1
|
Arumugam B, Vairamani M, Partridge NC, Selvamurugan N. Characterization of Runx2 phosphorylation sites required for TGF‐β1‐mediated stimulation of matrix metalloproteinase‐13 expression in osteoblastic cells. J Cell Physiol 2017; 233:1082-1094. [DOI: 10.1002/jcp.25964] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/14/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mariappanadar Vairamani
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| | - Nicola C. Partridge
- Department of Basic Science and Craniofacial BiologyNew York University College of Dentistry, New York UniversityNew YorkNew York
| | - Nagarajan Selvamurugan
- Department of BiotechnologySchool of BioengineeringSRM UniversityKattankulathurTamil NaduIndia
| |
Collapse
|
2
|
Yang CM, Hsieh HL, Yao CC, Hsiao LD, Tseng CP, Wu CB. Protein kinase C-delta transactivates platelet-derived growth factor receptor-alpha in mechanical strain-induced collagenase 3 (matrix metalloproteinase-13) expression by osteoblast-like cells. J Biol Chem 2009; 284:26040-50. [PMID: 19633290 DOI: 10.1074/jbc.m109.040154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase-13 (MMP-13, or collagenase 3) has been shown to degrade intact collagen and to participate in situations where rapid and effective remodeling of collagenous ECM is required. Mechanical strain induction of MMP-13 is an example of how osteoblasts respond to high mechanical forces and participate in the bone-remodeling mechanism. Using MC3T3-E1 osteoblast-like cells, we dissected the signaling molecules involved in MMP-13 induction by mechanical strain. Reverse transcription-PCR and zymogram analysis showed that platelet-derived growth factor receptor (PDGFR) inhibitor, AG1296, inhibited the mechanical strain-induced MMP-13 gene and activity. However, the induction was not affected by anti-PDGF-AA serum. Immunoblot analysis revealed time-dependent phosphorylation of PDGFR-alpha up to 2.7-fold increases within 3 min under strain. Transfection with shPDGFR-alpha (at 4 and 8 microg/ml) abolished PDGFR-alpha and reduced MMP-13 expression. Moreover, time-dependent recruitments of phosphoinositide 3-kinase (PI3K) by PDGFR-alpha were detected by immunoprecipitation with anti-PDGFR-alpha serum followed by immunoblot with anti-PI3K serum. AG1296 inhibited PDGFR-alpha/PI3K aggregation and Akt phosphorylation. Interestingly, protein kinase C-delta (PKC-delta) inhibitor, rottlerin, inhibited not only PDGFR-alpha/PI3K aggregation but PDGFR-alpha phosphorylation. The sequential activations were further confirmed by mutants DeltaPKC-delta, DeltaAkt, and DeltaERK1. Consistently, the primary mouse osteoblast cells used the same identified signaling molecules to express MMP-13 under mechanical strain. These results demonstrate that, in osteoblast-like cells, the MMP-13 induction by mechanical strain requires the transactivation of PDGFR-alpha by PKC-delta and the cross-talk between PDGFR-alpha/PI3K/Akt and MEK/ERK pathways.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Pharmacology, Chang Gung University, Tao-Yuan 333, Taiwan
| | | | | | | | | | | |
Collapse
|
3
|
Maeda T, Horiuchi N. Simvastatin suppresses leptin expression in 3T3-L1 adipocytes via activation of the cyclic AMP-PKA pathway induced by inhibition of protein prenylation. J Biochem 2009; 145:771-81. [PMID: 19254925 DOI: 10.1093/jb/mvp035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Simvastatin inhibits 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which catalyses conversion of HMG-CoA to mevalonate, a rate-limiting step in cholesterol synthesis. We demonstrated that simvastatin at 1 microM markedly inhibited adipocyte differentiation measured by Oil Red O staining in preadipocyte cells (3T3-L1), while expression of leptin, a marker of adipocyte differentiation, was suppressed by 1 muM simvastatin for up to 12 days of culture. Next, to elucidate mechanisms underlying the reduction of leptin expression induced by simvastatin, differentiated 3T3-L1 adipocytes were treated with various inhibitors with mevalonate or its metabolite in the presence or absence of simvastatin. Simvastatin time- and dose-dependently suppressed leptin mRNA expression. Heterogeneous nuclear RNA related to leptin mRNA was inhibited by 10 muM simvastatin, while stability of the mRNA was not changed by treatment with simvastatin in transcription-arrested 3T3-L1 cells. Simvastatin inhibition of leptin gene transcription was not abrogated by pre-treatment with cycloheximide, an inhibitor of protein synthesis. Addition of mevalonate or geranylgeranyl pyrophosphate (GGPP), a mevalonate metabolite, abolished simvastatin-induced inhibition of leptin expression in 3T3-L1 cells. Suppression of expression was observed upon addition of GGTI-298, a geranylgeranyl transferase I inhibitor, but not FTI-277, a farnesyl transferase inhibitor. Expression was suppressed by treatment with hydroxyfasudil, a protein prenylation inhibitor. Treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors, LY294002 and wortmannin, reduced leptin expression in 3T3-L1 cells. Simvastatin dose-dependently increased intra-cellular cyclic AMP (cAMP) concentrations in 3T3-L1 cells, with maximal stimulation obtained at 10 muM. Addition of GGPP abolished simvastatin-induced stimulation of cAMP accumulation and protein kinase A (PKA) activity. H89, an inhibitor of PKA, completely abolished simvastatin-induced suppression of leptin expression. These results suggested that simvastatin reduced geranylgeranylprotein prenylation followed by deactivation of PI3K, leading to cAMP accumulation and subsequent activation of PKA in differentiated 3T3-L1 adipocytes. Finally, PKA inhibited leptin gene transcription without new protein synthesis.
Collapse
Affiliation(s)
- Toyonobu Maeda
- Section of Biochemistry, Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama 963-8611, Japan
| | | |
Collapse
|
4
|
Burrage PS, Schmucker AC, Ren Y, Sporn MB, Brinckerhoff CE. Retinoid X receptor and peroxisome proliferator-activated receptor-gamma agonists cooperate to inhibit matrix metalloproteinase gene expression. Arthritis Res Ther 2008; 10:R139. [PMID: 19046432 PMCID: PMC2656243 DOI: 10.1186/ar2564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/06/2008] [Accepted: 12/01/2008] [Indexed: 12/18/2022] Open
Abstract
Introduction We recently described the ability of retinoid X receptor (RXR) ligand LG100268 (LG268) to inhibit interleukin-1-beta (IL-1-β)-driven matrix metalloproteinase-1 (MMP-1) and MMP-13 gene expression in SW-1353 chondrosarcoma cells. Other investigators have demonstrated similar effects in chondrocytes treated with rosiglitazone, a ligand for peroxisome proliferator-activated receptor-gamma (PPARγ), for which RXR is an obligate dimerization partner. The goals of this study were to evaluate the inhibition of IL-1-β-induced expression of MMP-1 and MMP-13 by combinatorial treatment with RXR and PPARγ ligands and to investigate the molecular mechanisms of this inhibition. Methods We used real-time reverse transcription-polymerase chain reaction to measure LG268- and rosiglitazone-mediated inhibition of MMP gene transcription in IL-1-β-treated SW-1353 chondrosarcoma cells. An in vitro collagen destruction assay was a functional readout of MMP collagenolytic activity. Luciferase reporter assays tested the function of a putative regulatory element in the promoters of MMP-1 and MMP-13, and chromatin immunoprecipitation (ChIP) assays detected PPARγ and changes in histone acetylation at this site. Post-translational modification of RXR and PPARγ by small ubiquitin-like modifier (SUMO) was assayed with immunoprecipitation and Western blot. Results Rosiglitazone inhibited MMP-1 and MMP-13 expression in IL-1-β-treated SW-1353 cells at the mRNA and heterogeneous nuclear RNA levels and blunted IL-1-β-induced collagen destruction in vitro. Combining LG268 and rosiglitazone had an additive inhibitory effect on MMP-1 and MMP-13 transcription and collagenolysis. IL-1-β inhibited luciferase expression in the MMP reporter assay, but rosiglitazone and LG268 had no effect. ChIP indicated that treatment with IL-1-β, but not LG268 and rosiglitazone, increased PPARγ at the proximal promoters of both MMPs. Finally, rosiglitazone or LG268 induced 'cross-SUMOylation' of both the target receptor and its binding partner, and IL-1-β-alone had no effect on SUMOylation of RXR and PPARγ but antagonized the ligand-induced SUMOylation of both receptors. Conclusions The PPARγ and RXR ligands rosiglitazone and LG268 may act through similar mechanisms, inhibiting MMP-1 and MMP-13 transcription. Combinatorial treatment activates each partner of the RXR:PPARγ heterodimer and inhibits IL-1-β-induced expression of MMP-1 and MMP-13 more effectively than either compound alone. We conclude that the efficacy of combined treatment with lower doses of each drug may minimize potential side effects of treatment with these compounds.
Collapse
Affiliation(s)
- Peter S Burrage
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | | | |
Collapse
|
5
|
Chiu YC, Huang TH, Fu WM, Yang RS, Tang CH. Ultrasound stimulates MMP-13 expression through p38 and JNK pathway in osteoblasts. J Cell Physiol 2008; 215:356-65. [PMID: 17941091 DOI: 10.1002/jcp.21322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has been shown that ultrasound (US) stimulation accelerates fracture healing, bone maturation, and remodeling in the animal models and in clinical studies. One of the major factor involves in remodeling process is matrix metalloproteinases (MMPs) such as MMP-13 that has been shown to degrade the native interstitial collagens in several tissues. Here we found that US stimulation increased the secretion of MMP-13 in cultured rat osteoblasts, as shown by zymographic analysis. US stimulation also increased the mRNA level of MMP-13, c-Fos, and c-Jun. Cycloheximide (an inhibitor of protein translocation) and actinomycin D (an inhibitor of gene transcription) did not inhibit the MMP-13, c-Fos, and c-Jun mRNA expression, suggesting that such expression does not require de novo protein synthesis and not change their stabilities. p38 inhibitor, SB203580 or JNK inhibitor, SP600125 but not ERK inhibitor, PD98059 attenuated the US-induced MMP-13, c-Fos, and c-Jun expression; these results were further substantiated by transfecting with the dominant negative mutants of p38 or JNK. The binding of c-Fos and c-Jun to the AP-1 element on the MMP-13 promoter and the enhancement of AP-1 luciferase activity was enhanced by US stimulation. Taken together, our results provide evidence that US stimulation increases MMP-13 expression through p38 and JNK signaling pathway to regulate bone remodeling.
Collapse
Affiliation(s)
- Yung-Cheng Chiu
- Department of Orthopaedics, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
6
|
Behonick DJ, Xing Z, Lieu S, Buckley JM, Lotz JC, Marcucio RS, Werb Z, Miclau T, Colnot C. Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration. PLoS One 2007; 2:e1150. [PMID: 17987127 PMCID: PMC2063465 DOI: 10.1371/journal.pone.0001150] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 10/07/2007] [Indexed: 02/01/2023] Open
Abstract
Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13−/− mice is intrinsic to cartilage and bone. Mmp13−/− mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.
Collapse
Affiliation(s)
- Danielle J. Behonick
- Department of Anatomy and Biomedical Sciences Graduate Program, University of California at San Francisco, San Francisco, California, United States of America
| | - Zhiqing Xing
- Cellular and Molecular Biology Laboratory, Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Shirley Lieu
- Cellular and Molecular Biology Laboratory, Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Jenni M. Buckley
- Orthopaedic Bioengineering Laboratory, Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, United States of America
| | - Jeffrey C. Lotz
- Orthopaedic Bioengineering Laboratory, Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, United States of America
| | - Ralph S. Marcucio
- Cellular and Molecular Biology Laboratory, Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Zena Werb
- Department of Anatomy and Biomedical Sciences Graduate Program, University of California at San Francisco, San Francisco, California, United States of America
| | - Theodore Miclau
- Cellular and Molecular Biology Laboratory, Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Céline Colnot
- Cellular and Molecular Biology Laboratory, Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Selvamurugan N, Jefcoat SC, Kwok S, Kowalewski R, Tamasi JA, Partridge NC. Overexpression of Runx2 directed by the matrix metalloproteinase-13 promoter containing the AP-1 and Runx/RD/Cbfa sites alters bone remodeling in vivo. J Cell Biochem 2006; 99:545-57. [PMID: 16639721 DOI: 10.1002/jcb.20878] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The activator protein-1 (AP-1) and runt domain binding (Runx/RD/Cbfa) sites and their respective binding proteins, c-Fos/c-Jun and Runx2 (Cbfa1), regulate the rat matrix metalloproteinase-13 (MMP-13) promoter in both parathyroid hormone (PTH)-treated and differentiating osteoblastic cells in culture. To determine the importance of these regulatory sites in the expression of MMP-13 in vivo, transgenic mice containing either wild-type (-456 or -148) or AP-1 and Runx/RD/Cbfa sites mutated (-148A3R3) MMP-13 promoters fused with the E. coli lacZ reporter were generated. The wild-type transgenic lines expressed higher levels of bacterial beta-galactosidase in bone, teeth, and skin compared to the mutant and non-transgenic lines. Next, we investigated if overexpression of Runx2 directed by the MMP-13 promoter regulated expression of bone specific genes in vivo, and whether this causes morphological changes in these animals. Real time RT-PCR experiments identified increased mRNA expression of bone forming genes and decreased MMP-13 in the tibiae of transgenic mice (14 days and 6 weeks old). Histomorphometric analyses of the proximal tibiae showed increased bone mineralization surface, mineral apposition rate, and bone formation rate in the transgenic mice which appears to be due to decreased osteoclast number. Since MMP-13 is likely to play a role in recruiting osteoclasts to the bone surface, decreased expression of MMP-13 may cause reduced osteoclast-mediated bone resorption, resulting in greater bone formation in transgenic mice. In summary, we show here that the 148 bp upstream of the MMP-13 transcriptional start site is sufficient and necessary for gene expression in bone, teeth, and skin in vivo and the AP-1 and Runx/RD/Cbfa sites are likely to regulate this. Overexpression of Runx2 by these regulatory elements appears to alter the balance between the bone formation-bone resorption processes in vivo.
Collapse
Affiliation(s)
- Nagarajan Selvamurugan
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
8
|
Varghese S, Rydziel S, Canalis E. Bone morphogenetic protein-2 suppresses collagenase-3 promoter activity in osteoblasts through a runt domain factor 2 binding site. J Cell Physiol 2005; 202:391-9. [PMID: 15389594 DOI: 10.1002/jcp.20130] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transforming growth factor-beta (TGFbeta) superfamily of growth factors, which include bone morphogenetic proteins (BMPs), have multiple effects in osteoblasts. In this study, we examined the regulation of collagenase-3 promoter activity by BMP-2 in osteoblast-enriched (Ob) cells from fetal rat calvariae. BMP-2 suppressed the activity of a -2 kb collagenase-3 promoter/luciferase recombinant in a time- and dose-dependent manner. The BMP-2 effect on the collagenase-3 promoter was further tested in several collagenase-3 promoter deletion constructs and it was narrowed down to a -148 to -94 nucleotide segment of the promoter containing a runt domain factor 2 (Runx2) site at nucleotide -132 to -126. The effect of BMP-2 was obliterated in a collagenase-3 promoter/luciferase construct containing a mutated Runx2 (mRunx2) sequence indicating that the Runx2 site mediates the BMP-2 response. Electrophoretic mobility shift assays, using nuclear extracts from control and BMP-2-treated Ob cells, indicated that the Runx2 protein is a component of the specific DNA-protein complex formed on the Runx2 site and that the BMP-2 effect may be associated with minor protein modifications rather than major changes in the composition of specific proteins interacting with the Runx2 site. We confirmed that other members of the TGFbeta family can down-regulate the collagenase-3 promoter by showing that TGFbeta1 also suppresses the promoter activity in a time- and dose-dependent manner. In conclusion, this study demonstrates that BMP-2 and TGFbeta1 suppress collagenase-3 promoter activity in osteoblasts and establishes a link between BMP-2 action and collagenase-3 expression via Runx2, a major regulator of osteoblast formation and function.
Collapse
Affiliation(s)
- Samuel Varghese
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | | | |
Collapse
|
9
|
Jia Y, Zeng ZZ, Markwart SM, Rockwood KF, Ignatoski KMW, Ethier SP, Livant DL. Integrin Fibronectin Receptors in Matrix Metalloproteinase-1–Dependent Invasion by Breast Cancer and Mammary Epithelial Cells. Cancer Res 2004; 64:8674-81. [PMID: 15574776 DOI: 10.1158/0008-5472.can-04-0069] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Integrins contribute to progression in many cancers, including breast cancer. For example, the interaction of alpha(5)beta(1) with plasma fibronectin causes the constitutive invasiveness of human prostate cancer cells. Inhibition of this process reduces tumorigenesis and prevents metastasis and recurrence. In this study, naturally serum-free basement membranes were used as invasion substrates. Immunoassays were used to compare the roles of alpha(5)beta(1) and alpha(4)beta(1) fibronectin receptors in regulating matrix metalloproteinase (MMP)-1-dependent invasion by human breast cancer and mammary epithelial cells. We found that a peptide consisting of fibronectin PHSRN sequence, Ac-PHSRN-NH(2), induces alpha(5)beta(1)-mediated invasion of basement membranes in vitro by human breast cancer and mammary epithelial cells. PHSRN-induced invasion requires interstitial collagenase MMP-1 activity and is suppressed by an equimolar concentration of a peptide consisting of the LDV sequence of the fibronectin connecting segment, Ac-LHGPEILDVPST-NH(2), in mammary epithelial cells, but not in breast cancer cells. This sequence interacts with alpha(4)beta(1), an integrin that is often down-regulated in breast cancer cells. Immunoblotting shows that the PHSRN peptide stimulates MMP-1 production by serum-free human breast cancer and mammary epithelial cells and that the LDV peptide represses PHSRN-stimulated MMP-1 production only in mammary epithelial cells. Furthermore, PHSRN stimulates MMP-1 activity in breast cancer cells and mammary epithelial cells with a time course that closely parallels invasion induction. Thus, down-regulation of surface alpha(4)beta(1) during oncogenic transformation may be crucial for establishment of the alpha(5)beta(1)-induced, MMP-1-dependent invasive phenotype of breast cancer cells.
Collapse
Affiliation(s)
- Yifeng Jia
- Department of Radiation Oncology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Selvamurugan N, Kwok S, Alliston T, Reiss M, Partridge NC. Transforming growth factor-beta 1 regulation of collagenase-3 expression in osteoblastic cells by cross-talk between the Smad and MAPK signaling pathways and their components, Smad2 and Runx2. J Biol Chem 2004; 279:19327-34. [PMID: 14982932 DOI: 10.1074/jbc.m314048200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) plays a key role in osteoblast differentiation and bone development and remodeling. Collagenase-3 (matrix metalloproteinase-13) is expressed by osteoblasts and seems to be involved in osteoclastic bone resorption. Here, we show that TGF-beta 1 stimulates collagenase-3 expression in the rat osteoblastic cell line UMR 106-01 and requires de novo protein synthesis. Dominant-negative Smad2/3 constructs indicated that Smad signaling is essential for TGF-beta 1-stimulated collagenase-3 promoter activity. Inhibitors of the ERK1/2 and p38 MAPK pathways, but not the JNK pathway, reduced TGF-beta 1-stimulated collagenase-3 expression, indicating that the p38 MAPK and ERK1/2 pathways are also required for TGF-beta 1-stimulated collagenase-3 expression in UMR 106-01 cells. These inhibitors did not prevent nuclear localization of Smad proteins, but they inhibited Smad-mediated transcriptional activation. We have shown for the first time that Runx2 (a bone transcription factor and a potential substrate for the MAPK pathway) is phosphorylated in response to TGF-beta 1 treatment in osteoblastic cells. Cotransfection of Smad2 and Runx2 constructs had a cooperative effect on TGF-beta 1-stimulated collagenase-3 promoter activity in these cells. We further identified ligand-independent physical interaction between Smad2 and Runx2. Taken together, our results provide an important role for cross-talk between the Smad and MAPK pathways and their components in expression of collagenase-3 following TGF-beta 1 treatment in UMR 106-01 cells.
Collapse
Affiliation(s)
- Nagarajan Selvamurugan
- Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | | | | | |
Collapse
|
11
|
Varghese S, Canalis E. Transcriptional regulation of collagenase-3 by interleukin-1 alpha in osteoblasts. J Cell Biochem 2003; 90:1007-14. [PMID: 14624460 DOI: 10.1002/jcb.10732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-1 (IL-1)alpha is an autocrine/paracrine agent of the skeletal tissue and it regulates bone remodeling. Collagenase-3 or matrix metalloproteinase (MMP)-13 is expressed in osteoblasts and its expression is modulated by several cytokines including IL-1alpha. Because the molecular mechanism of increased synthesis of collagenase-3 in bone cells by IL-1alpha is not known, we investigated if collagenase-3 expression by IL-1alpha in osteoblasts is mediated by transcriptional or post-transcriptional mechanisms. Exposure of rat osteoblastic cultures (Ob cells) to IL-1alpha at concentrations higher than 0.5 nM increased the synthesis of collagenase-3 mRNA up to eightfold and the secretion of immunoreactive protein up to 21-fold. The effects of IL-1alpha on collagenase-3 were time- and dose-dependent. Although prostaglandins stimulate collagenase-3 expression, stimulation of collagenase-3 in Ob cells by IL-1alpha was not mediated through increased biosynthesis of prostaglandins. The half-life of collagenase-3 mRNA from control and IL-1alpha-treated Ob cells was similar suggesting that the stabilization of collagenase-3 mRNA did not contribute to the increase in collagenase-3. However, IL-1alpha stimulated the rate of transcription of the collagenase-3 gene by twofold to fourfold indicating regulation of collagenase-3 expression in Ob cells at the transcriptional level. Stimulation of collagenase-3 by IL-1alpha in osteoblasts may in part mediate the effects of IL-1alpha in bone metabolism.
Collapse
Affiliation(s)
- Samuel Varghese
- The Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | |
Collapse
|
12
|
Maeda T, Kawane T, Horiuchi N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology 2003; 144:681-92. [PMID: 12538631 DOI: 10.1210/en.2002-220682] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Statins such as simvastatin are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that inhibit cholesterol synthesis. We presently investigated statin effects on vascular endothelial growth factor (VEGF) expression in osteoblastic cells. Hydrophobic statins including simvastatin, atorvastatin, and cerivastatin-but not a hydrophilic statin, pravastatin-markedly increased VEGF mRNA abundance in nontransformed osteoblastic cells (MC3T3-E1). Simvastatin (10(-6) M) time-dependently augmented VEGF mRNA expression in MC3T3-E1 cells, mouse stromal cells (ST2), and rat osteosarcoma cells (UMR-106). According to heterogeneous nuclear RNA and Northern analyses, 10(-6) M simvastatin stimulated gene expression for VEGF in MC3T3-E1 cells without altering mRNA stability. Transcriptional activation of a VEGF promoter-luciferase construct (-1128 to +827), significantly increased by simvastatin administration. As demonstrated by gel mobility shift assay, simvastatin markedly enhanced the binding of hypoxia-responsive element-protein complexes. These results indicate that the stimulation of the VEGF gene by simvastatin in MC3T3-E1 cells is transcriptional in nature. VEGF secretion into medium was increased in MC3T3-E1 by 10(-6) M simvastatin. Pretreating MC3T3-E1 cells with mevalonate or geranylgeranyl pyrophosphate, a mevalonate metabolite, abolished simvastatin-induced VEGF mRNA expression; manumycin A, a protein prenylation inhibitor, mimicked statin effects on VEGF expression. The effect of simvastatin was blocked by pretreatment with wortmannin and LY294002, specific phosphatidylinositide-3 kinase inhibitors. Simvastatin enhanced mineralized nodule formation in culture, whereas coincubation with mevalonate, geranylgeranyl pyrophosphate, LY294002, or VEGF receptor 2 inhibitor (SU1498) abrogated statin-induced mineralization. Thus, statins stimulate VEGF expression in osteoblasts via reduced protein prenylation and the phosphatidylinositide-3 kinase pathway, promoting osteoblastic differentiation.
Collapse
Affiliation(s)
- Toyonobu Maeda
- Department of Biochemistry, Ohu University School of Dentistry, Koriyama 963-8611, Japan
| | | | | |
Collapse
|
13
|
Onodera S, Nishihira J, Iwabuchi K, Koyama Y, Yoshida K, Tanaka S, Minami A. Macrophage migration inhibitory factor up-regulates matrix metalloproteinase-9 and -13 in rat osteoblasts. Relevance to intracellular signaling pathways. J Biol Chem 2002; 277:7865-74. [PMID: 11751895 DOI: 10.1074/jbc.m106020200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neutral matrix metalloproteinases (MMPs) play an important role in bone matrix degradation accompanied by bone remodeling. We herein show for the first time that macrophage migration inhibitory factor (MIF) up-regulates MMP-13 (collagenase-3) mRNA of rat calvaria-derived osteoblasts. The mRNA up-regulation was seen at 3 h in response to MIF (10 microg/ml), reached the maximum level at 6-12 h, and returned to the basal level at 36 h. MMP-13 mRNA up-regulation was preceded by up-regulation of c-jun and c-fos mRNA. Tissue inhibitor of metalloproteinase (TIMP)-1 and MMP-9 (92-kDa type IV collagenase) were also up-regulated, but to a lesser extent. The MMP-13 mRNA up-regulation was significantly suppressed by genistein, herbimycin A and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine. Similarly, a selective mitogen-activated protein kinase (MAPK) kinase (MEK)1/2 inhibitor (PD98059) and c-jun/activator protein (AP)-1 inhibitor (curcumin) suppressed MMP-13 mRNA up-regulation induced by MIF. The mRNA levels of c-jun and c-fos in response to MIF were also inhibited by PD98059. Consistent with these results, MIF stimulated phosphorylation of tyrosine, autophosphorylation of Src, activation of Ras, activation of extracellular signal-regulated kinases (ERK) 1/2, a MAPK, but not c-Jun N-terminal kinase or p38, and phosphorylation of c-Jun. Osteoblasts obtained from calvariae of newborn JunAA mice, defective in phosphorylation of c-Jun, or newborn c-Fos knockout (Fos -/- ) mice, showed much less induction of MMP-13 with the addition of MIF than osteoblasts obtained from wild-type or littermate control mice. Taken together, these results suggest that MIF increases the MMP-13 mRNA level of rat osteoblasts via the Src-related tyrosine kinase-, Ras-, ERK1/2-, and AP-1-dependent pathway.
Collapse
Affiliation(s)
- Shin Onodera
- Department of Orthopaedics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Rydziel S, Durant D, Canalis E. Platelet-derived growth factor induces collagenase 3 transcription in osteoblasts through the activator protein 1 complex. J Cell Physiol 2000; 184:326-33. [PMID: 10911363 DOI: 10.1002/1097-4652(200009)184:3<326::aid-jcp6>3.0.co;2-s] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelet-derived growth factor (PDGF) BB is a mitogen that stimulates bone resorption and increases collagenase 3 transcription in osteoblasts, although the mechanisms involved are as yet unknown. We examined the effect of PDGF BB on collagenase 3 transcription in cultures of osteoblasts from fetal rat calvariae (Ob cells). PDGF BB increased the activity of collagenase 3 promoter fragments transiently transfected into Ob cells. Deletion analysis of the collagenase promoter revealed three regions that impaired the induction of collagenase 3 by PDGF BB. A construct spanning base pair -53 to +28 collagenase 3 sequences, in relation to the start site of transcription +1, was fully responsive to PDGF BB and was studied in detail. Targeted mutations of an AP-1 site in this fragment decreased basal collagenase promoter activity and the responsiveness to PDGF BB, whereas mutations of Stat3 and Ets binding sites did not alter the response to PDGF. Electrophoretic mobility shift assay, using nuclear extracts from control and treated cells, revealed AP-1 nuclear protein complexes that were enhanced in extracts from PDGF BB-treated Ob cells. Supershift assays revealed that antibodies to c-Fos, Fos B, Fra-2, c-Jun, Jun B, and Jun D shifted the binding of nuclear extracts from cells treated with PDGF BB to AP-1 sequences. In conclusion, PDGF BB induces collagenase 3 transcription in osteoblasts by regulating nuclear proteins interacting with AP-1 sequences.
Collapse
Affiliation(s)
- S Rydziel
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA
| | | | | |
Collapse
|
15
|
Varghese S, Rydziel S, Canalis E. Basic fibroblast growth factor stimulates collagenase-3 promoter activity in osteoblasts through an activator protein-1-binding site. Endocrinology 2000; 141:2185-91. [PMID: 10830307 DOI: 10.1210/endo.141.6.7504] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Basic fibroblast growth factor (bFGF) stimulates collagenase-3 synthesis in fetal rat osteoblast-enriched (Ob) cells. In this study we examined the mechanism of collagenase-3 regulation in Ob cells. bFGF at 0.6 nM or more increased the transcriptional rate of collagenase-3 by 3- to 7-fold. bFGF at 0.6 nM increased the activity of collagenase-3 promoter-luciferase reporter deletion constructs from -721 to -53 nucleotides transiently transfected into Ob cells by 3- to 5-fold. The minimal bFGF response was retained within the -53 to +28 sequence. Mutational analysis revealed that the bFGF effect was mediated through an activator protein-1 (AP-1)-binding site located at -48 to -42 nucleotides in the promoter. bFGF stimulated the binding of nuclear factors to the collagenase AP-1 site by 3- to 4-fold, as determined by electrophoretic mobility shift assays. Supershift analysis of nuclear extracts revealed that bFGF stimulates the occupancy of AP-1 site by c-Jun, JunB, JunD, c-Fos, FosB, and Fra2. In conclusion, bFGF increases collagenase-3 gene transcription, an effect mediated through an AP-1 site, due to the induction or activation of Jun and Fos family transcription factors. The stimulation of collagenase-3 synthesis by bFGF may be critical in mediating the actions of this growth factor in bone remodeling.
Collapse
Affiliation(s)
- S Varghese
- Department of Research and Medicine, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA.
| | | | | |
Collapse
|
16
|
Quinn CO, Bizek GM, Agapova OA. Induction of rat interstitial collagenase (MMP-13) mRNA in a development-dependent manner by parathyroid hormone in osteoblastic cells. Endocrine 2000; 12:227-36. [PMID: 10963042 DOI: 10.1385/endo:12:3:227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/1999] [Revised: 12/21/1999] [Accepted: 01/04/2000] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to determine whether the production of interstitial collagenase mRNA in response to parathyroid hormone (PTH) changes with osteoblast phenotypic development. To accomplish this, cells derived from fetal rat calvaria were examined. The calvarial osteoblasts, which proliferate when placed in culture, can be made to differentiate after confluence. Studies were performed on cells while they were proliferating, at confluence, and during the differentiation process. The cells were treated with PTH for various times, and interstitial collagenase mRNA was quantified by RNase protection assay. We concluded that the ability of PTH to induce interstitial collagenase mRNA in these cells increased with osteoblast phenotypic development. We also determined that the response could be mimicked by combining the effect of 8-bromo-cAMP and 12-O-tetradecanoyl-phorbol-13-acetate, stimulators of the protein kinase A and protein kinase C pathways, respectively, both known to be activated by PTH. The binding of nuclear factors to two regions previously reported to be important for PTH induction of the gene in UMR 106-01 cells was also examined. These data indicated that the binding of nuclear factors to oligonucleotides encompassing the TRE (-51) or the PEA3 (-80) elements changed with development of the osteoblast phenotype. The latter was also shown to be PTH responsive.
Collapse
Affiliation(s)
- C O Quinn
- Pediatric Research Institute, Department of Pediatrics, St. Louis University Health Sciences Center, MO 63110, USA.
| | | | | |
Collapse
|
17
|
Abstract
We investigated the regulation of collagenase-3 expression in normal, differentiating rat osteoblasts. Fetal rat calvarial cell cultures showed an increase in alkaline phosphatase activity reaching maximal levels between 7-14 days post-confluence, then declining with the onset of mineralization. Collagenase-3 mRNA was just detectable after proliferation ceased at day 7, increased up to day 21, and declined at later ages. Postconfluent cells maintained in non-mineralizing medium expressed collagenase-3 but did not show the developmental increase exhibited by cells switched to mineralization medium. Cells maintained in non-mineralizing medium continued to proliferate; cells in mineralization medium ceased proliferation. In addition, collagenase-3 mRNA was not detected in subcultured cells allowed to remineralize. These results suggest that enhanced accumulation of collagenase-3 mRNA is triggered by cessation of proliferation or acquisition of a mineralized extracellular matrix and that other factors may also be required. After initiation of basal expression, parathyroid hormone (PTH) caused a dose-dependent increase in collagenase-3 mRNA. Both the cyclic adenosine monophosphate (cAMP) analogue, 8-bromo-cAMP (8-Br-cAMP), and the protein kinase C (PKC) activator, phorbol myristate acetate, increased collagenase-3 expression, while the calcium ionophore, ionomycin, did not, suggesting that PTH was acting through the protein kinase A (PKA) and PKC pathways. Inhibition of protein synthesis with cycloheximide caused an increase in basal collagenase-3 expression but blocked the effect of PTH, suggesting that an inhibitory factor prevents basal expression while an inductive factor is involved with PTH action. In summary, collagenase-3 is expressed in mineralized osteoblasts and cessation of proliferation and initiation of mineralization are triggers for collagenase-3 expression. PTH also stimulates expression of the enzyme through both PKA and PKC pathways in the mineralizing osteoblast.
Collapse
Affiliation(s)
- S K Winchester
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104-1083, USA
| | | | | | | |
Collapse
|
18
|
Pereira RC, Jorgetti V, Canalis E. Triiodothyronine induces collagenase-3 and gelatinase B expression in murine osteoblasts. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E496-504. [PMID: 10484362 DOI: 10.1152/ajpendo.1999.277.3.e496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Triiodothyronine (T3) increases bone resorption, but its effects on matrix metalloprotease (MMP) expression in bone are unknown. We tested the effects of T3 on collagenase-3 and gelatinase A and B expression in MC3T3 osteoblastic cells. T3 at 1 nM to 1 microM for 24-72 h increased collagenase-3 and gelatinase B mRNA levels, but it did not increase gelatinase A transcripts. In addition, T3 increased immunoreactive collagenase and gelatinase activity. Cycloheximide prevented the stimulatory effect of T3 on collagenase-3 but not on gelatinase B transcripts. Indomethacin did not prevent the effect of T3 on either MMP. T3 did not alter the decay of collagenase-3 or gelatinase B mRNA in transcriptionally arrested MC3T3 cells, and it increased the rate of collagenase-3 and gelatinase B gene transcription. Although T3 enhanced the expression of the tissue inhibitor of metalloproteinase-1 in MC3T3 cells, it increased collagen degradation in cultured intact rat calvariae. In conclusion, T3 increases collagenase-3 and gelatinase B synthesis in osteoblasts by transcriptional mechanisms. This effect may contribute to the actions of T3 on bone matrix remodeling.
Collapse
Affiliation(s)
- R C Pereira
- Departments of Research and Medicine, Saint Francis Hospital and Medical Center, Hartford 06105, Connecticut, USA
| | | | | |
Collapse
|
19
|
Varghese S, Yu K, Canalis E. Leukemia inhibitory factor and oncostatin M stimulate collagenase-3 expression in osteoblasts. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E465-71. [PMID: 10070011 DOI: 10.1152/ajpendo.1999.276.3.e465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leukemia inhibitory factor (LIF) and oncostatin M (OSM) have multiple effects on skeletal remodeling. Although these cytokines modestly regulate collagen synthesis in osteoblasts, their effects on collagenase expression and collagen degradation are not known. We tested whether LIF and OSM regulate the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in osteoblast-enriched cells isolated from fetal rat calvariae. LIF and OSM increased collagenase-3 (MMP-13) mRNA and immunoreactive protein levels in a time- and dose-dependent manner. LIF and OSM enhanced the rate of transcription of the collagenase gene and stabilized collagenase mRNA in transcriptionally arrested cells. LIF and OSM failed to regulate the expression of gelatinase A (MMP-2) and B (MMP-9). LIF and OSM modestly stimulated the expression of TIMP-1 but did not alter the expression of TIMP-2 and -3. In conclusion, LIF and OSM stimulate collagenase-3 and TIMP-1 expression in osteoblasts, and these effects may be involved in mediating the bone remodeling actions of these cytokines.
Collapse
Affiliation(s)
- S Varghese
- Departments of Research and Medicine, Saint Francis Hospital and Medical Center, Hartford 06105, USA
| | | | | |
Collapse
|
20
|
Gazzerro E, Rydziel S, Canalis E. Skeletal bone morphogenetic proteins suppress the expression of collagenase-3 by rat osteoblasts. Endocrinology 1999; 140:562-7. [PMID: 9927278 DOI: 10.1210/endo.140.2.6493] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) are secreted by skeletal cells, induce the differentiation of mesenchymal cells into cells of the osteoblastic lineage, and increase their differentiated function. BMPs also decrease collagenase-3 expression by the osteoblast. We tested the autocrine role of BMPs on collagenase-3 expression in osteoblast-enriched cells from fetal rat calvariae (Ob cells) by examining the effects of noggin, a specific inhibitor of BMP binding and function. Although collagenase-3 transcript expression declined in untreated Ob cells in culture over a 24-h period, BMP-2, -4, and -6 decreased collagenase-3 messenger RNA levels in cells treated for 2-24 h. The addition of noggin prevented the decrease of collagenase-3 transcripts in control cultures, opposed the inhibitory actions of BMP-2, and increased the levels of the protease in the culture medium. Noggin did not alter the decay of collagenase-3 messenger RNA in transcriptionally arrested cells, and it increased the levels of collagenase-3 heterogeneous nuclear RNA in Ob cells. In conclusion, noggin enhances the synthesis of collagenase-3 in osteoblasts, supporting the notion that BMPs act as autocrine suppressors of collagenase-3 in skeletal cells, an effect that may contribute to the maintenance of the bone matrix.
Collapse
Affiliation(s)
- E Gazzerro
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA
| | | | | |
Collapse
|
21
|
Kawane T, Horiuchi N. Insulin-like growth factor I suppresses parathyroid hormone (PTH)/PTH-related protein receptor expression via a mitogen-activated protein kinase pathway in UMR-106 osteoblast-like cells. Endocrinology 1999; 140:871-9. [PMID: 9927318 DOI: 10.1210/endo.140.2.6517] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor I (IGF-I) is important in skeletal growth and has been implicated in the maintenance of bone integrity. PTH stimulates bone resorption through the G protein-linked PTH/PTH-related protein (PTHrP) receptor in osteoblasts. Using a heterogeneous nuclear RNA assay and Northern blot analysis, we showed that IGF-I inhibited expression of the gene for PTH/PTHrP receptor in a dose- and time-dependent fashion, but did not alter the stability of the receptor messenger RNA (mRNA) in UMR-106 osteoblast-like cells. IGF-I treatment for 48 h also caused a decrease in the receptor number to 45% of that in controls without affecting receptor affinity and in functional receptor expression to 50-60% of that in controls as measured by PTH-stimulated cAMP production. In MC3T3-E1 murine nontransformed osteoblasts, IGF suppressed receptor mRNA expression dose dependently. In UMR-106 cells, IGF-I induced the mitogen-activated protein (MAP) kinase pathway. The effect of IGF-I was blocked by PD98059, a specific inhibitor of the MAP kinase-activating kinase, but not by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase. IGF-I inhibition of PTH/PTHrP receptor mRNA expression in UMR-106 cells was abrogated completely by pretreatment with cycloheximide, an inhibitor of protein synthesis. These findings indicate that IGF-I suppresses gene expression for PTH/PTHrP receptor via the MAP kinase pathway, and this inhibition is required for new protein synthesis in UMR-106 osteoblast-like cells.
Collapse
Affiliation(s)
- T Kawane
- Department of Biochemistry, Ohu University School of Dentistry, Koriyama, Japan
| | | |
Collapse
|
22
|
Takiguchi T, Kobayashi M, Suzuki R, Yamaguchi A, Isatsu K, Nishihara T, Nagumo M, Hasegawa K. Recombinant human bone morphogenetic protein-2 stimulates osteoblast differentiation and suppresses matrix metalloproteinase-1 production in human bone cells isolated from mandibulae. J Periodontal Res 1998; 33:476-85. [PMID: 9879521 DOI: 10.1111/j.1600-0765.1998.tb02347.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bone morphogenetic protein (BMP), a member of the transforming growth factor superfamily, is one of the most potent growth factors that stimulate osteoblast differentiation and bone formation. We investigated the effects of recombinant human BMP-2 (rhBMP-2) on osteoblast differentiation and matrix metalloproteinase-1 (MMP-1) production in human bone cells (HBC) isolated from mandibulae of 3 adult patients. rhBMP-2 at concentrations over 50 ng/ml significantly stimulated alkaline phosphatase activity and parathyroid hormone (PTH)-dependent 3', 5'-cyclic adenosine monophosphate accumulation, which are early markers of osteoblast differentiation, in HBCs. rhBMP-2 (500 ng/ml) also enhanced the level of PTH/PTH related-peptide receptor mRNA expression in HBCs. Although neither HBCs untreated nor treated with rhBMP-2 produced measurable amounts of osteocalcin, which is a marker of more mature osteoblasts, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] induced ostocalcin mRNA expression and its protein synthesis in these cells. rhBMP-2 inhibited 1,25(OH)2D3-induced osteocalcin synthesis in HBCs at both the mRNA and protein level. rhBMP-2 also significantly suppressed MMP-1 production and MMP-1 mRNA expression at concentrations over 500 ng/ml. These results suggest that rhBMP-2 exerts anabolic effects on human osteoblastic cells derived from mandibulae by stimulation of osteoblast differentiation and down-regulation of MMP-1 synthesis.
Collapse
Affiliation(s)
- T Takiguchi
- Department of Periodontics, Showa University Dental School, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Uría JA, Balbín M, López JM, Alvarez J, Vizoso F, Takigawa M, López-Otín C. Collagenase-3 (MMP-13) expression in chondrosarcoma cells and its regulation by basic fibroblast growth factor. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:91-101. [PMID: 9665469 PMCID: PMC1852961 DOI: 10.1016/s0002-9440(10)65549-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human collagenase-3 (MMP-13) is a member of the matrix metalloproteinase family of enzymes that was originally identified in breast carcinomas and subsequently detected during fetal ossification and in arthritic processes. In this work, we have found that collagenase-3 is produced by HCS-2/8 human chondrosarcoma cells. An analysis of the ability of different cytokines and growth factors to induce the expression of collagenase-3 in these cells revealed that basic fibroblast growth factor (bFGF or FGF-2) strongly up-regulated the expression of this gene. By contrast, other factors, including interleukin-1beta and transforming growth factor-beta, previously found to induce collagenase-3 expression in other cell types, did not exhibit any effect on the expression of this gene in chondrosarcoma cells. Further analysis of the bFGF-induced expression of collagenase-3 in human chondrosarcoma cells revealed that its effect was time and dose dependent, but independent of the de novo synthesis of proteins. Western blot analysis revealed that the up-regulatory effect of bFGF on collagenase-3 was also reflected at the protein level as demonstrated by the increase of immunoreactive protein in the conditioned medium of HCS-2/8 cells treated with bFGF. Immunohistochemical analysis of the presence of collagenase-3 in a series of 8 benign and 16 malignant cartilage-forming neoplasms revealed that all analyzed malignant chondrosarcomas stained positively for collagenase-3, whereas only 2 of 8 benign lesions produced this protease. In addition, the finding that bFGF was detected in all analyzed chondrosarcomas, together with the above in vitro studies on HCS-2/8 cells, suggest that this growth factor may be an in vivo modulator of collagenase-3 expression in these malignant tumors. These results extend the pattern of tumor types with ability to produce this matrix metalloproteinase and suggest that collagenase-3 upregulation may contribute to the progression of human chondrosarcomas.
Collapse
Affiliation(s)
- J A Uría
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Hsieh SC, Graves DT. Pulse application of platelet-derived growth factor enhances formation of a mineralizing matrix while continuous application is inhibitory. J Cell Biochem 1998; 69:169-80. [PMID: 9548564 DOI: 10.1002/(sici)1097-4644(19980501)69:2<169::aid-jcb7>3.0.co;2-q] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Platelet-derived growth factor (PDGF) stimulates chemotaxis and proliferation of osteoblasts, and induces bone formation in vivo. To determine how PDGF might regulate these cells, the effect of PDGF on long-term mineralizing cultures of fetal rat osteoblastic cells was examined. Although PDGF increased cell proliferation in these cultures, continuous treatment with PDGF caused a dose-dependent decrease in mineralized nodule formation. When cells were treated with multiple, brief (1 day) exposures to PDGF at the osteoblast differentiation stage, there was a significant 50% increase in mineralized nodule area. Based on modulation of alkaline phosphatase activity it appears that longer-term exposure to PDGF reduces mineralized nodule formation largely by inhibiting differentiated osteoblast function, while short-term exposure enhances proliferation without inhibiting the differentiated phenotype. Thus, the ultimate affect of PDGF on bone formation is likely to reflect two processes: a positive effect through enhancing cell number or a negative effect by inhibiting differentiated function. The inhibitory effect of PDGF on formation of a mineralized matrix is unlikely to be simply a result of enhanced proliferation of "fibroblastic" cells since cultures treated with PDGF for 3 days and then transferred to new plastic dishes exhibited a 70% increase in mineralized nodule area compared to controls. These results would predict that multiple, brief exposures to PDGF would enhance bone formation in vivo, while prolonged exposure to PDGF, which is likely to occur in chronic inflammation, would inhibit differentiated osteoblast function and limit bone regeneration.
Collapse
Affiliation(s)
- S C Hsieh
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, Massachusetts 02118, USA
| | | |
Collapse
|
25
|
Rydziel S, Delany AM, Canalis E. Insulin-like growth factor I inhibits the transcription of collagenase 3 in osteoblast cultures. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(19971101)67:2<176::aid-jcb3>3.0.co;2-u] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Giannobile WV, Whitson SW, Lynch SE. Non-coordinate control of bone formation displayed by growth factor combinations with IGF-I. J Dent Res 1997; 76:1569-78. [PMID: 9294491 DOI: 10.1177/00220345970760090901] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Polypeptide growth factors (GFs) promote osteogenesis by enhancing the mitogenesis, migration, and matrix synthesis of osteoblasts. Most previous investigators have evaluated only the effects of single GFs on these parameters. Studies on single GFs might overlook large biological responses comparable with those documented in the cell cycle literature when GFs are used in combinations that interact synergistically. In this study, we screened for synergistic interactions between IGF-I and three additional GFs (PDGF-BB, TGF-beta 1, and bFGF) on the regulation of bone growth and differentiation. Fetal bovine osteoblasts were assessed for osteoblast mitogenesis, collagenous and non-collagenous protein synthesis, and alkaline phosphatase activity (ALP). Our results show synergistic interactions between IGF-I and the other GFs on osteoblast mitogenic activity and protein synthesis. In contrast to synergistic mitogenic and protein synthesis. In contrast to synergistic mitogenic and protein synthesis effects, IGF-I failed to increase ALP activity when combined with TGF-beta 1, PDGF-BB, and bFGF in bovine osteoblast-like cells.
Collapse
Affiliation(s)
- W V Giannobile
- Department of Periodontology, Harvard School of Dental Medicine, Boston, Massachusetts 02115-5888, USA
| | | | | |
Collapse
|
27
|
Abstract
Previously we have shown that transforming growth factor beta (TGF beta) 1, basic fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF) BB inhibit the synthesis of insulin-like growth factor (IGF) II, but their effects on IGF binding protein (IGFBP)-6 in osteoblast cultures are not known. IGFBP-6 binds IGF II with high affinity and prevents IGF II-mediated effects, so that a possible mode of regulating the IGF II available to bone cells would be by changing the levels of IGFBP-6. To enhance our understanding of the actions of growth factors on the IGF II axis in bone, we tested the effects of TGF beta 1, basic FGF, PDGF BB, IGF I, and IGF II on the expression of IGFBP-6 in cultures of osteoblast-enriched cells from 22 day fetal rat calvariae (Ob cells). Treatment of Ob cells with TGF beta 1 caused a time- and dose-dependent decrease in IGFBP-6 mRNA levels, as determined by Northern blot analysis. The effect was maximal after 48 h and observed with TGF beta 1 concentrations of 0.04 nM and higher. TGF beta 1 also decreased IGFBP-6 polypeptide levels in the medium, as determined by Western immunoblot analysis. Cycloheximide at 3.6 microM decreased IGFBP-6 transcripts and prevented the effect of TGF beta 1. The decay of IGFBP-6 mRNA in transcriptionally arrested Ob cells was not modified by TGF beta 1. In addition, TGF beta 1 decreased the rates of IGFBP-6 transcription as determined by a nuclear run-on assay. In contrast, basic FGF, PDGF BB, IGF I, and IGF II did not change IGFBP-6 mRNA levels in Ob cells. In conclusion, TGF beta 1 inhibits IGFBP-6 expression in Ob cells by transcriptional mechanisms. Since IGFBP-6 binds IGF II and prevents its effects on bone cells, decreased synthesis of IGFBP-6 induced by TGF beta 1 could be a local feedback mechanism to increase the amount of IGF II available in the bone microenvironment.
Collapse
Affiliation(s)
- B Gabbitas
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | |
Collapse
|
28
|
Franchimont N, Rydziel S, Delany AM, Canalis E. Interleukin-6 and its soluble receptor cause a marked induction of collagenase 3 expression in rat osteoblast cultures. J Biol Chem 1997; 272:12144-50. [PMID: 9115285 DOI: 10.1074/jbc.272.18.12144] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Interleukin-6 (IL-6), a cytokine produced by skeletal cells, increases bone resorption, but its effects on collagenase expression are unknown. We tested the effects of IL-6 and its soluble receptor on collagenase 3 expression in osteoblast-enriched cells from fetal rat calvariae (Ob cells). IL-6 caused a small increase in collagenase mRNA levels, but in the presence of IL-6-soluble receptor (IL-6sR), IL-6 caused a marked increase in collagenase transcripts after 2-24 h. In addition, IL-6sR increased collagenase mRNA when tested alone. IL-6 and IL-6sR increased immunoreactive collagenase levels. Cycloheximide and indomethacin did not prevent the effect of IL-6 and IL-6sR on collagenase mRNA levels. IL-6 and IL-6sR did not alter the decay of collagenase mRNA in transcriptionally arrested Ob cells and increased the levels of collagenase heterogeneous nuclear RNA and the rate of collagenase gene transcription in Ob cells. IL-6 and IL-6sR increased collagenase 3 mRNA in MC3T3 cells but only modestly in skin fibroblasts. IL-6 and IL-6sR enhanced the expression of tissue inhibitor of metalloproteinases 1. In conclusion, IL-6, in the presence of IL-6sR, increases collagenase 3 synthesis in osteoblasts by transcriptional mechanisms. This effect may contribute to the action of IL-6 on bone matrix degradation and bone resorption.
Collapse
Affiliation(s)
- N Franchimont
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor superfamily of peptides, induces ectopic bone formation in vivo. The actions of BMP-2 on osteoblastic cells include stimulation of collagen synthesis, but the role of BMP-2 on collagen degradation is not known. We examined whether BMP-2 affects the expression of collagenase-3, an enzyme that degrades type I collagen at neutral pH, and that of tissue inhibitors of matrix metalloproteinases (TIMPs) in primary osteoblast-enriched cells from 22-day-old fetal rat calvariae. BMP-2 suppressed collagenase messenger RNA (mRNA) and immunoreactive protein levels. BMP-2 did not affect collagenase mRNA stability, but it reduced collagenase heterogeneous nuclear RNA levels and decreased the rate of transcription of the collagenase gene. BMP-2 also stimulated TIMP 1 and TIMP 3 mRNA levels, but failed to alter TIMP 2 expression. In conclusion, our studies indicate that BMP-2 suppresses collagenase-3 gene transcription and stimulates TIMP 1 and TIMP 3 expression in osteoblasts. The regulation of collagenase and TIMPs by BMP-2 in osteoblasts may play a role in osteoinduction.
Collapse
Affiliation(s)
- S Varghese
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | |
Collapse
|
30
|
Rydziel S, Varghese S, Canalis E. Transforming growth factor beta1 inhibits collagenase 3 expression by transcriptional and post-transcriptional mechanisms in osteoblast cultures. J Cell Physiol 1997; 170:145-52. [PMID: 9009143 DOI: 10.1002/(sici)1097-4652(199702)170:2<145::aid-jcp6>3.0.co;2-o] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transforming growth factor (TGF) beta1 is an autocrine regulator of bone cell function. We demonstrated that TGF beta1 enhances bone collagen synthesis, but its effects on collagen degradation are not well characterized. We tested the effects of TGF beta1 on rat collagenase 3 expression in cultures of osteoblast-enriched cells from fetal rat calvariae (Ob cells). Treatment with TGF beta1 at 0.4 nM decreased steady state collagenase mRNA levels after 2 to 24 h. This dose-dependent effect was observed at TGF beta1 concentrations of 4 pM to 1.2 nM, and was accompanied by decreased levels of immunoreactive procollagenase. The protein synthesis inhibitor cycloheximide increased collagenase transcripts, but did not prevent the effect of TGF beta1 on collagenase mRNA levels. TGF beta1 accelerated the decay of collagenase mRNA in transcriptionally arrested Ob cells. In addition, TGF beta1 decreased the levels of collagenase heterogeneous nuclear RNA and the rate of collagenase gene transcription in Ob cells. TGF beta1 enhanced the expression of tissue inhibitors of metalloproteinases (TIMP) 1 and 3 and caused a modest decrease of TIMP 2 mRNA levels. In conclusion, TGF beta1 decreases interstitial collagenase transcripts and protease levels in Ob cells by transcriptional and post-transcriptional mechanisms, and this effect may contribute to its actions on bone matrix.
Collapse
Affiliation(s)
- S Rydziel
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | | | |
Collapse
|