1
|
Li X, Wang X, Xue L, Luo L, Hu L, Jiang W. RAGE/AP-1/OTR signaling pathway in rat hippocampus DG involved in CUS induced depressive-like behaviors. Behav Brain Res 2025; 485:115540. [PMID: 40090553 DOI: 10.1016/j.bbr.2025.115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
There has been a growing body of evidence indicating that the oxytocin (OT) system plays a significant role in the neurophysiology of chronic stress-related mood disorders in recent years. However, the precise alterations for the OT system in response to chronic stress and the underlying mechanism remains unclear. The present study demonstrated that chronic unpredictable stress (CUS) resulted in a reduction in the expression of RAGE and OTR, as well as an inhibition of AP-1 phosphorylation. RAGE knockdown in hippocampus DG induced depressive-like behaviors, down-regulated the OTR protein and mRNA levels, and reduced the AP-1 phosphorylation. The administration of OT via the nasal route reversed the depressive-like behaviors induced by RAGE knockdown, increased the levels of BDNF expression and AP-1 phosphorylation. On the other hand, RAGE over-expression in the hippocampus DG resisted the effects of CUS on depression-like behaviors, AP-1 phosphorylation, and OTR expression. These finding suggested that RAGE signaling pathway is involved in CUS induced depressive-like behaviors at least partially by regulating OTR expression.
Collapse
Affiliation(s)
- Xuemei Li
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Lifen Xue
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Lan Luo
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Lingxiao Hu
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wengao Jiang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Huang M, Lou D, Charli A, Kong D, Jin H, Zenitsky G, Anantharam V, Kanthasamy A, Wang Z, Kanthasamy AG. Mitochondrial dysfunction-induced H3K27 hyperacetylation perturbs enhancers in Parkinson's disease. JCI Insight 2021; 6:138088. [PMID: 34494552 PMCID: PMC8492320 DOI: 10.1172/jci.insight.138088] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction is a major pathophysiological contributor to the progression of Parkinson's disease (PD); however, whether it contributes to epigenetic dysregulation remains unknown. Here, we show that both chemically and genetically driven mitochondrial dysfunctions share a common mechanism of epigenetic dysregulation. Under both scenarios, lysine 27 acetylation of likely variant H3.3 (H3.3K27ac) increased in dopaminergic neuronal models of PD, thereby opening that region to active enhancer activity via H3K27ac. These vulnerable epigenomic loci represent potential transcription factor motifs for PD pathogenesis. We further confirmed that mitochondrial dysfunction induces H3K27ac in ex vivo and in vivo (MitoPark) neurodegenerative models of PD. Notably, the significantly increased H3K27ac in postmortem PD brains highlights the clinical relevance to the human PD population. Our results reveal an exciting mitochondrial dysfunction-metabolism-H3K27ac-transcriptome axis for PD pathogenesis. Collectively, the mechanistic insights link mitochondrial dysfunction to epigenetic dysregulation in dopaminergic degeneration and offer potential new epigenetic intervention strategies for PD.
Collapse
Affiliation(s)
- Minhong Huang
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Dan Lou
- Laboratory of Environmental Epigenomes, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adhithiya Charli
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Dehui Kong
- Laboratory of Environmental Epigenomes, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei Province, China
| | - Huajun Jin
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Gary Zenitsky
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Arthi Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Zhibin Wang
- Laboratory of Environmental Epigenomes, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei Province, China
| | - Anumantha G. Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
3
|
Polansky H, Schwab H. Latent viruses can cause disease by disrupting the competition for the limiting factor p300/CBP. Cell Mol Biol Lett 2018; 23:56. [PMID: 30505323 PMCID: PMC6260892 DOI: 10.1186/s11658-018-0121-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
CBP and p300 are histone acetyltransferase coactivators that control the transcription of numerous genes in humans, viruses, and other organisms. Although two separate genes encode CBP and p300, they share a 61% sequence identity, and they are often mentioned together as p300/CBP. Zhou et al. showed that under hypoxic conditions, HIF1α and the tumor suppressor p53 compete for binding to the limiting p300/CBP coactivator. Jethanandani & Kramer showed that δEF1 and MYOD genes compete for the limited amount of p300/CBP in the cell. Bhattacharyya et al. showed that the limiting availability of p300/CBP in the cell serves as a checkpoint for HIF1α activity. Here, we use the microcompetition model to explain how latent viruses with a specific viral cis-regulatory element in their promoter/enhancer can disrupt this competition, causing diseases such as cancer, diabetes, atherosclerosis, and obesity.
Collapse
Affiliation(s)
- Hanan Polansky
- The Center for the Biology of Chronic Disease (CBCD), 616 Corporate Way, Suite 2-3665, Valley Cottage, New York City, NY 10989 USA
| | - Hava Schwab
- The Center for the Biology of Chronic Disease (CBCD), 616 Corporate Way, Suite 2-3665, Valley Cottage, New York City, NY 10989 USA
| |
Collapse
|
4
|
Functional Characterization of Novel Circular RNA Molecule, circzip-2 and Its Synthesizing Gene zip-2 in C. elegans Model of Parkinson’s Disease. Mol Neurobiol 2018; 55:6914-6926. [DOI: 10.1007/s12035-018-0903-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/10/2018] [Indexed: 02/01/2023]
|
5
|
Affiliation(s)
- B. F. Mitchell
- Perinatal Research Centre, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Birgit Schmid
- Perinatal Research Centre, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Nguyen Thanh H, Zhao L, Liu Q. De novo transcriptome sequencing analysis and comparison of differentially expressed genes (DEGs) in Macrobrachium rosenbergii in China. PLoS One 2014; 9:e109656. [PMID: 25329319 PMCID: PMC4203760 DOI: 10.1371/journal.pone.0109656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/22/2014] [Indexed: 11/30/2022] Open
Abstract
Giant freshwater prawn (GFP; Macrobrachium rosenbergii) is an exotic species that was introduced into China in 1976 and thereafter it became a major species in freshwater aquaculture. However the gene discovery in this species has been limited to small-scale data collection in China. We used the next generation sequencing technology for the experiment; the transcriptome was sequenced of samples of hepatopancreas organ in individuals from 4 GFP groups (A1, A2, B1 and B2). De novo transcriptome sequencing generated 66,953 isogenes. Using BLASTX to search the Non-redundant (NR), Search Tool for the Retrieval of Interacting Genes (STRING), and Kyoto Encyclopedia of Genes and Genome (KEGG) databases; 21,224 unigenes were annotated, 9,552 matched unigenes with the Gene Ontology (GO) classification; 5,782 matched unigenes in 25 categories of Clusters of Orthologous Groups of proteins (COG) and 20,859 unigenes were consequently assigned to 312 KEGG pathways. Between the A and B groups 147 differentially expressed genes (DEGs) were identified; between the A1 and A2 groups 6,860 DEGs were identified and between the B1 and B2 groups 5,229 DEGs were identified. After enrichment, the A and B groups identified 38 DEGs, but none of them were significantly enriched. The A1 and A2 groups identified 21,856 DEGs in three main categories based on functional groups: biological process, cellular_component and molecular function and the KEGG pathway defined 2,459 genes had a KEGG Ortholog-ID (KO-ID) and could be categorized into 251 pathways, of those, 9 pathways were significantly enriched. The B1 and B2 groups identified 5,940 DEGs in three main categories based on functional groups: biological process, cellular_component and molecular function, and the KEGG pathway defined 1,543 genes had a KO-ID and could be categorized into 240 pathways, of those, 2 pathways were significantly enriched. We investigated 99 queries (GO) which related to growth of GFP in 4 groups. After enrichment we identified 23 DEGs and 1 KEGG PATHWAY 'ko04711' relation with GFP growth.
Collapse
Affiliation(s)
- Hai Nguyen Thanh
- Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai City, P. R. China
- Vietnam Institute of Fisheries Economics and Planning, Directorate of Fisheries, Ministry of Agriculture and Rural Development of Viet Nam, Hanoi City, S.R. Vietnam
| | - Liangjie Zhao
- Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai City, P. R. China
| | - Qigen Liu
- Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Ministry of Agriculture, Shanghai City, P. R. China
| |
Collapse
|
7
|
Common polymorphism in the oxytocin receptor gene (OXTR) is associated with human social recognition skills. Proc Natl Acad Sci U S A 2013; 111:1987-92. [PMID: 24367110 DOI: 10.1073/pnas.1302985111] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuropeptides oxytocin and vasopressin are evolutionarily conserved regulators of social perception and behavior. Evidence is building that they are critically involved in the development of social recognition skills within rodent species, primates, and humans. We investigated whether common polymorphisms in the genes encoding the oxytocin and vasopressin 1a receptors influence social memory for faces. Our sample comprised 198 families, from the United Kingdom and Finland, in whom a single child had been diagnosed with high-functioning autism. Previous research has shown that impaired social perception, characteristic of autism, extends to the first-degree relatives of autistic individuals, implying heritable risk. Assessments of face recognition memory, discrimination of facial emotions, and direction of gaze detection were standardized for age (7-60 y) and sex. A common SNP in the oxytocin receptor (rs237887) was strongly associated with recognition memory in combined probands, parents, and siblings after correction for multiple comparisons. Homozygotes for the ancestral A allele had impairments in the range -0.6 to -1.15 SD scores, irrespective of their diagnostic status. Our findings imply that a critical role for the oxytocin system in social recognition has been conserved across perceptual boundaries through evolution, from olfaction in rodents to visual memory in humans.
Collapse
|
8
|
Induction of heparanase-1 expression by mutant B-Raf kinase: role of GA binding protein in heparanase-1 promoter activation. Neoplasia 2011; 12:946-56. [PMID: 21076620 DOI: 10.1593/neo.10790] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 01/15/2023] Open
Abstract
Heparanase-1 (HPR1), an endoglycosidase that specifically degrades heparan sulfate (HS) proteoglycans, is overexpressed in a variety of malignancies. Our present study sought to determine whether oncogene BRAF and RAS mutations lead to increased HPR1 expression. Reverse transcription-polymerase chain reaction analysis revealed that HPR1 gene expression was increased in HEK293 cells transiently transfected with a mutant BRAF or RAS gene. Flow cytometric analysis revealed that B-Raf activation led to loss of the cell surface HS, which could be blocked by two HPR1 inhibitors: heparin and PI-88. Cotransfection of a BRAF or RAS mutant gene with HPR1 promoter-driven luciferase reporters increased luciferase reporter gene expression in HEK293 cells. Knockdown of BRAF expression in a BRAF-mutated KAT-10 tumor cell line led to the suppression of HPR1 gene expression, subsequently leading to increased cell surface HS levels. Truncational and mutational analyses of the HPR1 promoter revealed that the Ets-relevant elements in the HPR1 promoter were critical for BRAF activation-induced HPR1 expression. Luciferase reporter gene expression driven by a four-copy GA binding protein (GABP) binding site was significantly lower in BRAF siRNA-transfected KAT-10 cells than in the control siRNA-transfected cells. We further showed that BRAF knockdown led to suppression of the expression of the GABPβ, an Ets family transcription factor involved in regulating HPR1 promoter activity. Taken together, our study suggests that B-Raf kinase activation plays an important role in regulating HPR1 expression. Increased HPR1 expression may contribute to the aggressive behavior of BRAF-mutated cancer.
Collapse
|
9
|
Functional characterization of the murine Tnk1 promoter. Gene 2009; 444:1-9. [PMID: 19481140 DOI: 10.1016/j.gene.2009.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/05/2009] [Accepted: 05/12/2009] [Indexed: 12/31/2022]
Abstract
Tnk1/Kos1 is a non-receptor protein tyrosine kinase found to be a tumor suppressor. It negatively regulates cell growth by indirectly suppressing Ras activity. We identified and characterized the critical cis-elements required for Tnk1/Kos1's promoter activity. Results indicate that the murine Tnk1 promoter lacks a conventional TATA, CAAT or initiator element (Inr) but contains multiple transcription start sites. Transcription is initiated by a TATA-like element composed of an AT rich sequence at -30 (30 bp upstream) from the major transcription start site and an Inr-like element that overlaps the multiple start sites. Deletion analysis of the m-Tnk1 promoter reveals the presence of both positive (-25 to -151) and negative (-151 to -1201) regulatory regions. The three GC boxes which bind Sp1 and Sp3 with high affinity, an AP2 site (that overlaps with an AML1 site) and a MED1 site comprise the necessary cis-elements of the proximal promoter required for both constitutive and inducible Tnk1/Kos1 expression. Importantly, results reveal that cellular stress reverses the repression of Tnk1/Kos1 and induces its expression through increased high affinity interactions between nuclear proteins Sp1, Sp3, AP2 and MED1 for the m-Tnk1 promoter. These findings provide a mechanism by which the m-Tnk1 promoter can be dynamically regulated during normal growth.
Collapse
|
10
|
Jeng YJ, Soloff MS. Characterization of the cyclic adenosine monophosphate target site in the oxytocin receptor gene in rabbit amnion. Biol Reprod 2009; 81:473-9. [PMID: 19439725 DOI: 10.1095/biolreprod.109.077941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oxytocin (OXT) is a potent stimulator of prostaglandin E(2) (PGE(2)) synthesis by rabbit amnion cells obtained near the end of pregnancy. Coincident with a marked increase in sensitivity of PGE(2) synthesis to OXT, the concentration of OXT receptors (OXTRs) is abruptly upregulated about 200-fold at term. This increase can be mimicked in preterm amnion cells in primary culture by the synergistic action of agents that increase cAMP synthesis and by glucocorticoids. To elucidate the mechanism of cAMP action, we cloned the rabbit OXTR gene and isolated a 200-base pair (bp) forskolin-responsive region about 4.7 kilobase upstream from the transcriptional start site using transient transfection assays. This region corresponds to a DNase I-hypersensitive site that appears in amnion tissue only near the end of pregnancy, when OXTRs are upregulated. The effects of forskolin were mediated in part by cAMP response element binding protein (CREB), as coexpression of reporter constructs with dominant negative CREB inhibited reporter expression. In addition, CREB was cross-linked to sites in the 200-bp region only in chromatin isolated from cells near the end of pregnancy, as demonstrated by chromatin immunoprecipitation (ChIP). Because the transient transfection results are consistent with work using tissue extracts (DNase I hypersensitivity and ChIP), we conclude that cAMP, acting through a specific upstream CREB binding site, is critical for the physiological upregulation of OXTRs in the amnion at the end of gestation.
Collapse
Affiliation(s)
- Yow-Jiun Jeng
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555-1062, USA
| | | |
Collapse
|
11
|
Lucas ME, Crider KS, Powell DR, Kapoor-Vazirani P, Vertino PM. Methylation-sensitive regulation of TMS1/ASC by the Ets factor, GA-binding protein-alpha. J Biol Chem 2009; 284:14698-709. [PMID: 19324871 DOI: 10.1074/jbc.m901104200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epigenetic silencing involving the aberrant DNA methylation of promoter-associated CpG islands is one mechanism leading to the inactivation of tumor suppressor genes in human cancers. However, the molecular mechanisms underlying this event remains poorly understood. TMS1/ASC is a novel proapoptotic signaling factor that is subject to epigenetic silencing in human breast and other cancers. The TMS1 promoter is embedded within a CpG island that is unmethylated in normal cells and is spanned by three DNase I-hypersensitive sites (HS). Silencing of TMS1 in cancer cells is accompanied by local alterations in histone modification, remodeling of the HS, and hypermethylation of DNA. In this study, we probed the functional significance of the CpG island-specific HS. We identified a methylation-sensitive complex that bound a 55-bp intronic element corresponding to HS2. Affinity chromatography and mass spectrometry identified a component of this complex to be the GA-binding protein (GABP) alpha. Supershift analysis indicated that the GABPalpha binding partner, GABPbeta1, was also present in the complex. The HS2 element conferred a 3-fold enhancement in TMS1 promoter activity, which was dependent on both intact tandem ets binding sites and the presence of GABPalpha/beta1 in trans. GABPalpha was selectively enriched at HS2 in human cells, and its occupancy was inversely correlated with CpG island methylation. Down-regulation of GABPalpha led to a concomitant decrease in TMS1 expression. These data indicate that the intronic HS2 element acts in cis to maintain transcriptional competency at the TMS1 locus and that this activity is mediated by the ets transcription factor, GABPalpha.
Collapse
Affiliation(s)
- Mary E Lucas
- Graduate Program in Genetics and Molecular Biology, the Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
12
|
Graves ML, Zhou L, MacDonald G, Mueller CR, Roskelley CD. Regulation of the BRCA1 promoter in ovarian surface epithelial cells and ovarian carcinoma cells. FEBS Lett 2007; 581:1825-33. [PMID: 17434164 DOI: 10.1016/j.febslet.2007.03.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 03/20/2007] [Accepted: 03/27/2007] [Indexed: 11/18/2022]
Abstract
As BRCA1 expression is often suppressed in sporadic ovarian carcinoma we characterized the regulation of the 231nt proximal 'L6' fragment of the BRCA1 promoter in two human ovarian surface epithelial cell and two sporadic ovarian carcinoma cell lines. Two individual regulatory elements within L6, the 'RIBS' element and the potential 'CRE' element were each necessary, but alone not sufficient for L6 activation in all four cell lines. The latter element showed some affinity for the CREB transcription factor, but cAMP pathway stimulation failed to promote its activation. This element did, however, interact with, and was activated by, c-Jun and Fra2 which suggests that it can interact with AP1-like transcription factors and that it may act co-operatively with RIBS-binding factors to regulate BRCA1 transcription in ovarian cells.
Collapse
Affiliation(s)
- Marcia L Graves
- Life Sciences Institute, Department of Cellular and Physiological Sciences, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
13
|
Uchida S, Fuke S, Tsukahara T. Upregulations of Gata4 and oxytocin receptor are important in cardiomyocyte differentiation processes of P19CL6 cells. J Cell Biochem 2007; 100:629-41. [PMID: 16960874 DOI: 10.1002/jcb.21094] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxytocin induces P19 cells to differentiate into cardiomyocytes possibly through the oxytocin/oxytocin receptor system. We added oxytocin to the growth medium of P19CL6, a subline of P19, but they did not differentiate into cardiomyocytes as indicated by RT-PCR and Western blotting results. During the cardiac commitment time of P19CL6 cells, the mRNA expression levels of the oxytocin receptor were upregulated by the addition of oxytocin as well as DMSO, but an upregulation of Gata4 expression levels was only observed for the cells induced by DMSO. The in silico analysis of the upstream sequence of the oxytocin receptor predicted putative binding sites for Gata4 and Nkx2.5. These results suggest that upregulations of the oxytocin receptor and Gata4 are important for cardiomyocyte differentiation processes.
Collapse
Affiliation(s)
- Shizuka Uchida
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | | | | |
Collapse
|
14
|
Ball A, Wang JW, Wong S, Zielnik B, Mitchell J, Wang N, Stemerman MB, Mitchell BF. Phorbol ester treatment of human myometrial cells suppresses expression of oxytocin receptor through a mechanism that does not involve activator protein-1. Am J Physiol Endocrinol Metab 2006; 291:E922-8. [PMID: 16757545 DOI: 10.1152/ajpendo.00602.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxytocin (OT) is a potent uterine agonist. Its receptor (OTR) is a G protein-coupled receptor that is downregulated by prolonged exposure to OT. We hypothesized that activation of PKC mediated this OT-induced decrease in OTR expression. Diminished PKC activity in late pregnancy could underlie the increased expression of uterine OTR preceding labor onset. Using cell cultures of transformed human uterine myocytes, we determined the effects of PKC agonists and antagonists on the expression of OTR. We also explored the effects of overexpression of activator protein-1 (AP-1, a mediator of many PKC- and phorbol ester-induced effects) using adenoviral expression vectors for the AP-1 subunits c-Jun and c-Fos. Stimulation of PKC using the phorbol ester 12-O-tetradecanoylphorbol 13-acetate caused a rapid, significant (P < or = 0.05) increase in c-Jun and c-Fos concentrations but a significant decrease in mRNA for OTR within 6 h followed by a significant decrease in OT binding by 24 h. Adenoviral infection of the cells with expression vectors for c-Jun and c-Fos increased the AP-1 subunits but had no effect on OTR expression. Furthermore, there were no changes in c-Fos or c-Jun levels in human intrauterine tissues around the time of labor onset, as measured by Western analyses. We conclude that phorbol ester treatment decreases OTR expression, likely through a mechanism that does not involve AP-1.
Collapse
Affiliation(s)
- Allison Ball
- Department of Obstetrics and Gynecology, Perinatal Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Soloff MS, Izban MG, Cook DL, Jeng YJ, Mifflin RC. Interleukin-1-induced NF-κB recruitment to the oxytocin receptor gene inhibits RNA polymerase II–promoter interactions in cultured human myometrial cells. ACTA ACUST UNITED AC 2006; 12:619-24. [PMID: 16888077 DOI: 10.1093/molehr/gal067] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The myometrial oxytocin receptor (OTR) is highly regulated during pregnancy, reaching maximal concentrations near term. These levels are then abruptly reduced in advanced labour and the post-partum period. Our goal was to examine the molecular basis for this reduction, using chromatin immunoprecipitation (ChIP). Interleukin-1alpha (IL1A) treatment of cultured human myometrial cells has previously been shown to reduce steady-state levels of OTR mRNA. We show further that IL1A reduced RNA polymerase II cross-linking to the otr promoter, as reflective of transcriptional inhibition. IL1A also increased the recruitment of nuclear factor kappaB (NF-kappaB) to a site 955 bp upstream from the transcriptional start site. Inhibition of NF-kappaB activation negated the effects of IL1A on polymerase II dissociation, indicating a causal relationship, at least in part, between recruitment of NF-kappaB and detachment of polymerase from the otherwise constitutively active otr promoter. IL1A treatment also resulted in increased histone H4 acetylation in the otr promoter region. Whereas NF-kappaB recruitment and histone acetylation are generally associated with activation of gene expression, our findings show that both processes can be involved in dissociation of RNA polymerase II from an active promoter. The results of these studies suggest that the elevation of IL1 in the myometrium occurring at the end of pregnancy initiates the process of down-regulation of OTRs in advanced labour, resulting in the desensitization of the myometrium to elevated levels of OT in the blood during lactation.
Collapse
Affiliation(s)
- Melvyn S Soloff
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555-1062, USA.
| | | | | | | | | |
Collapse
|
16
|
Fleming JGW, Spencer TE, Safe SH, Bazer FW. Estrogen regulates transcription of the ovine oxytocin receptor gene through GC-rich SP1 promoter elements. Endocrinology 2006; 147:899-911. [PMID: 16254027 DOI: 10.1210/en.2005-1120] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Establishment of pregnancy in ruminants results from paracrine signaling by interferon tau (IFNT) from the conceptus to uterine endometrial luminal epithelia (LE) that prevents release of luteolytic prostaglandin F(2alpha) pulses. In cyclic and pregnant ewes, progesterone down-regulates progesterone receptor (PGR) gene expression in LE. In cyclic ewes, loss of PGR allows for increases in estrogen receptor alpha (ESR1) and then oxytocin receptor (OXTR) gene expression followed by oxytocin-induced prostaglandin F(2alpha) pulses. In pregnant ewes, IFNT inhibits transcription of the ESR1 gene, which presumably inhibits OXTR gene transcription. Alternatively, IFNT may directly inhibit OXTR gene transcription. The 5' promoter/enhancer region of the ovine OXTR gene was cloned and found to contain predicted binding sites for activator protein 1, SP1, and PGR, but not for ESR1. Deletion analysis showed that the basal promoter activity was dependent on the region from -144 to -4 bp that contained only SP1 sites. IFNT did not affect activity of the OXTR promoter. In cells transfected with ESR1, E2, and ICI 182,780 increased promoter activity due to GC-rich SP1 binding sites at positions -104 and -64. Mutation analyses showed that the proximal SP1 sites mediated ESR1 action as well as basal activity of the promoter. In response to progesterone, progesterone receptor B also increased OXTR promoter activity. SP1 protein was constitutively expressed and abundant in the LE of the ovine uterus. These results support the hypothesis that the antiluteolytic effects of IFNT are mediated by direct inhibition or silencing of ESR1 gene transcription, thereby precluding ESR1/SP1 from stimulating OXTR gene transcription.
Collapse
Affiliation(s)
- Joann G W Fleming
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, 77843-2471, USA
| | | | | | | |
Collapse
|
17
|
Mitchell BF, Zielnik B, Wong S, Roberts CD, Mitchell JM. Intraperitoneal infusion of proinflammatory cytokines does not cause activation of the rat uterus during late gestation. Am J Physiol Endocrinol Metab 2005; 289:E658-64. [PMID: 15870103 DOI: 10.1152/ajpendo.00058.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased concentrations of IL-1beta and TNF-alpha have been associated with parturition. However, the role of these cytokines is unknown. Before parturition, the uterus undergoes a process of activation, during which there are significant changes in expression of genes associated with increased uterine contractility, including the receptors for oxytocin (OT) and prostaglandin (PG)F(2alpha) (FP), PGH(2) synthase isoform 2 (PGHS2), the gap junction protein connexin-43 (Cx-43), and the inducible isoform of nitric oxide synthase (iNOS). To determine whether IL-1beta or TNF-alpha was part of the causal mechanism for increased uterine contractions, we placed osmotic pumps infusing IL-1beta or TNF-alpha into the peritoneal cavity of late pregnant rats (gestation day 19) and measured the effects on uterine contractility and on the uterine concentrations of mRNA for the contraction-associated genes 24 h later. Maternal serum concentrations of IL-1beta and TNF-alpha were increased significantly. By day 21, the control animals had significant increases (P < or = 0.05) in mRNA for OT, FP, PGHS2, and Cx-43, a decrease (P < or = 0.05) in iNOS, and an increase (P < or = 0.05) in uterine sensitivity and responsiveness to OT. Infusion of IL-1beta or TNF-alpha had no effect on uterine contractility or on expression of the activation-associated genes. We conclude that intraperitoneal infusion of IL-1beta or TNF-alpha resulting in significantly increased maternal serum cytokine levels does not cause uterine activation. The role of proinflammatory cytokines in the mechanism of parturition remains unclear.
Collapse
Affiliation(s)
- Bryan F Mitchell
- Perinatal Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| | | | | | | | | |
Collapse
|
18
|
Lin SH, Kiyohara T, Sun B. Maternal behavior: activation of the central oxytocin receptor system in parturient rats? Neuroreport 2003; 14:1439-44. [PMID: 12960760 DOI: 10.1097/00001756-200308060-00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Parturition plays a critical role in the full expression of maternal behavior in postpartum females, yet the precise mechanism remains unclear. Here we examined the role of parturition in the activation of Fos and FosB in the central oxytocin receptor (OTR) system in rats. Although expression of FosB, not Fos, was seen in the piriform cortex (Pir) and caudate putamen of virgin and pregnant females, activation of Fos and FosB with extensive co-localization was found in the medial preoptic area, the bed nucleus of the stria terminalis and Pir of parturient brain. This parturition induced activation of Fos and FosB was identified in the central OTR-expressing cells as well as in oxytocinergic neurons. Our data provide direct evidence, for the first time, that parturition activates Fos and FosB in the central OTR system. We propose that Fos and FosB may have comparable functions on initiating maternal behavior at parturition.
Collapse
Affiliation(s)
- Shi Hua Lin
- Department of Vascular Biology, Maryland Research Laboratories, Otsuka Maryland Research Institute Inc., 9900 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | |
Collapse
|
19
|
Jeng YJ, Soloff SL, Anderson GD, Soloff MS. Regulation of oxytocin receptor expression in cultured human myometrial cells by fetal bovine serum and lysophospholipids. Endocrinology 2003; 144:61-8. [PMID: 12488330 DOI: 10.1210/en.2002-220636] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxytocin receptor (OTR) expression in human myometrium increases over 150-fold from the beginning of pregnancy to the end. In the present studies, we examined potential mechanisms of OTR up-regulation, using myometrial cells in primary culture from women in late gestation. OTR ligand-binding sites and steady-state mRNA levels were down regulated by serum starvation, and up-regulated by restoration of fetal bovine serum (FBS). Transcriptional activity of the OTR gene was the same with or without FBS treatment, but FBS increased OTR mRNA half-life about 5-fold. Lysophospholipids (lysophosphatidic acid and sphingosine 1-phosphate), which are present in serum, had similar effects as FBS. Lysophospholipid receptor mRNAs of the endothelial differentiation gene (Edg) family (Edgs 1, 3, 4, and 5) were demonstrated in myometrial cells by RT-PCR. These G protein-coupled receptors have been shown to be coupled to G(i/o) and to mediate activation of phosphoinositol 3-phosphate kinase. Indeed, the effects of the lysophospholipids and FBS were completely blocked by pertussis toxin, a G(i/o) inhibitor. Likewise, inhibition of G(i/o) signaling by elevation of intracellular cAMP or inhibition of phosphoinositol 3-phosphate kinase blocked FBS effects on OTR mRNA stability. We do not presently understand the mechanisms of OTR up-regulation in human myometrium in vivo, but the present studies might lead to the description of mRNA-stabilizing factors whose activity can be quantified in tissue samples during pregnancy to elucidate the process of OTR up-regulation.
Collapse
Affiliation(s)
- Y-J Jeng
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555-1062, USA
| | | | | | | |
Collapse
|
20
|
Copland JA, Zlatnik MG, Ives KL, Soloff MS. Oxytocin receptor regulation and action in a human granulosa-lutein cell line. Biol Reprod 2002; 66:1230-6. [PMID: 11967182 DOI: 10.1095/biolreprod66.5.1230] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although oxytocin and its receptor have been identified in human ovary, its regulatory role in granulosa cell or corpus luteum function has not been clearly defined. To better understand oxytocin action in the human ovary, we have characterized the expression and function of oxytocin receptors in an immortalized human granulosa-lutein cell line, HGL5. Expression of oxytocin receptor mRNA was demonstrated by reverse transcriptase-polymerase chain reaction analysis, and by specific binding of an iodinated oxytocin antagonist (apparent dissociation constant of 131 +/- 0.15 pM, and a B(max) of 12 +/- 0.5 fmol/microg DNA). Receptor levels were down-regulated by serum starvation, and rapidly up-regulated by serum restoration. Stimulation of protein kinase C activity increased oxytocin receptor levels in a concentration-dependent manner. Conversely, protein kinase C inhibition blocked up-regulation of oxytocin receptors. Treatment of cells with 10 nM oxytocin resulted in a rapid, transient increase in intracellular Ca(2+), and the response was blocked by an oxytocin antagonist. Because HGL5 cells secrete progesterone and estradiol in response to agents that elevate intracellular cAMP concentrations, we studied the effect of oxytocin on steroid production. Oxytocin enhanced the effects of forskolin on progesterone production. These results suggest that oxytocin augments the activity of luteotropins in vivo. Our studies are the first to show an ovarian cell line that expresses functional oxytocin receptors. These cells can serve as a useful model for studying oxytocin signal pathways and their cross-talk with respect to progesterone synthesis. These cells also will be useful in the analysis of mechanisms of oxytocin receptor regulation, including regulation of its gene.
Collapse
Affiliation(s)
- John A Copland
- Department of Obstetrics and Gynecology, Department of Surgery, Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, TX 77555-1062, USA.
| | | | | | | |
Collapse
|
21
|
Tanaka M, Ueda A, Kanamori H, Ideguchi H, Yang J, Kitajima S, Ishigatsubo Y. Cell-cycle-dependent regulation of human aurora A transcription is mediated by periodic repression of E4TF1. J Biol Chem 2002; 277:10719-26. [PMID: 11790771 DOI: 10.1074/jbc.m108252200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human aurora A is a serine-threonine kinase that controls various mitotic events. The transcription of aurora A mRNA varies throughout the cell cycle and peaks during G(2)/M. To clarify the transcriptional mechanism, we first cloned the 1.8-kb 5'-flanking region of aurora A including the first exon. Transient expression of aurora A promoter-luciferase constructs containing a series of 5'-truncated sequences or site-directed mutations identified a 7-bp sequence (CTTCCGG) from -85 to -79 as a positive regulatory element. Electromobility shift assays identified the binding of positive regulatory proteins to the CTTCCGG element. Anti-E4TF1-60 antibody generated a supershifted complex. Furthermore, coexpression of E4TF1-60 and E4TF1-53 markedly increased aurora A promoter activity. Synchronized cells transfected with the aurora A promoter-luciferase constructs revealed that the promoter activity of aurora A increased in the S phase and peaked at G(2)/M. In addition, we identified a tandem repressor element, CDE/CHR, just downstream of the CTTCCGG element, and mutation within this element led to a loss of cell cycle regulation. We conclude that the transcription of aurora A is positively regulated by E4TF1, a ubiquitously expressed ETS family protein, and that the CDE/CHR element was essential for the G(2)/M-specific transcription of aurora A.
Collapse
Affiliation(s)
- Masatsugu Tanaka
- First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
This review will discuss the status of research related to sexual arousability. It will also present a model for sexual arousability based on current knowledge of steroids effects at the membranes of cells. Steroids have multiple rapid actions that are suggested to result from actions at membrane-associated receptors. When stimulated by steroids these receptors alter G-protein coupling in a manner unique to this complex. Initial stimulation of the receptors by steroids alters the coupling pattern of G-proteins and of other binding sites associated with the complex. This change in G-protein coupling is a stable alteration and thus may serve as a long-term change in the system, which is a requirement of sexual arousability. Stimulation of this receptor system by a surge of oxytocin at ejaculation or orgasm then decouples the G-protein and reduces arousability. Sex hormone binding globulin may be an important ligand at this complex. This model suggests completely new relationships among steroids and their receptors that may complement or diverge from actions at known intracellular receptors.
Collapse
Affiliation(s)
- Jack D Caldwell
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107-1897, USA.
| |
Collapse
|
23
|
Kusui C, Kimura T, Ogita K, Nakamura H, Matsumura Y, Koyama M, Azuma C, Murata Y. DNA methylation of the human oxytocin receptor gene promoter regulates tissue-specific gene suppression. Biochem Biophys Res Commun 2001; 289:681-6. [PMID: 11726201 DOI: 10.1006/bbrc.2001.6024] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the human oxytocin receptor (OTR) gene, there is a CpG island from 140 bp upstream to 2338 bp downstream of the transcription start site (TSS). We investigated whether the methylation state of this region affects the transcription of the OTR gene. HepG2 derived from human hepatoblastoma, in which OTR gene transcription was suppressed, was treated with a demethylating agent, 5-azacytidine (Aza-C) for 2 days. Semiquantitative RT-PCR indicated that OTR mRNA was significantly increased by Aza-C treatment in a dose-dependent manner. We estimated the level of methylation within the CpG islands of the OTR gene in peripheral blood leukocytes, nonpregnant uterine myometrium, term uterine myometrium and liver. A 1.5-kb region located 5' upstream of the translation start site was divided into four fragments. Each was amplified by PCR after complete digestion with methylation-sensitive restriction enzyme HpaII. The amount of PCR products was largest in the liver, suggesting that this CpG island in the OTR gene is most highly methylated in liver, where the gene is always inactivated. We compared the effect of in vivo methylation of the CpG island on transcriptional activity of an OTR-reporter plasmid. The reporter gene activity of expression plasmid -2860/+1342-GL3, containing the CpG island, in HepG2 cells was suppressed to 30.6% of the control level after methylation with SssI methylase, while that of -2840/+144-GL3, without the CpG island was suppressed only to 81.4%. The deletion of the segment (MT2) where the level of methylation was most different between liver and uterus (-2860/+1342(del)MT2-GL3) rescued the suppression rate to 68.0%. These results indicate that the methylation of the CpG island in the human OTR gene promoter suppressed its transcription at least in liver and may regulate tissue specific gene expression among organs.
Collapse
Affiliation(s)
- C Kusui
- Division of Obstetrics and Gynecology, Department of Specific Organ Regulation, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Luzzi V, Holtschlag V, Watson MA. Expression profiling of ductal carcinoma in situ by laser capture microdissection and high-density oligonucleotide arrays. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:2005-10. [PMID: 11395378 PMCID: PMC1891975 DOI: 10.1016/s0002-9440(10)64672-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene expression profiling through the use of nucleic acid arrays is a powerful method for the molecular classification of human neoplasms. Laser capture microdissection is an equally useful technique to selectively isolate defined cell populations from heterogeneous histological tissue sections. In this report, we demonstrate how a modest use of laser capture microdissection is sufficient to isolate nanogram quantities of high-quality RNA. Together with the use of several internal standards and microcapillary electrophoresis of input RNA, two rounds of linear molecular amplification have been used to generate sufficient quantities of labeled target for hybridization to high-density oligonucleotide expression arrays. Results demonstrate that the technique is reproducible, generates only modest biasing of the original transcript population, and is comparable to the sensitivity achieved with standard methodology. Using this approach, we have compared the expression profiles of nonmalignant human breast epithelium and adjacent ductal carcinoma in situ lesions from breast cancer patients. Several genes, previously implicated in human breast cancer progression, demonstrate differential expression among the microdissected cell populations.
Collapse
Affiliation(s)
- V Luzzi
- Department of Pathology and Immunology and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
25
|
Schmid B, Wong S, Mitchell BF. Transcriptional regulation of oxytocin receptor by interleukin-1beta and interleukin-6. Endocrinology 2001; 142:1380-5. [PMID: 11250916 DOI: 10.1210/endo.142.4.8107] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The up-regulation of oxytocin (OT) receptors in late pregnancy results principally from increased synthesis of messenger RNA. The 5'-flanking region of the human OT receptor gene contains several putative binding sites for nuclear factor-interleukin-6 (NF-IL6), also known as CAAT/enhancer binding protein-beta. This trans-acting factor modulates the expression of genes involved in acute inflammatory responses. Proinflammatory cytokines, such as IL-1beta or IL-6, have been implicated as mediators in both preterm and term labor, particularly in association with intrauterine infection. We hypothesized that IL-1beta and IL-6 induce OT receptor gene expression in human myometrial cells, and this is mediated by NF-IL6 and cognate response elements in the 5'-flanking region of the OT receptor gene. Contrary to the hypothesis, both IL-1beta and IL-6 treatment resulted in a significant decrease in OT receptor messenger RNA measured by ribonuclease protection analysis. Using electrophoretic mobility shift assay, we have shown that NF-IL6 is present at low levels that appear to be increased after treatment with either IL-1beta or IL-6. Using deletion analysis and functional transfection studies in HeLa cells, we demonstrated that the OT receptor gene promoter displays constitutive basal activity and is negatively regulated by both IL-1beta and IL-6. This suppressive ability of IL-1beta and IL-6 depends on the -1203/-722 region of the OT receptor promoter, which contains binding sites for NF-IL6, acute phase response element, and NF-kappaB. Our findings suggest a role for IL-1beta and IL-6 in the transcriptional regulation of the human OT receptor gene.
Collapse
Affiliation(s)
- B Schmid
- Perinatal Research Center, Department of Obstetrics and Gynecology, HMRC 220, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | |
Collapse
|
26
|
Abstract
The neurohypophysial peptide oxytocin (OT) and OT-like hormones facilitate reproduction in all vertebrates at several levels. The major site of OT gene expression is the magnocellular neurons of the hypothalamic paraventricular and supraoptic nuclei. In response to a variety of stimuli such as suckling, parturition, or certain kinds of stress, the processed OT peptide is released from the posterior pituitary into the systemic circulation. Such stimuli also lead to an intranuclear release of OT. Moreover, oxytocinergic neurons display widespread projections throughout the central nervous system. However, OT is also synthesized in peripheral tissues, e.g., uterus, placenta, amnion, corpus luteum, testis, and heart. The OT receptor is a typical class I G protein-coupled receptor that is primarily coupled via G(q) proteins to phospholipase C-beta. The high-affinity receptor state requires both Mg(2+) and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has been characterized by mutagenesis and molecular modeling and is different from the antagonist binding site. The function and physiological regulation of the OT system is strongly steroid dependent. However, this is, unexpectedly, only partially reflected by the promoter sequences in the OT receptor gene. The classical actions of OT are stimulation of uterine smooth muscle contraction during labor and milk ejection during lactation. While the essential role of OT for the milk let-down reflex has been confirmed in OT-deficient mice, OT's role in parturition is obviously more complex. Before the onset of labor, uterine sensitivity to OT markedly increases concomitant with a strong upregulation of OT receptors in the myometrium and, to a lesser extent, in the decidua where OT stimulates the release of PGF(2 alpha). Experiments with transgenic mice suggest that OT acts as a luteotrophic hormone opposing the luteolytic action of PGF(2 alpha). Thus, to initiate labor, it might be essential to generate sufficient PGF(2 alpha) to overcome the luteotrophic action of OT in late gestation. OT also plays an important role in many other reproduction-related functions, such as control of the estrous cycle length, follicle luteinization in the ovary, and ovarian steroidogenesis. In the male, OT is a potent stimulator of spontaneous erections in rats and is involved in ejaculation. OT receptors have also been identified in other tissues, including the kidney, heart, thymus, pancreas, and adipocytes. For example, in the rat, OT is a cardiovascular hormone acting in concert with atrial natriuretic peptide to induce natriuresis and kaliuresis. The central actions of OT range from the modulation of the neuroendocrine reflexes to the establishment of complex social and bonding behaviors related to the reproduction and care of the offspring. OT exerts potent antistress effects that may facilitate pair bonds. Overall, the regulation by gonadal and adrenal steroids is one of the most remarkable features of the OT system and is, unfortunately, the least understood. One has to conclude that the physiological regulation of the OT system will remain puzzling as long as the molecular mechanisms of genomic and nongenomic actions of steroids have not been clarified.
Collapse
Affiliation(s)
- G Gimpl
- Institut für Biochemie, Johannes Gutenberg Universität, Mainz, Germany.
| | | |
Collapse
|
27
|
Kumar P, Ward BK, Minchin RF, Ratajczak T. Regulation of the Hsp90-binding immunophilin, cyclophilin 40, is mediated by multiple sites for GA-binding protein (GABP). Cell Stress Chaperones 2001; 6:78-91. [PMID: 11525247 PMCID: PMC434386 DOI: 10.1379/1466-1268(2001)006<0078:rothbi>2.0.co;2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2000] [Revised: 11/09/2000] [Accepted: 11/15/2000] [Indexed: 11/24/2022] Open
Abstract
Within steroid receptor heterocomplexes the large tetratricopeptide repeat-containing immunophilins, cyclophilin 40 (CyP40), FKBP51, and FKBP52, target a common interaction site in heat shock protein 90 (Hsp90) and act coordinately with Hsp90 to modulate receptor activity. The reversible nature of the interaction between the immunophilins and Hsp90 suggests that relative cellular abundance might be a key determinant of the immunophilin component within steroid receptor complexes. To investigate CyP40 gene regulation, we have isolated a 5-kilobase (kb) 5'-flanking region of the human gene and demonstrated that a approximately 50 base pair (bp) sequence adjacent to the transcription start site is essential for CyP40 basal expression. Three tandemly arranged Ets sites within this critical region were identified as binding elements for the multimeric Ets-related transcription factor, GA binding protein (GABP). Functional studies of this proximal promoter sequence, in combination with mutational analysis, confirmed these sites to be crucial for basal promoter function. Furthermore, overexpression of both GABP alpha and GABP beta subunits in Cos1 cells resulted in increased endogenous CyP40 mRNA levels. Significantly, a parallel increase in FKBP52 mRNA expression was not observed, highlighting an important difference in the mode of regulation of the CyP40 and FKBP52 genes. Our results identify GABP as a key regulator of CyP40 expression. GABP is a common target of mitogen and stress-activated pathways and may integrate these diverse extracellular signals to regulate CyP40 gene expression.
Collapse
Affiliation(s)
- P Kumar
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | | | | | | |
Collapse
|
28
|
Atlas E, Stramwasser M, Whiskin K, Mueller CR. GA-binding protein alpha/beta is a critical regulator of the BRCA1 promoter. Oncogene 2000; 19:1933-40. [PMID: 10773883 DOI: 10.1038/sj.onc.1203516] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Decreased expression of BRCA1 may play a role in the etiology of sporadic breast cancer. Deletion and point mutant analysis of proximal promoter elements in the BRCA1 1a promoter revealed a 22 bp region which was critical for the expression of the promoter in MCF-7 cells, but had a much reduced effect in T47D cells. The main transcription factor interacting with this site was identified as GABPalpha/beta, and a discrete DNA binding complex was only observed in nuclear extracts from MCF-7 cells. Cotransfection experiments with GABPalpha and beta1 expression vectors produced transactivation of this element in both lines. These results suggest that GABPalpha/beta is a critical activator of BRCA1 expression, and that its activity may differ in human breast cell lines.
Collapse
Affiliation(s)
- E Atlas
- Cancer Research Laboratories, Department of Biochemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | | | | | | |
Collapse
|
29
|
Kimura T, Ivell R, Rust W, Mizumoto Y, Ogita K, Kusui C, Matsumura Y, Azuma C, Murata Y. Molecular cloning of a human MafF homologue, which specifically binds to the oxytocin receptor gene in term myometrium. Biochem Biophys Res Commun 1999; 264:86-92. [PMID: 10527846 DOI: 10.1006/bbrc.1999.1487] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The US-2 DNA-binding element (ggaatgattactcagctaga) in the promoter of the human oxytocin receptor (OTR) gene has been shown to bind specifically nuclear proteins from human myometrium at parturition. To elucidate the molecular mechanisms involved in OTR gene upregulation at term, the US-2 element was used in a yeast one-hybrid system to screen a cDNA library derived from term human myometrium. Positive clones were further screened by electrophoretic mobility shift assay for their ability to bind the human OTR gene promoter, containing the US-2 motif. A 2.3-kb full-length cDNA encoding a human homologue of chicken MafF (hMafF) was isolated. hMafF represents an 18-kDa protein and contains an extended leucine zipper structure, but lacks a transactivation domain. Furthermore, Northern hybridization showed strong hMafF mRNA expression in the kidney and in term myometrium only, but not in nonpregnant myometrium. The hMafF protein is also preferentially expressed in term myometrium, as shown by specific binding to the OTR promoter. The highly specific binding of hMafF to the US-2 motif in the human OTR gene, together with its pattern of expression, supports a role for hMafF in OTR gene upregulation at term.
Collapse
Affiliation(s)
- T Kimura
- Faculty of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Copland JA, Jeng YJ, Strakova Z, Ives KL, Hellmich MR, Soloff MS. Demonstration of functional oxytocin receptors in human breast Hs578T cells and their up-regulation through a protein kinase C-dependent pathway. Endocrinology 1999; 140:2258-67. [PMID: 10218979 DOI: 10.1210/endo.140.5.6723] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxytocin (OT) receptors (OTRs) have been demonstrated in a number of human breast tumors and tumor cells, but it was not clear whether the receptors were functional. We examined the regulation and function of OTR in a tumor cell line, Hs578T, derived from human breast. These cells expressed moderate levels of OTR when cultured in 10% FBS, as demonstrated by RT-PCR and binding analyses. Serum deprivation resulted in the loss of OTRs, with no effect on cell viability. Restoration of serum and addition of 1 microM dexamethasone (DEX) increased OTR levels by about 9-fold. Up-regulation was blocked by the addition of phospholipase C and PKC inhibitors. Serum/DEX treatment also increased steady state OTR messenger RNA levels. OT increased intracellular Ca2+ in a time- and dose-responsive manner, and the effects of OT were lost when OTRs were down-regulated by serum starvation. Serum/DEX up-regulation of OTR restored the responsiveness to OT. OT also stimulated ERK-2 (extracellular signal-regulated protein kinase) phosphorylation and PGE2 synthesis in Hs578T cells. In addition to showing that OTRs in the breast tumor cells are functional, these studies show that Hs578T cells can be used to study molecular regulation of OTR gene expression and intracellular signaling pathways stimulated by OT.
Collapse
Affiliation(s)
- J A Copland
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston 77555-1062, USA
| | | | | | | | | | | |
Collapse
|