1
|
Speckhart SL, Oliver MA, Keane JA, Dias NW, Mercadante VRG, Biase FH, Ealy AD. Interleukin-6 supplementation improves bovine conceptus elongation and transcriptomic indicators of developmental competence†. Biol Reprod 2024; 111:43-53. [PMID: 38519105 PMCID: PMC11247277 DOI: 10.1093/biolre/ioae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
A high incidence of pregnancy failures occurs in cattle during the second week of pregnancy as blastocysts transition into an elongated conceptus. This work explored whether interleukin-6 supplementation during in vitro embryo production would improve subsequent conceptus development. Bovine embryos were treated with 0 or 100 ng/mL recombinant bovine interleukin-6 beginning on day 5 post-fertilization. At day 7.5 post-fertilization, blastocysts were transferred into estrus synchronized beef cows (n = 5 recipients/treatment, 10 embryos/recipient). Seven days after transfer (day 14.5), cows were euthanized to harvest reproductive tracts and collect conceptuses. Individual conceptus lengths and stages were recorded before processing for RNA sequencing. Increases in conceptus recovery, length, and the proportion of tubular and filamentous conceptuses were detected in conceptuses derived from interleukin-6-treated embryos. The interleukin-6 treatment generated 591 differentially expressed genes in conceptuses (n = 9-10/treatment). Gene ontology enrichment analyses revealed changes in transcriptional regulation, DNA-binding, and antiviral actions. Only a few differentially expressed genes were associated with extraembryonic development, but several differentially expressed genes were associated with embryonic regulation of transcription, mesoderm and ectoderm development, organogenesis, limb formation, and somatogenesis. To conclude, this work provides evidence that interleukin-6 treatment before embryo transfer promotes pre-implantation conceptus development and gene expression in ways that resemble the generation of a robust conceptus containing favorable abilities to survive this critical period of pregnancy.
Collapse
Affiliation(s)
- Savannah L Speckhart
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mary A Oliver
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jessica A Keane
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nicholas W Dias
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Vitor R G Mercadante
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alan D Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
2
|
Bai R, Kusama K, Matsuno Y, Bai H, Sakurai T, Kimura K, Imakawa K. Expression of NFIL3 and CEBPA regulated by IFNT induced-PGE2 in bovine endometrial stromal cells during the pre-implantation period. Front Endocrinol (Lausanne) 2023; 14:1075030. [PMID: 36923228 PMCID: PMC10010167 DOI: 10.3389/fendo.2023.1075030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Prostaglandin E2 (PGE2) is considered as a luteoprotective factor, influencing the corpus luteum during the early pregnant period in the bovine species. Cyclic AMP (cAMP) is activated in response to PGE2 and plays a role in many physiological processes. The maternal recognition signal, interferon τ (IFNT), induces PGE2 secretion from the endometrial epithelial cells, the function of which in stroma cells has not been completely understood. In this study, PGE2 was found to activate cAMP in the bovine endometrial stromal cells (STRs). STRs were then treated with forskolin to activate the cAMP signaling, from which RNA extracted was subjected to global expression analysis. Transcripts related to transcription regulatory region nucleic acid binding of molecular function, nucleus of cellular component, and mitotic spindle organization of biological processes were up-regulated in cAMP-activated bovine STRs. An increase in the transcription factors, NFIL3, CEBPA, and HIF1A via the cAMP/PKA/CREB signaling pathway in the bovine STRs was also found by qPCR. Knockdown of NFIL3, CEBPA, or HIF1A blocked forskolin-induced PTGS1/2 and IGFBP1/3 expression. Moreover, NFIL3 and CEBPA were localized in endometrial stroma on pregnant day 17 (day 0 = estrous cycle), but not on cyclic day 17. These observations indicated that uterine PGE2 induced by conceptus IFNT is involved in the early pregnancy-related gene expression in endometrial stromal cells, which could facilitate pregnancy establishment in the bovine.
Collapse
Affiliation(s)
- Rulan Bai
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- *Correspondence: Kazuya Kusama,
| | - Yuta Matsuno
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hanako Bai
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
| | | | - Koji Kimura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| |
Collapse
|
3
|
Davies CJ, Fan Z, Morgado KP, Liu Y, Regouski M, Meng Q, Thomas AJ, Yun SI, Song BH, Frank JC, Perisse IV, Van Wettere A, Lee YM, Polejaeva IA. Development and characterization of type I interferon receptor knockout sheep: A model for viral immunology and reproductive signaling. Front Genet 2022; 13:986316. [PMID: 36246651 PMCID: PMC9556006 DOI: 10.3389/fgene.2022.986316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Type I interferons (IFNs) initiate immune responses to viral infections. Their effects are mediated by the type I IFN receptor, IFNAR, comprised of two subunits: IFNAR1 and IFNAR2. One or both chains of the sheep IFNAR were disrupted in fetal fibroblast lines using CRISPR/Cas9 and 12 lambs were produced by somatic cell nuclear transfer (SCNT). Quantitative reverse transcription-polymerase chain reaction for IFN-stimulated gene expression showed that IFNAR deficient sheep fail to respond to IFN-alpha. Furthermore, fibroblast cells from an IFNAR2−/− fetus supported significantly higher levels of Zika virus (ZIKV) replication than wild-type fetal fibroblast cells. Although many lambs have died from SCNT related problems or infections, one fertile IFNAR2−/− ram lived to over 4 years of age, remained healthy, and produced more than 80 offspring. Interestingly, ZIKV infection studies failed to demonstrate a high level of susceptibility. Presumably, these sheep compensated for a lack of type I IFN signaling using the type II, IFN-gamma and type III, IFN-lambda pathways. These sheep constitute a unique model for studying the pathogenesis of viral infection. Historical data supports the concept that ruminants utilize a novel type I IFN, IFN-tau, for pregnancy recognition. Consequently, IFNAR deficient ewes are likely to be infertile, making IFNAR knockout sheep a valuable model for studying pregnancy recognition. A breeding herd of 32 IFNAR2+/− ewes, which are fertile, has been developed for production of IFNAR2−/− sheep for both infection and reproduction studies.
Collapse
Affiliation(s)
- Christopher J. Davies
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- *Correspondence: Christopher J. Davies, ; Irina A. Polejaeva,
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Kira P. Morgado
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Ying Liu
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Aaron J. Thomas
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Sang-Im Yun
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Byung-Hak Song
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Jordan C. Frank
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Iuri V. Perisse
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Arnaud Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Young-Min Lee
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
- *Correspondence: Christopher J. Davies, ; Irina A. Polejaeva,
| |
Collapse
|
4
|
Melo GD, Pinto LMF, Rocha CC, Motta IG, Silva LA, da Silveira JC, Gonella-Diaza AM, Binelli M, Pugliesi G. Type I interferon receptors and interferon-τ-stimulated genes in peripheral blood mononuclear cells and polymorphonuclear leucocytes during early pregnancy in beef heifers. Reprod Fertil Dev 2021; 32:953-966. [PMID: 32646539 DOI: 10.1071/rd19430] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
This study characterised the expression of interferon (IFN)-τ-stimulated genes (ISGs) and Type I IFN receptors in circulating polymorphonuclear cells (PMNs) of beef heifers and compared it with expression in peripheral blood mononuclear cells (PBMCs) up to Day 20 of gestation. Nelore heifers (n=26) were subjected to fixed-time AI (FTAI) on Day 0. PMNs and PBMCs were isolated on Days 0, 10, 14, 16, 18 and 20 after FTAI. The abundance of target transcripts (ubiquitin-like protein (ISG15), 2'-5'-oligoadenylate synthetase 1 (OAS1), myxovirus resistance 1 (MX1), myxovirus resistance 2 (MX2), IFN receptor I (IFNAR1) and IFN receptor 2 (IFNAR2)) was determined using real-time quantitative polymerase chain reaction and compared between pregnant (n=8) and non-pregnant (n=9) females. In both PBMCs and PMNs, ISG15 and OAS1 expression was greater in pregnant than non-pregnant heifers on Days 18 and 20. There were no significant differences in the expression of ISGs between PBMCs and PMNs. A time effect on expression was found for IFNAR1 in PBMCs and IFNAR2 in PMNs, with decreased expression of both genes on Days 18 and 20. When the expression of these genes was compared between cell types only in pregnant heifers, IFNAR2 expression in PMNs had an earlier decrease when compared to its expression in PBMCs, starting from Day 18. In conclusion, PMNs do not respond earlier to the conceptus stimulus, and ISG15 and OAS1 expression in both PMNs and PBMCs can be used as a suitable marker for pregnancy diagnosis on Days 18 and 20. In addition, gestational status did not affect IFNAR1 and IFNAR2 expression, but IFNAR2 showed a distinct response between PMNs and PBMCs of pregnant heifers.
Collapse
Affiliation(s)
- G D Melo
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, Avenida Duque de Caxias Norte, 225, Campus Fernando Costa, University of São Paulo, 13635-900, Pirassununga, SP, Brazil
| | - L M F Pinto
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, Avenida Duque de Caxias Norte, 225, Campus Fernando Costa, University of São Paulo, 13635-900, Pirassununga, SP, Brazil
| | - C C Rocha
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, Avenida Duque de Caxias Norte, 225, Campus Fernando Costa, University of São Paulo, 13635-900, Pirassununga, SP, Brazil
| | - I G Motta
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, Avenida Duque de Caxias Norte, 225, Campus Fernando Costa, University of São Paulo, 13635-900, Pirassununga, SP, Brazil
| | - L A Silva
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, Avenida Duque de Caxias Norte, 225, Campus Fernando Costa, University of São Paulo, 13635-900, Pirassununga, SP, Brazil
| | - J C da Silveira
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, Avenida Duque de Caxias Norte, 225, Campus Fernando Costa, University of São Paulo, 13635-900, Pirassununga, SP, Brazil
| | - A M Gonella-Diaza
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, 4932 Highway 162, Marianna, FL 32446, USA
| | - M Binelli
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville, FL 32608, USA
| | - G Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, Avenida Duque de Caxias Norte, 225, Campus Fernando Costa, University of São Paulo, 13635-900, Pirassununga, SP, Brazil; and Corresponding author.
| |
Collapse
|
5
|
Caetano-Anolles K, Kim K, Kwak W, Sung S, Kim H, Choi BH, Lim D. Genome sequencing and protein domain annotations of Korean Hanwoo cattle identify Hanwoo-specific immunity-related and other novel genes. BMC Genet 2018; 19:37. [PMID: 29843617 PMCID: PMC5975384 DOI: 10.1186/s12863-018-0623-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/14/2018] [Indexed: 12/30/2022] Open
Abstract
Background Identification of genetic mechanisms and idiosyncrasies at the breed-level can provide valuable information for potential use in evolutionary studies, medical applications, and breeding of selective traits. Here, we analyzed genomic data collected from 136 Korean Native cattle, known as Hanwoo, using advanced statistical methods. Results Results revealed Hanwoo-specific protein domains which were largely characterized by immunoglobulin function. Furthermore, domain interactions of novel Hanwoo-specific genes reveal additional links to immunity. Novel Hanwoo-specific genes linked to muscle and other functions were identified, including protein domains with functions related to energy, fat storage, and muscle function that may provide insight into the mechanisms behind Hanwoo cattle’s uniquely high percentage of intramuscular fat and fat marbling. Conclusion The identification of Hanwoo-specific genes linked to immunity are potentially useful for future medical research and selective breeding. The significant genomic variations identified here can crucially identify genetic novelties that are arising from useful adaptations. These results will allow future researchers to compare and classify breeds, identify important genetic markers, and develop breeding strategies to further improve significant traits. Electronic supplementary material The online version of this article (10.1186/s12863-018-0623-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kelsey Caetano-Anolles
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Kwondo Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, 151-741, Republic of Korea
| | - Woori Kwak
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, 151-741, Republic of Korea.,CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea
| | - Samsun Sung
- CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, 151-741, Republic of Korea.,Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.,CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea
| | - Bong-Hwan Choi
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, 77 Chuksan-gil, Kwonsun-gu, Suwon, 441-706, Republic of Korea
| | - Dajeong Lim
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, 77 Chuksan-gil, Kwonsun-gu, Suwon, 441-706, Republic of Korea.
| |
Collapse
|
6
|
Wang W, Liu R, Liang X, Zhao Q, Qu P, Yao K, Jiang M, Luo Y, Zhang W, Qing S. Expression of IFNAR1 and IFNAR2 in cattle placenta during early pregnancy. Reprod Domest Anim 2017; 53:385-392. [PMID: 29194800 DOI: 10.1111/rda.13118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/25/2017] [Indexed: 01/20/2023]
Abstract
Interferon-tau (IFNT), a type I interferon, is an antiluteolytic factor secreted by trophoderm during pregnancy. IFNT transmitted signals or stimulated the expression of some factors to build maternal recognition and keep pregnancy by binding its receptors, IFNT receptor 1(IFNAR1) and IFNT receptor 2 (IFNAR2). Up to now, the expression model and roles of IFNAR1 and IFNAR2 in placenta have not been investigated in cattle. In this study, the localization and expression of IFNAR1 and IFNAR2 in the cattle placenta at days 18-50 of pregnancy were detected by histological examination, immunofluorescence staining and real-time qPCR. The results showed that IFNAR1 mainly distributed in chorioallantoic membrane, endometrial epithelium, cotyledon and caruncle during the early pregnancy of cattle with change in time- and position-dependent. IFNAR1 and IFNAR2 mRNA expression were mainly detected in chorioallantoic membrane and cotyledon, and markedly increased along with pregnancy process. Moreover, the mRNA expression level of IFNAR1 in chorioallantoic membrane and cotyledon was higher than that of IFNAR2. IFNAR mRNA was also expressed in caruncle tissues, which experienced a tendency of decrease from days 21 to 36, followed by increase after days 36. These results provide morphological basis and quantitative data for investigating the roles of IFNAR1 and IFNAR2 on development of cattle placenta and pregnancy maintenance.
Collapse
Affiliation(s)
- W Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - R Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - X Liang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Q Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - P Qu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - K Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - M Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - W Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - S Qing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Zhao S, Wu Y, Gao H, Evans A, Zeng SM. Roles of interferon-stimulated gene 15 protein in bovine embryo development. Reprod Fertil Dev 2017; 29:1209-1216. [DOI: 10.1071/rd15209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 03/25/2016] [Indexed: 01/19/2023] Open
Abstract
Interferon (IFN)-stimulated gene 15 (ISG15) is one of several proteins induced by conceptus-derived Type I or II IFNs in the uterus, and is implicated as an important factor in determining uterine receptivity to embryos in ruminants. But little is known about the role the ISG15 gene or gene product plays during embryo development. In the present study, both the expression profile and function of ISG15 were investigated in early bovine embryos in vitro. ISG15 mRNA was detectable in Day 0, 2, 6 and 8 bovine embryos, but IFN-τ (IFNT) mRNA only appeared from Day 6. This means that embryonic expression of ISG15 on Days 0 and 2 was not induced by embryonic IFNT. However, ISG15 mRNA expression paralleled the expression of IFNT mRNA in Day 6 and 8 embryos. ISG15–lentivirus interference plasmid (ISG15i) was injected into 2-cell embryos to knockdown ISG15 expression. This resulted in decreases in the proportion of hatching blastocysts, the diameter of blastocysts and cell number per diameter of blastocysts compared with control embryos. In addition, ISG15i inhibited IFNT, Ets2 (E26 oncogene homolog 2) mRNA and connexion 43 protein expression in Day 8 blastocysts, whereas exogenous IFNT treatment (100 ng mL–1, from Day 4 to Day 8) improved ISG15 mRNA and connexion 43 protein expression. In conclusion, it appears that ISG15 is involved in early bovine embryo development and that it regulates IFNT expression in the blastocyst.
Collapse
|
8
|
Characterization of interferon α and β receptor IFNAR1 and IFNAR2 expression and regulation in the uterine endometrium during the estrous cycle and pregnancy in pigs. Theriogenology 2016; 88:166-173. [PMID: 27769575 DOI: 10.1016/j.theriogenology.2016.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022]
Abstract
Type I interferons (IFNs) bind to the heterodimeric receptor composed of IFN-α/β receptor 1 (IFNAR1) and IFN-α and β receptor 2 (IFNAR2) to transmit signals into the cell. It is well known that IFN-δ (IFND), a type I IFN, is secreted by the conceptus during early pregnancy in pigs. However, expression and regulation of IFNAR1 and IFNAR2 in the porcine uterine endometrium are not well understood. Thus, we analyzed the expression and regulation of IFNAR1 and IFNAR2 in the uterine endometrium during the estrous cycle and pregnancy and conceptus and chorioallantoic tissues during pregnancy in pigs. The IFNAR1 and IFNAR2 mRNAs were expressed in the uterine endometrium, and their levels on Day 12 of pregnancy were higher than those on Day 12 of the estrous cycle and highest during pregnancy. The IFNAR1 and IFNAR2 mRNAs were also expressed in conceptuses during early pregnancy, in chorioallantoic tissues during mid-to-term pregnancy, and in endometrial epithelial cells and chorionic membrane during mid-to-late pregnancy. The abundance of IFNAR1 and IFNAR2 mRNAs was increased by interleukin-1β (IL1B), and the abundance of IFNAR2 was increased by estradiol in endometrial tissue explants. Thus, IFNAR1 and IFNAR2 mRNAs were expressed in the uterine endometrium during the estrous cycle and pregnancy in a pregnancy status- and stage-specific manner, and their expression was affected by estradiol and/or IL1B. These results suggest that endometrial and conceptus IFNAR1 and IFNAR2 may mediate the action of type I IFNs during the implantation period for the establishment and maintenance of pregnancy in pigs.
Collapse
|
9
|
Saugandhika S, Sharma V, Malik H, Saini S, Bag S, Kumar S, Singh NK, Mohanty AK, Malakar D. Expression and purification of buffalo interferon-tau and efficacy of recombinant buffalo interferon-tau for in vitro embryo development. Cytokine 2015; 75:186-96. [PMID: 25890875 DOI: 10.1016/j.cyto.2015.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 11/29/2022]
Abstract
The aim of our study was to optimize growth and induction parameters, for expression and large scale purification of functionally active buffalo interferon tau, and to study its possible impact on in vitro blastocyst development. The buffalo interferon-tau gene (BuIFN-T1) bearing gene bank accession No. JX481984, with signal sequence, was obtained through polymerase chain reaction (PCR) from bovine early embryos and was cloned into pJET vector. After being verified, the fragments without signal sequence, were inserted into the expression vector pET-22b and the recombinant plasmid was induced to express the recombinant protein in a prokaryotic expression system. The recombinant BuIFN-T was confirmed by SDS-PAGE and Western blot and subjected to three steps of large scale purification using His Affinity chromatography, Anion Exchange chromatography and Gel Filtration chromatography. The purified recombinant BuIFN-T protein was validated by mass spectroscopy analysis. To examine the effect of recombinant BuIFN-T protein on developmental competency of buffalo embryos, purified recombinant BuIFN-T protein was added to in vitro embryo culture medium (at concentration of 0, 1μg/ml, 2μg/ml, 4μg/ml) for 9days. Addition of recombinant BuIFN-T (2μg/ml) significantly improved the rate of blastocyst production, 45.55% against 31.1% control (p<0.01). Here we conclude that the recombinant BuIFN-T was successfully purified to homogeneity from a prokaryotic expression system and it significantly increased the blastocyst production rate in buffalo. These findings suggest a potential impact of IFN-T in promoting embryonic growth and development.
Collapse
Affiliation(s)
- Shrabani Saugandhika
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Vishal Sharma
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Hrudananda Malik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sikander Saini
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sudam Bag
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sudarshan Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | | | - Ashok Kumar Mohanty
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Dhruba Malakar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India.
| |
Collapse
|
10
|
Type I interferon receptors in goose: Molecular cloning, structural identification, evolutionary analysis and age-related tissue expression profile. Gene 2015; 561:35-44. [DOI: 10.1016/j.gene.2015.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/01/2015] [Accepted: 01/20/2015] [Indexed: 11/19/2022]
|
11
|
Takatsu K, Acosta TJ. Expression of Heparin-Binding EGF-Like Growth Factor (HB-EGF) in Bovine Endometrium: Effects of HB-EGF and Interferon-τ on Prostaglandin Production. Reprod Domest Anim 2015; 50:458-64. [DOI: 10.1111/rda.12513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/23/2015] [Indexed: 01/08/2023]
Affiliation(s)
- K Takatsu
- Laboratory of Reproductive Physiology; Graduate School of Environmental and Life Science; Okayama University; Okayama Japan
| | - TJ Acosta
- Field Center of Animal Science and Agriculture, Farm Disease Control Section; Obihiro University; Obihiro Japan
| |
Collapse
|
12
|
Brooks K, Spencer TE. Biological Roles of Interferon Tau (IFNT) and Type I IFN Receptors in Elongation of the Ovine Conceptus1. Biol Reprod 2015; 92:47. [DOI: 10.1095/biolreprod.114.124156] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
13
|
Zhou H, Chen S, Wang M, Cheng A. Interferons and Their Receptors in Birds: A Comparison of Gene Structure, Phylogenetic Analysis, and Cross Modulation. Int J Mol Sci 2014; 15:21045-68. [PMID: 25405736 PMCID: PMC4264211 DOI: 10.3390/ijms151121045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/26/2014] [Accepted: 11/04/2014] [Indexed: 11/17/2022] Open
Abstract
Interferon may be thought of as a key, with the interferon receptor as the signal lock: Crosstalk between them maintains their balance during viral infection. In this review, the protein structure of avian interferon and the interferon receptor are discussed, indicating remarkable similarity between different species. However, the structures of the interferon receptors are more sophisticated than those of the interferons, suggesting that the interferon receptor is a more complicated signal lock system and has considerable diversity in subtypes or structures. Preliminary evolutionary analysis showed that the subunits of the interferon receptor formed a distinct clade, and the orthologs may be derived from the same ancestor. Furthermore, the development of interferons and interferon receptors in birds may be related to an animal’s age and the maintenance of a balanced state. In addition, the equilibrium between interferon and its receptor during pathological and physiological states revealed that the virus and the host influence this equilibrium. Birds could represent an important model for studies on interferon’s antiviral activities and may provide the basis for new antiviral strategies.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
14
|
Bao ZJ, Zhao S, Haq IU, Zeng SM. Recombinant bovine interferon-τ enhances in vitro development of bovine embryos by upregulating expression of connexin 43 and E-cadherin. J Dairy Sci 2014; 97:6917-25. [DOI: 10.3168/jds.2014-8106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/10/2014] [Indexed: 11/19/2022]
|
15
|
Affiliation(s)
- Anthony M. Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense DK-5000, Denmark;
| | - Allen C. Enders
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, California 95616;
| |
Collapse
|
16
|
Carter AM. Evolution of Placental Function in Mammals: The Molecular Basis of Gas and Nutrient Transfer, Hormone Secretion, and Immune Responses. Physiol Rev 2012; 92:1543-76. [DOI: 10.1152/physrev.00040.2011] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Placenta has a wide range of functions. Some are supported by novel genes that have evolved following gene duplication events while others require acquisition of gene expression by the trophoblast. Although not expressed in the placenta, high-affinity fetal hemoglobins play a key role in placental gas exchange. They evolved following duplications within the beta-globin gene family with convergent evolution occurring in ruminants and primates. In primates there was also an interesting rearrangement of a cassette of genes in relation to an upstream locus control region. Substrate transfer from mother to fetus is maintained by expression of classic sugar and amino acid transporters at the trophoblast microvillous and basal membranes. In contrast, placental peptide hormones have arisen largely by gene duplication, yielding for example chorionic gonadotropins from the luteinizing hormone gene and placental lactogens from the growth hormone and prolactin genes. There has been a remarkable degree of convergent evolution with placental lactogens emerging separately in the ruminant, rodent, and primate lineages and chorionic gonadotropins evolving separately in equids and higher primates. Finally, coevolution in the primate lineage of killer immunoglobulin-like receptors and human leukocyte antigens can be linked to the deep invasion of the uterus by trophoblast that is a characteristic feature of human placentation.
Collapse
Affiliation(s)
- Anthony M. Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Xing F, Li Y, Liang S, Liu D, Jiang C, Zhang Y, Kang L, Jiang Y. cDNA cloning, genomic structure and mRNA expression pattern of porcine type I interferons receptor 2 gene. Int J Immunogenet 2011; 38:339-45. [PMID: 21649860 DOI: 10.1111/j.1744-313x.2011.01018.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Type I interferons (IFN) are important mediators of the host defence against viruses through binding to the cell surface receptors, among which the binding to type I IFN receptor 2 (IFNAR2) is the very first step initiating a complex signal transduction cascade. By using RT-PCR and 5' RACE approaches, we obtained porcine IFNAR2 cDNA, the nucleotide identity of its coding region is 57.53%, 67.45%, 74.07% and 74.63% to those of mouse, human, sheep and cattle, respectively; and the deduced protein of which shares 38.18%, 55.29%, 62.01% and 63.39% identity to those of mouse, human, sheep and cattle, respectively. The genomic structure of porcine IFNAR2 gene consists of nine exons and eight introns. Porcine IFNAR2 mRNA expression was detected in all tissues examined, being strong in the spleen, small intestine, cerebrum and uterus tissues and relatively weak in the stomach tissues. As compared with piglets, the expression of IFNAR2 mRNA was significantly higher in both liver and spleen of Laiwu adult pigs (P < 0.01); in Duroc pigs, however, significantly higher IFNAR2 mRNA expression was only found in adult liver (P < 0.05). In Duroc × Landrace × Yorkshire commercial pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV), the expression of IFNAR2 mRNA in lung tissue was significantly down-regulated as compared to uninfected ones (P < 0.05).
Collapse
Affiliation(s)
- F Xing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Song G, Fleming JAGW, Kim J, Spencer TE, Bazer FW. Pregnancy and interferon tau regulate N-myc interactor in the ovine uterus. Domest Anim Endocrinol 2011; 40:87-97. [PMID: 21067885 DOI: 10.1016/j.domaniend.2010.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 09/09/2010] [Accepted: 09/09/2010] [Indexed: 01/24/2023]
Abstract
In ruminants, interferon tau (IFNT) is synthesized and secreted by the mononuclear trophectoderm cells of the conceptus and maintains the corpus luteum and its secretion of progesterone for successful implantation and maintenance of pregnancy. In this study, we examined regulation of the expression of N-myc interactor (NMI) gene by IFNT in the ovine uterus based on results of microarray data from a study that compared gene expression by human 2fTGH and U3A (STAT1-null 2fTGH) cell lines in response to treatment with IFNT or vehicle. In the present study, semiquantitative reverse transcription-polymerase chain reaction analyses verified that IFNT stimulated expression of NMI mRNA in 2fTGH (ie, in a STAT1-dependent manner), but not in U3A (STAT1-null) cells. Furthermore, results of western blot analyses indicated that immunoreactive NMI proteins in 2fTGH and U3A cell lines increased in a time-dependent manner only in response to IFNT. In ovine endometria, steady-state levels of NMI mRNA increased between days 14 and 16 of pregnancy and then decreased slightly by day 20, but there was no effect of day of the estrous cycle. Expression of NMI mRNA was most abundant in endometrial stromal cells, glandular epithelium, and conceptus trophectoderm. Intrauterine infusion of IFNT in cyclic ewes increased expression of NMI in the endometrium. Expression of NMI in ovine and bovine uterine cell lines increased in response to IFNT. Collectively, the results of the present study indicate that IFNT regulates expression of NMI mRNA and protein in ovine endometria during pregnancy via a STAT1-dependent cell signaling pathway.
Collapse
Affiliation(s)
- G Song
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
19
|
Ealy AD, Yang QE. REVIEW ARTICLE: Control of Interferon-Tau Expression During Early Pregnancy in Ruminants. Am J Reprod Immunol 2009; 61:95-106. [DOI: 10.1111/j.1600-0897.2008.00673.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Oliveira JF, Henkes LE, Ashley RL, Purcell SH, Smirnova NP, Veeramachaneni DNR, Anthony RV, Hansen TR. Expression of interferon (IFN)-stimulated genes in extrauterine tissues during early pregnancy in sheep is the consequence of endocrine IFN-tau release from the uterine vein. Endocrinology 2008; 149:1252-9. [PMID: 18063687 DOI: 10.1210/en.2007-0863] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ruminant conceptus synthesizes and secretes interferon (IFN)-tau, which presumably acts via an intrauterine paracrine mechanism to signal maternal recognition of pregnancy. The aims of this study were to determine whether IFN-stimulated genes (ISG) such as ISG15 and OAS-1 are differentially expressed in blood cells circulating in the uterus of ewes; whether extrauterine components of the reproductive tract such as the corpus luteum (CL) also express mRNA for these ISG, and whether antiviral activity is greater in uterine vein than in uterine artery during early pregnancy. The concentrations of mRNA for both ISG were significantly greater (P < 0.0001) in endometrium and jugular blood of 15-d pregnant ewes than in nonpregnant ewes. ISG15 and OAS-1 mRNA concentrations were also greater (P < 0.05) in CL from 15-d pregnant ewes than in nonpregnant ewes. Immunohistochemistry revealed intense staining for ISG15 in large luteal cells on d 15 of pregnancy. Blood cells from uterine artery and vein of 15-d pregnant ewes had similar ISG15 and OAS-1 mRNA concentrations, suggesting that these cells were not conditioned by IFN-tau within the uterus. By using an antiviral assay, uterine venous blood was found to contain 500- to 1000-fold higher concentrations of bioactive IFN-tau than in uterine arterial blood on d 15 of pregnancy. It is concluded that uterine vein releases IFN-tau, which induces ISG in extrauterine tissues such as the CL during the time of maternal recognition of pregnancy.
Collapse
Affiliation(s)
- João F Oliveira
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Klein C, Bauersachs S, Ulbrich SE, Einspanier R, Meyer HHD, Schmidt SEM, Reichenbach HD, Vermehren M, Sinowatz F, Blum H, Wolf E. Monozygotic Twin Model Reveals Novel Embryo-Induced Transcriptome Changes of Bovine Endometrium in the Preattachment Period1. Biol Reprod 2006; 74:253-64. [PMID: 16207835 DOI: 10.1095/biolreprod.105.046748] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Initiation and maintenance of pregnancy are critically dependent on an intact embryo-maternal communication in the preimplantation period. To get new insights into molecular mechanisms underlying this complex dialog, a holistic transcriptome study of endometrium samples from Day 18 pregnant vs. nonpregnant twin cows was performed. This genetically defined model system facilitated the identification of specific conceptus-induced changes of the endometrium transcriptome. Using a combination of subtracted cDNA libraries and cDNA array hybridization, 87 different genes were identified as upregulated in pregnant animals. Almost one half of these genes are known to be stimulated by type I interferons. For the ISG15ylation system, which is assumed to play an important role in interferon tau (IFNT) signaling, mRNAs of four potential components (IFITM1, IFITM3, HSXIAPAF1, and DTX3L) were found at increased levels in addition to ISG15 and UBE1L. These results were further substantiated by colocalization of these mRNAs in the endometrium of pregnant animals shown by in situ hybridization. A functional classification of the identified genes revealed several different biological processes involved in the preparation of the endometrium for the attachment and implantation of the embryo. Specifically, elevated transcript levels were found for genes involved in modulation of the maternal immune system, genes relevant for cell adhesion, and for remodeling of the endometrium. This first systematic study of maternal transcriptome changes in response to the presence of an embryo on Day 18 of pregnancy in cattle is an important step toward deciphering the embryo-maternal dialog using a systems biology approach.
Collapse
Affiliation(s)
- Claudia Klein
- Institute of Molecular Animal Breeding and Biotechnology, Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang SZ, Roberts RM. The evolution of the Sin1 gene product, a little known protein implicated in stress responses and type I interferon signaling in vertebrates. BMC Evol Biol 2005; 5:13. [PMID: 15698473 PMCID: PMC549548 DOI: 10.1186/1471-2148-5-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 02/07/2005] [Indexed: 11/10/2022] Open
Abstract
Background In yeast, birds and mammals, the SAPK-interacting protein 1 (Sin1) gene product has been implicated as a component of the stress-activated protein kinase (SAPK) signal transduction pathway. Recently, Sin1 has also been shown to interact with the carboxyl terminal end of the cytoplasmic domain of the ovine type I interferon receptor subunit 2 (IFNAR2). However, the function of Sin1 remains unknown. Since SAPK pathways are ancient and the IFN system is confined to vertebrates, the organization of the Sin1 gene and the sequences of the Sin1 protein have been compared across a wide taxonomic range of species. Results Sin1 is represented, apparently as a single gene, in all metazoan species and fungi but is not detectable in protozoa, prokaryotes, or plants. Sin1 is highly conserved in vertebrates (79–99% identity at amino acid level), which possess an interferon system, suggesting that it has been subjected to powerful evolutionary constraint that has limited its diversification. Sin1 possesses at least two unique sequences in its IFNAR2-interacting region that are not represented in insects and other invertebrates. Sequence alignment between vertebrates and insects revealed five Sin1 strongly conserved domains (SCDs I-V), but an analysis of any of these domains failed to identify known functional protein motifs. SCD III, which is approximately 129 amino acids in length, is particularly highly conserved and is present in all the species examined, suggesting a conserved function from fungi to mammals. The coding region of the vertebrate Sin1 gene encompasses 11 exon and 10 introns, while in C. elegans the gene consists of 10 exons and 9 introns organized distinctly from those of vertebrates. In yeast and insects, Sin1 is intronless. Conclusions The study reveals the phylogeny of a little studied gene which has recently been implicated in two important signal transduction pathways, one ancient (stress response), one relatively new (interferon signaling).
Collapse
Affiliation(s)
- Shu-Zong Wang
- Veterinary Pathobiology, University of Missouri, Columbia, USA
- Center for Developmental Biology, University of Texas Southwestern, Medical Center, Dallas USA
| | - R Michael Roberts
- Veterinary Pathobiology, University of Missouri, Columbia, USA
- Biochemistry, University of Missouri, Columbia, USA
- Animal Sciences, University of Missouri, Columbia, USA
| |
Collapse
|
23
|
Wang SZ, Roberts RM. Interaction of stress-activated protein kinase-interacting protein-1 with the interferon receptor subunit IFNAR2 in uterine endometrium. Endocrinology 2004; 145:5820-31. [PMID: 15345682 DOI: 10.1210/en.2004-0991] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During early pregnancy in ruminants, a type I interferon (IFN-tau) signals from the conceptus to the mother to ensure the functional survival of the corpus luteum. IFN-tau operates through binding to the type I IFN receptor (IFNR). Here we have explored the possibility that IFNAR2, one of the two subunits of the receptor, might interact with hitherto unknown signal transduction factors in the uterus that link IFN action to pathways other than the well established Janus kinase-signal transducer and activator of transcription pathways. A yeast two-hybrid screen of an ovine (ov) endometrial cDNA library with the carboxyl-terminal 185 amino acids of ovIFNAR2 as bait identified stress-activated protein kinase-interacting protein 1 (ovSin1) as a protein that bound constitutively through its own carboxyl terminus to the receptor. ovSin1 is a little studied, 522-amino acid-long polypeptide (molecular weight, 59,200) that is highly conserved across vertebrates, but has identifiable orthologs in Drosophila and yeast. It appears to be expressed ubiquitously in mammals, although in low abundance, in a wide range of mammalian tissues in addition to endometrium. Sin1 mRNA occurs in at least two alternatively spliced forms, the smaller of which lacks a 108-bp internal exon. ovSin1, although not exhibiting features of a membrane-spanning protein, such as IFNAR2, is concentrated predominantly in luminal and glandular epithelial cells of the uterine endometrium. When ovSin1 and ovIFNAR2 are coexpressed, the two proteins can be coimmunoprecipitated and colocalized to the plasma membrane and to perinuclear structures. Sin1 provides a possible link among type I IFN action, stress-activated signaling pathways, and control of prostaglandin production.
Collapse
Affiliation(s)
- Shu-Zong Wang
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
24
|
Rosenfeld CS, Han CS, Alexenko AP, Spencer TE, Roberts RM. Expression of interferon receptor subunits, IFNAR1 and IFNAR2, in the ovine uterus. Biol Reprod 2002; 67:847-53. [PMID: 12193393 DOI: 10.1095/biolreprod.102.004267] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interferon-tau (IFN-tau) is the antiluteolytic factor released by concepti of ruminant ungulate species prior to implantation. All type I interferons, including IFN-tau, exert their action through a common receptor, which consists of two subunits, IFNAR1 and IFNAR2c, but the distribution of the two polypeptides in uterine endometrium has not been examined. In situ hybridization and immunohistochemistry on sections from pregnant and nonpregnant ovine uteri at Days 14 and 15 after estrus and mating showed that both IFNAR1 and IFNAR2 mRNA and protein were strongly expressed in endometrial luminal epithelium (LE), superficial glandular epithelium (GE), and stromal cells, within but not outside caruncles. Similar staining patterns were noted in pregnant and nonpregnant uteri for both subunits. Western blot analysis of membrane fractions from cell lines derived from endometrial LE, GE, and stromal cells, and affinity cross-linking experiments with radioactively labeled IFN-tau performed on crude endometrial membranes indicated the presence of both high ( approximately 110 kDa) and low (75-80 kDa) molecular mass forms of the two receptor subunits. To localize where IFN-tau binds when it is introduced into the uterine lumen, immunohistochemistry with an antiserum against IFN-tau was performed on sections of uteri from Day 14 nonpregnant ewes whose uteri had previously been infused with IFN-tau. Staining was concentrated on the LE and superficial GE cells, and was absent from the deeper regions of the glands and from the stromal tissues. These studies demonstrate the heavy concentration of IFNAR1 and IFNAR2 in cells of the LE and superficial GE, which appear to be the main targets for IFN-tau.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Department of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
25
|
Stewart MD, Choi Y, Johnson GA, Yu-Lee LY, Bazer FW, Spencer TE. Roles of Stat1, Stat2, and interferon regulatory factor-9 (IRF-9) in interferon tau regulation of IRF-1. Biol Reprod 2002; 66:393-400. [PMID: 11804954 DOI: 10.1095/biolreprod66.2.393] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interferon tau (IFNtau) is the pregnancy recognition signal produced by the conceptus trophectoderm and acts in a paracine manner on the ovine endometrium to increase expression of IFN-stimulated genes primarily in the stroma and deep glandular epithelium, including IFN regulatory factor-1 (IRF-1). The roles of Stat1, Stat2, and IRF-9 in IFNtau regulation of IRF-1 expression were determined using human stromal fibroblasts lacking specific IFN signaling components or complemented with specific Stat1 mutants. In parental (2fTGH) cells treated with IFNtau, Stat1alpha/beta was tyrosine phosphorylated by 15 min, and IRF-1 mRNA and protein increased from 0 to 6 h, was maximal at 6 h, and decreased to 24 h. In contrast, IFNtau did not affect IRF-1 expression in Stat1- and Stat2-deficient cells or in Stat1-deficient cells complemented with Stat1 Y701Q or Stat1 R602L mutants. In Stat1-deficient cells complemented with the Stat1 S727A mutant, Stat1alpha, or Stat1beta and treated with IFNtau, IRF-1 increased from 0 to 6 h, was maximal at 6 h, and decreased thereafter. In IRF-9-deficient cells stimulated with IFNtau, IRF-1 increased from 0 to 6 h but did not exhibit the sharp decline from 6 to 12 h observed in other cells. Collectively, results indicate that IFNtau effect on IRF-1 expression is primarily regulated by tyrosine-phosphorylated Stat1alpha or Stat1beta dimers, whereas the decline of IRF-1 after 6 h of IFNtau treatment is regulated by IRF-9.
Collapse
Affiliation(s)
- M David Stewart
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | |
Collapse
|
26
|
Han CS, Chen Y, Ezashi T, Roberts RM. Antiviral activities of the soluble extracellular domains of type I interferon receptors. Proc Natl Acad Sci U S A 2001; 98:6138-43. [PMID: 11344274 PMCID: PMC33435 DOI: 10.1073/pnas.111139598] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2001] [Indexed: 01/14/2023] Open
Abstract
Alternative splicing leads to the expression of multiple isoforms of the subunits (IFNAR1 and IFNAR2) of the type I IFN receptor. Here we describe two transcripts representing extracellular forms of ovine IFNAR1 and show that soluble extracellular forms of both IFNAR2 and IFNAR1, prepared in recombinant form in Escherichia coli, have antiviral (AV) activity in the absence of IFN. Exposure of Madin-Darby bovine kidney cells to the extracellular domain (R2E) of IFNAR2 at concentrations as low as 10 nM afforded complete protection against vesicular stomatitis virus and led to the rapid activation of the transcription factors ISGF3 and GAF. Although R2E can bind IFN (K(d) approximately 70 nM), activity was observed irrespective of whether or not ligand was present. R2E was inactive on mouse L929 cells but active on L929 cells expressing a membraneanchored, ovine/human chimeric IFNAR2 with an ovine extracellular domain. The data suggest that AV activity is conferred by the ability of soluble R2E to associate with the transfected IFNAR2 subunit rather than resident murine IFNAR1. Soluble extracellular forms of IFNAR1 have lower AV activity than R2E on Madin-Darby bovine kidney cells but are less species-specific and protect wild-type L929 cells as efficiently as the transfected cell line, presumably by interacting with one of the murine receptor subunits.
Collapse
Affiliation(s)
- C S Han
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
27
|
Stewart MD, Johnson GA, Bazer FW, Spencer TE. Interferon-tau (IFNtau) regulation of IFN-stimulated gene expression in cell lines lacking specific IFN-signaling components. Endocrinology 2001; 142:1786-94. [PMID: 11316742 DOI: 10.1210/endo.142.5.8138] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interferon-tau (IFNtau) is a unique type I IFN secreted by the ruminant conceptus that acts in a paracrine manner on the endometrial epithelium to signal pregnancy recognition. In the ovine endometrium, IFNtau suppresses estrogen receptor alpha and oxytocin receptor gene expression, but increases or induces expression of IFN-simulated genes (ISGs), including signal transducer and activator of transcription-1 (STAT1), STAT2, ISG factor-3gamma (ISGF3gamma)/p48/IFN regulatory factor-9, and 2',5'-oligoadenylate synthetase (OAS). Human fibroblast cell lines lacking specific IFN signaling components were employed to determine the roles of STAT1, STAT2, and ISGF3gamma in the effects of IFNtau on ISG protein expression. Results indicated that STAT1alpha or STAT1beta is required for IFNtau effects on STAT2, ISGF3gamma, and OAS (40/46, 69/71, and 100 kDa). STAT2 is required for effects on STAT1, ISGF3gamma, and all OAS forms. ISGF3gamma is required for effects of IFNtau on STAT2 and 40/46- and 69/71-kDa OAS and plays a role in the effects of IFNtau on 100-kDa OAS and STAT1. Mutation of Tyr(701), but not Ser(727), of STAT1 abolished the effects of IFNtau on ISG expression. Mutation of the SH2 domain of STAT1 abolished the effects of IFNtau on all ISGs and reduced increases in 100-kDa OAS. These data illustrate the importance of transcription factors composed of STAT1, STAT2, and ISGF3gamma in the signaling pathway mediating the effects of IFNtau on ISG expression.
Collapse
Affiliation(s)
- M D Stewart
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | | | |
Collapse
|
28
|
Lewerenz M, Mogensen KE, Uzé G. Shared receptor components but distinct complexes for alpha and beta interferons. J Mol Biol 1998; 282:585-99. [PMID: 9737924 DOI: 10.1006/jmbi.1998.2026] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The type I interferon family includes 13 alpha, one omega and one beta subtypes recognized by a complex containing the receptor subunits ifnar1 and ifnar2 and their associated Janus tyrosine kinases, Tyk2 and Jak1. To investigate the reported differences in the way that alpha and beta interferons signal through the receptor, we introduced alanine-substitutions in the ifnar2 extracellular domain, and expressed the mutants in U5A cells, lacking endogenous ifnar2. A selection, designed to recover mutants that responded preferentially to alpha or beta interferon yielded three groups: I, neutral; II, sensitive to alpha interferon, partially resistant to beta interferon; III, resistant to alpha interferon, partially sensitive to beta interferon. A mutant clone, TMK, fully resistant to alpha interferon with good sensitivity to beta interferon, was characterized in detail and compared with U5A cells complemented with wild-type ifnar2 and also with Tyk2-deficient 11.1 cells, which exhibit a similar alpha-unresponsive phenotype with a partial beta interferon response. Using anti-receptor antibodies and mutant forms of beta interferon, three distinct modes of ligand interaction could be discerned: (i) alpha interferon with ifnar1 and ifnar2; (ii) beta interferon with ifnar1 and ifnar2; (iii) beta interferon with ifnar2 alone. We conclude that alpha and beta interferons signal differently through their receptors because the two ligand subtypes interact with the receptor subunits ifnar 1 and ifnar2 in entirely different ways.
Collapse
Affiliation(s)
- M Lewerenz
- Institut de Génétique Moléculaire, CNRS UMR 5535, 1919 Route de Mende, Montpellier Cedex 5, 34293, France
| | | | | |
Collapse
|