en.2011-1937] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The anterior pituitary gland is composed of five types of hormone-producing cells plus folliculostellate (FS) cells, which do not produce classical anterior pituitary hormones. FS cells are interconnected by cytoplasmic processes and encircle hormone-producing cells or aggregate homophilically. Using living-cell imaging of primary culture, we recently reported that some FS cells precisely extend their cytoplasmic processes toward other FS cells and form interconnections with them. These phenomena suggest the presence of a chemoattractant factor that facilitates the interconnection. In this study, we attempted to discover the factor that induces interconnection of FS cells and succeeded in identifying chemokine (CXC)-L12 and its receptor CXCR4 as potential candidate molecules. CXCL12 is a chemokine of the CXC subfamily. It exerts its effects via CXCR4, a G protein-coupled receptor. The CXCL12/CXCR4 axis is a potent chemoattractant for many types of neural cells. First, we revealed that CXCL12 and CXCR4 are expressed by FS cells in rat anterior pituitary gland. Next, to clarify the function of the CXCL12/CXCR4 axis in FS cells, we observed living anterior pituitary cells in primary culture with specific CXCL12 inhibitor or CXCR4 antagonist and noted that extension of cytoplasmic processes and interconnection of FS cells were inhibited. Finally, we examined FS cell migration and invasion by using Matrigel matrix assays. CXCL12 treatment resulted in markedly increased FS cell migration and invasion. These data suggest that FS cells express chemokine CXCL12 and its receptor CXCR4 and that the CXCL12/CXCR4 axis evokes interconnection of FS cells.
Collapse
Affiliation(s)
- Kotaro Horiguchi
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Czyż J, Szpak K, Madeja Z. The role of connexins in prostate cancer promotion and progression. Nat Rev Urol 2012; 9:274-82. [PMID: 22349655 DOI: 10.1038/nrurol.2012.14] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is a prevalent disease that is characterized by a presumably long latency period and a moderate propensity to metastasize. Although a range of mechanisms have been implicated in prostate carcinogenesis, the factors determining the initiation of metastasis remain obscure. The synchronized function of prostate cells depends on their metabolic and electrical coupling; disturbance of these functions has long been suggested to be integral to prostate carcinogenesis. However, although connexins form intercellular channels involved in gap-junction-mediated intercellular coupling (GJIC), whether these proteins also have GJIC-independent roles in cancer progression and metastasis remains a matter of debate. Some data indicate a correlation between connexin expression and the invasive potential of prostate cancer cells, which points to stage-specific functions of connexins during prostate cancer development. For example, restoration of connexin expression seems to be crucial for the formation of invasive cell subsets within heterogeneous prostate cancer cell populations that have undergone aberrant differentiation. Consequently, the clinical application of therapeutic and prophylactic approaches focused on the modulation of connexin expression in prostate cancer cells should be reconsidered.
Collapse
Affiliation(s)
- Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | |
Collapse
|
30
|
Functional chromaffin cell plasticity in response to stress: focus on nicotinic, gap junction, and voltage-gated Ca2+ channels. J Mol Neurosci 2012; 48:368-86. [PMID: 22252244 DOI: 10.1007/s12031-012-9707-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
An increase in circulating catecholamines constitutes one of the mechanisms whereby human body responds to stress. In response to chronic stressful situations, the adrenal medullary tissue exhibits crucial morphological and functional changes that are consistent with an improvement of chromaffin cell stimulus-secretion coupling efficiency. Stimulus-secretion coupling encompasses multiple intracellular (chromaffin cell excitability, Ca(2+) signaling, exocytosis, endocytosis) and intercellular pathways (splanchnic nerve-mediated synaptic transmission, paracrine and endocrine communication, gap junctional coupling), each of them being potentially subjected to functional remodeling upon stress. This review focuses on three chromaffin cell incontrovertible actors, the cholinergic nicotinic receptors and the voltage-dependent T-type Ca(2+) channels that are directly involved in Ca(2+)-dependent events controlling catecholamine secretion and electrical activity, and the gap junctional communication involved in the modulation of catecholamine secretion. We show here that these three actors react differently to various stressors, sometimes independently, sometimes in concert or in opposition.
Collapse
|
31
|
Hodson DJ, Romanò N, Schaeffer M, Fontanaud P, Lafont C, Fiordelisio T, Mollard P. Coordination of calcium signals by pituitary endocrine cells in situ. Cell Calcium 2011; 51:222-30. [PMID: 22172406 DOI: 10.1016/j.ceca.2011.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/08/2011] [Accepted: 11/17/2011] [Indexed: 12/20/2022]
Abstract
The pulsatile secretion of hormones from the mammalian pituitary gland drives a wide range of homeostatic responses by dynamically altering the functional set-point of effector tissues. To accomplish this, endocrine cell populations residing within the intact pituitary display large-scale changes in coordinated calcium-spiking activity in response to various hypothalamic and peripheral inputs. Although the pituitary gland is structurally compartmentalized into specific and intermingled endocrine cell networks, providing a clear morphological basis for such coordinated activity, the mechanisms which facilitate the timely propagation of information between cells in situ remain largely unexplored. Therefore, the aim of the current review is to highlight the range of signalling modalities known to be employed by endocrine cells to coordinate intracellular calcium rises, and discuss how these mechanisms are integrated at the population level to orchestrate cell function and tissue output.
Collapse
Affiliation(s)
- David J Hodson
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Dominguez C, Karayan-Tapon L, Desurmont T, Gibelin H, Crespin S, Fromont G, Levillain P, Bouche G, Cantereau A, Mesnil M, Kraimps JL. Altered expression of the gap junction protein connexin43 is associated with papillary thyroid carcinomas when compared with other noncancer pathologies of the thyroid. Thyroid 2011; 21:1057-66. [PMID: 21875346 DOI: 10.1089/thy.2011.0041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Gap junctions are membrane structures composed of connexins (Cx) that allow diffusion of small molecules between cells. They are involved in tissue homeostasis, and various organ dysfunctions have been associated with gap junction defects. To verify their possible involvement in thyroid pathologies, the expression of connexin43 (Cx43), the major Cx in the human thyroid, was evaluated in a variety of diseases including cancer. METHODS There were 122 samples from various thyroid pathologies that were collected to analyze the presence of Cx43 by immunofluorescence. Through confocal microscopy, different patterns of Cx43 localization were identified as normal (membrane) or abnormal (cytoplasmic or lack of detection). The analysis of Cx43 expression was further performed by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry in a subset of 25 papillary carcinomas and compared with nontumoral thyroid tissues. RESULTS The presence of Cx43 was commonly altered in thyroid cancer, as abnormal Cx43 staining was detected in 94.1% of cancer, 47.4% of adenomas, 45.7% of multinodular goiter, 16.7% of Graves' disease, and 25% of thyroiditis. In papillary carcinoma samples, the deregulation of Cx43 expression was mostly the consequence of a decrease of Cx43 mRNA (68% of cases) when compared with normal tissue. When Cx43 mRNA was not downregulated (32% of cases), both loss of membrane staining and aberrant cytoplasmic distribution of the protein were observed. CONCLUSIONS These results show that aberrations of Cx43 expression are associated with thyroid papillary carcinoma.
Collapse
Affiliation(s)
- Claudia Dominguez
- Department of Visceral Surgery, Jean Bernard Hospital, University Hospital Center (CHU) of Poitiers, Poitiers, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Potolicchio I, Cigliola V, Velazquez-Garcia S, Klee P, Valjevac A, Kapic D, Cosovic E, Lepara O, Hadzovic-Dzuvo A, Mornjacovic Z, Meda P. Connexin-dependent signaling in neuro-hormonal systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1919-36. [PMID: 22001400 DOI: 10.1016/j.bbamem.2011.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/14/2011] [Accepted: 09/23/2011] [Indexed: 01/04/2023]
Abstract
The advent of multicellular organisms was accompanied by the development of short- and long-range chemical signalling systems, including those provided by the nervous and endocrine systems. In turn, the cells of these two systems have developed mechanisms for interacting with both adjacent and distant cells. With evolution, such mechanisms have diversified to become integrated in a complex regulatory network, whereby individual endocrine and neuro-endocrine cells sense the state of activity of their neighbors and, accordingly, regulate their own level of functioning. A consistent feature of this network is the expression of connexin-made channels between the (neuro)hormone-producing cells of all endocrine glands and secretory regions of the central nervous system so far investigated in vertebrates. This review summarizes the distribution of connexins in the mammalian (neuro)endocrine systems, and what we know about the participation of these proteins on hormone secretion, the life of the producing cells, and the action of (neuro)hormones on specific targets. The data gathered since the last reviews on the topic are summarized, with particular emphasis on the roles of Cx36 in the function of the insulin-producing beta cells of the endocrine pancreas, and of Cx40 in that of the renin-producing juxta-glomerular epithelioid cells of the kidney cortex. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Ilaria Potolicchio
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.
Collapse
Affiliation(s)
- Domenico Bosco
- Department of Surgery, University of Geneva Medical School, Geneva, Switzerland
| | | | | |
Collapse
|
35
|
Ozato-Sakurai N, Fujita A, Fujimoto T. The distribution of phosphatidylinositol 4,5-bisphosphate in acinar cells of rat pancreas revealed with the freeze-fracture replica labeling method. PLoS One 2011; 6:e23567. [PMID: 21858170 PMCID: PMC3156236 DOI: 10.1371/journal.pone.0023567] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/20/2011] [Indexed: 12/22/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a phospholipid that has been implicated in multiple cellular activities. The distribution of PI(4,5)P2 has been analyzed extensively using live imaging of the GFP-coupled phospholipase C-δ1 pleckstrin homology domain in cultured cell lines. However, technical difficulties have prevented the study of PI(4,5)P2 in cells of in vivo tissues. We recently developed a method to analyze the nanoscale distribution of PI(4,5)P2 in cultured cells by using the quick-freezing and freeze-fracture replica labeling method. In principle, this method can be applied to any cell because it does not require the expression of artificial probes. In the present study, we modified the method to study cells of in vivo tissues and applied it to pancreatic exocrine acinar cells of the rat. We found that PI(4,5)P2 in the plasma membrane is distributed in an equivalent density in the apical and basolateral domains, but exists in a significantly higher concentration in the gap junction. The intracellular organelles did not show labeling for PI(4,5)P2. The results are novel or different from the reported distribution patterns in cell lines and highlight the importance of studying cells differentiated in vivo.
Collapse
Affiliation(s)
- Nami Ozato-Sakurai
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akikazu Fujita
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (AF); (TF)
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (AF); (TF)
| |
Collapse
|
36
|
Colomer C, Martin AO, Desarménien MG, Guérineau NC. Gap junction-mediated intercellular communication in the adrenal medulla: an additional ingredient of stimulus-secretion coupling regulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1937-51. [PMID: 21839720 DOI: 10.1016/j.bbamem.2011.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/20/2011] [Accepted: 07/25/2011] [Indexed: 01/28/2023]
Abstract
The traditional understanding of stimulus-secretion coupling in adrenal neuroendocrine chromaffin cells states that catecholamines are released upon trans-synaptic sympathetic stimulation mediated by acetylcholine released from the splanchnic nerve terminals. Although this statement remains largely true, it deserves to be tempered. In addition to its neurogenic control, catecholamine secretion also depends on a local gap junction-mediated communication between chromaffin cells. We review here the insights gained since the first description of gap junctions in the adrenal medullary tissue. Adrenal stimulus-secretion coupling now appears far more intricate than was previously envisioned and its deciphering represents a challenge for neurobiologists engaged in the study of the regulation of neuroendocrine secretion. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Claude Colomer
- Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
| | | | | | | |
Collapse
|
37
|
Li S, Bjelobaba I, Yan Z, Kucka M, Tomic M, Stojilkovic SS. Expression and roles of pannexins in ATP release in the pituitary gland. Endocrinology 2011; 152:2342-52. [PMID: 21467198 PMCID: PMC3100624 DOI: 10.1210/en.2010-1216] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pannexins are a newly discovered three-member family of proteins expressed in the brain and peripheral tissues that belong to the superfamily of gap junction proteins. However, in mammals pannexins do not form gap junctions, and their expression and function in the pituitary gland have not been studied. Here we show that the rat pituitary gland expresses mRNA and protein transcripts of pannexins 1 and 2 but not pannexin 3. Pannexin 1 was more abundantly expressed in the anterior lobe, whereas pannexin 2 was more abundantly expressed in the intermediate and posterior pituitary. Pannexin 1 was identified in corticotrophs and a fraction of somatotrophs, the S100-positive pituicytes of the posterior pituitary and AtT-20 (mouse pituitary adrenocorticotropin-secreting cells) and rat immortalized pituitary cells secreting prolactin, whereas pannexin 2 was detected in the S100-positive folliculostellate cells of the anterior pituitary, melanotrophs of the intermediate lobe, and vasopressin-containing axons and nerve endings in the posterior lobe. Overexpression of pannexins 1 and 2 in AtT-20 pituitary cells enhanced the release of ATP in the extracellular medium, which was blocked by the gap junction inhibitor carbenoxolone. Basal ATP release in At-T20 cells was also suppressed by down-regulating the expression of endogenous pannexin 1 but not pannexin 2 with their short interfering RNAs. These results indicate that pannexins may provide a pathway for delivery of ATP, which is a native agonist for numerous P2X cationic channels and G protein-coupled P2Y receptors endogenously expressed in the pituitary gland.
Collapse
Affiliation(s)
- Shuo Li
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to maintain the cells in a responsive state with cytosolic calcium near, but below, the threshold level. Some pituitary cells also express gap junction channels, which could be used for intercellular Ca(2+) signaling in these cells. Endocrine cells also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hormones leads to amplification of the pacemaking activity and facilitation of calcium influx and hormone release. These cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action potential-dependent calcium influx and hormone release. Other members of this receptor family can activate calcium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This review summarizes recent findings in this field and our current understanding of the complex relationship between voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in pituitary cells.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA.
| | | | | |
Collapse
|
39
|
Carvalho CPF, Barbosa HCL, Britan A, Santos-Silva JCR, Boschero AC, Meda P, Collares-Buzato CB. Beta cell coupling and connexin expression change during the functional maturation of rat pancreatic islets. Diabetologia 2010; 53:1428-37. [PMID: 20361177 DOI: 10.1007/s00125-010-1726-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/22/2010] [Indexed: 12/01/2022]
Abstract
AIMS/HYPOTHESIS Cell-cell coupling mediated by gap junctions formed from connexin (CX) contributes to the control of insulin secretion in the endocrine pancreas. We investigated the cellular production and localisation of CX36 and CX43, and gap junction-mediated beta cell coupling in pancreatic islets from rats of different ages, displaying different degrees of maturation of insulin secretion. METHODS The presence and distribution of islet connexins were assessed by immunoblotting and immunofluorescence. The expression of connexin genes was evaluated by RT-PCR and quantitative real-time PCR. The ultrastructure of gap junctions and the function of connexin channels were assessed by freeze-fracture electron microscopy and tracer microinjection, respectively. RESULTS Young and adult beta cells, which respond to glucose, expressed significantly higher levels of Cx36 (also known as Gjd2) than fetal and newborn beta cells, which respond poorly to the sugar. Accordingly, adult beta cells also showed a significantly higher membrane density of gap junctions and greater intercellular exchange of ethidium bromide than newborn beta cells. Cx43 (also known as Gja1) was not expressed by beta cells, but was located in various cell types at the periphery of fetal and newborn islets. CONCLUSIONS/INTERPRETATION These findings show that the pattern of connexins, gap junction membrane density and coupling changes in islets during the functional maturation of beta cells.
Collapse
Affiliation(s)
- C P F Carvalho
- Department of Histology and Embryology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, CEP 13083-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
40
|
Shitara A, Tanimura A, Sato A, Tojyo Y. Spontaneous oscillations in intracellular Ca(2+) concentration via purinergic receptors elicit transient cell swelling in rat parotid ducts. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1198-205. [PMID: 19779019 DOI: 10.1152/ajpgi.00168.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using multiphoton microscopy, we established that rat parotid ductal cells exhibit spontaneous oscillations in intracellular Ca(2+) concentration ([Ca(2+)](i)). These oscillatory Ca(2+) responses were observed during continuous perfusion with a physiological salt solution at 37 degrees C in the absence of calcium mobilizing agonist stimulation. The timing and patterns of these spontaneous Ca(2+) oscillations varied among individual ductal cells, and the average number of Ca(2+) responses in a single responding ductal cell was 2.1 in a 10-min recording period. High-speed scanning (0.6 s/image) revealed that most spontaneous elevations in [Ca(2+)](i) were initiated at the luminal side of ductal cells and spread toward the basal side within 2 s. Electron microscopic analysis after Ca(2+) imaging indicated that spontaneously oscillating ducts contained numerous granules at the luminal side, which is characteristic of granular ducts. These Ca(2+) oscillations were completely blocked by the purinergic receptor inhibitors 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid (PPADS) and suramin but were not blocked by the muscarinic antagonist atropine or the alpha-adrenergic antagonist phentolamine. Simultaneous observation of fura-2 fluorescence and differential interference contrast (DIC) images showed that spontaneous elevations of [Ca(2+)](i) were well correlated with changes in shape of ductal cells. Using a plasma membrane fluorescence probe, SynaptoGreen C4, we found that the changes in DIC images reflected spontaneous cell swelling of ductal cells. Our findings present the possibility that purinergic receptors mediate spontaneous Ca(2+) oscillations in parotid ductal cells and regulate electrolyte reabsorption from the primary saliva in the resting state.
Collapse
Affiliation(s)
- Akiko Shitara
- Dept. of Pharmacology, Health Sciences Univ. of Hokkaido, Japan
| | | | | | | |
Collapse
|
41
|
Colomer C, Desarménien MG, Guérineau NC. Revisiting the stimulus-secretion coupling in the adrenal medulla: role of gap junction-mediated intercellular communication. Mol Neurobiol 2009; 40:87-100. [PMID: 19444654 PMCID: PMC2879034 DOI: 10.1007/s12035-009-8073-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/28/2009] [Indexed: 01/09/2023]
Abstract
The current view of stimulation-secretion coupling in adrenal neuroendocrine chromaffin cells holds that catecholamines are released upon transsynaptic sympathetic stimulation mediated by acetylcholine released from the splanchnic nerve terminals. However, this traditional vertical scheme would merit to be revisited in the light of recent data. Although electrical discharges invading the splanchnic nerve endings are the major physiological stimulus to trigger catecholamine release in vivo, growing evidence indicates that intercellular chromaffin cell communication mediated by gap junctions represents an additional route by which biological signals (electrical activity, changes in intracellular Ca(2+) concentration,...) propagate between adjacent cells and trigger subsequent catecholamine exocytosis. Accordingly, it has been proposed that gap junctional communication efficiently helps synapses to lead chromaffin cell function and, in particular, hormone secretion. The experimental clues supporting this hypothesis are presented and discussed with regards to both interaction with the excitatory cholinergic synaptic transmission and physiopathology of the adrenal medulla.
Collapse
Affiliation(s)
- Claude Colomer
- IGF, Institut de génomique fonctionnelle
CNRS : UMR5203INSERM : U661Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc141, Rue de la Cardonille 34094 MONTPELLIER CEDEX 5,FR
| | - Michel G. Desarménien
- IGF, Institut de génomique fonctionnelle
CNRS : UMR5203INSERM : U661Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc141, Rue de la Cardonille 34094 MONTPELLIER CEDEX 5,FR
| | - Nathalie C. Guérineau
- IGF, Institut de génomique fonctionnelle
CNRS : UMR5203INSERM : U661Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc141, Rue de la Cardonille 34094 MONTPELLIER CEDEX 5,FR
| |
Collapse
|
42
|
Murray SA, Nickel BM, Gay VL. Gap junctions as modulators of adrenal cortical cell proliferation and steroidogenesis. Mol Cell Endocrinol 2009; 300:51-6. [PMID: 18973789 DOI: 10.1016/j.mce.2008.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/18/2008] [Accepted: 09/22/2008] [Indexed: 11/28/2022]
Abstract
Gap junctions are membrane specializations that are composed of connexin protein. The assembly of these proteins into channels between cells allows for the intercellular transfer of regulatory molecules. In the adrenal gland, as in most other tissues, intercellular communication provides the potential for regulation of a number of complex interactive cell processes including differentiation, steroidogenesis, migration, and proliferation. This review is concerned with the regulation of gap junctions and cell function in cortical cells of the adrenal gland and in pathological disorders such as adrenal cancer.
Collapse
Affiliation(s)
- S A Murray
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA l5261, United States.
| | | | | |
Collapse
|
43
|
Horiguchi K, Fujiwara K, Kouki T, Kikuchi M, Yashiro T. Immunohistochemistry of connexin 43 throughout anterior pituitary gland in a transgenic rat with green fluorescent protein-expressing folliculo-stellate cells. Anat Sci Int 2009; 83:256-60. [PMID: 19159354 DOI: 10.1111/j.1447-073x.2008.00239.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Folliculo-stellate (FS) cells in the anterior pituitary gland have been speculated to possess multifunctional properties. Because gap junctions (GJ) have been identified between FS cells, FS cells may be interconnected electrophysiologically by GJ and serve as signal transmission networks to modulate hormone release in the anterior pituitary gland. But whether GJ are localized among FS cells from the pars tuberalis through the pars distalis is unclear. The S100b-GFP transgenic rat has recently been generated, which expresses green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary. This model is expected to be a powerful tool for studies of FS cells. The purpose of the present paper was therefore to examine the localization of GJ on connexin 43 immunohistochemistry throughout the anterior pituitary gland of S100b-GFP rats under confocal laser microscopy. The localization patterns of FS cells was also observed in primary culture of anterior pituitary cells and the question of whether GJ between FS cells are reconstructed in vitro was investigated. In vivo studies showed that GJ were present specifically between FS cells from the pars tuberalis to the pars distalis in the anterior pituitary gland. The appearance of FS cells was distinguished into two types, with localization of GJ differing between types. In vitro, it was observed for the first time that FS cells in primary culture could be categorized into two types. In vivo localization of GJ between FS cells was reconstructed in vitro. These morphological observations are consistent with the hypothesis that FS cells form an electrophysiological network throughout the anterior pituitary for signal transmission.
Collapse
Affiliation(s)
- Kotaro Horiguchi
- Department of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | | | | | | | | |
Collapse
|
44
|
Serre-Beinier V, Bosco D, Zulianello L, Charollais A, Caille D, Charpantier E, Gauthier BR, Diaferia GR, Giepmans BN, Lupi R, Marchetti P, Deng S, Buhler L, Berney T, Cirulli V, Meda P. Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Hum Mol Genet 2009; 18:428-39. [PMID: 19000992 PMCID: PMC2638800 DOI: 10.1093/hmg/ddn370] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous studies have documented that the insulin-producing beta-cells of laboratory rodents are coupled by gap junction channels made solely of the connexin36 (Cx36) protein, and have shown that loss of this protein desynchronizes beta-cells, leading to secretory defects reminiscent of those observed in type 2 diabetes. Since human islets differ in several respects from those of laboratory rodents, we have now screened human pancreas, and islets isolated thereof, for expression of a variety of connexin genes, tested whether the cognate proteins form functional channels for islet cell exchanges, and assessed whether this expression changes with beta-cell function in islets of control and type 2 diabetics. Here, we show that (i) different connexin isoforms are differentially distributed in the exocrine and endocrine parts of the human pancreas; (ii) human islets express at the transcript level different connexin isoforms; (iii) the membrane of beta-cells harbors detectable levels of gap junctions made of Cx36; (iv) this protein is concentrated in lipid raft domains of the beta-cell membrane where it forms gap junctions; (v) Cx36 channels allow for the preferential exchange of cationic molecules between human beta-cells; (vi) the levels of Cx36 mRNA correlated with the expression of the insulin gene in the islets of both control and type 2 diabetics. The data show that Cx36 is a native protein of human pancreatic islets, which mediates the coupling of the insulin-producing beta-cells, and contributes to control beta-cell function by modulating gene expression.
Collapse
Affiliation(s)
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Laurence Zulianello
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Anne Charollais
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Dorothée Caille
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Eric Charpantier
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Benoit R. Gauthier
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| | - Giuseppe R. Diaferia
- Islet Research Laboratory, The Whittier Institute for Diabetes, University of California San Diego, La Jolla, CA, USA
| | - Ben N. Giepmans
- Department of Cell Biology, University of Groningen, Groningen, The Netherlands
| | - Roberto Lupi
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Shaoping Deng
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Léo Buhler
- Surgical Research Unit, Department of Surgery
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Vincenzo Cirulli
- Islet Research Laboratory, The Whittier Institute for Diabetes, University of California San Diego, La Jolla, CA, USA
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, CMU 1, rue Michel-Servet, 1211 Geneva 4, CH, Switzerland
| |
Collapse
|
45
|
ODDD-linked Cx43 mutants reduce endogenous Cx43 expression and function in osteoblasts and inhibit late stage differentiation. J Bone Miner Res 2008; 23:928-38. [PMID: 18269311 DOI: 10.1359/jbmr.080217] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Bone development and modeling requires precise gap junctional intercellular communication (GJIC). Oculodentodigital dysplasia (ODDD) is an autosomal dominant human disease caused by mutations in the gene (GJA1) encoding the gap junction protein, connexin43 (Cx43). The disease is characterized by craniofacial bone deformities and limb abnormalities. It is our hypothesis that Cx43 mutation causes osteoblast dysfunction, which may contribute to the bone phenotype of ODDD. MATERIALS AND METHODS We expressed human and mouse ODDD-linked Cx43 mutants in MC3T3-E1 cells and primary mouse osteoblasts by retroviral infection and evaluated their in vitro differentiation as an index of osteoblast function. We compared these findings to the differentiation of osteoblasts isolated from a mouse model of ODDD that harbors a germ line Cx43 mutation and exhibits craniofacial and limb defects mimicking human ODDD. We determined the differentiation status of osteoblasts by analyzing alkaline phosphatase activity and the expression levels of osteoblast markers including bone sialoprotein and osteocalcin. RESULTS We showed that ODDD-linked Cx43 mutants are loss-of-function and dominant-negative to co-expressed Cx43 and, furthermore, greatly inhibit functional GJIC in osteoblasts. Surprisingly, the mutants had only a minor effect on osteoblast differentiation when introduced into lineage committed cells. In contrast, osteoblasts isolated from the ODDD mouse model exhibited impaired late stage differentiation. CONCLUSIONS Expression of human and mouse ODDD-linked Cx43 mutants failed to significantly impair differentiation in cells predisposed to the osteoblast lineage; however, germ line reduction of Cx43-based GJIC leads to impaired osteoblast differentiation, which may account for the bone phenotypes observed in ODDD patients.
Collapse
|
46
|
Prost G, Bernier-Valentin F, Munari-Silem Y, Selmi-Ruby S, Rousset B. Connexin-32 acts as a downregulator of growth of thyroid gland. Am J Physiol Endocrinol Metab 2008; 294:E291-9. [PMID: 18042666 DOI: 10.1152/ajpendo.00281.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thyroid epithelial cells communicate through gap junctions formed from connexin (Cx)32, Cx43, and Cx26. We previously reported that reexpression of Cx32 in "gap junction-deficient" FRTL-5 and FRT thyroid cell lines induces a reduction of cell proliferation rate and an activation of expression of cell differentiation. The present study aimed at determining whether Cx32 could exert similar regulatory functions in vivo. We investigated morphological and functional characteristics of thyroid gland of Cx32-deficient mice (Cx32-KO), mice overexpressing Cx32 selectively in the thyroid (Cx32-T+), and Cx32-KO mice with a thyroid-selective Cx32 complementation obtained by crossing Cx32-KO and Cx32-T+ mice. In basal conditions, Cx32-KO mice did not present any detectable thyroid alteration, whereas Cx32-T+ mice showed a thyroid hypoplasia (20% reduction) associated with a slight increase in thyroid functional activity. Under thyrotropin stimulation (following sodium perchlorate treatment), Cx32-KO mice developed a larger goiter (< or =65% increase) than wild-type littermates, whereas Cx32-T+ mice exhibited the same thyroid hyperplasia as wild-type mice. Restoration of Cx32 expression in the thyroid of Cx32-KO mice abrogated the thyroid growth increase related to Cx32 deficiency. All together, these data show that Cx32 acts as a downregulator of growth of thyroid gland; an excess of Cx32 limits growth of thyroid cells in the basal state, whereas a lack of Cx32 confers an additional growth potential to TSH-stimulated thyroid cells.
Collapse
Affiliation(s)
- Gaëlle Prost
- INSERM UMR 664, Faculté de Médecine Laennec, 7 rue Guillaume Paradin, Lyon Cedex 08, France
| | | | | | | | | |
Collapse
|
47
|
Pin CL, Johnson CL, Rade B, Kowalik AS, Garside VC, Everest ME. Identification of a transcription factor, BHLHB8, involved in mouse seminal vesicle epithelium differentiation and function. Biol Reprod 2007; 78:91-100. [PMID: 17901072 DOI: 10.1095/biolreprod.107.064196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The seminal vesicle is a male accessory sex organ that develops from segments of the Wolffian duct adjacent to the urogenital sinus. It produces most of the seminal plasma in both humans and rodents. To date, very few transcription factors have been linked to the development and differentiation of seminal vesicles. In this study, we have examined the role of basic helix-loop-helix (BHLH) B8 transcription factor expressed at high levels in the adult seminal vesicle and during seminal gland differentiation. Immunofluorescent studies indicate that BHLHB8 is expressed within the epithelial layer of the seminal layer of the seminal vesicle following branching morphogenesis but prior to full maturation of cell morphology and function. Analysis of mice that do not express BHLHB8 (Bhlhb8(-/-)) indicates no deficiency in the initial development of the seminal vesicle. However, morphological and ultrastructural analysis indicates disruption of the epithelial cellular architecture. The seminal vesicle epithelial layer of 2-mo-old Bhlhb8(-/-) mice shows extensive cellular degeneration based on the appearance of reduced microvilli, altered granule size, and dilated endoplasmic reticulum and Golgi apparatus. The seminal vesicle epithelial cells also degenerate prematurely, as evidenced by disruption of nuclear architecture and significant accumulations of autophagic bodies. These results identify BHLHB8 as a regulator in establishing and stabilizing the secreting epithelial cells of the seminal vesicle.
Collapse
Affiliation(s)
- Christopher L Pin
- Department of Paediatrics, The University of Western Ontario, Children's Health Research Institute, London, ON, Canada.
| | | | | | | | | | | |
Collapse
|
48
|
Barthelemy J, Adeeko A, Robaire B, Cyr DG. In utero exposure to tributyltin alters the expression of e-cadherin and localization of claudin-1 in intercellular junctions of the rat ventral prostate. Mol Reprod Dev 2007; 74:455-67. [PMID: 17120308 DOI: 10.1002/mrd.20537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tributyltin (TBT) is an environmental contaminant, exhibiting well-established toxicity to reproductive systems in aquatic organisms. Little information exists regarding the effects of TBT on mammalian reproduction. Cellular junctions are crucial for sperm development and maturation. Intercellular tight junctions are formed by transmembrane proteins such as claudins (Cldns), while the formation of tight junctions involves signaling components of adhering junctions, comprised of cadherins. The objectives of this study were to determine the effects of in utero exposure to TBT on the rat ventral prostate. Pregnant Sprague-Dawley rats were given doses of TBT (2.5, 10, or 20 mg/kg) throughout gestation and sacrificed at Day 91. Ventral prostate weights of TBT-treated rats were decreased in all treatment groups. Results of gene expression macro-array analysis indicated that numerous genes related to cellular adhesion and cell polarity were affected. Cldn-1 mRNA levels decreased after exposure to TBT. Cldn-1 was immunolocalized to the apical lateral margins of adjacent prostatic epithelial cells in controls, but was increasingly dispersed along the lateral plasma membrane with increasing TBT dose, suggesting that the targeting of Cldn-1 or its localization to tight junctions was altered as a result of fetal TBT exposure. E-cadherin mRNA levels and immunolocalization were decreased in a dose-dependent manner. These data indicate that in utero TBT exposure results in permanent alterations in ventral prostate and that these are associated with alterations in the expression and distribution of cell adhesion and tight junctional proteins.
Collapse
Affiliation(s)
- Johanna Barthelemy
- INRS-Institut Armand-Frappier, Université du Québec, Pointe Claire, Quebec, Canada
| | | | | | | |
Collapse
|
49
|
Dakin K, Li WH. Local Ca2+ rise near store operated Ca2+ channels inhibits cell coupling during capacitative Ca2+ influx. ACTA ACUST UNITED AC 2006; 13:29-39. [PMID: 16613778 DOI: 10.1080/15419060600631425] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Using a new fluorescence imaging technique, LAMP, we recently reported that Ca(2+) influx through store operated Ca(2+) channels (SOCs) strongly inhibits cell coupling in primary human fibroblasts (HF) expressing Cx43. To understand the mechanism of inhibition, we studied the involvement of cytosolic pH (pH(i)) and Ca(2+)([Ca(2+)](i)) in the process by using fluorescence imaging and ion clamping techniques. During the capacitative Ca(2+) influx, there was a modest decline of pH(i) measured by BCECF. Decreasing pH(i) below neutral using thioacetate had little effect by itself on cell coupling, and concomitant pH(i) drop with thioacetate and bulk [Ca(2+)(i) rise with ionomycin was much less effective in inhibiting cell coupling than Ca(2+) influx. Moreover, clamping pH(i) with a weak acid and a weak base during Ca(2+) influx largely suppressed bulk pH(i) drop, yet the inhibition of cell coupling was not affected. In contrast, buffering [Ca(2+)(i) with BAPTA, but not EGTA, efficiently prevented cell uncoupling by Ca(2+) influx. We concluded that local Ca(2+) elevation subjacent to the plasma membrane is the primary cause for closing Cx43 channels during capacitative Ca(2+) influx. To assess how Ca(2+) influx affects junctional coupling mediated by other types of connexins, we applied the LAMP assay to Hela cells expressing Cx26. Capacitative Ca(2+) influx also caused a strong reduction of cell coupling, suggesting that the inhibitory effect by Ca(2+) influx may be a more general phenomenon.
Collapse
Affiliation(s)
- Kenneth Dakin
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, 75390-9039, USA
| | | |
Collapse
|
50
|
Abstract
Evaluation of the human genome suggests that all members of the connexin family of gap-junction proteins have now been successfully identified. This large and diverse family of proteins facilitates a number of vital cellular functions coupled with their roles, which range from the intercellular propagation of electrical signals to the selective intercellular passage of small regulatory molecules. Importantly, the extent of gap-junctional intercellular communication is under the direct control of regulatory events associated with channel assembly and turnover, as the vast majority of connexins have remarkably short half-lives of only a few hours. Since most cell types express multiple members of the connexin family, compensatory mechanisms exist to salvage tissue function in cases when one connexin is mutated or lost. However, numerous studies of the last decade have revealed that mutations in connexin genes can also lead to severe and debilitating diseases. In many cases, single point mutations lead to dramatic effects on connexin trafficking, assembly and channel function. This review will assess the current understanding of wild-type and selected disease-linked mutant connexin transport through the secretory pathway, gap-junction assembly at the cell surface, internalization and degradation.
Collapse
Affiliation(s)
- Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|