1
|
Mandal AK, Leask MP, Sumpter NA, Choi HK, Merriman TR, Mount DB. Genetic and Physiological Effects of Insulin-Like Growth Factor-1 (IGF-1) on Human Urate Homeostasis. J Am Soc Nephrol 2023; 34:451-466. [PMID: 36735516 PMCID: PMC10103387 DOI: 10.1681/asn.0000000000000054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/25/2022] [Indexed: 01/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT Hyperinsulinemia induces hyperuricemia by activating net renal urate reabsorption in the renal proximal tubule. The basolateral reabsorptive urate transporter GLUT9a appears to be the dominant target for insulin. By contrast, IGF-1 infusion reduces serum urate (SU), through mechanisms unknown. Genetic variants of IGF1R associated with reduced SU have increased IGF-1R expression and interact with genes encoding the GLUT9 and ABCG2 urate transporters, in a sex-specific fashion, which controls the SU level. Activation of IGF-1/IGF-1R signaling in Xenopus oocytes modestly activates GLUT9a and inhibits insulin's stimulatory effect on the transporter, which also activates multiple secretory urate transporters-ABCG2, ABCC4, OAT1, and OAT3. The results collectively suggest that IGF-1 reduces SU by activating secretory urate transporters and inhibiting insulin's action on GLUT9a. BACKGROUND Metabolic syndrome and hyperinsulinemia are associated with hyperuricemia. Insulin infusion in healthy volunteers elevates serum urate (SU) by activating net urate reabsorption in the renal proximal tubule, whereas IGF-1 infusion reduces SU by mechanisms unknown. Variation within the IGF1R gene also affects SU levels. METHODS Colocalization analyses of a SU genome-wide association studies signal at IGF1R and expression quantitative trait loci signals in cis using COLOC2, RT-PCR, Western blotting, and urate transport assays in transfected HEK 293T cells and in Xenopus laevis oocytes. RESULTS Genetic association at IGF1R with SU is stronger in women and is mediated by control of IGF1R expression. Inheritance of the urate-lowering homozygous genotype at the SLC2A9 locus is associated with a differential effect of IGF1R genotype between men and women. IGF-1, through IGF-1R, stimulated urate uptake in human renal proximal tubule epithelial cells and transfected HEK 293T cells, through activation of IRS1, PI3/Akt, MEK/ERK, and p38 MAPK; urate uptake was inhibited in the presence of uricosuric drugs, specific inhibitors of protein tyrosine kinase, PI3 kinase (PI3K), ERK, and p38 MAPK. In X. laevis oocytes expressing ten individual urate transporters, IGF-1 through endogenous IGF-1R stimulated urate transport mediated by GLUT9, OAT1, OAT3, ABCG2, and ABCC4 and inhibited insulin's stimulatory action on GLUT9a and OAT3. IGF-1 significantly activated Akt and ERK. Specific inhibitors of PI3K, ERK, and PKC significantly affected IGF-1 stimulation of urate transport in oocytes. CONCLUSIONS The combined results of infusion, genetics, and transport experiments suggest that IGF-1 reduces SU by activating urate secretory transporters and inhibiting insulin's action.
Collapse
Affiliation(s)
- Asim K. Mandal
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Megan P. Leask
- Biochemistry Department, University of Otago, Dunedin, South Island, New Zealand
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham, Alabama
| | - Nicholas A. Sumpter
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham, Alabama
| | - Hyon K. Choi
- Division of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tony R. Merriman
- Biochemistry Department, University of Otago, Dunedin, South Island, New Zealand
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham, Alabama
| | - David B. Mount
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Renal Division, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Jessus C, Munro C, Houliston E. Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish. Cells 2020; 9:E1150. [PMID: 32392797 PMCID: PMC7290932 DOI: 10.3390/cells9051150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
During oocyte development, meiosis arrests in prophase of the first division for a remarkably prolonged period firstly during oocyte growth, and then when awaiting the appropriate hormonal signals for egg release. This prophase arrest is finally unlocked when locally produced maturation initiation hormones (MIHs) trigger entry into M-phase. Here, we assess the current knowledge of the successive cellular and molecular mechanisms responsible for keeping meiotic progression on hold. We focus on two model organisms, the amphibian Xenopus laevis, and the hydrozoan jellyfish Clytia hemisphaerica. Conserved mechanisms govern the initial meiotic programme of the oocyte prior to oocyte growth and also, much later, the onset of mitotic divisions, via activation of two key kinase systems: Cdk1-Cyclin B/Gwl (MPF) for M-phase activation and Mos-MAPkinase to orchestrate polar body formation and cytostatic (CSF) arrest. In contrast, maintenance of the prophase state of the fully-grown oocyte is assured by highly specific mechanisms, reflecting enormous variation between species in MIHs, MIH receptors and their immediate downstream signalling response. Convergence of multiple signalling pathway components to promote MPF activation in some oocytes, including Xenopus, is likely a heritage of the complex evolutionary history of spawning regulation, but also helps ensure a robust and reliable mechanism for gamete production.
Collapse
Affiliation(s)
- Catherine Jessus
- Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Catriona Munro
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
- Inserm, Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, 75005 Paris, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
| |
Collapse
|
3
|
Wu M, Obara Y, Ohshima S, Nagasawa Y, Ishii K. Insulin treatment augments KCNQ1/KCNE1 currents but not KCNQ1 currents, which is associated with an increase in KCNE1 expression. Biochem Biophys Res Commun 2017; 493:409-415. [PMID: 28882596 DOI: 10.1016/j.bbrc.2017.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022]
Abstract
Diabetes mellitus affects ion channel physiology. We have previously reported that acute application of insulin suppresses the KCNQ1/KCNE1 currents that play an important role in terminating ventricular action potential. In this study, we investigated the effect of long-term insulin treatment on KCNQ1/KCNE1 currents using the Xenopus oocyte expression system. Insulin treatment with a duration longer than 6 h had an opposite effect to acute insulin application, that is, it augmented the KCNQ1/KCNE1 currents. Inhibitors of PI3K, wortmannin and LY294002, and a MEK inhibitor, U0126, abolished the potentiating effect of long-term insulin treatment. The long-term treatment with insulin had no effect on KCNQ1 currents indicating an essential role of KCNE1 in the insulin effect, which is similar to the acute insulin effect. Cycloheximide, an inhibitor of protein synthesis, and brefeldin A, an inhibitor of protein transport from endoplasmic reticulum, suppressed the long-term insulin effect. Western blotting analysis combined with these pharmacological data suggest that long-term insulin treatment augments KCNQ1/KCNE1 currents by increasing KCNE1 protein expression.
Collapse
Affiliation(s)
- Minghua Wu
- Department of Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Yutaro Obara
- Department of Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Shingo Ohshima
- Department of Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Yoshinobu Nagasawa
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| |
Collapse
|
4
|
DAS DEBABRATA, ARUR SWATHI. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Mol Reprod Dev 2017; 84:444-459. [PMID: 28379636 PMCID: PMC5477485 DOI: 10.1002/mrd.22806] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
Abstract
Insulin signaling regulates various aspects of physiology, such as glucose homeostasis and aging, and is a key determinant of female reproduction in metazoans. That insulin signaling is crucial for female reproductive health is clear from clinical data linking hyperinsulinemic and hypoinsulinemic condition with certain types of ovarian dysfunction, such as altered steroidogenesis, polycystic ovary syndrome, and infertility. Thus, understanding the signaling mechanisms that underlie the control of insulin-mediated ovarian development is important for the accurate diagnosis of and intervention for female infertility. Studies of invertebrate and vertebrate model systems have revealed the molecular determinants that transduce insulin signaling as well as which biological processes are regulated by the insulin-signaling pathway. The molecular determinants of the insulin-signaling pathway, from the insulin receptor to its downstream signaling components, are structurally and functionally conserved across evolution, from worms to mammals-yet, physiological differences in signaling still exist. Insulin signaling acts cooperatively with gonadotropins in mammals and lower vertebrates to mediate various aspects of ovarian development, mainly owing to evolution of the endocrine system in vertebrates. In contrast, insulin signaling in Drosophila and Caenorhabditis elegans directly regulates oocyte growth and maturation. In this review, we compare and contrast insulin-mediated regulation of ovarian functions in mammals, lower vertebrates, C. elegans, and Drosophila, and highlight conserved signaling pathways and regulatory mechanisms in general while illustrating insulin's unique role in specific reproductive processes.
Collapse
Affiliation(s)
- DEBABRATA DAS
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - SWATHI ARUR
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
5
|
Nikseresht M, Toori MA, Rahimi HR, Fallahzadeh AR, Kahshani IR, Hashemi SF, Bahrami S, Mahmoudi R. Effect of Antioxidants (β-mercaptoethanol and Cysteamine) on Assisted Reproductive Technology In vitro. J Clin Diagn Res 2017; 11:BC10-BC14. [PMID: 28384851 DOI: 10.7860/jcdr/2017/21778.9298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/17/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Oocyte Culture of Germinal Vesicle (GV) and its growth improves Assisted Reproductive Technology (ART) invitro and infertility. Inappropriate culture medium environment, low quality of oocytes, increase in Oxidative Stress (OS) events, Reactive Oxygen Species (ROS) and free radicals production are the main factors that result in unsuccessful Invitro Maturation (IVM) and decrease in reproduction. AIM The present study was conducted with the aim to evaluate the effect of β-mercaptoethanol (BME) and Cysteamine (CYS) on IVM improvement, embryo fertilization and development of blastocyst of mouse immature oocyte. MATERIALS AND METHODS Oocytes were obtained from 4-6 weeks old Naval Medical Research Institute (NMRI) female mice, 48 hours after stimulation with Intraperitoneal (IP) injection of 10 IU Pregnant Mare Serum Gonadotropin (PMSG). GV oocyte with and without cumulus cells were isolated from ovaries and cultured in Tissue Culture Medium (TCM) 199 with availability of 100 μM of antioxidants (BME and CYS). After 24 hours, mature oocyte in metaphase II (MII) were fertilized with sperm in In vitro Fertilization (IVF) medium (T6) and evaluated for fetal development into blastocyst. RESULTS BME and CYS could significantly (p<0.05) increase the rate of IVM and oocyte evolution, and embryo formation in medium culture. Furthermore, it is demonstrated that existence of Cumulus Oocyte Complexes (COC) significantly showed better IVM, fertilization and evolution trend as compared to oocytes without cumulus cover or Denuded Oocytes (DO), especially in TCM199 plus BME and CYS. So that the change in GV stage oocytes to MII (maturation rate), fertilization rates or 2PN formation, and two cell embryos formation or blastocyst development rate in the treatment group with addition of BME & CYS and COC was statistically significant as compared to the DO group (p-value < 0.0001). CONCLUSION Both cellular and environmental factors could be important and involved in ART improvement.
Collapse
Affiliation(s)
- Mohsen Nikseresht
- Associate Professor, Faculty of Medicine, Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj, Iran
| | - Mehdi Akbartabar Toori
- Associate Professor, Faculty of Medicine, Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj, Iran
| | - Hamid Reza Rahimi
- Assistant Professor, Department of Toxicology and Pharmacology, Pharmaceutics Research Center, Institute of Neuropharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences , Kerman, Iran
| | - Ali Reza Fallahzadeh
- Assistant Professor, Faculty of Medicine, Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj, Iran
| | - Iraj Ragerdi Kahshani
- Professor, Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Seyedeh Fatemeh Hashemi
- Faculty of Medicine, Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj, Iran
| | - Solmaz Bahrami
- Faculty of Medicine, Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj, Iran
| | - Reza Mahmoudi
- Professor, Faculty of Medicine, Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj, Iran
| |
Collapse
|
6
|
Turcheniuk K, Khanal M, Motorina A, Subramanian P, Barras A, Zaitsev V, Kuncser V, Leca A, Martoriati A, Cailliau K, Bodart JF, Boukherroub R, Szunerits S. Insulin loaded iron magnetic nanoparticle–graphene oxide composites: synthesis, characterization and application for in vivo delivery of insulin. RSC Adv 2014. [DOI: 10.1039/c3ra46307a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
7
|
Jones ML, Liao GY, Malecki R, Li M, Salazar NM, Leonard JP. PI 3-kinase and PKCζ mediate insulin-induced potentiation of NMDA receptor currents in Xenopus oocytes. Brain Res 2011; 1432:7-14. [PMID: 22137655 DOI: 10.1016/j.brainres.2011.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
Insulin modulates N-methyl-d-aspartate (NMDA) receptors in the CNS and potentiates recombinant NMDA receptor currents in Xenopus oocytes. We have previously found that insulin's potentiation of NMDA receptor currents in oocytes occurs in a subunit specific manner and via phosphorylation of specific C-terminal sites by protein tyrosine kinases (PTKs) and C-type protein kinases (PKCs). Insulin-mediated current potentiation of receptors containing the NR2A subunit occurs solely through the activation of PKCs. Activation of phosphoinositide 3-kinase (PI 3-kinase) is known to trigger many insulin-stimulated signaling pathways, and we show here that it lies at a critical step in the insulin-mediated potentiation of NMDA receptor currents. Incubation with the PI 3-kinase inhibitor wortmannin eliminates insulin potentiation of NMDA receptor currents in the oocytes. Atypical isoforms of PKC are known to be activated downstream in the insulin signaling pathway via activation of PI 3-kinase. We demonstrate that the atypical isoform PKC zeta (PKCζ) has a role in insulin-stimulated current potentiation of NR2A-containing NMDA receptors using an isoform-specific pseudosubstrate inhibitor of PKCζ.
Collapse
Affiliation(s)
- Michelle L Jones
- University of Illinois at Chicago, Department of Biological Sciences and Laboratory for Integrative Neuroscience, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
8
|
Li J, Liu Z, Wang D, Cheng CH. Insulin-Like Growth Factor 3 Is Involved in Oocyte Maturation in Zebrafish1. Biol Reprod 2011; 84:476-86. [DOI: 10.1095/biolreprod.110.086363] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
9
|
Sadler SE, Angleson JK, Dsouza M. IGF-1 Receptors in Xenopus laevis Ovarian Follicle Cells Support the Oocyte Maturation Response. Biol Reprod 2010; 82:591-8. [DOI: 10.1095/biolreprod.109.080937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
10
|
Liang CG, Su YQ, Fan HY, Schatten H, Sun QY. Mechanisms Regulating Oocyte Meiotic Resumption: Roles of Mitogen-Activated Protein Kinase. Mol Endocrinol 2007; 21:2037-55. [PMID: 17536005 DOI: 10.1210/me.2006-0408] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractOocyte meiotic maturation is one of the important physiological requirements for species survival. However, little is known about the detailed events occurring during this process. A number of studies have demonstrated that MAPK plays a pivotal role in the regulation of meiotic cell cycle progression in oocytes, but controversial findings have been reported in both lower vertebrates and mammals. In this review, we summarized the roles of MAPK cascade and related signal pathways in oocyte meiotic reinitiation in both lower vertebrates and mammals. We also tried to reconcile the paradoxical results and highlight the new findings concerning the function of MAPK in both oocytes and the surrounding follicular somatic cells. The unresolved questions and future research directions regarding the role of MAPK in meiotic resumption are addressed.
Collapse
Affiliation(s)
- Cheng-Guang Liang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang Beijing 100101, China
| | | | | | | | | |
Collapse
|
11
|
Van Buren JJ, Bhat S, Rotello R, Pauza ME, Premkumar LS. Sensitization and translocation of TRPV1 by insulin and IGF-I. Mol Pain 2005; 1:17. [PMID: 15857517 PMCID: PMC1142339 DOI: 10.1186/1744-8069-1-17] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 04/27/2005] [Indexed: 12/27/2022] Open
Abstract
Insulin and insulin-like growth factors (IGFs) maintain vital neuronal functions. Absolute or functional deficiencies of insulin or IGF-I may contribute to neuronal and vascular complications associated with diabetes. Vanilloid receptor 1 (also called TRPV1) is an ion channel that mediates inflammatory thermal nociception and is present on sensory neurons. Here we demonstrate that both insulin and IGF-I enhance TRPV1-mediated membrane currents in heterologous expression systems and cultured dorsal root ganglion neurons. Enhancement of membrane current results from both increased sensitivity of the receptor and translocation of TRPV1 from cytosol to plasma membrane. Receptor tyrosine kinases trigger a signaling cascade leading to activation of phosphatidylinositol 3-kinase (PI(3)K) and protein kinase C (PKC)-mediated phosphorylation of TRPV1, which is found to be essential for the potentiation. These findings establish a link between the insulin family of trophic factors and vanilloid receptors.
Collapse
Affiliation(s)
- Jeremy J Van Buren
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA
| | - Satyanarayan Bhat
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA
| | - Rebecca Rotello
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA
| | - Mary E Pauza
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine Springfield, IL 62702, USA
- Department of Internal Medicine, Southern Illinois University School of Medicine Springfield, IL 62702, USA
| | - Louis S Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA
| |
Collapse
|
12
|
Jones ML, Leonard JP. PKC site mutations reveal differential modulation by insulin of NMDA receptors containing NR2A or NR2B subunits. J Neurochem 2005; 92:1431-8. [PMID: 15748161 DOI: 10.1111/j.1471-4159.2004.02985.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Insulin modulates N-methyl-d-aspartate (NMDA) receptors in the CNS and potentiates currents of recombinant NMDA receptors in a subunit-specific manner in Xenopus oocytes. Previously we identified two sites in the NR2B C-terminus as targets for direct phosphorylation by C-type protein kinases (PKCs). Mutating these sites reduced insulin potentiation of currents by one half, reflecting the PKC-mediated portion of the NR2B insulin effect. The PKC-proline rich tyrosine kinase (Pyk2)-Src family kinase pathway may also mediate insulin potentiation. A dominant negative Pyk2 mutant significantly reduced insulin potentiation when co-expressed with NR2B-containing receptors, suggesting that Pyk2 and downstream Src-family tyrosine kinases are involved, along with PKCs, in insulin potentiation of NR2B. The NR2A C-terminus contains two residues homologous to the NR2B PKC targets. Mutating both these sites eliminated insulin potentiation of NR2A-containing receptors, while co-expression of dominant negative Pyk2 had no effect. Together, these data indicate that PKCs alone mediate the NR2A insulin effect. When tested individually for importance in insulin potentiation, the two PKC sites showed an additive effect in potentiation of NR2A-containing receptors. Insulin modulation of NR2A-containing receptors is mediated solely by PKCs, whereas insulin modulation of NR2B-containing receptors is mediated by PKCs and tyrosine kinases (PTKs).
Collapse
Affiliation(s)
- Michelle L Jones
- Laboratory of Integrative Neuroscience and Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607, USA
| | | |
Collapse
|
13
|
Molokanova E, Krajewski JL, Satpaev D, Luetje CW, Kramer RH. Subunit contributions to phosphorylation-dependent modulation of bovine rod cyclic nucleotide-gated channels. J Physiol 2004; 552:345-56. [PMID: 14561819 PMCID: PMC2343370 DOI: 10.1113/jphysiol.2003.047167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels in rod photoreceptors transduce a decrease in cGMP into hyperpolarization during the light response. Insulin-like growth factor-1 (IGF-1) increases light responses by increasing the cGMP sensitivity of CNG channels, an event mediated by a protein tyrosine phosphatase. Native rod CNG channels are heteromultimers, composed of three CNGA1 subunits and one CNGB1 subunit. Previous studies on heterologously expressed rod CNG channels show that a specific tyrosine in the CNGA1 subunit (Y498) is required for modulation by protein tyrosine phosphatases, protein tyrosine kinases and IGF-1. Here we show that the CNGB1 subunit contains a specific tyrosine (Y1097) that is important for modulation of heteromeric channels by tyrosine phosphorylation. Direct biochemical measurements demonstrate 32P-labelling of CNGA1Y498 and CNGB1Y1097. Replacement of either Y498 of CNGA1 or Y1097 of CNGB1 with phenylalanine reduces modulation, and removal of both tyrosines eliminates modulation. Unlike CNGA1, CNGB1 does not exhibit activity dependence of modulation by tyrosine phosphorylation. Hence both CNGA1 and CNGB1 subunits contribute to phosphorylation-dependent modulation of rod CNG channels, but the phosphorylation states of the two subunits are regulated in different ways.
Collapse
Affiliation(s)
- Elena Molokanova
- Deparment of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
14
|
Varela-Nieto I, de la Rosa EJ, Valenciano AI, León Y. Cell death in the nervous system: lessons from insulin and insulin-like growth factors. Mol Neurobiol 2003; 28:23-50. [PMID: 14514984 DOI: 10.1385/mn:28:1:23] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 02/28/2003] [Indexed: 12/11/2022]
Abstract
Programmed cell death is an essential process for proper neural development. Cell death, with its similar regulatory and executory mechanisms, also contributes to the origin or progression of many or even all neurodegenerative diseases. An understanding of the mechanisms that regulate cell death during neural development may provide new targets and tools to prevent neurodegeneration. Many studies that have focused mainly on insulin-like growth factor-I (IGF-I), have shown that insulin-related growth factors are widely expressed in the developing and adult nervous system, and positively modulate a number of processes during neural development, as well as in adult neuronal and glial physiology. These factors also show neuroprotective effects following neural damage. Although some specific actions have been demonstrated to be anti-apoptotic, we propose that a broad neuroprotective role is the foundation for many of the observed functions of the insulin-related growth factors, whose therapeutical potential for nervous system disorders may be greater than currently accepted.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, E-28029 Madrid, Spain.
| | | | | | | |
Collapse
|
15
|
Baert F, Bodart JF, Bocquet-Muchembled B, Lescuyer-Rousseau A, Vilain JP. Xp42(Mpk1) activation is not required for germinal vesicle breakdown but for Raf complete phosphorylation in insulin-stimulated Xenopus oocytes. J Biol Chem 2003; 278:49714-20. [PMID: 14507918 DOI: 10.1074/jbc.m308067200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fully grown G2-arrested Xenopus oocytes resume meiosis in vitro upon exposure to hormonal stimulation. Progesterone triggers oocyte meiosis resumption through a Ras-independent pathway that involves a p39Mos-dependent activation of the mitogen-activated protein (MAP) kinases. Insulin also triggers meiosis resumption through a tyrosine kinase receptor that activates a Ras-dependent pathway leading to the MAP kinases activation. Antisense phosphorothioate oligonucleotides were used to prevent p39Mos accumulation and Erk-like Xp42(Mpk1) activation during insulin-induced Xenopus oocytes maturation. In contrast to previous works, prevention of p39Mos-induced activation of Xp42(Mpk1) in insulin-treated oocytes did not inhibit but delayed meiotic resumption, like in progesterone-stimulated oocytes. Activations of Xp42(Mpk1), the unique Erk of the oocyte, and of its downstream target p90Rsk, were impaired and phosphorylation of the MAPKK kinase Raf was partially inhibited. Similarly, oocytes treated with the MEK inhibitor U0126, stimulated by insulin exhibited delayed germinal vesicle breakdown, absence of Xp42(Mpk1) activation, and partial phosphorylation of Raf. To summarize, whereas p39Mos-induced activation of MEK/MAPK pathway is dispensable for insulin-induced germinal vesicle breakdown, Xp42(Mpk1) activation induced by insulin is dependent upon p39Mos synthesis. Raf complete phosphorylation appears to require the MEK/MAPK pathway activation both in progesterone and insulin-stimulated oocytes.
Collapse
Affiliation(s)
- Frédéric Baert
- Laboratoire de Biologie du Développement UPRES-EA1033, Bâtiment SN3, IFR118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
16
|
Yoshimura Y. Insulin-like growth factors and their binding proteins: Potential relevance to reproductive physiology. Reprod Med Biol 2003; 2:1-24. [PMID: 29699162 DOI: 10.1046/j.1445-5781.2003.00016.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic ovarian follicular development is a complex process that involves proliferation, differentiation, and death of follicle cells. Gonadotropins produced by the pituitary gland have a central role in the regulation of these processes. In addition, a wide range of paracrine and autocrine factors produced in the reproductive organs have been proposed as regulators of reproductive functions. Components of the insulin-like growth factors (IGF) system are widely expressed in the female reproductive tract. The IGFs and their binding proteins play a significant role in several processes of reproductive physiology, including ovarian follicular development, oogenesis and oocyte maturation, ovulation, luteal function, follicular atresia, and testicular function. The majority of these physiological actions of the IGFs are believed to occur via activation of the IGF-I receptor, although the IGF-I effects are modulated by IGF binding proteins (IGFBPs). As much of the data obtained to date have been in the rodent reproductive organs, it may not be possible to directly extrapolate the results to the primate organs. There is a distinct species-difference in the gene expression and functional roles of the IGF-IGFBP system in reproductive organs. However, the disturbance of the IGF-IGFBP system in human reproductive physiology may lead to anovulation, disorders of androgen excess, infertility associated with implantation failure, and male infertility. Further research is needed in domestic animals to determine if manipulation of the IGF-IGFBP system may result in improved reproductive efficiency. As our understanding of the IGF-IGFBP system increases, the uses of human recombinant IGF peptides and IGFBPs as clinical therapy for disease states is becoming a reality. (Reprod Med Biol 2003; 2: 1-24).
Collapse
Affiliation(s)
- Yasunori Yoshimura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Andersen CB, Sakaue H, Nedachi T, Kovacina KS, Clayberger C, Conti M, Roth RA. Protein kinase B/Akt is essential for the insulin- but not progesterone-stimulated resumption of meiosis in Xenopus oocytes. Biochem J 2003; 369:227-38. [PMID: 12374568 PMCID: PMC1223087 DOI: 10.1042/bj20021243] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2002] [Revised: 10/02/2002] [Accepted: 10/09/2002] [Indexed: 11/17/2022]
Abstract
In the present study, we have characterized the Xenopus Akt expressed in oocytes from the African clawed frog Xenopus laevis and tested whether its activity is required for the insulin- and progesterone-stimulated resumption of meiosis. A cDNA encoding the Xenopus Akt was isolated and sequenced, and its expression in the Xenopus oocyte was confirmed by reverse transcription PCR and Northern blotting. Using phosphospecific antibodies and enzyme assays, a large and rapid activation of the Xenopus Akt was observed upon insulin stimulation of the oocytes. In contrast, progesterone caused a modest activation of this kinase with a slower time course. To test whether the activation of Akt was required in the stimulation of the resumption of meiosis, we have utilized two independent approaches: a functional dominant negative Akt mutant and an inhibitory monoclonal antibody. Both the mutant Akt, as well as the inhibitory monoclonal antibody, completely blocked the insulin-stimulated resumption of meiosis. In contrast, both treatments only partially inhibited (by approx. 30%) the progesterone-stimulated resumption of meiosis when submaximal doses of this hormone were utilized. These data demonstrate a crucial role for Akt in the insulin-stimulated cell cycle progression of Xenopus oocytes, whereas Akt may have an ancillary function in progesterone signalling.
Collapse
Affiliation(s)
- Carsten B Andersen
- Division of Reproductive Biology, Department of Gynecology and Obstetrics, Stanford University School of Medicine, Stanford, CA 94305, U.S.A
| | | | | | | | | | | | | |
Collapse
|
18
|
Ayaso E, Nolan CM, Byrnes L. Zebrafish insulin-like growth factor-I receptor: molecular cloning and developmental expression. Mol Cell Endocrinol 2002; 191:137-48. [PMID: 12062897 DOI: 10.1016/s0303-7207(02)00083-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The biological actions of the insulin-like growth factors (IGFs) are mediated primarily by the IGF-I receptor (IGF-IR), and the IGF family has been highly conserved throughout vertebrate evolution. In this study we report the isolation of a 3 kb cDNA clone for the zebrafish IGF-IR that includes the complete 3' untranslated region and polyA tail and mapping of the receptor gene to zebrafish linkage group 7. The open reading frame deduced from the cDNA sequence encompasses the juxtamembrane and protein tyrosine kinase portions of the receptor, and is 70 and 67% identical to the corresponding regions of the IGF-IRs of the turbot and Xenopus, respectively. By RT-PCR, zebrafish IGF-IR expression was detected from early blastula to early larval stages of development. Using whole mount in situ hybridization, IGF-IR expression was detected after gastrulation. Expression was evident in most tissues but was particularly evident in the tail, in eye and ear primordia and in the brain.
Collapse
Affiliation(s)
- E Ayaso
- Biochemistry Department, National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
19
|
Richard-Parpaillon L, Héligon C, Chesnel F, Boujard D, Philpott A. The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus. Dev Biol 2002; 244:407-17. [PMID: 11944947 DOI: 10.1006/dbio.2002.0605] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insulin-like growth factors (IGFs) are well known mitogens, both in vivo and in vitro, while functions in cellular differentiation have also been indicated. Here, we demonstrate a new role for the IGF pathway in regulating head formation in Xenopus embryos. Both IGF-1 and IGF-2, along with their receptor IGF-1R, are expressed early during embryogenesis, and the IGF-1R is present particularly in anterior and dorsal structures. Overexpression of IGF-1 leads to anterior expansion of head neural tissue as well as formation of ectopic eyes and cement gland, while IGF-1 receptor depletion using antisense morpholino oligonucleotides drastically reduces head structures. Furthermore, we demonstrate that IGF signaling exerts this effect by antagonizing the activity of the Wnt signal transduction pathway in the early embryo, at the level of beta-catenin. Thus, the IGF pathway is required for head formation during embryogenesis.
Collapse
Affiliation(s)
- Laurent Richard-Parpaillon
- Department of Oncology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, CB2 2XY, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Booth RA, Cummings C, Tiberi M, Liu XJ. GIPC participates in G protein signaling downstream of insulin-like growth factor 1 receptor. J Biol Chem 2002; 277:6719-25. [PMID: 11751850 DOI: 10.1074/jbc.m108033200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several recent studies have demonstrated that insulin-like growth factor (IGF)-1-induced mitogen-activated protein kinase (MAP kinase) activation is abolished by pertussis toxin, suggesting that trimeric G proteins of the G(i) class are novel cellular targets of the IGF-1 signaling pathway. We report here that the intracellular domain of the Xenopus IGF-1 receptor is capable of binding to the Xenopus homolog of mammalian GIPC, a PDZ domain-containing protein previously identified as a binding partner of G(i)-specific GAP (RGS-GAIP). Binding of xGIPC to xIGF-1 receptor is independent of the kinase activity of the receptor and appears to require the PDZ domain of xGIPC. Injection of two C-terminal truncation mutants that retained the PDZ domain blocked IGF-1-induced Xenopus MAP kinase activation and oocyte maturation. While full-length xGIPC injection did not significantly alter insulin response, it greatly enhanced human RGS-GAIP in stimulating the insulin response in frog oocytes. This represents the first demonstration that GIPC x RGS-GAIP complex acts positively in IGF-1 receptor signal transduction.
Collapse
Affiliation(s)
- Ronald A Booth
- Ottawa Health Research Institute, Ottawa Hospital, Ottawa K1Y 4E9, Canada
| | | | | | | |
Collapse
|
21
|
Abstract
Evidence is presented for a new pathway participating in anterior neural development. It was found that IGF binding protein 5 (IGFBP-5), as well as three IGFs expressed in early embryos, promoted anterior development by increasing the head region at the expense of the trunk in mRNA-injected Xenopus embryos. A secreted dominant-negative type I IGF receptor (DN-IGFR) had the opposite effect. IGF mRNAs led to the induction of ectopic eyes and ectopic head-like structures containing brain tissue. In ectodermal explants, IGF signals induced anterior neural markers in the absence of mesoderm formation and DN-IGFR inhibited neural induction by the BMP antagonist Chordin. Thus, active IGF signals appear to be both required and sufficient for anterior neural induction in Xenopus.
Collapse
Affiliation(s)
- E M Pera
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles 90095, USA
| | | | | | | |
Collapse
|
22
|
Yamamoto T, Nakayama Y, Abé SI. Mammalian follicle-stimulating hormone and insulin-like growth factor I (IGF-I) up-regulate IGF-I gene expression in organ culture of newt testis. Mol Reprod Dev 2001; 60:56-64. [PMID: 11550268 DOI: 10.1002/mrd.1061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We previously showed that porcine follicle-stimulating hormone (pFSH) and human recombinant insulin-like growth factor (rhIGF-I) promote the differentiation of secondary spermatogonia into primary spermatocytes in organ cultures of newt testes, respectively. To elucidate the molecular action of FSH and IGF-I, we cloned cDNAs for newt IGF-I and IGF-I receptor (IGF-IR), and examined their mRNA expression in organ culture during newt spermatogenesis. Northern blot and reverse transcription-polymerase chain reaction (RT-PCR) analyses revealed that IGF-I mRNA was highly expressed in somatic cells (mostly Sertoli cells) at the secondary spermatogonial stage but barely in germ cells, and that IGF-IR mRNA was expressed in both germ and somatic cells at all stages examined. The addition of pFSH to newt testis markedly increased IGF-I mRNA expression. Also, rhIGF-I increased IGF-I mRNA expression, whereas IGF-IR mRNA expression declined slightly. These results suggest that the ability of FSH to promote the differentiation of secondary spermatogonia is at least partly mediated by somatic cell-derived IGF-I, and that IGF-I mRNA expression in somatic cells is auto-upregulated.
Collapse
Affiliation(s)
- T Yamamoto
- Department of Biological Science, Faculty of Science, Kumamoto University, Kumamoto, Japan
| | | | | |
Collapse
|
23
|
Savchenko A, Kraft TW, Molokanova E, Kramer RH. Growth factors regulate phototransduction in retinal rods by modulating cyclic nucleotide-gated channels through dephosphorylation of a specific tyrosine residue. Proc Natl Acad Sci U S A 2001; 98:5880-5. [PMID: 11320223 PMCID: PMC33307 DOI: 10.1073/pnas.101524998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Illumination of vertebrate rod photoreceptors leads to a decrease in the cytoplasmic cGMP concentration and closure of cyclic nucleotide-gated (CNG) channels. Except for Ca(2+), which plays a negative feedback role in adaptation, and 11-cis-retinal, supplied by the retinal pigment epithelium, all of the biochemical machinery of phototransduction is thought to be contained within rod outer segments without involvement of extrinsic regulatory molecules. Here we show that insulin-like growth factor-I (IGF-I), a paracrine factor released from the retinal pigment epithelium, alters phototransduction by rapidly increasing the cGMP sensitivity of CNG channels. The IGF-I-signaling pathway ultimately involves a protein tyrosine phosphatase that catalyzes dephosphorylation of a specific residue in the alpha-subunit of the rod CNG channel protein. IGF-I conjointly accelerates the kinetics and increases the amplitude of the light response, distinct from events that accompany adaptation. These effects of IGF-I could result from the enhancement of the cGMP sensitivity of CNG channels. Hence, in addition to long-term control of development and survival of rods, growth factors regulate phototransduction in the short term by modulating CNG channels.
Collapse
Affiliation(s)
- A Savchenko
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
24
|
Thomas P, Pinter J, Das S. Upregulation of the maturation-inducing steroid membrane receptor in spotted seatrout ovaries by gonadotropin during oocyte maturation and its physiological significance. Biol Reprod 2001; 64:21-9. [PMID: 11133654 DOI: 10.1095/biolreprod64.1.21] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Changes in ovarian maturation-inducing steroid (MIS; 17,20 beta, 21-trihydroxy-4-pregnen-3-one [20 beta-S]) membrane receptor concentrations during the reproductive cycle were investigated in spotted seatrout (Cynoscion nebulosus) captured at their spawning grounds. Ovarian receptor concentrations increased gradually during ovarian recrudescence and subsequently increased rapidly during oocyte maturation, reaching 3.5-fold the prematuration values by the beginning of ovulation. The significant elevation of receptor concentrations by the germinal vesicle migration stage of oocyte maturation was accompanied by increases in circulating levels of gonadotropin (LH, GTH II) and MIS (20 beta-S). The regulation and physiological significance of the increase in ovarian MIS membrane receptor concentrations were investigated in a double in vitro incubation system. Incubation of fully grown, follicle-enclosed oocytes with hCG (10 IU/ml) for 6 h caused a two- to fourfold increase in oocyte and ovarian MIS receptor concentrations and the development of oocyte maturational competence (OMC; ability to complete oocyte maturation in vitro in response to exogenous 20 beta-S in a second incubation). Both upregulation of the MIS receptor and development of OMC in response to gonadotropin were blocked by coincubation with actinomycin D or cycloheximide, which are inhibitors of mRNA and protein synthesis, respectively, but not by cyanoketone, which is an inhibitor of 3 beta-hydroxysteroid dehydrogenase-dependent steroid synthesis. Incubation with a variety of steroids, including 20 beta-S, failed to increase receptor concentrations or to induce OMC, further supporting a steroid-independent mechanism of gonadotropin action. In contrast, insulin-like growth factor I (IGF-I) mimicked the actions of gonadotropin, which suggests IGF-I may be a component of the hormone signaling pathway. A close correlation was found between the relative increase in MIS receptor concentrations and the percentage of oocytes that became maturationally competent after treatment with different concentrations of gonadotropins and drugs that elevate cAMP levels. The finding that upregulation of the MIS receptor in response to gonadotropin and other treatments is invariably associated with the development of OMC indicates that these two processes are intimately related, and it suggests that the increase in MIS receptor concentrations is a critical regulatory step in the hormonal control of oocyte maturation.
Collapse
Affiliation(s)
- P Thomas
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373-5015, USA.
| | | | | |
Collapse
|
25
|
Abstract
Modulation of recombinant N-methyl-D-aspartate receptor (NMDAR) currents by insulin was studied using the Xenopus oocyte expression system. Insulin (0.8 microM, 10 min) regulated NMDAR currents in a subunit-specific manner. Currents from epsilon1/zeta1, epsilon2/zeta1, and epsilon4/zeta1 receptors were variably potentiated, whereas currents from epsilon3/zeta1 receptors were not. Protein tyrosine kinases (PTKs) and protein kinase C were found to be involved in insulin-mediated modulation in an NMDAR subtype-specific way. Pretreatment with a specific PTK inhibitor, lavendustin A, attenuated and blocked the insulin effect on epsilon2/zeta1 and epsilon4/zeta1, respectively. Preincubation with selective protein kinase C inhibitors, staurosporine or calphostin C, depressed the response of epsilon1/zeta1 and epsilon2/zeta1 receptors to insulin. Basal regulation of NMDAR currents by endogenous PTKs and protein tyrosine phosphatases (PTPs) was also investigated. Of the four receptor subtypes, only epsilon1/zeta1 receptor currents were affected by basal PTK inhibition via lavendustin A, whereas PTP inhibition by phenylarsine oxide or orthovanadate enhanced currents from epsilon1/zeta1 and epsilon2/zeta1 receptors. Surprisingly, a stimulatory PTP modulation was observed for epsilon4/zeta1. As NMDAR subunits are differentially expressed in the brain, the observed subtype-specific modulations of NMDAR currents by insulin, PTKs, and PTPs may provide important insights into certain NMDAR-dependent physiological and pathological processes.
Collapse
Affiliation(s)
- G Y Liao
- Department of Biological Sciences, University of Illinois at Chicago, 60607, USA
| | | |
Collapse
|
26
|
Ohan N, Agazie Y, Cummings C, Booth R, Bayaa M, Liu XJ. RHO-associated protein kinase alpha potentiates insulin-induced MAP kinase activation in Xenopus oocytes. J Cell Sci 1999; 112 ( Pt 13):2177-84. [PMID: 10362547 DOI: 10.1242/jcs.112.13.2177] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently identified Xenopus Rho-associated protein kinase alpha (xROKalpha) as a Xenopus insulin receptor substrate-1 binding protein and demonstrated that the non-catalytic carboxyl terminus of xROKalpha binds Xenopus insulin receptor substrate-1 and blocks insulin-induced MAP kinase activation and germinal vesicle breakdown in Xenopus oocytes. In the current study we further examined the role of xROKalpha in insulin signal transduction in Xenopus oocytes. We demonstrate that injection of mRNA encoding the xROKalpha kinase domain or full length xROKalpha enhanced insulin-induced MAP kinase activation and germinal vesicle breakdown. In contrast, injection of a kinase-dead mutant of xROKalpha or pre-incubation of oocytes with an xROKalpha inhibitor significantly reduced insulin-induced MAP kinase activation. To further dissect the mechanism by which xROKalpha may participate in insulin signalling, we explored a potential function of xROKalpha in regulating cellular Ras function, since insulin-induced MAP kinase activation and germinal vesicle breakdown is known to be a Ras-dependent process. We demonstrate that whereas injection of mRNA encoding c-H-Ras alone induced xMAP kinase activation and GVBD in a very low percentage (about 10%) of injected oocytes, co-injection of mRNA encoding xROKalpha and c-H-Ras induced xMAP kinase activation and germinal vesicle breakdown in a significantly higher percentage (50-60%) of injected oocytes. These results suggest a novel function for xROKalpha in insulin signal transduction upstream of cellular Ras function.
Collapse
Affiliation(s)
- N Ohan
- Loeb Health Research Institute, Ottawa Hospital, Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, K1Y 4E9, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
OBJECTIVE To review the available information regarding the roles of insulin-like growth factor (IGF)-IGF binding protein (IGFBP) system in ovarian physiology. DESIGN Studies that specifically relate to the roles of ovarian folliculogenesis, oocyte maturation, and ovulation were identified through the literature and Medline searches. RESULTS Numerous actions of the IGFs have been demonstrated in the ovary, including an enhancement of cell proliferation, aromatase activity, and progesterone biosynthesis. The ovarian IGF system, comprised of IGF-I and IGF-II peptides, IGFBPs and IGF receptors, plays a significant role in the process of follicular development. In addition, IGF-I stimulates the meiotic maturation of follicle-enclosed oocytes in vitro via the IGF-I receptors. IGFBP-3 significantly inhibit gonadotropin-induced ovulation and oocyte maturation by neutralizing endogenously produced IGF-I. Thus, the intraovarian IGF-IGFBP system play a significant role in the processes of follicular development, oocyte maturation, and ovulation. CONCLUSION IGF-IGFBP systems have autocrine/paracrine regulatory actions in ovarian physiology. The disturbance of the IGF-IGFBP system in human ovaries may lead to an ovulation, disorders of androgen excess, and infertility.
Collapse
Affiliation(s)
- Y Yoshimura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|