1
|
Genova E, Rispoli P, Fengming Y, Kohei J, Bramuzzo M, Bulla R, Lucafò M, Ferraro RM, Decorti G, Stocco G. Time-efficient strategies in human iPS cell-derived pancreatic progenitor differentiation and cryopreservation: advancing towards practical applications. Stem Cell Res Ther 2024; 15:483. [PMID: 39695795 PMCID: PMC11658428 DOI: 10.1186/s13287-024-04068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Differentiation of patient-specific induced pluripotent stem cells (iPS) helps researchers to study the individual sensibility to drugs. However, differentiation protocols are time-consuming, and not all tissues have been studied. Few works are available regarding pancreatic exocrine differentiation of iPS cells, and little is known on culturing and cryopreserving these cells. METHODS We differentiated the iPS cells of two pediatric Crohn's disease patients into pancreatic progenitors and exocrine cells, adapting and shortening a protocol for differentiating embryonic stem cells. We analyzed the expression of key genes and proteins of the differentiation process by qPCR and immunofluorescence, respectively. We explored the possibility of keeping differentiated cells in culture and freezing and thawing them to shorten the time needed for the differentiation. We analyzed the cell cycle of undifferentiated and differentiated cells by flow cytometry. RESULTS The analysis of mRNA levels of key pancreatic differentiation genes PDX1 and pancreatic amylase indicate that iPS cells were successfully differentiated into pancreatic exocrine cells with expression of PDX1 (one way ANOVA p < 0.0001), and the two isoforms of amylase (one way ANOVA p < 0.05) significantly higher in exocrine cells in comparison to iPS cells. Differentiation efficiency was also confirmed by immunofluorescence analysis of PDX1 and amylase. We confirmed the possibility of shortening the time necessary for obtaining pancreatic cells without losing differentiation efficiency. Pancreatic progenitors and exocrine cells were maintained in culture and cryopreserved. Interestingly, the stemness marker OCT4 resulted significantly lower after subculturing (OCT4 p < 0.001; one-way ANOVA) and after freezing and thawing procedures (p < 0.05, one-way ANOVA) suggesting a reduction of undifferentiated stem cells leading to a purer population of pancreatic progenitor cells. Also, the stemness marker NANOG resulted lower after passaging, corroborating this result. CONCLUSIONS In this work, we optimized the generation of patient-specific pancreatic differentiated cells and laid the foundation for creating a bank of patient-specific pancreatic lines exploitable for tailored pharmacological assays. TRIAL REGISTRATION The study was approved by the Ethical Committee of the Institute of Maternal and Child Health IRCCS Burlo Garofolo, with approval number 1556 (internal ID RC 44/22).
Collapse
Affiliation(s)
- Elena Genova
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Paola Rispoli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Yue Fengming
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
- Institute for Biomedical Sciences, Shinshu University Interdisciplinary Cluster for Cutting Edge Research, Matsumoto, Japan
| | - Johkura Kohei
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rosalba Monica Ferraro
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
2
|
Fritsche K, Boccellato F, Schlaermann P, Koeppel M, Denecke C, Link A, Malfertheiner P, Gut I, Meyer TF, Berger H. DNA methylation in human gastric epithelial cells defines regional identity without restricting lineage plasticity. Clin Epigenetics 2022; 14:193. [PMID: 36585699 PMCID: PMC9801550 DOI: 10.1186/s13148-022-01406-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epigenetic modifications in mammalian DNA are commonly manifested by DNA methylation. In the stomach, altered DNA methylation patterns have been observed following chronic Helicobacter pylori infections and in gastric cancer. In the context of epigenetic regulation, the regional nature of the stomach has been rarely considered in detail. RESULTS Here, we establish gastric mucosa derived primary cell cultures as a reliable source of native human epithelium. We describe the DNA methylation landscape across the phenotypically different regions of the healthy human stomach, i.e., antrum, corpus, fundus together with the corresponding transcriptomes. We show that stable regional DNA methylation differences translate to a limited extent into regulation of the transcriptomic phenotype, indicating a largely permissive epigenetic regulation. We identify a small number of transcription factors with novel region-specific activity and likely epigenetic impact in the stomach, including GATA4, IRX5, IRX2, PDX1 and CDX2. Detailed analysis of the Wnt pathway reveals differential regulation along the craniocaudal axis, which involves non-canonical Wnt signaling in determining cell fate in the proximal stomach. By extending our analysis to pre-neoplastic lesions and gastric cancers, we conclude that epigenetic dysregulation characterizes intestinal metaplasia as a founding basis for functional changes in gastric cancer. We present insights into the dynamics of DNA methylation across anatomical regions of the healthy stomach and patterns of its change in disease. Finally, our study provides a well-defined resource of regional stomach transcription and epigenetics.
Collapse
Affiliation(s)
- Kristin Fritsche
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Philipp Schlaermann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Max Koeppel
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Denecke
- Center for Bariatric and Metabolic Surgery, Center of Innovative Surgery (ZIC), Department of Surgery, Campus Virchow Klinikum and Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Hospital, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Hospital, Magdeburg, Germany
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG-CRG), Barcelona, Spain
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| |
Collapse
|
3
|
Zhang Y, Fang X, Wei J, Miao R, Wu H, Ma K, Tian J. PDX-1: A Promising Therapeutic Target to Reverse Diabetes. Biomolecules 2022; 12:1785. [PMID: 36551213 PMCID: PMC9775243 DOI: 10.3390/biom12121785] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022] Open
Abstract
The pancreatic duodenum homeobox-1 (PDX-1) is a transcription factor encoded by a Hox-like homeodomain gene that plays a crucial role in pancreatic development, β-cell differentiation, and the maintenance of mature β-cell functions. Research on the relationship between PDX-1 and diabetes has gained much attention because of the increasing prevalence of diabetes melitus (DM). Recent studies have shown that the overexpression of PDX-1 regulates pancreatic development and promotes β-cell differentiation and insulin secretion. It also plays a vital role in cell remodeling, gene editing, and drug development. Conversely, the absence of PDX-1 increases susceptibility to DM. Therefore, in this review, we summarized the role of PDX-1 in pancreatic development and the pathogenesis of DM. A better understanding of PDX-1 will deepen our knowledge of the pathophysiology of DM and provide a scientific basis for exploring PDX-1 as a potential target for treating diabetes.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
4
|
Dey S, Udari LM, RiveraHernandez P, Kwon JJ, Willis B, Easler JJ, Fogel EL, Pandol S, Kota J. Loss of miR-29a/b1 promotes inflammation and fibrosis in acute pancreatitis. JCI Insight 2021; 6:e149539. [PMID: 34464354 PMCID: PMC8525644 DOI: 10.1172/jci.insight.149539] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-29 (miR-29) is a critical regulator of fibroinflammatory processes in human diseases. In this study, we found a decrease in miR-29a in experimental and human chronic pancreatitis, leading us to investigate the regulatory role of the miR-29a/b1 cluster in acute pancreatitis (AP) utilizing a conditional miR-29a/b1-KO mouse model. miR-29a/b1-sufficient (WT) and -deficient (KO) mice were administered supramaximal caerulein to induce AP and characterized at different time points, utilizing an array of IHC and biochemical analyses for AP parameters. In caerulein-induced WT mice, miR-29a remained dramatically downregulated at injury. Despite high-inflammatory milieu, fibrosis, and parenchymal disarray in the WT mice during early AP, the pancreata fully restored during recovery. miR-29a/b1-KO mice showed significantly greater inflammation, lymphocyte infiltration, macrophage polarization, and ECM deposition, continuing until late recovery with persistent parenchymal disorganization. The increased pancreatic fibrosis was accompanied by enhanced TGFβ1 coupled with persistent αSMA+ PSC activation. Additionally, these mice exhibited higher circulating IL-6 and inflammation in lung parenchyma. Together, this collection of studies indicates that depletion of miR-29a/b1 cluster impacts the fibroinflammatory mechanisms of AP, resulting in (a) aggravated pathogenesis and (b) delayed recovery from the disease, suggesting a protective role of the molecule against AP.
Collapse
Affiliation(s)
- Shatovisha Dey
- Department of Medical and Molecular Genetics, Indiana University (IU) School of Medicine, Indianapolis, Indiana, USA
| | - Lata M Udari
- Department of Medical and Molecular Genetics, Indiana University (IU) School of Medicine, Indianapolis, Indiana, USA
| | - Primavera RiveraHernandez
- Department of Medical and Molecular Genetics, Indiana University (IU) School of Medicine, Indianapolis, Indiana, USA
| | - Jason J Kwon
- Department of Medical and Molecular Genetics, Indiana University (IU) School of Medicine, Indianapolis, Indiana, USA
| | | | - Jeffrey J Easler
- Department of Medicine, Division of Gastroenterology/Hepatology, IU Health, IU School of Medicine, Indianapolis, Indiana, USA.,The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, Indiana, USA
| | - Evan L Fogel
- Department of Medicine, Division of Gastroenterology/Hepatology, IU Health, IU School of Medicine, Indianapolis, Indiana, USA.,The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, Indiana, USA
| | - Stephen Pandol
- Department of Medicine, Cedar-Sinai Medical Center, Los Angeles, California, USA
| | - Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University (IU) School of Medicine, Indianapolis, Indiana, USA.,The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Narayan G, Sundaravadivelu PK, Agrawal A, Gogoi R, Nagotu S, Thummer RP. Soluble expression, purification, and secondary structure determination of human PDX1 transcription factor. Protein Expr Purif 2020; 180:105807. [PMID: 33309974 DOI: 10.1016/j.pep.2020.105807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 01/06/2023]
Abstract
The transcription factor PDX1 is a master regulator essential for proper development of the pancreas, duodenum and antrum. Furthermore, it is an indispensable reprogramming factor for the derivation of human β-cells, and recently, it has been identified as a tumor suppressor protein in gastric cancer. Here, we report the soluble expression and purification of the full-length human PDX1 protein from a heterologous system. To achieve this, the 849 bp coding sequence of the PDX1 gene was first codon-optimized for expression in Escherichia coli (E. coli). This codon-optimized gene sequence was fused to a protein transduction domain, a nuclear localization sequence, and a His-tag, and this insert was cloned into the protein expression vector for expression in E. coli strain BL21(DE3). Next, screening and identification of the suitable gene construct and optimal expression conditions to obtain this recombinant fusion protein in a soluble form was performed. Further, we have purified this recombinant fusion protein to homogeneity under native conditions. Importantly, the secondary structure of the protein was retained after purification. Further, this recombinant PDX1 fusion protein was applied to human cells and showed the ability to enter the cells as well as translocate to the nucleus. This recombinant tool can be used as a safe tool and can potentially replace its genetic and viral forms in the reprogramming process to induce a β-cell-specific transcriptional profile in an integration-free manner. Additionally, it can also be used to elucidate its role in cellular processes and for structural and biochemical studies.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, 781101, Guwahati, Assam, India; CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Ma J, Xia LL, Yao XQ, Zheng SM, Li S, Xu LS, Sha WH, Li ZS. BARX2 expression is downregulated by CpG island hypermethylation and is associated with suppressed cell proliferation and invasion of gastric cancer cells. Oncol Rep 2020; 43:1805-1818. [PMID: 32236603 PMCID: PMC7160541 DOI: 10.3892/or.2020.7558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
BarH-like homeobox 2 (BARX2), a homeobox gene, is associated with several types of cancers. The present study aimed to determine whether DNA methylation downregulates BARX2 expression and whether BARX2 is associated with suppression of gastric carcinogenesis. BARX2 protein expression in normal and cancerous gastric tissues and various gastric cancer (GC) cell lines was detected using immunohistochemical and western blot assays. BARX2 mRNA levels were detected using both reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (qPCR). Promoter hypermethylation in GC cells was detected using methylation-specific PCR or bisulfite DNA sequencing PCR. Effects of BARX2 expression on GC cell proliferation, clonal formation, and migration were evaluated after lentivirus-BARX2 transfection. The effect of stable BARX2 transfection on tumor formation was assessed in a nude xenograft mouse model. BARX2 was strongly expressed in the normal gastric mucosa, but weakly or not expressed in GC tissues and most GC cell lines. BARX2 expression was negatively correlated with DNMT (a marker for DNA methylation) expression in the gastric tissues. The BARX2 promoter fragment was hypermethylated in the GC cell lines. Overexpression of BARX2 significantly inhibited GC cell proliferation, clonal formation, and migration. Stable BARX2 transfection inhibited tumor formation in xenograft mice, which was correlated with decreased expression of E-cadherin, proliferation markers, and matrix metalloproteinases. In conclusion, BARX2 expression is aberrantly reduced in GC, which is associated with increased DNA methylation of its promoter. BARX2 inhibits GC cell proliferation, migration, and tumor formation, suggesting that BARX2 acts as a tumor suppressor in gastric carcinogenesis.
Collapse
Affiliation(s)
- Juan Ma
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Ling-Ling Xia
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Xue-Qing Yao
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Shi-Min Zheng
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Shi Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Li-Shu Xu
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Wei-Hong Sha
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Ze-Song Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
7
|
Villamayor L, Cano DA, Rojas A. GATA factors in pancreas development and disease. IUBMB Life 2019; 72:80-88. [PMID: 31580534 DOI: 10.1002/iub.2170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022]
Abstract
There is an urgent need for the development of novel therapeutics options for diabetic patients given the high prevalence of diabetes worldwide and that, currently, there is no cure for this disease. The transplantation of pancreatic islets that contain insulin-producing cells is a promising therapeutic alternative, particularly for type 1 diabetes. However, the shortage of organ donors constitutes a major limitation for this approach; thus, developing alternative sources of insulin-producing cells is of critical importance. In the last decade, our knowledge of the molecular mechanisms controlling embryonic pancreas development has significantly advanced. More importantly, this knowledge has provided the basis for the in vitro generation of insulin-producing cells from stem cells. Recent studies have revealed that GATA transcription factors are involved in various stages of pancreas formation and in the adult ß cell function. Here, we review the fundamental role of GATA transcription factors in pancreas morphogenesis and their association with congenital diseases associated with pancreas.
Collapse
Affiliation(s)
- Laura Villamayor
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad Pablo de Olavide, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - David A Cano
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad Pablo de Olavide, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
8
|
Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KK, Pandol SJ, Uc A, Wen L, Whitcomb DC. Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer. Pancreas 2019; 48:759-779. [PMID: 31206467 PMCID: PMC6581211 DOI: 10.1097/mpa.0000000000001335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer. The objective is to provide a comprehensive description of the available models but also to provide investigators with guidance in the application of these models to investigate both environmental and genetic contributions to exocrine pancreatic disease. The content covers both nongenic and genetically engineered models across multiple species (large and small). Recommendations for choosing the appropriate model as well as how to conduct and present results are provided.
Collapse
Affiliation(s)
- Jami L. Saloman
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn M. Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian M. Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Mouad Edderkaoui
- Basic and Translational Pancreas Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Ariel Y. Epouhe
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Jeremy Y. Gedeon
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases & Department of Cell Biology Yale University School of Medicine; Veterans Affairs Connecticut Healthcare, West Haven, CT
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, UI Cancer Center, University of Illinois at Chicago, Chicago, IL
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | | | - Keane K.Y. Lai
- Department of Pathology (National Medical Center), Department of Molecular Medicine (Beckman Research Institute), and Comprehensive Cancer Center, City of Hope, Duarte, CA
| | - Stephen J. Pandol
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Li Wen
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | | |
Collapse
|
9
|
Horiguchi M, Yoshida M, Hirata K, Furuyama K, Masui T, Uemoto S, Kawaguchi Y. Senescence caused by inactivation of the homeodomain transcription factor Pdx1 in adult pancreatic acinar cells in mice. FEBS Lett 2019; 593:2226-2234. [PMID: 31240701 DOI: 10.1002/1873-3468.13504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/04/2019] [Accepted: 06/16/2019] [Indexed: 11/11/2022]
Abstract
In this study, we used tamoxifen-inducible Elastase-Cre-mediated inactivation of pancreatic and duodenal homeobox1 (Pdx1), an indispensable gene during embryonic pancreatogenesis, to investigate the role of Pdx1 in adult pancreatic exocrine tissue. We found that Pdx1 depletion in approximately 50% of acinar cell mass did not show any macroscopic phenotype. Lineage tracing experiments revealed that the percentage of Pdx1-depleted cells did not change initially but gradually decreased, while the proliferation of Pdx1-preserved cells increased. Electron microscopic analysis showed the emergence of round-shaped mitochondria with less cristae, dilated ER lumen and increased number of autophagosomes but no apoptosis. Instead, Pdx1-depleted acinar cells became senescent. These findings indicate that intracellular stress caused by Pdx1 inactivation triggers the senescence-associated secretory phenotype to maintain organ homeostasis in this model.
Collapse
Affiliation(s)
- Masashi Horiguchi
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Masahiro Yoshida
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Koji Hirata
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Kenichiro Furuyama
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Toshihiko Masui
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Shinji Uemoto
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiya Kawaguchi
- Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| |
Collapse
|
10
|
Uncovering the mechanisms of beta-cell neogenesis and maturation toward development of a regenerative therapy for diabetes. Diabetol Int 2015. [DOI: 10.1007/s13340-015-0233-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Kaneto H, Matsuoka TA. Role of pancreatic transcription factors in maintenance of mature β-cell function. Int J Mol Sci 2015; 16:6281-97. [PMID: 25794287 PMCID: PMC4394532 DOI: 10.3390/ijms16036281] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 12/12/2022] Open
Abstract
A variety of pancreatic transcription factors including PDX-1 and MafA play crucial roles in the pancreas and function for the maintenance of mature β-cell function. However, when β-cells are chronically exposed to hyperglycemia, expression and/or activities of such transcription factors are reduced, which leads to deterioration of β-cell function. These phenomena are well known as β-cell glucose toxicity in practical medicine as well as in the islet biology research area. Here we describe the possible mechanism for β-cell glucose toxicity found in type 2 diabetes. It is likely that reduced expression levels of PDX-1 and MafA lead to suppression of insulin biosynthesis and secretion. In addition, expression levels of incretin receptors (GLP-1 and GIP receptors) in β-cells are decreased, which likely contributes to the impaired incretin effects found in diabetes. Taken together, down-regulation of insulin gene transcription factors and incretin receptors explains, at least in part, the molecular mechanism for β-cell glucose toxicity.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577, Matsushima, Kurashiki 701-0192, Japan.
| | - Taka-aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Cano DA, Soria B, Martín F, Rojas A. Transcriptional control of mammalian pancreas organogenesis. Cell Mol Life Sci 2014; 71:2383-402. [PMID: 24221136 PMCID: PMC11113897 DOI: 10.1007/s00018-013-1510-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 12/12/2022]
Abstract
The field of pancreas development has markedly expanded over the last decade, significantly advancing our understanding of the molecular mechanisms that control pancreas organogenesis. This growth has been fueled, in part, by the need to generate new therapeutic approaches for the treatment of diabetes. The creation of sophisticated genetic tools in mice has been instrumental in this progress. Genetic manipulation involving activation or inactivation of genes within specific cell types has allowed the identification of many transcription factors (TFs) that play critical roles in the organogenesis of the pancreas. Interestingly, many of these TFs act at multiple stages of pancreatic development, and adult organ function or repair. Interaction with other TFs, extrinsic signals, and epigenetic regulation are among the mechanisms by which TFs may play context-dependent roles during pancreas organogenesis. Many of the pancreatic TFs directly regulate each other and their own expression. These combinatorial interactions generate very specific gene regulatory networks that can define the different cell lineages and types in the developing pancreas. Here, we review recent progress made in understanding the role of pancreatic TFs in mouse pancreas formation. We also summarize our current knowledge of human pancreas development and discuss developmental pancreatic TFs that have been associated with human pancreatic diseases.
Collapse
Affiliation(s)
- David A. Cano
- Endocrinology Unit, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain
| | - Bernat Soria
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Francisco Martín
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
13
|
Kobayashi M, Fujinaga Y, Ota H. Reappraisal of the Immunophenotype of Pancreatic Intraductal Papillary Mucinous Neoplasms (IPMNs)-Gastric Pyloric and Small Intestinal Immunophenotype Expression in Gastric and Intestinal Type IPMNs-. Acta Histochem Cytochem 2014; 47:45-57. [PMID: 25221363 PMCID: PMC4138401 DOI: 10.1267/ahc.13027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022] Open
Abstract
Pancreatic intraductal papillary mucinous neoplasms (IPMNs) are mucin-producing neoplasms of the main and/or branch pancreatic ducts. To assess differences between various IPMN subtypes, immunohistochemical markers of gastric surface mucous cells (MUC5AC), gastric gland mucous cells (MUC6 and GlcNAcα1→4Galβ→R), gastric pyloric and duodenal epithelial cells (PDX1), intestinal cells (MUC2 and CDX2), small intestinal cells (CPS1) and large intestinal cells (SATB2) were evaluated in 33 surgically treated IPMNs. MUC2 expression classified IPMNs into gastric (n=17), intestinal (n=8) and mixed gastric and intestinal type (collision=7, composite=1). No differences in age or sex were observed among these types. MUC5AC and PDX1 were expressed in all IPMNs. MUC6 expression was higher in gastric and mixed types than in intestinal type. GlcNAcα1→4Galβ→R was detected in gastric and mixed type, but not in intestinal type. MUC2 and CDX2 expression were higher in intestinal type than gastric and mixed type. CPS1 expression was higher in intestinal type than gastric type. SATB2 was not observed in any IPMNs. Frequent abrupt transition between the two IPMN types in mixed-type IPMNs was observed. Gastric pyloric and small intestinal differentiation are characteristic of gastric and intestinal type IPMN, respectively, and these two IPMN types may have distinct pathogenesis.
Collapse
Affiliation(s)
- Mikiko Kobayashi
- Department of Laboratory Medicine, Shinshu University Graduate School of Medicine
| | | | - Hiroyoshi Ota
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine
| |
Collapse
|
14
|
Bose B, Katikireddy KR, Shenoy PS. Regenerative medicine for diabetes: differentiation of human pluripotent stem cells into functional β-cells in vitro and their proposed journey to clinical translation. VITAMINS AND HORMONES 2014; 95:223-48. [PMID: 24559920 DOI: 10.1016/b978-0-12-800174-5.00009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Diabetes is a group of metabolic diseases, rising globally at an alarming rate. Type 1 (juvenile diabetes) is the autoimmune version of diabetes where the pancreas is unable to produce insulin, whereas type 2 (adult onset diabetes) is caused due to insulin resistance of the cells. In either of the cases, elevated blood glucose levels are observed which leads to progressive comorbidity like renal failure, cardiovascular disease, retinopathy, etc. Metformin, sulphonyl urea group of drugs, as well as insulin injections are the available therapies. In advanced cases of diabetes, the drug alone or drug in combination with insulin injections are not able to maintain a steady level of blood glucose. Moreover, frequent insulin injections are rather cumbersome for the patient. So, regenerative medicine could be a permanent solution for fighting diabetes. Islet transplantation has been tried with a limited amount of success on a large population of diabetics because of the shortage of cadaveric pancreas. Therefore, the best proposed alternative is regenerative medicine involving human pluripotent stem cell (hPSC)-derived beta islet transplantation which can be obtained in large quantities. Efficient protocols for in vitro differentiation of hPSC into a large number of sustained insulin-producing beta cells for transplantation will be considered to be a giant leap to address global rise in diabetic cases. Although most of the protocols mimic in vivo pancreatic development in humans, considerable amount of lacuna persists for near-perfect differentiation strategies. Moreover, beta islets differentiated from hPSC have not yet been successfully translated under clinical scenario.
Collapse
Affiliation(s)
- Bipasha Bose
- Nanyang Technological University, School of Biological Sciences, NTU Lab Location @ Level 2 Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, Singapore, Singapore.
| | | | - P Sudheer Shenoy
- Nanyang Technological University, School of Biological Sciences, NTU Lab Location @ Level 2 Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, Singapore, Singapore
| |
Collapse
|
15
|
Wang RH, Xu X, Kim HS, Xiao Z, Deng CX. SIRT1 deacetylates FOXA2 and is critical for Pdx1 transcription and β-cell formation. Int J Biol Sci 2013; 9:934-46. [PMID: 24163589 PMCID: PMC3807017 DOI: 10.7150/ijbs.7529] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/19/2013] [Indexed: 12/11/2022] Open
Abstract
Pancreas duodenum homeobox 1 (PDX1) is essential for pancreas development and β-cell formation; however more studies are needed to clearly illustrate the precise mechanism regarding spatiotemporal regulation of Pdx1 expression during β-cell formation and development. Here, we demonstrate that SIRT1, FOXA2 and a number of proteins form a protein complex on the promoter of the Pdx1 gene. SIRT1 and PDX1 are expressed in the same set of cells during β-cell differentiation and maturation. Pancreas-specific disruption of SIRT1 diminished PDX1 expression and impaired islet development. Consequently, SIRT1 mutant mice develop progressive hyperglycemia, glucose intolerance, and insulin insufficiency, which directly correlate with the extent of SIRT1 deletion. We further show that SIRT1 interacts with and deacetylates FOXA2 on the promoter of the Pdx1gene, and positively regulates its transcription. These results uncover an essential role of SIRT1 in β-cell formation by maintaining expression of PDX1 and its downstream genes, and identify pancreas-specific SIRT1 mutant mice as a relevant model for studying insulin insufficiency.
Collapse
Affiliation(s)
- Rui-Hong Wang
- 1. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | | | | | | | | |
Collapse
|
16
|
Raikwar SP, Zavazava N. PDX1-engineered embryonic stem cell-derived insulin producing cells regulate hyperglycemia in diabetic mice. Transplant Res 2012; 1:19. [PMID: 23369186 PMCID: PMC3560994 DOI: 10.1186/2047-1440-1-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/24/2012] [Indexed: 01/09/2023] Open
Abstract
Background Type 1 diabetes can be treated by the transplantation of cadaveric whole pancreata or isolated pancreatic islets. However, this form of treatment is hampered by the chronic shortage of cadaveric donors. Embryonic stem (ES) cell-derived insulin producing cells (IPCs) offer a potentially novel source of unlimited cells for transplantation to treat type 1 and possibly type 2 diabetes. However, thus far, the lack of a reliable protocol for efficient differentiation of ES cells into IPCs has hindered the clinical exploitation of these cells. Methods To efficiently generate IPCs using ES cells, we have developed a double transgenic ES cell line R1Pdx1AcGFP/RIP-Luc that constitutively expresses pancreatic β-cell-specific transcription factor pancreatic and duodenal homeobox gene 1 (Pdx1) as well as rat insulin promoter (RIP) driven luciferase reporter. We have established several protocols for the reproducible differentiation of ES cells into IPCs. The differentiation of ES cells into IPCs was monitored by immunostaining as well as real-time quantitative RT-PCR for pancreatic β-cell-specific markers. Pancreatic β-cell specific RIP became transcriptionally active following the differentiation of ES cells into IPCs and induced the expression of the luciferase reporter. Glucose stimulated insulin secretion by the ES cell-derived IPCs was measured by ELISA. Further, we have investigated the therapeutic efficacy of ES cell-derived IPCs to correct hyperglycemia in syngeneic streptozotocin (STZ)-treated diabetic mice. The long term fate of the transplanted IPCs co-expressing luciferase in syngeneic STZ-induced diabetic mice was monitored by real time noninvasive in vivo bioluminescence imaging (BLI). Results We have recently demonstrated that spontaneous in vivo differentiation of R1Pdx1AcGFP/RIP-Luc ES cell-derived pancreatic endoderm-like cells (PELCs) into IPCs corrects hyperglycemia in diabetic mice. Here, we investigated whether R1Pdx1AcGFP/RIP-Luc ES cells can be efficiently differentiated in vitro into IPCs. Our new data suggest that R1Pdx1AcGFP/RIP-Luc ES cells efficiently differentiate into glucose responsive IPCs. The ES cell differentiation led to pancreatic lineage commitment and expression of pancreatic β cell-specific genes, including Pax4, Pax6, Ngn3, Isl1, insulin 1, insulin 2 and PC2/3. Transplantation of the IPCs under the kidney capsule led to sustained long-term correction of hyperglycemia in diabetic mice. Although these newly generated IPCs effectively rescued hyperglycemic mice, an unexpected result was teratoma formation in 1 out of 12 mice. We attribute the development of the teratoma to the presence of either non-differentiated or partially differentiated stem cells. Conclusions Our data show the potential of Pdx1-engineered ES cells to enhance pancreatic lineage commitment and to robustly drive the differentiation of ES cells into glucose responsive IPCs. However, there is an unmet need for eliminating the partially differentiated stem cells.
Collapse
Affiliation(s)
- Sudhanshu P Raikwar
- Department of Internal Medicine, Division of Immunology, Roy J, and Lucille A, Carver College of Medicine, University of Iowa and Iowa City Veterans Affairs Medical Center, Building 41, Room #128, 601 Highway 6W, Iowa City, IA 52246, USA.
| | | |
Collapse
|
17
|
Carrasco M, Delgado I, Soria B, Martín F, Rojas A. GATA4 and GATA6 control mouse pancreas organogenesis. J Clin Invest 2012; 122:3504-15. [PMID: 23006330 DOI: 10.1172/jci63240] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/12/2012] [Indexed: 01/21/2023] Open
Abstract
Recently, heterozygous mutations in GATA6 have been found in neonatal diabetic patients with failed pancreatic organogenesis. To investigate the roles of GATA4 and GATA6 in mouse pancreas organogenesis, we conditionally inactivated these genes within the pancreas. Single inactivation of either gene did not have a major impact on pancreas formation, indicating functional redundancy. However, double Gata4/Gata6 mutant mice failed to develop pancreata, died shortly after birth, and displayed hyperglycemia. Morphological defects in Gata4/Gata6 mutant pancreata were apparent during embryonic development, and the epithelium failed to expand as a result of defects in cell proliferation and differentiation. The number of multipotent pancreatic progenitors, including PDX1+ cells, was reduced in the Gata4/Gata6 mutant pancreatic epithelium. Remarkably, deletion of only 1 Gata6 allele on a Gata4 conditional knockout background severely reduced pancreatic mass. In contrast, a single WT allele of Gata4 in Gata6 conditional knockout mice was sufficient for normal pancreatic development, indicating differential contributions of GATA factors to pancreas formation. Our results place GATA factors at the top of the transcriptional network hierarchy controlling pancreas organogenesis.
Collapse
Affiliation(s)
- Manuel Carrasco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
| | | | | | | | | |
Collapse
|
18
|
Webb MA, Chen JJ, Illouz SC, Pollard CA, Dennison B, West KP, James RFL, Dennison AR. The impact of potential islet precursor cells on islet autotransplantation outcomes. Cell Transplant 2012; 22:1041-51. [PMID: 23007077 DOI: 10.3727/096368912x655046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Islet autotransplant patients represent excellent subjects to assess the posttransplant impact of islet precursors, as chronic pancreatitis (CP) causes an elevation of ductal cells, pancreatic precursors cells, and hormone-positive acinar cells. The relationship between these cell types and autograft outcomes should be more apparent than would be the case in the context of an allograft program with confounding immunological variables. To improve diabetic control following total pancreatectomy for CP, nonpurified islets were autotransplanted into the liver. Pancreas specimens were recovered from 23 patients and stained for antigens including: insulin, glucagon, cytokeratin 19, cytokeratin 7, and PDX-1. In line with previous reports, the prevalence of ductal cells, non-islet endocrine cells and non-islet PDX-1-expressing cells was significantly higher in CP glands compared with normal pancreata. When correlating follow-up data (i.e., fasting and stimulated C-peptide/glucose levels and HbA1c%) with pancreas immunoreactivity, high levels of ductal cells, non-islet PDX-1-positive cells, and non-islet glucagon-positive cells were associated with superior outcomes, detectable up to 2 years posttransplant. To conclude, the acinar parenchyma and ductal epithelium of the CP pancreas show an upregulation of both endocrine and pre-endocrine cell types, which appear to have a positive effect on islet graft outcomes in autotransplantation setting.
Collapse
Affiliation(s)
- M A Webb
- Department of Hepatobiliary Surgery, University Hospitals of Leicester, NHS Trust, Leicester General Hospital, Leicester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Blondeau B, Sahly I, Massouridès E, Singh-Estivalet A, Valtat B, Dorchene D, Jaisser F, Bréant B, Tronche F. Novel transgenic mice for inducible gene overexpression in pancreatic cells define glucocorticoid receptor-mediated regulations of beta cells. PLoS One 2012; 7:e30210. [PMID: 22363422 PMCID: PMC3281827 DOI: 10.1371/journal.pone.0030210] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/12/2011] [Indexed: 12/27/2022] Open
Abstract
Conditional gene deletion in specific cell populations has helped the understanding of pancreas development. Using this approach, we have shown that deleting the glucocorticoid receptor (GR) gene in pancreatic precursor cells leads to a doubled beta-cell mass. Here, we provide genetic tools that permit a temporally and spatially controlled expression of target genes in pancreatic cells using the Tetracycline inducible system. To efficiently target the Tetracycline transactivator (tTA) in specific cell populations, we generated Bacterial Artificial Chromosomes (BAC) transgenic mice expressing the improved Tetracycline transactivator (itTA) either in pancreatic progenitor cells expressing the transcription factor Pdx1 (BAC-Pdx1-itTA), or in beta cells expressing the insulin1 gene (BAC-Ins1-itTA). In the two transgenic models, itTA-mediated activation of reporter genes was efficient and subject to regulation by Doxycycline (Dox). The analysis of a tetracycline-regulated LacZ reporter gene shows that in BAC-Pdx1-itTA mice, itTA is expressed from embryonic (E) day 11.5 in all pancreatic precursor cells. In the adult pancreas, itTA is active in mature beta, delta cells and in few acinar cells. In BAC-Ins1-itTA mice tTA is active from E13.5 and is restricted to beta cells in fetal and adult pancreas. In both lines, tTA activity was suppressed by Dox treatment and re-induced after Dox removal. Using these transgenic lines, we overexpressed the GR in selective pancreatic cell populations and found that overexpression in precursor cells altered adult beta-cell fraction but not glucose tolerance. In contrast, GR overexpression in mature beta cells did not alter beta-cell fraction but impaired glucose tolerance with insufficient insulin secretion. In conclusion, these new itTA mouse models will allow fine-tuning of gene expression to investigate gene function in pancreatic biology and help us understand how glucocorticoid signaling affects on the long-term distinct aspects of beta-cell biology.
Collapse
Affiliation(s)
- Bertrand Blondeau
- INSERM UMR-S 872, Centre de Recherches des Cordeliers, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bramswig NC, Kaestner KH. Organogenesis and functional genomics of the endocrine pancreas. Cell Mol Life Sci 2012; 69:2109-23. [PMID: 22241333 DOI: 10.1007/s00018-011-0915-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/04/2011] [Accepted: 12/29/2011] [Indexed: 02/06/2023]
Abstract
Functional genomics, the analysis of the wealth of data produced by genome-wide analyses of gene expression, protein-protein, and protein-DNA interactions, has revolutionized biomedical research. Our ability to determine global gene expression profiles, transcription factor-binding sites, and histone modification maps using microarray-based technologies and next-generation sequencing applications has greatly enhanced our understanding of gene regulatory networks and the molecular wiring diagrams of cells and tissues. The organogenesis of the endocrine pancreas involves numerous signaling events within the endoderm-derived pancreatic epithelium and the surrounding mesenchyme, as well as complex transcription factor networks. Detailed understanding of the differentiation process from foregut endoderm to mature endocrine cells has enabled the rational design of in vitro differentiation protocols that coax embryonic stem cells into β-like cells that might enable cell replacement therapy for diabetes in the future. In this review, we summarize the research studies that have utilized genomic tools to elucidate endocrine pancreatic organogenesis.
Collapse
Affiliation(s)
- Nuria C Bramswig
- Department of Genetics, Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
21
|
Lamont BJ, Li Y, Kwan E, Brown TJ, Gaisano H, Drucker DJ. Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice. J Clin Invest 2011; 122:388-402. [PMID: 22182839 DOI: 10.1172/jci42497] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) circulates at low levels and acts as an incretin hormone, potentiating glucose-dependent insulin secretion from islet β cells. GLP-1 also modulates gastric emptying and engages neural circuits in the portal region and CNS that contribute to GLP-1 receptor-dependent (GLP-1R-dependent) regulation of glucose homeostasis. To elucidate the importance of pancreatic GLP-1R signaling for glucose homeostasis, we generated transgenic mice that expressed the human GLP-1R in islets and pancreatic ductal cells (Pdx1-hGLP1R:Glp1r-/- mice). Transgene expression restored GLP-1R-dependent stimulation of cAMP and Akt phosphorylation in isolated islets, conferred GLP-1R-dependent stimulation of β cell proliferation, and was sufficient for restoration of GLP-1-stimulated insulin secretion in perifused islets. Systemic GLP-1R activation with the GLP-1R agonist exendin-4 had no effect on food intake, hindbrain c-fos expression, or gastric emptying but improved glucose tolerance and stimulated insulin secretion in Pdx1-hGLP1R:Glp1r-/- mice. i.c.v. GLP-1R blockade with the antagonist exendin(9-39) impaired glucose tolerance in WT mice but had no effect in Pdx1-hGLP1R:Glp1r-/- mice. Nevertheless, transgenic expression of the pancreatic GLP-1R was sufficient to normalize both oral and i.p. glucose tolerance in Glp1r-/- mice. These findings illustrate that low levels of endogenous GLP-1 secreted from gut endocrine cells are capable of augmenting glucoregulatory activity via pancreatic GLP-1Rs independent of communication with neural pathways.
Collapse
Affiliation(s)
- Benjamin J Lamont
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Oz Puyan F, Can N, Ozyilmaz F, Usta U, Sut N, Tastekin E, Altaner S. The relationship among PDX1, CDX2, and mucin profiles in gastric carcinomas; correlations with clinicopathologic parameters. J Cancer Res Clin Oncol 2011; 137:1749-62. [PMID: 21909647 DOI: 10.1007/s00432-011-1044-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/15/2011] [Indexed: 12/24/2022]
Abstract
PURPOSE Several studies performed on pancreatic-duodenal homeobox 1 (PDX1) have demonstrated a loss of expression and negative tumor modulator effect in gastric carcinoma. Relations between PDX1 and gastric metaplasia, differentiated type of gastric carcinoma, and the early stage of the disease have been exhibited in previous reports. The aim of this study was to examine expressions of PDX1, caudal type homeobox 2 (CDX2) and mucin (MUC) profiles to address the role of PDX1 in gastric carcinogenesis and its relationship with CDX2. METHODS Seventy gastrectomy specimens were analyzed immunohistochemically for PDX1, CDX2, MUC2, MUC5AC, and MUC6 expressions. The sum of cytoplasmic and nuclear PDX1 immunostaining and PDX1 positivity were assessed. All of the antibodies were examined for a correlation with tumor type, clinicopathologic parameters, and metaplasias. The relation of Ki-67 proliferation index with the expression profiles was also investigated. RESULTS Neither PDX1 (66/70) nor CDX2 (37/70) and the mucin profiles (MUC2:11/70, MUC5AC:48/70, MUC6:41/70) showed a significant difference between differentiated and undifferentiated types of gastric carcinoma and clinicopathologic parameters. The PDX1 expression frequency was 94.3%, with an average PDX1 score of 8.8 ± 4.2. PDX1 and CDX2 expression showed a significant difference (P = 0.026 and P = 0.002, respectively) among the phenotypic classification of gastric carcinomas. All of the gastric and intestinal mixed-phenotype gastric carcinomas (GI-type) showed both PDX1 and CDX2 immunopositivity. Except for the relation of PDX1 score with MUC6 expression, no significant difference was detected between PDX1 and CDX2, MUC2, and MUC5AC expressions. A relationship between CDX2 and MUC2 and also between MUC5AC and MUC6 was found statistically. The Ki-67 proliferation index revealed a significant positive correlation with PDX1, CDX2, and MUC2 positivity. CONCLUSIONS PDX1 expression revealed a higher positivity in gastric carcinomas than the previous studies and showed no relation with tumor type, clinicopathologic parameters, CDX2 expression, or mucin profiles. However, a significant relation of PDX1 and CDX2 expressions among phenotypic classification of gastric carcinomas reveals an idea about similar functions for PDX1 and CDX2 in the evolution of gastric carcinoma.
Collapse
Affiliation(s)
- Fulya Oz Puyan
- Department of Pathology, Trakya University Medical Faculty, Edirne, Turkey.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ota H, Harada O, Uehara T, Hayama M, Ishii K. Aberrant expression of TFF1, TFF2, and PDX1 and their diagnostic value in lobular endocervical glandular hyperplasia. Am J Clin Pathol 2011; 135:253-61. [PMID: 21228366 DOI: 10.1309/ajcpqmao3pw4ogof] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Lobular endocervical glandular hyperplasia (LEGH) is a distinct benign glandular lesion expressing gastric gland mucous cell-type mucin (N-acetylglucosaminα1 → 4galactose → R [GlcNAcα1 → 4Gal → R]). To investigate histogenesis and diagnostic markers of LEGH, we examined the immunohistochemical expression profile of gastric surface mucous cell (MUC5AC and TFF1), gastric gland mucous cell (MUC6, TFF2, and GlcNAcα1 → 4Gal → R), gastric pyloric epithelial cell (PDX1), and endocervical cell (keratan sulfate) markers in normal endocervix samples and benign glandular lesions (nabothian cysts, tunnel clusters, and LEGHs). MUC5AC and MUC6 were expressed in normal endocervical mucosa and benign glandular lesions. TFF1, TFF2, GlcNAcα1 → 4Gal → R, and PDX1 were expressed only in LEGH. Keratan sulfate was expressed in normal endocervical mucosa and benign glandular lesions. In LEGH, gastric surface mucous cell and gastric gland mucous cell differentiation were demonstrated, and transdifferentiation from endocervical mucosa into gastric pyloric mucosa was suggested. In addition to GlcNAcα1 → 4Gal → R, TFF1, TFF2, and PDX1 are additional useful markers for LEGH.
Collapse
Affiliation(s)
- Hiroyoshi Ota
- Department of Biomedical Sciences, School of Health Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Oi Harada
- Division of Surgical Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Masayoshi Hayama
- Department of Biomedical Sciences, School of Health Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Keiko Ishii
- Department of Pathology, Okaya Municipal Hospital, Okaya, Japan
| |
Collapse
|
24
|
Ma J, Wang JD, Zhang WJ, Zou B, Chen WJ, Lam CSC, Chen MH, Pang R, Tan VPY, Hung IF, Lan HY, Wang QY, Wong BCY. Promoter hypermethylation and histone hypoacetylation contribute to pancreatic-duodenal homeobox 1 silencing in gastric cancer. Carcinogenesis 2010; 31:1552-60. [PMID: 20622005 DOI: 10.1093/carcin/bgq140] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND AIMS The expression of pancreatic-duodenal homeobox 1 (PDX1) in gastric cancer is aberrantly reduced. The aim of this study was to elucidate the regulation of DNA methylation and histone acetylation at the promoter for PDX1 silencing in gastric cancer. METHODS PDX1 expression in response to demethylation and acetylation was detected in human gastric cancer cell lines by reverse transcription-polymerase chain reaction (PCR) and western blot. Four CpG islands within the 5'-flanking region of PDX1 gene were analyzed with their transcription activities being detected by dual luciferase assay. Promoter hypermethylation was identified in gastric cancer cell lines and cancer tissues by methylation-specific PCR or bisulfite DNA sequencing PCR analysis. Histone acetylation was determined by chromatin immunoprecipitation (ChIP) assay. RESULTS Demethylation by 5'-aza-2'-deoxycytidine (5'-aza-dC) and/or acetylation by trichostatin A (TSA) restored PDX1 expression in gastric cancer cells. Hypermethylation was found in four CpG islands in six of seven cancer cell lines. However, only the distal CpG island located in the promoter fragment of PDX1, F383 (c.-2063 to -1681 nt upstream of the ATG start codon) displayed significant transcriptional activity that could be suppressed by SssI methylase and increased by 5'-aza-dC and TSA. More than 70% of the single CpG sites in F383 were methylated with hypermethylation of F383 fragment more common in gastric cancerous tissues compared with the paired normal tissues (P < 0.05). ChIP assay showed F383 was also associated with low hypoacetylation level of the histones. CONCLUSION Promoter hypermethylation and histone hypoacetylation contribute to PDX1 silencing in gastric cancer.
Collapse
Affiliation(s)
- Juan Ma
- Department of Gastroenterology and Hepatology, Guangdong General Hospital, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kordowich S, Mansouri A, Collombat P. Reprogramming into pancreatic endocrine cells based on developmental cues. Mol Cell Endocrinol 2010; 315:11-8. [PMID: 19897012 PMCID: PMC2814956 DOI: 10.1016/j.mce.2009.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 09/14/2009] [Accepted: 10/24/2009] [Indexed: 01/30/2023]
Abstract
Due to the increasing prevalence of type 1 diabetes and the complications arising from actual therapies, alternative treatments need to be established. In order to compensate the beta-cell deficiency associated with type 1 diabetes, current research focuses on new strategies to generate insulin-producing beta-cells for transplantation purpose, including the differentiation of stem or progenitor cells, as well as the transdifferentiation of dispensable mature cell types. However, to successfully force specific cells to adopt a functional beta-cell fate or phenotype, a better understanding of the molecular mechanisms underlying beta-cell genesis is required. The present short review summarizes the hitherto known functions and interplays of several key factors involved in the development of the different endocrine cell lineages during pancreas morphogenesis, as well as their potential to direct the generation of beta-cells. Furthermore, an emphasis is made on beta-cell regeneration and the determinants implicated.
Collapse
Affiliation(s)
- Simon Kordowich
- Max-Planck Institute for Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
26
|
Rojas A, Schachterle W, Xu SM, Black BL. An endoderm-specific transcriptional enhancer from the mouse Gata4 gene requires GATA and homeodomain protein-binding sites for function in vivo. Dev Dyn 2010; 238:2588-98. [PMID: 19777593 DOI: 10.1002/dvdy.22091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Several transcription factors function in the specification and differentiation of the endoderm, including the zinc finger transcription factor GATA4. Despite its essential role in endoderm development, the transcriptional control of the Gata4 gene in the developing endoderm and its derivatives remains incompletely understood. Here, we identify a distal enhancer from the Gata4 gene, which directs expression exclusively to the visceral and definitive endoderm of transgenic mouse embryos. The activity of this enhancer is initially broad within the definitive endoderm but later restricts to developing endoderm-derived tissues, including pancreas, glandular stomach, and duodenum. The activity of this enhancer in vivo is dependent on evolutionarily-conserved HOX- and GATA-binding sites, which are bound by PDX-1 and GATA4, respectively. These studies establish Gata4 as a direct transcriptional target of homeodomain and GATA transcription factors in the endoderm and support a model in which GATA4 functions in the transcriptional network for pancreas formation.
Collapse
Affiliation(s)
- Anabel Rojas
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | | | | | |
Collapse
|
27
|
Fernandez-Zapico ME, van Velkinburgh JC, Gutiérrez-Aguilar R, Neve B, Froguel P, Urrutia R, Stein R. MODY7 gene, KLF11, is a novel p300-dependent regulator of Pdx-1 (MODY4) transcription in pancreatic islet beta cells. J Biol Chem 2009; 284:36482-36490. [PMID: 19843526 DOI: 10.1074/jbc.m109.028852] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pdx-1 (pancreatic-duodenal homeobox-1), a MODY4 homeodomain transcription factor, serves as a master regulator in the pancreas because of its importance during organogenesis and in adult islet insulin-producing beta cell activity. Here, we show that KLF11, an SP/Krüppel-like (SP/KLF) transcription factor, mutated in French maturity onset diabetes of the young patients (MODY7), regulates Pdx-1 transcription in beta cells through two evolutionarily conserved GC-rich motifs in conserved Area II, a control region essential to islet beta cell-enriched expression. These regulatory elements, termed GC1 (human base pair -2061/-2055) and GC2 (-2036/-2027), are also nearly identical to the consensus KLF11 binding sequence defined here by random oligonucleotide binding analysis. KLF11 specifically associates with Area II in chromatin immunoprecipitation assays, while preventing binding to GC1- and/or GC2-compromised Pdx1-driven reporter activity in beta cell lines. Mechanistically, we find that KLF11 interacts with the coactivator p300 via its zinc finger domain in vivo to mediate Pdx-1 activation. Together, our data identified a hierarchical regulatory cascade for these two MODY genes, suggesting that gene regulation in MODY is more complex than anticipated previously. Furthermore, because KLF11 like most MODY-associated transcription factors uses p300, these data further support a role for this coactivator as a critical chromatin link in forms of type 2 diabetes.
Collapse
Affiliation(s)
| | - Jennifer C van Velkinburgh
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Ruth Gutiérrez-Aguilar
- CNRS, Unite Mixte de Recherche 8090, Institute of Biology, Institute Pasteur de Lille, F-59019 Lille, France
| | - Bernadette Neve
- CNRS, Unite Mixte de Recherche 8090, Institute of Biology, Institute Pasteur de Lille, F-59019 Lille, France; Genomic Medicine, Hammersmith Hospital, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philippe Froguel
- CNRS, Unite Mixte de Recherche 8090, Institute of Biology, Institute Pasteur de Lille, F-59019 Lille, France; Genomic Medicine, Hammersmith Hospital, Imperial College London, London SW7 2AZ, United Kingdom
| | - Raul Urrutia
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota 55905
| | - Roland Stein
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota 55905.
| |
Collapse
|
28
|
Gidekel Friedlander SY, Chu GC, Snyder EL, Girnius N, Dibelius G, Crowley D, Vasile E, DePinho RA, Jacks T. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 2009; 16:379-89. [PMID: 19878870 PMCID: PMC3048064 DOI: 10.1016/j.ccr.2009.09.027] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 07/14/2009] [Accepted: 09/04/2009] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies. To investigate the cellular origin(s) of this cancer, we determined the effect of PDAC-relevant gene mutations in distinct cell types of the adult pancreas. We show that a subpopulation of Pdx1-expressing cells is susceptible to oncogenic K-Ras-induced transformation without tissue injury, whereas insulin-expressing endocrine cells are completely refractory to transformation under these conditions. However, chronic pancreatic injury can alter their endocrine fate and allow them to serve as the cell of origin for exocrine neoplasia. These results suggest that one mechanism by which inflammation and/or tissue damage can promote neoplasia is by altering the fate of differentiated cells that are normally refractory to oncogenic stimulation.
Collapse
Affiliation(s)
| | - Gerald C. Chu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Woman's Hospital, Boston, Massachusetts
- Center for Applied Cancer Science, Belfer Foundation Institute for Innovative Cancer Science
| | - Eric L. Snyder
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts 02139, USA
- Department of Pathology, Brigham and Woman's Hospital, Boston, Massachusetts
| | - Nomeda Girnius
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts 02139, USA
| | - Gregory Dibelius
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts 02139, USA
| | - Denise Crowley
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts 02139, USA
- Howard Hughes Medical Institute at Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Eliza Vasile
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts 02139, USA
| | - Ronald A. DePinho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Applied Cancer Science, Belfer Foundation Institute for Innovative Cancer Science
- Department of Medicine and Genetics, Harvard Medical School, Boston, Massachusetts
| | - Tyler Jacks
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Howard Hughes Medical Institute at Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
29
|
Wu X, Wang L, Schroer S, Choi D, Chen P, Okada H, Woo M. Perinatal survivin is essential for the establishment of pancreatic beta cell mass in mice. Diabetologia 2009; 52:2130-41. [PMID: 19644667 DOI: 10.1007/s00125-009-1469-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 06/19/2009] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cells undergo dynamic remodelling during the perinatal period, with enhanced neogenesis, proliferation and apoptosis observed. The molecular mechanisms responsible for these processes have yet to be elucidated. Survivin is an inhibitor of apoptosis, first described as being exclusively expressed in tumour and embryonic tissues with regulatory functions in mitosis and apoptosis. The aim of the present study was to define the essential physiological role of survivin in the pancreas. METHODS The expression profile of survivin was assessed in the mouse pancreas, and we generated a Pdx1 promoter-driven Survivin (also known as Birc5) knockout mouse using the Cre-loxP recombination system to determine the essential physiological function of survivin in the pancreas. RESULTS Survivin is transiently expressed in mouse pancreatic islets during the embryonic and neonatal periods. Targeted deletion of Survivin in the pancreas resulted in a significant decline in beta cell mass throughout the perinatal period, leading to glucose intolerance in the adult. Survivin-deficient islets showed decreased cell proliferation as a result of a delay in cell cycle progression with perturbations in cell cycle proteins. Survivin did not, however, play an essential role in beta cell apoptosis either during the physiological remodelling period or in response to streptozotocin. Islet development, islet architecture, microvasculature and apoptosis were not affected by the absence of survivin in the pancreas. CONCLUSIONS/INTERPRETATION Survivin expression in the pancreatic islets during the perinatal remodelling period is essential for the establishment of beta cell mass through cell cycle regulation.
Collapse
Affiliation(s)
- X Wu
- Ontario Cancer Institute, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
An understanding of the mechanisms that govern pancreatic endocrine cell ontogeny may offer strategies for their somatic replacement in diabetic patients. During embryogenesis, transcription factor FoxO1 is expressed in pancreatic progenitor cells. Subsequently, it becomes restricted to beta cells and to a rare population of insulin-negative juxtaductal cells (FoxO1+ Ins(-)). It is unclear whether FoxO1+ Ins(-) cells give rise to endocrine cells. To address this question, we first evaluated FoxO1's role in pancreas development using gain- and loss-of-function alleles in mice. Premature FoxO1 activation in pancreatic progenitors promoted alpha-cell formation but curtailed exocrine development. Conversely, FoxO1 ablation in pancreatic progenitor cells, but not in committed endocrine progenitors or terminally differentiated beta cells, selectively increased juxtaductal beta cells. As these data indicate an involvement of FoxO1 in pancreatic lineage determination, FoxO1+ Ins(-) cells were clonally isolated and assayed for their capacity to undergo endocrine differentiation. Upon FoxO1 activation, FoxO1+ Ins(-) cultures converted into glucagon-producing cells. We conclude that FoxO1+ Ins(-) juxtaductal cells represent a hitherto-unrecognized pancreatic cell population with in vitro capability of endocrine differentiation.
Collapse
|
31
|
Cole AG, Rizzo F, Martinez P, Fernandez-Serra M, Arnone MI. Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut. Development 2009; 136:541-9. [PMID: 19144720 DOI: 10.1242/dev.029959] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the characterization of the ortholog of the Xenopus XlHbox8 ParaHox gene from the sea urchin Strongylocentrotus purpuratus, SpLox. It is expressed during embryogenesis, first appearing at late gastrulation in the posterior-most region of the endodermal tube, becoming progressively restricted to the constriction between the mid- and hindgut. The physiological effects of the absence of the activity of this gene have been analyzed through knockdown experiments using gene-specific morpholino antisense oligonucleotides. We show that blocking the translation of the SpLox mRNA reduces the capacity of the digestive tract to process food, as well as eliminating the morphological constriction normally present between the mid- and hindgut. Genetic interactions of the SpLox gene are revealed by the analysis of the expression of a set of genes involved in endoderm specification. Two such interactions have been analyzed in more detail: one involving the midgut marker gene Endo16, and another involving the other endodermally expressed ParaHox gene, SpCdx. We find that SpLox is able to bind Endo16 cis-regulatory DNA, suggesting direct repression of Endo16 expression in presumptive hindgut territories. More significantly, we provide the first evidence of interaction between ParaHox genes in establishing hindgut identity, and present a model of gene regulation involving a negative-feedback loop.
Collapse
Affiliation(s)
- Alison G Cole
- Stazione Zoologica Anton Dohrn di Napoli, Villa Comunale, 80121 Napoli, Italy
| | | | | | | | | |
Collapse
|
32
|
Miyatsuka T, Matsuoka TA, Kaneto H. Transcription factors as therapeutic targets for diabetes. Expert Opin Ther Targets 2009; 12:1431-42. [PMID: 18851698 DOI: 10.1517/14728222.12.11.1431] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Islet cell implantation and pancreas transplantation have been used as treatments for diabetes but are limited by the shortage of donors and the requirement for lifelong immunosuppression. As an alternative, the generation of surrogate insulin-producing cells has been an area of interest for many researchers. Understanding how pancreatic beta-cells are generated during pancreas development will provide information that can be applied to generating surrogate beta-cells. OBJECTIVE To outline the current knowledge of pancreas development and differentiation, with a focus on the regulatory network of pancreas-enriched transcription factors and their targets. METHODS A review of relevant literature. CONCLUSIONS Pancreatic and duodenal homeobox 1 (Pdx1), Neurogenin 3 (Ngn3), and musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) have been shown to play essential roles in pancreas development and beta-cell differentiation, and gain-of-function approaches indicate the potency of these factors for inducing differentiation of non-beta-cells into insulin-producing cells, which could lead to a novel therapy to cure diabetes.
Collapse
Affiliation(s)
- Takeshi Miyatsuka
- Osaka University Graduate School of Medicine, Department of Internal Medicine and Therapeutics, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | | |
Collapse
|
33
|
Ackermann Misfeldt A, Costa RH, Gannon M. Beta-cell proliferation, but not neogenesis, following 60% partial pancreatectomy is impaired in the absence of FoxM1. Diabetes 2008; 57:3069-77. [PMID: 18728229 PMCID: PMC2570403 DOI: 10.2337/db08-0878] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study was designed to determine whether the transcription factor FoxM1 was required for regeneration of beta-cell mass via proliferation and/or neogenesis in the adult after 60% partial pancreatectomy (PPx). RESEARCH DESIGN AND METHODS Adult mice with a pancreas-wide deletion of Foxm1 (Foxm1(flox/flox);Pdx1-Cre [FoxM1(Deltapanc)]) and their control littermates (Foxm1(flox/flox)) were subjected to PPx or a sham operation, after which islet expression of Foxm1 and several target genes, beta-cell mass, proliferation, beta-cell size, islet size, islet density, and neurogenin-3 expression were analyzed. RESULTS In control mice, PPx stimulated beta-cell proliferation and neogenesis and upregulated Foxm1 and several of its known targets (Plk1, Cenp-a, Birc5/Survivin, and Ccnb1) in islets. Within 1 week post-PPx, control mice underwent significant regeneration of beta-cell mass, and average islet size within the regenerating lobe was similar to that after a sham operation. However, FoxM1(Deltapanc) mice exhibited specific impairments in beta-cell mass regeneration and islet growth after PPx, with reduced proliferation of alpha- and beta-cells but no impairments in acinar or ductal cell proliferation. Interestingly, FoxM1 was not required for proliferation of beta-cells within small endocrine cell clusters located in the regenerating portion of the pancreas but was specifically required for proliferation of beta-cells within larger islets. Additionally, FoxM1 was not required for beta-cell neogenesis following PPx. CONCLUSIONS Our results indicate that FoxM1 is partially required for increased beta-cell proliferation, but not beta-cell neogenesis, stimulated by PPx. Furthermore, FoxM1 seems to be dispensable for proliferation of beta-cells following neogenesis but is required for proliferation of preexisting beta-cells.
Collapse
Affiliation(s)
- Amanda Ackermann Misfeldt
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
34
|
Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2008; 326:4-35. [PMID: 19013144 DOI: 10.1016/j.ydbio.2008.10.024] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 02/06/2023]
Abstract
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Collapse
Affiliation(s)
- George K Gittes
- Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Department of Pediatric Surgery, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
35
|
Abstract
The major forms of diabetes are characterized by pancreatic islet beta-cell dysfunction and decreased beta-cell numbers, raising hope for cell replacement therapy. Although human islet transplantation is a cell-based therapy under clinical investigation for the treatment of type 1 diabetes, the limited availability of human cadaveric islets for transplantation will preclude its widespread therapeutic application. The result has been an intense focus on the development of alternate sources of beta cells, such as through the guided differentiation of stem or precursor cell populations or the transdifferentiation of more plentiful mature cell populations. Realizing the potential for cell-based therapies, however, requires a thorough understanding of pancreas development and beta-cell formation. Pancreas development is coordinated by a complex interplay of signaling pathways and transcription factors that determine early pancreatic specification as well as the later differentiation of exocrine and endocrine lineages. This review describes the current knowledge of these factors as they relate specifically to the emergence of endocrine beta cells from pancreatic endoderm. Current therapeutic efforts to generate insulin-producing beta-like cells from embryonic stem cells have already capitalized on recent advances in our understanding of the embryonic signals and transcription factors that dictate lineage specification and will most certainly be further enhanced by a continuing emphasis on the identification of novel factors and regulatory relationships.
Collapse
Affiliation(s)
- Jennifer M. Oliver-Krasinski
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
36
|
Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest 2008; 118:2316-24. [PMID: 18464933 DOI: 10.1172/jci33655] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 03/18/2008] [Indexed: 12/29/2022] Open
Abstract
Intrauterine growth retardation (IUGR) has been linked to the onset of diseases in adulthood, including type 2 diabetes, and has been proposed to result from altered gene regulation patterns due to epigenetic modifications of developmental genes. To determine whether epigenetic modifications may play a role in the development of adult diabetes following IUGR, we used a rodent model of IUGR that expresses lower levels of Pdx1, a pancreatic and duodenal homeobox 1 transcription factor critical for beta cell function and development, which develops diabetes in adulthood. We found that expression of Pdx1 was permanently reduced in IUGR beta cells and underwent epigenetic modifications throughout development. The fetal IUGR state was characterized by loss of USF-1 binding at the proximal promoter of Pdx1, recruitment of the histone deacetylase 1 (HDAC1) and the corepressor Sin3A, and deacetylation of histones H3 and H4. Following birth, histone 3 lysine 4 (H3K4) was demethylated and histone 3 lysine 9 (H3K9) was methylated. During the neonatal period, these epigenetic changes and the reduction in Pdx1 expression could be reversed by HDAC inhibition. After the onset of diabetes in adulthood, the CpG island in the proximal promoter was methylated, resulting in permanent silencing of the Pdx1 locus. These results provide insight into the development of type 2 diabetes following IUGR and we believe they are the first to describe the ontogeny of chromatin remodeling in vivo from the fetus to the onset of disease in adulthood.
Collapse
Affiliation(s)
- Jun H Park
- Department of Pediatrics, Children's Hospital of Philadelphia, Department of Medicine, and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
37
|
Ma J, Chen M, Wang J, Xia HHX, Zhu S, Liang Y, Gu Q, Qiao L, Dai Y, Zou B, Li Z, Zhang Y, Lan H, Wong BCY. Pancreatic duodenal homeobox-1 (PDX1) functions as a tumor suppressor in gastric cancer. Carcinogenesis 2008; 29:1327-1333. [PMID: 18477649 DOI: 10.1093/carcin/bgn112] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM Pancreatic duodenal homeobox-1 (PDX1) is a transcription factor of homeobox genes family important in differentiation and development of the pancreas, duodenum and antrum. This study aims to clarify the putative role of PDX1 in gastric carcinogenesis. METHODS PDX1 expression was detected in gastric tissues with chronic gastritis and cancer as well as gastric cancer cell lines by immunohistochemistry, western blot, reverse transcription-polymerase chain reaction (RT-PCR) or quantitative real-time RT-PCR assays. The effects of PDX1 on cell proliferation, apoptosis, clone formation and migration were evaluated using cancer cell lines after transient or stable transfection with PDX1-expressing vector. The ability of PDX1 stable transfectant in tumor formation in xenograft mice was assessed. RESULTS PDX1 was strongly expressed in normal gastric glands, but was absent in 29 of 39 of human gastric cancer and most gastric cancer cell lines. Negative correlation between PDX1 and Ki-67 expression was found in both gastric tissues and cell lines. Ectopic overexpression of PDX1 significantly inhibited cell proliferation and induced apoptosis, accompanied by the activation of caspases 3, 8, 9 and 10. Overexpression of PDX1 also impaired the ability of cancer cells in clonal formation and migration in vitro. Furthermore, stable transfection with PDX1 reduced the ability of cancer cells in tumor formation in nude mice. CONCLUSIONS PDX1 expression is lost in gastric cancers. Its effect on cell proliferation/apoptosis, migration and tumor formation in vitro and in vivo suggested that this protein functions as a putative tumor suppressor in gastric cancer.
Collapse
Affiliation(s)
- Juan Ma
- Division of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
It is well known that pancreatic and duodenal homeobox factor-1 (PDX-1) plays a pleiotropic role in the pancreas. In the developing pancreas, PDX-1 is involved in both pancreas formation and beta-cell differentiation. In mature beta-cells, PDX-1 transactivates insulin and other beta-cell-related genes such as GLUT2 and glucokinase. Furthermore, PDX-1 plays an important role in the induction of insulin-producing cells in various non-beta-cells and is thereby a possible therapeutic target for diabetes. On the other hand, under diabetic conditions, expression and/or activity of PDX-1 in beta-cells is reduced, which leads to suppression of insulin biosynthesis and secretion. It is likely that PDX-1 inactivation explains, at least in part, the molecular mechanism for beta-cell glucose toxicity found in diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
39
|
Altered expression of CDX-2, PDX-1 and mucin core proteins in "Ulcer-associated cell lineage (UACL)" in Crohn's disease. J Mol Histol 2007; 39:161-8. [PMID: 17957487 DOI: 10.1007/s10735-007-9149-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 09/27/2007] [Indexed: 12/15/2022]
Abstract
The ulcer-associated cell lineage (UACL) induced at the site of ileac chronic ulceration in Crohn's disease has been reported to show histological differentiation resembling gastric pyloric mucosa. To clarify the significance of homeobox gene-encoded transcription factors in the formation of the UACL in Crohn's disease, we investigated the immunohistochemical expression of gastrointestinal mucins (MUC5AC for gastric surface mucous cells; MUC6 for gastric gland mucous cells, and MUC2 for intestinal goblet cells) and homeobox gene-encoded transcription factors (CDX-2 for intestinal mucosa and PDX-1 for pyloric mucosa) in the UACL. The analysis was undertaken on ileal mucosa obtained from ileal resections performed in 19 patients with active Crohn's disease of the small bowel. The UACL was observed in nine patients. In the UACL, expression of mucous cells with a foveolar-structure showed immunoreactivity to MUC5AC, and the mucous cells with a glandular structure showed immunoreactivity to MUC6, and the expression of MUC2 was decreased. In addition, we detected the decreased expression of CDX-2 along with the increased expression of PDX-1 in the UACL. The UACL showed histological differentiation simulating gastric pylori mucosa. The down-regulation of CDX-2 and the up-regulation of PDX-1 could be an important mechanism in the induction of the UACL.
Collapse
|
40
|
Mochizuka A, Uehara T, Nakamura T, Kobayashi Y, Ota H. Hyperplastic polyps and sessile serrated 'adenomas' of the colon and rectum display gastric pyloric differentiation. Histochem Cell Biol 2007; 128:445-55. [PMID: 17851679 DOI: 10.1007/s00418-007-0326-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2007] [Indexed: 01/08/2023]
Abstract
The serrated polyp-neoplasia pathway is a novel concept that has been demonstrated to differ from the conventional adenoma-carcinoma pathway. To characterize the phenotypic patterns of differentiation in colorectal serrated polyps, we examined the immunohistochemical expression profile of gastric (MUC5AC, TFF1, MUC6, GlcNAcalpha1 --> 4Gal --> R, and PDX1) and intestinal (MUC2, TFF3, and CDX2) epithelial markers in 15 hyperplastic polyps (HPs), 29 sessile serrated adenomas (SSAs),12 traditional serrated adenomas (TSAs), and 16 conventional adenomas (CAs). MUC5AC and TFF1 were upregulated in the HPs, SSAs, and TSAs. MUC6 was expressed in the HPs and SSAs. GlcNAcalpha1 --> 4Gal --> R was expressed only in the SSAs. Although MUC2 expression was preserved, TFF3 was downregulated in the HPs, SSAs, and TSAs. PDX1 was upregulated in the HPs, SSAs, and TSAs. On the other hand, CDX2 was downregulated in the HPs and SSAs. The colorectal serrated polyps showed higher expression of gastric makers than CAs. The HPs and SSAs showed gastric and intestinal mixed phenotype expression with gastric pyloric organoid differentiation and almost identical, but different from the TSAs, marker profile. PDX1 up-regulation and CDX2 down-regulation could be important for the induction of a gastric pyloric pattern of cell differentiation in colorectal serrated polyps.
Collapse
Affiliation(s)
- Akiyoshi Mochizuka
- Department of Laboratory Medicine, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Japan
| | | | | | | | | |
Collapse
|
41
|
Thowfeequ S, Ralphs KL, Yu WY, Slack JMW, Tosh D. Betacellulin inhibits amylase and glucagon production and promotes beta cell differentiation in mouse embryonic pancreas. Diabetologia 2007; 50:1688-97. [PMID: 17563868 DOI: 10.1007/s00125-007-0724-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS Betacellulin, a member of the epidermal growth factor family, is expressed in the pancreas and is thought to regulate differentiation of beta cells during development. The aim of the present study was to investigate the effects of exogenous betacellulin on the development of the mouse embryonic pancreas. MATERIALS AND METHODS We used an in vitro culture model system based on the isolation and culture of the dorsal embryonic pancreas from day 11.5 embryos. Cultures were treated for up to 10 days with 10 ng/ml betacellulin and then analysed for changes in the expression of pancreatic exocrine, endocrine and ductal markers. RESULTS Pancreases developed in culture and expressed the full complement of exocrine (both acinar and ductal) and endocrine cell types. Betacellulin enhanced branching morphogenesis and the proliferation of mesenchyme, increased Pdx1 and insulin production and inhibited the production of the exocrine cell marker amylase and the endocrine hormone glucagon. CONCLUSIONS/INTERPRETATION These results suggest betacellulin has distinct and separate effects on exocrine, endocrine and ductal differentiation. In the future, betacellulin could perhaps be utilised to increase the production of beta cells from embryonic pancreatic tissue for therapeutic transplantation.
Collapse
Affiliation(s)
- S Thowfeequ
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | | | | | | |
Collapse
|
42
|
Wiebe PO, Kormish JD, Roper VT, Fujitani Y, Alston NI, Zaret KS, Wright CVE, Stein RW, Gannon M. Ptf1a binds to and activates area III, a highly conserved region of the Pdx1 promoter that mediates early pancreas-wide Pdx1 expression. Mol Cell Biol 2007; 27:4093-104. [PMID: 17403901 PMCID: PMC1900007 DOI: 10.1128/mcb.01978-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The critical pancreatic transcription factor Pdx1 is expressed throughout the pancreas early but enriched in insulin-producing beta cells postnatally. Previous studies showed that the 5' conserved promoter regions areas I and II (Pdx1(PB)) direct endocrine cell expression, while an adjacent region (Pdx1(XB)) containing conserved area III directs transient beta-cell expression. In this study, we used Cre-mediated lineage tracing to track cells that activated these regions. Pdx1(PB)Cre mediated only endocrine cell recombination, while Pdx1(XB)Cre directed broad and early recombination in the developing pancreas. Also, a reporter transgene containing areas I, II, and III was expressed throughout the embryonic day 10.5 (E10.5) pancreas and gradually became beta cell enriched, similar to endogenous Pdx1. These data suggested that sequences within area III mediate early pancreas-wide Pdx1 expression. Area III contains a binding site for PTF1, a transcription factor complex essential for pancreas development. This site contributed to area III-dependent reporter gene expression in the acinar AR42J cell line, while PTF1 specifically trans-activated area III-containing reporter expression in a nonpancreatic cell line. Importantly, Ptf1a occupied sequences spanning the endogenous PTF1 site in area III of E11.5 pancreatic buds. These data strongly suggest that PTF1 is an important early activator of Pdx1 in acinar and endocrine progenitor cells during pancreas development.
Collapse
Affiliation(s)
- Peter O Wiebe
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The hallmark of Type 2 diabetes is insulin resistance and pancreatic beta-cell dysfunction. Under diabetic conditions, the c-jun N-terminal kinase (JNK) pathway is activated in various tissues, which is involved in both insulin resistance and beta-cell dysfunction. Activation of the JNK pathway interferes with insulin action and reduces insulin biosynthesis, and suppression of the JNK pathway in diabetic mice improves insulin resistance and beta-cell function, leading to amelioration of glucose tolerance. Taken together, the JNK pathway is likely to play a central role in the progression of insulin resistance and beta-cell dysfunction and, thus, could be a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
44
|
Doyle MJ, Loomis ZL, Sussel L. Nkx2.2-repressor activity is sufficient to specify alpha-cells and a small number of beta-cells in the pancreatic islet. Development 2007; 134:515-23. [PMID: 17202186 PMCID: PMC2805074 DOI: 10.1242/dev.02763] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The homeodomain protein Nkx2.2 (Nkx2-2) is a key regulator of pancreatic islet cell specification in mice; Nkx2.2 is essential for the differentiation of all insulin-producing beta-cells and of the majority of glucagon-producing alpha-cells, and, in its absence, these cell types are converted to a ghrelin cell fate. To understand the molecular functions of Nkx2.2 that regulate these early cell-fate decisions during pancreatic islet development, we created Nkx2.2-dominant-derivative transgenic mice. In the absence of endogenous Nkx2.2, the Nkx2.2-Engrailed-repressor derivative is sufficient to fully rescue glucagon-producing alpha-cells and to partially rescue insulin-producing beta-cells. Interestingly, the insulin-positive cells that do form in the rescued mice do not express the mature beta-cell markers MafA or Glut2 (Slc2a2), suggesting that additional activator functions of Nkx2.2 are required for beta-cell maturation. To explore the mechanism by which Nkx2.2 functions as a repressor in the islet, we assessed the pancreatic expression of the Groucho co-repressors, Grg1, Grg2, Grg3 and Grg4 (Tle1-Tle4), which have been shown to interact with and modulate Nkx2.2 function. We determined that Grg3 is highly expressed in the embryonic pancreas in a pattern similar to Nkx2.2. Furthermore, we show that Grg3 physically interacts with Nkx2.2 through its TN domain. These studies suggest that Nkx2.2 functions predominantly as a transcriptional repressor during specification of endocrine cell types in the pancreas.
Collapse
Affiliation(s)
- Michelle J. Doyle
- Program in Molecular Biology, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045, USA
| | - Zoe L. Loomis
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045, USA
| | - Lori Sussel
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045, USA
- Author for correspondence ()
| |
Collapse
|
45
|
Nyeng P, Norgaard GA, Kobberup S, Jensen J. FGF10 signaling controls stomach morphogenesis. Dev Biol 2006; 303:295-310. [PMID: 17196193 PMCID: PMC1864952 DOI: 10.1016/j.ydbio.2006.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 11/08/2006] [Accepted: 11/08/2006] [Indexed: 12/18/2022]
Abstract
Maintenance of progenitor cell properties in development is required for proper organogenesis of most organs, including those derived from the endoderm. FGF10 has been shown to play a role in both lung and pancreatic development. Here we find that FGF10 signaling controls stomach progenitor maintenance, morphogenesis and cellular differentiation. Through a characterization of the initiation of terminal differentiation of the three major gastric regions in the mouse, forestomach, corpus and antrum, we first describe the existence of a "secondary transition" event occurring in mouse stomach between E15.5 and E16.5. This includes the formation of terminally differentiated squamous cells, parietal, chief and gastric endocrine cells from a pre-patterned gastric progenitor epithelium. Expression analysis of both FGF and Notch signaling components suggested a role of these networks in such progenitors, which was tested through ectopically expressing FGF10 in the developing posterior stomach. These data provide evidence that gastric gland specification and progenitor cell maintenance is controlled by FGF10. The glandular proliferative niche was disrupted in pPDX-FGF10(FLAG) mice leading to aberrant gland formation, and endocrine and parietal cell differentiation was attenuated. These effects were paralleled by changes in Hes1, Shh and Wnt6 expression, suggesting that FGF10 acts in concert with multiple morphogenetic signaling systems during gastric development.
Collapse
Affiliation(s)
| | | | | | - Jan Jensen
- Author for correspondence: Jan Jensen, PhD, Barbara Davis Center for Childhood Diabetes, U. Colorado, HSC. 4200 E 9 Avenue, B140, 80262 Denver, CO, USA, phone + 303-315-1389, fax +303-315-4892. E-mail:
| |
Collapse
|
46
|
Thatava T, Tayaramma T, Ma B, Rohde M, Mayer H. Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells. Stem Cells 2006; 24:2858-67. [PMID: 16990588 DOI: 10.1634/stemcells.2006-0109] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is caused by the destruction of pancreatic beta-cells by T cells of the immune system. Islet transplantation is a promising therapy for diabetes mellitus. Bone marrow stem cells (BMSC) have the capacity to differentiate into various cell lineages including endocrine cells of the pancreas. To investigate the conditions that allow BMSC to differentiate into insulin-producing cells, a novel in vitro method was developed by using the histone deacetylase inhibitor, trichostatin A (TSA). BMSC, cultured in presence of TSA, differentiated into islet-like clusters under appropriate culture conditions. These islet-like clusters were similar to the cells of the islets of the pancreas. The islet-like clusters showed endocrine gene expression typical for pancreatic beta-cell development and function, such as insulin (I and II), glucagon, somatostatin, GLUT-2, pancreatic duodenal homeobox-1 (PDX-1), and Pax 4. Immunocytochemistry confirmed islet-like clusters contained pancreatic hormones. The colocalization of insulin and C-peptide was also observed. Enzyme-linked immunosorbent assay analysis demonstrated that insulin secretion was regulated by glucose. Western blot analysis demonstrated the presence of stored insulin. Electron microscopy of the islet-like cells revealed an ultrastructure similar to that of pancreatic beta-cells, which contain insulin granules within secretory vesicles. These findings suggest that histone-deacetylating agents could allow the differentiation of BMSC into insulin-producing beta-cells.
Collapse
Affiliation(s)
- Tayaramma Thatava
- Department of Gene REgulation and Differentiation, German Research Center for Biotechnology, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
47
|
Kaneto H, Miyatsuka T, Kawamori D, Shiraiwa T, Fujitani Y, Matsuoka TA. PDX-1 and MafA in β-cell differentiation and dysfunction. Expert Rev Endocrinol Metab 2006; 1:587-600. [PMID: 30754099 DOI: 10.1586/17446651.1.5.587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pancreatic and duodenal homeobox factor-1 (PDX-1) plays crucial roles in pancreas development and β-cell differentiation, and in maintaining mature β-cell function. MafA is a recently isolated β-cell-specific transcription factor that functions as a potent activator of insulin gene transcription. Also, these pancreatic transcription factors play a crucial role in inducing surrogate β-cells from non-β-cells and, thus, could be therapeutic targets for diabetes. Conversely, expression and/or activities of PDX-1 and MafA in β-cells are reduced under diabetic conditions, which leads to suppression of insulin biosynthesis and secretion. It is likely that alteration of such transcription factors explains, at least in part, the molecular mechanism for β-cell glucose toxicity.
Collapse
Affiliation(s)
- Hideaki Kaneto
- a Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takeshi Miyatsuka
- a Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Dan Kawamori
- a Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshihiko Shiraiwa
- a Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yoshio Fujitani
- a Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Taka-Aki Matsuoka
- a Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
48
|
Holland AM, Micallef SJ, Li X, Elefanty AG, Stanley EG. A mouse carrying the green fluorescent protein gene targeted to the Pdx1 locus facilitates the study of pancreas development and function. Genesis 2006; 44:304-7. [PMID: 16794995 DOI: 10.1002/dvg.20214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The pancreatic and duodenal homeobox gene 1 (Pdx1) has multiple roles in the specification and development of foregut endoderm-derived tissues. We report the characterization of a mouse line in which the gene encoding green fluorescent protein (GFP) has been targeted to the Pdx1 locus, allowing the visualization of Pdx1 expressing cells. Analysis of GFP expression during development showed that the reporter faithfully reproduced the known expression pattern of Pdx1. We demonstrate the utility of this mouse line for the isolation of Pdx1(+) cells by fluorescence-activated cell sorting and for the real-time observation of Pdx1(+) cells in an ex vivo embryonic pancreas culture system. This mouse model should prove useful for the study of pancreas development and regeneration.
Collapse
|
49
|
Boyer DF, Fujitani Y, Gannon M, Powers AC, Stein RW, Wright CVE. Complementation rescue of Pdx1 null phenotype demonstrates distinct roles of proximal and distal cis-regulatory sequences in pancreatic and duodenal expression. Dev Biol 2006; 298:616-31. [PMID: 16962573 DOI: 10.1016/j.ydbio.2006.07.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 07/11/2006] [Accepted: 07/19/2006] [Indexed: 11/20/2022]
Abstract
The unique, well-demarcated expression domain of Pdx1 within the posterior foregut suggests that investigating its transcriptional regulation will provide insight into mechanisms that regionally pattern the endoderm. Previous phylogenetic comparison identified conserved noncoding regions that stimulate transcriptional activity selectively in cultured pancreatic beta cells. Characterization of these regulatory elements is helping to dissect the transcription factor networks that operate within beta cells, which is important for understanding the etiology of beta cell dysfunction and diabetes, as well as for developing methods to produce beta cells in vitro for cell-based therapies. We recently reported that deletion of three proximally located conserved areas (Area I-II-III) from the endogenous Pdx1 locus resulted in severely reduced expression of Pdx1 in the pancreas, and a milder decrease in other foregut tissues. Here, we report transgene-based complementation experiments on Pdx1 null mice, which reveal that the proximal promoter/enhancer region, including Area I-II-III, rescues the pancreatic defects caused by Pdx1 deficiency, but only weakly promotes expression of Pdx1 in the postnatal stomach and duodenum. These results reveal a role for distal cis-regulatory elements in achieving the correct level of extra-pancreatic Pdx1 expression, which is necessary for the production of duodenal GIP cells and stomach gastrin cells.
Collapse
Affiliation(s)
- Daniel F Boyer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175, USA
| | | | | | | | | | | |
Collapse
|
50
|
Decker K, Goldman DC, Grasch CL, Sussel L. Gata6 is an important regulator of mouse pancreas development. Dev Biol 2006; 298:415-29. [PMID: 16887115 PMCID: PMC2824170 DOI: 10.1016/j.ydbio.2006.06.046] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 06/02/2006] [Accepted: 06/27/2006] [Indexed: 02/07/2023]
Abstract
Gata4, Gata5, and Gata6 represent a subfamily of zinc-finger transcriptional regulators that are important in the development and differentiation of numerous tissues, including many endodermally-derived organs. We demonstrate that Gata4 and Gata6 have overlapping expression patterns in the early pancreatic epithelium. Later, Gata4 becomes restricted to exocrine tissue and Gata6 becomes restricted to a subset of endocrine cells. In addition, we show Gata6, but not Gata4, physically interacts with Nkx2.2, an essential islet transcription factor. To begin determining the roles that Gata4 and Gata6 play during pancreatic development, we expressed Gata4-Engrailed and Gata6-Engrailed dominant repressor fusion proteins in the pancreatic epithelium and in the islet. At e17.5, transgenic Gata6-Engrailed embryos exhibit two distinct phenotypes: a complete absence of pancreas or a reduction in pancreatic tissue. In the embryos that do form pancreas, there is a significant reduction of all pancreatic cell types, with the few differentiated endocrine cells clustered within, or in close proximity to, enlarged ductal structures. Conversely, the majority of transgenic Gata4-Engrailed embryos do not have a pancreatic phenotype. This study suggests that Gata6 is an important regulator of pancreas specification.
Collapse
Affiliation(s)
- Kimberly Decker
- Program in Molecular Biology, Department of Biochemistry and Molecular Genetics, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045, USA
| | - Devorah C. Goldman
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045, USA
| | - Catherine L. Grasch
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045, USA
| | - Lori Sussel
- Program in Molecular Biology, Department of Biochemistry and Molecular Genetics, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045, USA
- Corresponding author. Biochemistry and Molecular Genetics, Mail Stop 8101, RC1 South Bldg., 12801 East 17th Avenue, Room 10101, P.O. Box 6511, Aurora, CO 80045, USA. Fax: +1 303 724 3792. (L. Sussel)
| |
Collapse
|