1
|
Yao GQ, Zhu M, Insogna K. PTH-dependent stabilization of RANKL mRNA is associated with increased phosphorylation of the KH-type splicing regulatory protein. Mol Cell Endocrinol 2025; 595:112412. [PMID: 39536935 DOI: 10.1016/j.mce.2024.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Parathyroid hormone (PTH) receptor agonists promote bone formation but also increase osteoclastogenesis, in part by increasing expression of the receptor activator of nuclear factor kappa-Β ligand (RANKL). In addition to activation of transcription, regulation of mRNA stability is another important molecular mechanism controlling mRNA abundance. PTH treatment for 6 h resulted in a 7.4-fold elevation in RANKL mRNA expression in UAMS-32P cells, despite prior inhibition of cellular transcription by thiophosphoryl (TPL). RANKL mRNA, like other TNF family members, contains AU-Rich Elements (AREs) in the 3' UTR. AU-Rich Element Binding Proteins (ABPs including KSRP, TTP, AUF1 and HuR) bind to AREs and regulate mRNA stability. There was significantly more KSRP bound to RANKL mRNA than any of the other ABPs. PTH did not increase the amount of ABPs bound to the RANKL transcript. However, the level of cellular phosphorylated KSRP was significantly increased in UAMS-32P cells pre-treated with TPL followed by PTH exposure, compared to cells treated with vehicle following TPL. The extent of phosphorylation of cellular AUF1, HuR, and TTP did not increase with PTH treatment. There were no significant changes in the cellular content of total Pin1 and phospho-Pin1 protein with PTH treatment. We conclude that increases in cellular phospho-KSRP following PTH treatment, together with fact that the total amount of the KSRP bound to the RANKL mRNA did not change with PTH-treatment, may indicate that phospho-KSRP plays some role in stabilizing the RANKL transcript.
Collapse
Affiliation(s)
- Gang-Qing Yao
- From the Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Meiling Zhu
- From the Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Karl Insogna
- From the Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
2
|
Nakamichi Y, Liu Z, Mori T, He Z, Yasuda H, Takahashi N, Udagawa N. The vitamin D receptor in osteoblastic cells but not secreted parathyroid hormone is crucial for soft tissue calcification induced by the proresorptive activity of 1,25(OH) 2D 3. J Steroid Biochem Mol Biol 2023; 232:106351. [PMID: 37352941 DOI: 10.1016/j.jsbmb.2023.106351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/16/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
The vitamin D receptor (VDR) is expressed most abundantly in osteoblasts and osteocytes (osteoblastic cells) in bone tissues and regulates bone resorption and calcium (Ca) and phosphate (P) homeostasis in association with parathyroid hormone (PTH). We previously reported that near-physiological doses of vitamin D compounds suppressed bone resorption through VDR in osteoblastic cells. We also found that supra-physiological doses of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] induced bone resorption and hypercalcemia via VDR in osteoblastic cells. Here, we report that the latter, a proresorptive dose of 1,25(OH)2D3, causes soft tissue calcification through VDR in osteoblastic cells. High concentrations of vitamin D affect multiple organs and cause soft tissue calcification, with increases in bone resorption and serum Ca levels. Such a variety of symptoms is known as hypervitaminosis D, which is caused by not only high doses of vitamin D but also impaired vitamin D metabolism and diseases that produce 1,25(OH)2D3 ectopically. To clarify the biological process hierarchy in hypervitaminosis D, a proresorptive dose of 1,25(OH)2D3 was administered to wild-type mice in which bone resorption had been suppressed by neutralizing anti-receptor activator of NF-κB ligand (RANKL) antibody. 1,25(OH)2D3 upregulated the serum Ca x P product, concomitantly induced calcification of the aorta, lungs, and kidneys, and downregulated serum PTH levels in control IgG-pretreated wild-type mice. Pretreatment of wild-type mice with anti-RANKL antibody did not affect the down-regulation of PTH levels by 1,25(OH)2D3, but inhibited the increase of the serum Ca x P product and soft tissue calcification induced by 1,25(OH)2D3. Consistent with the effects of anti-RANKL antibody, VDR ablation in osteoblastic cells also did not affect the down-regulation of PTH levels by 1,25(OH)2D3, but suppressed the 1,25(OH)2D3-induced increase of the serum Ca x P product and calcification of soft tissues. Taken together with our previous results, these findings suggest that bone resorption induced by VDR signaling in osteoblastic cells is critical for the pathogenesis of hypervitaminosis D, but PTH is not involved in hypervitaminosis D.
Collapse
Affiliation(s)
- Yuko Nakamichi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan.
| | - Ziyang Liu
- Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Tomoki Mori
- Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Zhifeng He
- Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | | | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
3
|
Alekos NS, Kushwaha P, Kim SP, Li Z, Abood A, Dirckx N, Aja S, Kodama J, Garcia-Diaz JG, Otsuru S, Rendina-Ruedy E, Wolfgang MJ, Riddle RC. Mitochondrial β-oxidation of adipose-derived fatty acids by osteoblasts fuels parathyroid hormone-induced bone formation. JCI Insight 2023; 8:e165604. [PMID: 36729662 PMCID: PMC10070112 DOI: 10.1172/jci.insight.165604] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
The energetic costs of bone formation require osteoblasts to coordinate their activities with tissues, like adipose, that can supply energy-dense macronutrients. In the case of intermittent parathyroid hormone (PTH) treatment, a strategy used to reduce fracture risk, bone formation is preceded by a change in systemic lipid homeostasis. To investigate the requirement for fatty acid oxidation by osteoblasts during PTH-induced bone formation, we subjected mice with osteoblast-specific deficiency of mitochondrial long-chain β-oxidation as well as mice with adipocyte-specific deficiency for the PTH receptor or adipose triglyceride lipase to an anabolic treatment regimen. PTH increased the release of fatty acids from adipocytes and β-oxidation by osteoblasts, while the genetic mouse models were resistant to the hormone's anabolic effect. Collectively, these data suggest that PTH's anabolic actions require coordinated signaling between bone and adipose, wherein a lipolytic response liberates fatty acids that are oxidized by osteoblasts to fuel bone formation.
Collapse
Affiliation(s)
- Nathalie S. Alekos
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Priyanka Kushwaha
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Soohyun P. Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhu Li
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdullah Abood
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Naomi Dirckx
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joe Kodama
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jean G. Garcia-Diaz
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth Rendina-Ruedy
- Department of Medicine and Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael J. Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan C. Riddle
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research & Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Hariri H, Kose O, Bezdjian A, Daniel SJ, St-Arnaud R. USP53 Regulates Bone Homeostasis by Controlling Rankl Expression in Osteoblasts and Bone Marrow Adipocytes. J Bone Miner Res 2023; 38:578-596. [PMID: 36726200 DOI: 10.1002/jbmr.4778] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
In the skeleton, osteoblasts and osteoclasts synchronize their activities to maintain bone homeostasis and integrity. Investigating the molecular mechanisms governing bone remodeling is critical and helps understand the underlying biology of bone disorders. Initially, we have identified the ubiquitin-specific peptidase gene (Usp53) as a target of the parathyroid hormone in osteoblasts and a regulator of mesenchymal stem cell differentiation. Mutations in USP53 have been linked to a constellation of developmental pathologies. However, the role of Usp53 in bone has never been visited. Here we show that Usp53 null mice have a low bone mass phenotype in vivo. Usp53 null mice exhibit a pronounced decrease in trabecular bone indices including trabecular bone volume (36%) and trabecular number (26%) along with an increase in trabecular separation (13%). Cortical bone parameters are also impacted, showing a reduction in cortical bone volume (12%) and cortical bone thickness (15%). As a result, the strength and mechanical bone properties of Usp53 null mice have been compromised. At the cellular level, the ablation of Usp53 perturbs bone remodeling, augments osteoblast-dependent osteoclastogenesis, and increases osteoclast numbers. Bone marrow adipose tissue volume increased significantly with age in Usp53-deficient mice. Usp53 null mice displayed increased serum receptor activator of NF-κB ligand (RANKL) levels, and Usp53-deficient osteoblasts and bone marrow adipocytes have increased expression of Rankl. Mechanistically, USP53 regulates Rankl expression by enhancing the interaction between VDR and SMAD3. This is the first report describing the function of Usp53 during skeletal development. Our results put Usp53 in display as a novel regulator of osteoblast-osteoclast coupling and open the door for investigating the involvement of USP53 in pathologies. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hadla Hariri
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada.,Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Orhun Kose
- McGill Otolaryngology Sciences Laboratory, McGill University Health Centre-Research Institute, Montreal, Canada
| | - Aren Bezdjian
- McGill Otolaryngology Sciences Laboratory, McGill University Health Centre-Research Institute, Montreal, Canada
| | - Sam J Daniel
- McGill Otolaryngology Sciences Laboratory, McGill University Health Centre-Research Institute, Montreal, Canada.,Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada.,Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - René St-Arnaud
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada.,Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.,Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.,Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
5
|
Bone Metastasis of Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Cancers (Basel) 2022; 14:cancers14235727. [PMID: 36497209 PMCID: PMC9738274 DOI: 10.3390/cancers14235727] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Bone metastasis is a common complication of many types of advanced cancer, including breast cancer. Bone metastasis may cause severe pain, fractures, and hypercalcemia, rendering clinical management challenging and substantially reducing the quality of life and overall survival (OS) time of breast cancer patients. Studies have revealed that bone metastasis is related to interactions between tumor cells and the bone microenvironment, and involves complex molecular biological mechanisms, including colonization, osteolytic destruction, and an immunosuppressive bone microenvironment. Agents inhibiting bone metastasis (such as bisphosphate and denosumab) alleviate bone destruction and improve the quality of life of breast cancer patients with bone metastasis. However, the prognosis of these patients remains poor, and the specific biological mechanism of bone metastasis is incompletely understood. Additional basic and clinical studies are urgently needed, to further explore the mechanism of bone metastasis and develop new therapeutic drugs. This review presents a summary of the molecular mechanisms and therapeutic strategies of bone metastasis of breast cancer, aiming to improve the quality of life and prognosis of breast cancer patients and provide a reference for future research directions.
Collapse
|
6
|
Ahmad SS, Ahmed F, Ali R, Ghoneim MM, Alshehri S, Najmi AK, Ahmad S, Ahmad MZ, Ahmad J, Khan MA. Immunology of osteoporosis: relevance of inflammatory targets for the development of novel interventions. Immunotherapy 2022; 14:815-831. [PMID: 35765988 DOI: 10.2217/imt-2021-0282] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is recognized as low bone mass and deteriorated bone microarchitecture. It is the leading cause of fractures and consequent morbidity globally. The established pathophysiological evidence favors the endocrine factors for osteoporosis and the role of the immune system on the skeletal system has been recently identified. Due to the common developmental niche bone and immune system interactions have led to the emergence of osteoimmunology. Immune dysregulation can initiate inflammatory conditions that adversely affect bone integrity. The role of immune cells, such as T-lymphocytes subsets (Th17), cannot be neglected in the pathogenesis of osteoporosis. Local inflammation within the bone from any cause attracts immune cells that participate in the activation of osteoclasts. This work summarizes the present knowledge of osteoimmunology in reference to osteoporosis and identifies novel targets for immunotherapy of osteoporosis.
Collapse
Affiliation(s)
- Syed Sufian Ahmad
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Faraha Ahmed
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Ruhi Ali
- Delhi Institute of Pharmaceutical Education & Research (DIPSAR), DPSRU, New Delhi, 110017, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, AdDiriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Sayeed Ahmad
- Department of Pharmacognosy & Phytochemistry, Bioactive Natural Product Laboratory, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|
7
|
Tseng WJ, Lee W, Zhao H, Liu Y, Wang W, de Bakker CM, Li Y, Osuna C, Tong W, Wang L, Ma X, Qin L, Liu XS. Short Cyclic Regimen With Parathyroid Hormone (PTH) Results in Prolonged Anabolic Effect Relative to Continuous Treatment Followed by Discontinuation in Ovariectomized Rats. J Bone Miner Res 2022; 37:616-628. [PMID: 34957605 PMCID: PMC9284987 DOI: 10.1002/jbmr.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/06/2022]
Abstract
Despite the potent effect of intermittent parathyroid hormone (PTH) treatment on promoting new bone formation, bone mineral density (BMD) rapidly decreases upon discontinuation of PTH administration. To uncover the mechanisms behind this adverse phenomenon, we investigated the immediate responses in bone microstructure and bone cell activities to PTH treatment withdrawal and the associated long-term consequences. Unexpectedly, intact female and estrogen-deficient female rats had distinct responses to the discontinuation of PTH treatment. Significant tibial bone loss and bone microarchitecture deterioration occurred in estrogen-deficient rats, with the treatment benefits of PTH completely lost 9 weeks after discontinuation. In contrast, no adverse effect was observed in intact rats, with sustained treatment benefit 9 weeks after discontinuation. Intriguingly, there is an extended anabolic period during the first week of treatment withdrawal in estrogen-deficient rats, during which no significant change occurred in the number of osteoclasts, whereas the number of osteoblasts remained elevated compared with vehicle-treated rats. However, increases in number of osteoclasts and decreases in number of osteoblasts occurred 2 weeks after discontinuation of PTH treatment, leading to significant reduction in bone mass and bone microarchitecture. To leverage the extended anabolic period upon early withdrawal from PTH, a cyclic administration regimen with repeated cycles of on and off PTH treatment was explored. We demonstrated that the cyclic treatment regimen efficiently alleviated the PTH withdrawal-induced bone loss, improved bone mass, bone microarchitecture, and whole-bone mechanical properties, and extended the treatment duration. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wonsae Lee
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzheng Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chantal Mj de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiology, Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos Osuna
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Tong
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luqiang Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyuan Ma
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, Shandong University Qilu Hospital, Shandong University, Jinan, China
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Yu B, Wang CY. Osteoporosis and periodontal diseases - An update on their association and mechanistic links. Periodontol 2000 2022; 89:99-113. [PMID: 35244945 DOI: 10.1111/prd.12422] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Periodontitis and osteoporosis are prevalent inflammation-associated skeletal disorders that pose significant public health challenges to our aging population. Both periodontitis and osteoporosis are bone disorders closely associated with inflammation and aging. There has been consistent intrigue on whether a systemic skeletal disease such as osteoporosis will amplify the alveolar bone loss in periodontitis. A survey of the literature published in the past 25 years indicates that systemic low bone mineral density (BMD) is associated with alveolar bone loss, while recent evidence also suggests a correlation between clinical attachment loss and other parameters of periodontitis. Inflammation and its influence on bone remodeling play critical roles in the pathogenesis of both osteoporosis and periodontitis and could serve as the central mechanistic link between these disorders. Enhanced cytokine production and elevated inflammatory response exacerbate osteoclastic bone resorption while inhibiting osteoblastic bone formation, resulting in a net bone loss. With aging, accumulation of oxidative stress and cellular senescence drive the progression of osteoporosis and exacerbation of periodontitis. Vitamin D deficiency and smoking are shared risk factors and may mediate the connection between osteoporosis and periodontitis, through increasing oxidative stress and impairing host response to inflammation. With the connection between systemic and localized bone loss in mind, routine dental exams and intraoral radiographs may serve as a low-cost screening tool for low systemic BMD and increased fracture risk. Conversely, patients with fracture risk beyond the intervention threshold are at greater risk for developing severe periodontitis and undergo tooth loss. Various Food and Drug Administration-approved therapies for osteoporosis have shown promising results for treating periodontitis. Understanding the molecular mechanisms underlying their connection sheds light on potential therapeutic strategies that may facilitate co-management of systemic and localized bone loss.
Collapse
Affiliation(s)
- Bo Yu
- Division of Regenerative and Constitutive Sciences, School of Dentistry, University of California at Los Angeles, Los Angeles, California, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, California, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, Broad Stem Cell Research Center and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
9
|
Sato R, Maruyama K, Nemoto E, Sakisaka Y, Suzuki S, Li J, Numazaki K, Tada H, Yamada S. Extracellular Vesicles Derived From Murine Cementoblasts Possess the Potential to Increase Receptor Activator of Nuclear Factor-κB Ligand-Induced Osteoclastogenesis. Front Physiol 2022; 13:825596. [PMID: 35237179 PMCID: PMC8882962 DOI: 10.3389/fphys.2022.825596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Cementum resorption, unlike bone resorption, is clinically known to occur only with limited pathological stimuli, such as trauma, orthodontic forces, and large apical periodontitis; however, the molecular mechanisms that control osteoclast formation on the cementum surface remain unclear. In this study, we focused on extracellular vesicles (EVs) secreted by cementoblasts and analyzed their effects on osteoclast differentiation. EVs were extracted from the conditioned medium (CM) of the mouse cementoblast cell line OCCM-30. Transmission electron microscopy (TEM) analysis confirmed the presence of EVs with a diameter of approximately 50–200 nm. The effect of the EVs on osteoclast differentiation was examined using the mouse osteoclast progenitor cell line RAW 264.7 with recombinant receptor activator of nuclear factor (NF)-κB ligand (rRANKL) stimulation. EVs enhanced the formation of tartrate-resistant acid phosphatase (TRAP) activity-positive cells upon rRANKL stimulation. EVs also enhanced the induction of osteoclast-associated gene and protein expression in this condition, as determined by real-time PCR and Western blotting, respectively. On the other hand, no enhancing effect of EVs was observed without rRANKL stimulation. A Western blot analysis revealed no expression of receptor activator of NF-κB ligand (RANKL) in EVs themselves. The effect on rRANKL-induced osteoclast differentiation was examined using the CM of cementoblasts in terms of TRAP activity-positive cell formation and osteoclast-associated gene expression. The conditioned medium partly inhibited rRANKL-induced osteoclast differentiation and almost completely suppressed its enhancing effect by EVs. These results indicate that cementoblasts secreted EVs, which enhanced RANKL-induced osteoclast differentiation, and simultaneously produced soluble factors that neutralized this enhancing effect of EVs, implicating this balance in the regulation of cementum absorption. A more detailed understanding of this crosstalk between cementoblasts and osteoclasts will contribute to the development of new therapies for pathological root resorption.
Collapse
Affiliation(s)
- Rei Sato
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kentaro Maruyama
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Eiji Nemoto
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
- *Correspondence: Eiji Nemoto,
| | - Yukihiko Sakisaka
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shigeki Suzuki
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jiajun Li
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kento Numazaki
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroyuki Tada
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoru Yamada
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
10
|
Petroni G, Brodocz L, Passarett A, Zanza A, Testarelli L, Cicconetti A. Possible effects of hyperparathyroidism in the loss of osseointegration of dental implants: A case report. ACTA STOMATOLOGICA NAISSI 2022. [DOI: 10.5937/asn2285389p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Hyperparathyroidism (HPT) is a common endocrine disorder with potential complications on the skeletal, renal, neurocognitive and cardiovascular systems. Its association with the lack of osseointegration of dental implants has not been described in the medical literature. Case presentation: This case report aims to discuss two cases of dental implant loss in which a high level of parathormone (PTH) was found in the absence of any other systemic or local comorbidity, suggesting the possible correlation between HPT and implant. Both patients were referred to the clinic complaining about prosthetic complications, gingival inflammation and mobility of the dental prosthesis. After a Cone-Beam computed Tomography evaluation, all implants of both patients were removed for rejection arising from periimplantitis and then four implants were inserted in the patient 1 and five implants in the patient 2. For both patients short implants (Bicon LLC, Boston, Massachusetts, USA), featured by 4 mm in diameter and 5 mm in height, were used and the prosthesis substructure was made of Trinia® (Bicon LLC, Boston, Massachusetts, USA). During the fifth year, the patients reported complications and the implant treatment failure. In order to establish the causes of failure, a thorough investigation was performed. Since no causes were detected, the patients were required to perform a blood test to evaluate bone metabolism and specifically to assess parathyroid-hormone levels (PTH), calcium levels and vitamin D. Results: The results of the blood tests showed normal calcemia, vitamin D deficiency and elevated PTH levels in both patients. After an endocrinologist's consultation, secondary hyperparathyroidism was diagnosed. Conclusion: It is reasonable to assume that the loss of osseointegration of dental implants can be correlated with the effects of HPT.
Collapse
|
11
|
Matikainen N, Pekkarinen T, Ryhänen EM, Schalin-Jäntti C. Physiology of Calcium Homeostasis: An Overview. Endocrinol Metab Clin North Am 2021; 50:575-590. [PMID: 34774235 DOI: 10.1016/j.ecl.2021.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium plays a key role in skeletal mineralization and several intracellular and extracellular homeostatic networks. It is an essential element that is only available to the body through dietary sources. Daily acquisition of calcium depends, in addition to the actual intake, on the hormonally regulated state of calcium homeostasis through three main mechanisms: bone turnover, intestinal absorption, and renal reabsorption. These procedures are regulated by a group of interacting circulating hormones and their key receptors. This includes parathyroid hormone (PTH), PTH-related peptide, 1,25-dihydroxyvitamin D, calcitonin, fibroblast growth factor 23, the prevailing calcium concentration itself, the calcium-sensing receptor, as well as local processes in the bones, gut, and kidneys.
Collapse
Affiliation(s)
- Niina Matikainen
- Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, PB 340, 00029 HUS, Helsinki, Finland
| | - Tuula Pekkarinen
- Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, PB 340, 00029 HUS, Helsinki, Finland
| | - Eeva M Ryhänen
- Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, PB 340, 00029 HUS, Helsinki, Finland
| | - Camilla Schalin-Jäntti
- Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, PB 340, 00029 HUS, Helsinki, Finland.
| |
Collapse
|
12
|
Winter EM, Kooijman S, Appelman-Dijkstra NM, Meijer OC, Rensen PC, Schilperoort M. Chronobiology and Chronotherapy of Osteoporosis. JBMR Plus 2021; 5:e10504. [PMID: 34693186 PMCID: PMC8520066 DOI: 10.1002/jbm4.10504] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 12/31/2022] Open
Abstract
Physiological circadian (ie, 24-hour) rhythms are critical for bone health. Animal studies have shown that genes involved in the intrinsic molecular clock demonstrate potent circadian expression patterns in bone and that genetic disruption of these clock genes results in a disturbed bone structure and quality. More importantly, circulating markers of bone remodeling show diurnal variation in mice as well as humans, and circadian disruption by, eg, working night shifts is associated with the bone remodeling disorder osteoporosis. In this review, we provide an overview of the current literature on rhythmic bone remodeling and its underlying mechanisms and identify critical knowledge gaps. In addition, we discuss novel (chrono)therapeutic strategies to reduce osteoporosis by utilizing our knowledge on circadian regulation of bone. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Elizabeth M Winter
- Department of Medicine, Division of Endocrinology Leiden University Medical Center Leiden The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine Leiden The Netherlands.,Department of Medicine, Center for Bone Quality Leiden University Medical Center Leiden The Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology Leiden University Medical Center Leiden The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine Leiden The Netherlands
| | - Natasha M Appelman-Dijkstra
- Department of Medicine, Division of Endocrinology Leiden University Medical Center Leiden The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine Leiden The Netherlands.,Department of Medicine, Center for Bone Quality Leiden University Medical Center Leiden The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology Leiden University Medical Center Leiden The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine Leiden The Netherlands
| | - Patrick Cn Rensen
- Department of Medicine, Division of Endocrinology Leiden University Medical Center Leiden The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine Leiden The Netherlands
| | - Maaike Schilperoort
- Department of Medicine, Division of Endocrinology Leiden University Medical Center Leiden The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine Leiden The Netherlands
| |
Collapse
|
13
|
Age-related changes and reference intervals of RANKL, OPG, and bone turnover markers in Indian women. Arch Osteoporos 2021; 16:146. [PMID: 34606009 DOI: 10.1007/s11657-021-01014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED RANKL and OPG are cytokines involved in bone remodeling that makes them potential bone biomarkers. The reference interval for these cytokines, their ratio, and bone turnover markers CTX and PINP were established in Indian women, which may serve in diagnosis and management of osteoporosis. PURPOSE The aim of the study was to establish reference interval for RANKL, OPG, RANKL/OPG, and bone turnover markers CTX and PINP in healthy Indian women. METHODS This was a cross-sectional study on 374 healthy Indian women in the age group of 20-65 years. Serum levels of total RANKL, OPG, CTX, PINP, and estradiol were determined by commercial ELISA kits. The reference intervals for these cytokines and bone turnover markers were based on the 95% centrally distributed data. RESULTS Median RANKL (245.6 pmol/L vs. 149 pmol/L) and RANKL/OPG (38.7 vs. 20.4) were higher, while sCTX (380 ng/L vs. 551 ng/L) and OPG levels (6.1 pmol/L vs. 7.4 pmol/L) were lower in premenopausal women than those in postmenopausal women. PINP levels were comparable in both groups. Women were classified into 5 groups according to decades of age and the reference intervals for RANKL, OPG, RANKL/OPG ratio, and CTX and PINP in each group were reported. CONCLUSION We reported menopausal status-based and age-related reference intervals for serum RANKL, OPG, RANKL/OPG ratio, and CTX and PINP in healthy Indian women.
Collapse
|
14
|
Zhang H, Cui Y, Dong R, Zhang W, Chen S, Wan H, Chen C, Chen Y, Wang Y, Zhu C, Chen B, Wang N, Lu Y. Vitamin D is associated with blood lead exposure through bone turnover in type 2 diabetes patients. Endocr Connect 2021; 10:378-386. [PMID: 33666568 PMCID: PMC8133370 DOI: 10.1530/ec-21-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Bone is thought to be the reservoir of the human lead burden, and vitamin D is associated with bone turnover. We aimed to explore whether exposure to lower 25-hydroxy vitamin D (25(OH)D) levels was associated with higher blood lead levels (BLLs) by increasing the bone turnover rate in individuals with type 2 diabetes. METHODS A total of 4103 type 2 diabetic men and postmenopausal women in Shanghai, China, were enrolled in 2018. Their 25(OH)D, β-C-terminal telopeptide (β-CTX), N-MID osteocalcin and procollagen type 1 N-peptide (P1NP) levels were detected. Their BLLs were determined by atomic absorption spectrometry. Mediation analyses were performed to identify the possible role that bone turnover played in the underlying mechanisms. RESULTS In both the men and postmenopausal women, all three bone turnover markers were inversely associated with 25(OH)D and positively associated with the BLL (all P < 0.01) after adjusting for age, current smoking habits, metabolic parameters, duration of diabetes, vitamin D intake, and use of anti-osteoporosis medication. In the mediation analyses, none of the direct associations between 25(OH)D and BLL was significant for the three bone turnover markers, but all three bone turnover markers were found to be significant mediators of the indirect associations between 25(OH)D and BLL. CONCLUSION The association between vitamin D and BLL was fully mediated by bone turnover markers in type 2 diabetic patients (mediation effect). This finding suggested that vitamin D may protect against blood lead exposure from the bone reservoir by decreasing bone turnover in individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Haojie Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuke Cui
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ruihua Dong
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, China
| | - Wen Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shihan Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Heng Wan
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chunfang Zhu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bo Chen
- Key Laboratory of Public Health Safety of Ministry of Education, Collaborative Innovation Center of Social Risks Governance in Health, School of Public Health, Fudan University, Shanghai, China
- Correspondence should be addressed to B Chen or N Wang or Y Lu: or or
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Correspondence should be addressed to B Chen or N Wang or Y Lu: or or
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Correspondence should be addressed to B Chen or N Wang or Y Lu: or or
| |
Collapse
|
15
|
Carrillo-López N, Martínez-Arias L, Alonso-Montes C, Martín-Carro B, Martín-Vírgala J, Ruiz-Ortega M, Fernández-Martín JL, Dusso AS, Rodriguez-García M, Naves-Díaz M, Cannata-Andía JB, Panizo S. The receptor activator of nuclear factor κΒ ligand receptor leucine-rich repeat-containing G-protein-coupled receptor 4 contributes to parathyroid hormone-induced vascular calcification. Nephrol Dial Transplant 2021; 36:618-631. [PMID: 33367746 DOI: 10.1093/ndt/gfaa290] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In chronic kidney disease, serum phosphorus (P) elevations stimulate parathyroid hormone (PTH) production, causing severe alterations in the bone-vasculature axis. PTH is the main regulator of the receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, which is essential for bone maintenance and also plays an important role in vascular smooth muscle cell (VSMC) calcification. The discovery of a new RANKL receptor, leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), which is important for osteoblast differentiation but with an unknown role in vascular calcification (VC), led us to examine the contribution of LGR4 in high P/high PTH-driven VC. METHODS In vivo studies were conducted in subtotally nephrectomized rats fed a normal or high P diet, with and without parathyroidectomy (PTX). PTX rats were supplemented with PTH(1-34) to achieve physiological serum PTH levels. In vitro studies were performed in rat aortic VSMCs cultured in control medium, calcifying medium (CM) or CM plus 10-7 versus 10-9 M PTH. RESULTS Rats fed a high P diet had a significantly increased aortic calcium (Ca) content. Similarly, Ca deposition was higher in VSMCs exposed to CM. Both conditions were associated with increased RANKL and LGR4 and decreased OPG aorta expression and were exacerbated by high PTH. Silencing of LGR4 or parathyroid hormone receptor 1 (PTH1R) attenuated the high PTH-driven increases in Ca deposition. Furthermore, PTH1R silencing and pharmacological inhibition of protein kinase A (PKA), but not protein kinase C, prevented the increases in RANKL and LGR4 and decreased OPG. Treatment with PKA agonist corroborated that LGR4 regulation is a PTH/PKA-driven process. CONCLUSIONS High PTH increases LGR4 and RANKL and decreases OPG expression in the aorta, thereby favouring VC. The hormone's direct pro-calcifying actions involve PTH1R binding and PKA activation.
Collapse
Affiliation(s)
- Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, REDinREN-ISCIII, Oviedo, Spain
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, REDinREN-ISCIII, Oviedo, Spain
| | - Cristina Alonso-Montes
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, REDinREN-ISCIII, Oviedo, Spain
| | - Beatriz Martín-Carro
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, REDinREN-ISCIII, Oviedo, Spain
| | - Julia Martín-Vírgala
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, REDinREN-ISCIII, Oviedo, Spain
| | - Marta Ruiz-Ortega
- Vascular and Renal Laboratory Fundación Jimenez Díaz, Universidad Autónoma Madrid, REDinREN-ISCIII, Madrid, Spain
| | - José Luis Fernández-Martín
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, REDinREN-ISCIII, Oviedo, Spain
| | - Adriana S Dusso
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, REDinREN-ISCIII, Oviedo, Spain
| | - Minerva Rodriguez-García
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, REDinREN-ISCIII, Oviedo, Spain.,Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, REDinREN-ISCIII, Oviedo, Spain
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, REDinREN-ISCIII, Oviedo, Spain.,Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Sara Panizo
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, REDinREN-ISCIII, Oviedo, Spain
| |
Collapse
|
16
|
Effects of acidosis on the structure, composition, and function of adult murine femurs. Acta Biomater 2021; 121:484-496. [PMID: 33242638 DOI: 10.1016/j.actbio.2020.11.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Physiologic pH is maintained in a narrow range through multiple systemic buffering systems. Metabolic Acidosis (MA) is an acid-base disorder clinically characterized by a decrease in systemic pH and bicarbonate (HCO3-) levels. Acidosis affects millions annually, resulting in decreased bone mineral density and bone volume and an increased rate of fracture. We developed an adult murine model of diet-induced metabolic acidosis via graded NH4Cl administration that successfully decreased systemic pH over a 14 day period to elucidate the effects of acidosis on the skeletal system. Blood gas analyses measured an increase in blood calcium and sodium levels indicating a skeletal response to 14 days of acidosis. MA also significantly decreased femur ultimate strength, likely due to modifications in bone morphology as determined from decreased microcomputed tomography values of centroid distance and area moment of inertia. These structural changes may be caused by aberrant remodeling based on histological data evidencing altered OCL activity in acidosis. Additionally, we found that acidosis significantly decreased bone CO3 content in a site-specific manner similar to the bone phenotype observed in human MA. We determined that MA decreased bone strength thus increasing fracture risk, which is likely caused by alterations in bone shape and compounded by changes in bone composition. Additionally, we suggest the temporal regulation of cell-mediated remodeling in MA is more complex than current literature suggests. We conclude that our model reliably induces MA and has deleterious effects on skeletal form and function, presenting similarly to the MA bone phenotype in humans.
Collapse
|
17
|
Abstract
Parathyroid hormone is an essential regulator of extracellular calcium and phosphate. PTH enhances calcium reabsorption while inhibiting phosphate reabsorption in the kidneys, increases the synthesis of 1,25-dihydroxyvitamin D, which then increases gastrointestinal absorption of calcium, and increases bone resorption to increase calcium and phosphate. Parathyroid disease can be an isolated endocrine disorder or part of a complex syndrome. Genetic mutations can account for diseases of parathyroid gland formulation, dysregulation of parathyroid hormone synthesis or secretion, and destruction of the parathyroid glands. Over the years, a number of different options are available for the treatment of different types of parathyroid disease. Therapeutic options include surgical removal of hypersecreting parathyroid tissue, administration of parathyroid hormone, vitamin D, activated vitamin D, calcium, phosphate binders, calcium-sensing receptor, and vitamin D receptor activators to name a few. The accurate assessment of parathyroid hormone also provides essential biochemical information to properly diagnose parathyroid disease. Currently available immunoassays may overestimate or underestimate bioactive parathyroid hormone because of interferences from truncated parathyroid hormone fragments, phosphorylation of parathyroid hormone, and oxidation of amino acids of parathyroid hormone.
Collapse
Affiliation(s)
- Edward Ki Yun Leung
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
18
|
Lawenius L, Scheffler JM, Gustafsson KL, Henning P, Nilsson KH, Colldén H, Islander U, Plovier H, Cani PD, de Vos WM, Ohlsson C, Sjögren K. Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss. Am J Physiol Endocrinol Metab 2020; 318:E480-E491. [PMID: 31961709 PMCID: PMC7191407 DOI: 10.1152/ajpendo.00425.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Probiotic bacteria can protect from ovariectomy (ovx)-induced bone loss in mice. Akkermansia muciniphila is considered to have probiotic potential due to its beneficial effect on obesity and insulin resistance. The purpose of the present study was to determine if treatment with pasteurized Akkermansia muciniphila (pAkk) could prevent ovx-induced bone loss. Mice were treated with vehicle or pAkk for 4 wk, starting 3 days before ovx or sham surgery. Treatment with pAkk reduced fat mass accumulation confirming earlier findings. However, treatment with pAkk decreased trabecular and cortical bone mass in femur and vertebra of gonadal intact mice and did not protect from ovx-induced bone loss. Treatment with pAkk increased serum parathyroid hormone (PTH) levels and increased expression of the calcium transporter Trpv5 in kidney suggesting increased reabsorption of calcium in the kidneys. Serum amyloid A 3 (SAA3) can suppress bone formation and mediate the effects of PTH on bone resorption and bone loss in mice and treatment with pAkk increased serum levels of SAA3 and gene expression of Saa3 in colon. Moreover, regulatory T cells can be protective of bone and pAkk-treated mice had decreased number of regulatory T cells in mesenteric lymph nodes and bone marrow. In conclusion, treatment with pAkk protected from ovx-induced fat mass gain but not from bone loss and reduced bone mass in gonadal intact mice. Our findings with pAkk differ from some probiotics that have been shown to protect bone mass, demonstrating that not all prebiotic and probiotic factors have the same effect on bone.
Collapse
Affiliation(s)
- Lina Lawenius
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Julia M Scheffler
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin L Gustafsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin H Nilsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hannah Colldén
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Islander
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hubert Plovier
- Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Patrice D Cani
- Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Klara Sjögren
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Novak S, Roeder E, Kalinowski J, Jastrzebski S, Aguila HL, Lee SK, Kalajzic I, Lorenzo JA. Osteoclasts Derive Predominantly from Bone Marrow-Resident CX 3CR1 + Precursor Cells in Homeostasis, whereas Circulating CX 3CR1 + Cells Contribute to Osteoclast Development during Fracture Repair. THE JOURNAL OF IMMUNOLOGY 2020; 204:868-878. [PMID: 31915261 DOI: 10.4049/jimmunol.1900665] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023]
Abstract
Osteoclasts (OC) originate from either bone marrow (BM)-resident or circulating myeloid OC progenitors (OCP) expressing the receptor CX3CR1. Multiple lines of evidence argue that OCP in homeostasis and inflammation differ. We investigated the relative contributions of BM-resident and circulating OCP to osteoclastogenesis during homeostasis and fracture repair. Using CX3CR1-EGFP/TRAP tdTomato mice, we found CX3CR1 expression in mononuclear cells, but not in multinucleated TRAP+ OC. However, CX3CR1-expressing cells generated TRAP+ OC on bone within 5 d in CX3CR1CreERT2/Ai14 tdTomato reporter mice. To define the role that circulating cells play in osteoclastogenesis during homeostasis, we parabiosed TRAP tdTomato mice (CD45.2) on a C57BL/6 background with wild-type (WT) mice (CD45.1). Flow cytometry (CD45.1/45.2) demonstrated abundant blood cell mixing between parabionts after 2 wk. At 4 wk, there were numerous tdTomato+ OC in the femurs of TRAP tdTomato mice but almost none in WT mice. Similarly, cultured BM stimulated to form OC demonstrated multiple fluorescent OC in cell cultures from TRAP tdTomato mice, but not from WT mice. Finally, flow cytometry confirmed low-level engraftment of BM cells between parabionts but significant engraftment in the spleens. In contrast, during fracture repair, we found that circulating CX3CR1+ cells migrated to bone, lost expression of CX3CR1, and became OC. These data demonstrate that OCP, but not mature OC, express CX3CR1 during both homeostasis and fracture repair. We conclude that, in homeostasis mature OC derive predominantly from BM-resident OCP, whereas during fracture repair, circulating CX3CR1+ cells can become OC.
Collapse
Affiliation(s)
- Sanja Novak
- Department of Reconstructive Sciences, UConn Health, Farmington, CT 06030
| | - Emilie Roeder
- Department of Reconstructive Sciences, UConn Health, Farmington, CT 06030
| | | | | | - Hector L Aguila
- Department of Immunology, UConn Health, Farmington, CT 06030
| | - Sun-Kyeong Lee
- University of Connecticut Center on Aging, UConn Health, Farmington, CT 06030; and
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, CT 06030
| | - Joseph A Lorenzo
- Department of Medicine, UConn Health, Farmington, CT 06030; .,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030
| |
Collapse
|
20
|
Computational model of the dual action of PTH - Application to a rat model of osteoporosis. J Theor Biol 2019; 473:67-79. [PMID: 31009612 DOI: 10.1016/j.jtbi.2019.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022]
Abstract
This paper presents a pharmacokinetic/pharmacodynamic (PK/PD) model of the action of PTH(1-34) on bone modelling and remodelling, developed for quantitatively investigating the dose- and administration pattern-dependency of the bone tissue response to this drug. Firstly, a PK model of PTH(1-34) was developed, accounting for administration via subcutaneous injections. Subsequently, the PK model was coupled to a (mechanistic) bone cell population model of bone modelling and remodelling, taking into account the effects of PTH(1-34) on the differentiation of lining cells into active osteoblasts, on the apoptosis of active osteoblasts, and on proliferation of osteoblast precursors, as well as on the key regulatory pathways of bone cell activities. Numerical simulations show that the coupled PK/PD model is able to distinguish between continuous and intermittent administration patterns of PTH(1-34), in terms of yielding both catabolic bone responses (if drug administration is carried out continuously) and anabolic bone responses (if drug administration is carried out intermittently). The model also features a non-linear relation between bone gain and drug dose (as known from experiments); doubling the dose from 80 μg/kg/day to 160 μg/kg/day induced a 1.3-fold increase of the bone volume-to-total volume ratio. Furthermore, the model presented in this paper confirmed that bone modelling represents an essential mechanism of the anabolic response of bone to PTH(1-34) administration in rat models, and that the large amount of bone formation observed in such models cannot be explained via remodelling alone.
Collapse
|
21
|
Jastrzebski S, Kalinowski J, Mun S, Shin B, Adapala NS, Jacome-Galarza CE, Mirza F, Aguila HL, Drissi H, Sanjay A, Canalis E, Lee SK, Lorenzo JA. Protease-Activated Receptor 1 Deletion Causes Enhanced Osteoclastogenesis in Response to Inflammatory Signals through a Notch2-Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 2019; 203:105-116. [PMID: 31109956 DOI: 10.4049/jimmunol.1801032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
Abstract
We found that protease-activated receptor 1 (PAR1) was transiently induced in cultured osteoclast precursor cells. Therefore, we examined the bone phenotype and response to resorptive stimuli of PAR1-deficient (knockout [KO]) mice. Bones and bone marrow-derived cells from PAR1 KO and wild-type (WT) mice were assessed using microcomputed tomography, histomorphometry, in vitro cultures, and RT-PCR. Osteoclastic responses to TNF-α (TNF) challenge in calvaria were analyzed with and without a specific neutralizing Ab to the Notch2-negative regulatory region (N2-NRR Ab). In vivo under homeostatic conditions, there were minimal differences in bone mass or bone cells between PAR1 KO and WT mice. However, PAR1 KO myeloid cells demonstrated enhanced osteoclastogenesis in response to receptor activator of NF-κB ligand (RANKL) or the combination of RANKL and TNF. Strikingly, in vivo osteoclastogenic responses of PAR1 KO mice to TNF were markedly enhanced. We found that N2-NRR Ab reduced TNF-induced osteoclastogenesis in PAR1 KO mice to WT levels without affecting WT responses. Similarly, in vitro N2-NRR Ab reduced RANKL-induced osteoclastogenesis in PAR1 KO cells to WT levels without altering WT responses. We conclude that PAR1 functions to limit Notch2 signaling in responses to RANKL and TNF and moderates osteoclastogenic response to these cytokines. This effect appears, at least in part, to be cell autonomous because enhanced osteoclastogenesis was seen in highly purified PAR1 KO osteoclast precursor cells. It is likely that this pathway is involved in regulating the response of bone to diseases associated with inflammatory signals.
Collapse
Affiliation(s)
| | | | - Sehwan Mun
- Center on Aging, UConn Health, Farmington, CT 06030
| | - Bongjin Shin
- Center on Aging, UConn Health, Farmington, CT 06030
| | | | | | - Faryal Mirza
- Department of Medicine, UConn Health, Farmington, CT 06030
| | | | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030
| | - Ernesto Canalis
- Department of Medicine, UConn Health, Farmington, CT 06030.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030
| | | | - Joseph A Lorenzo
- Department of Medicine, UConn Health, Farmington, CT 06030; .,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030
| |
Collapse
|
22
|
Abstract
Parathyroid hormone (PTH) is the major secretory product of the parathyroid glands, and in hypocalcemic conditions, can enhance renal calcium reabsorption, increase active vitamin D production to increase intestinal calcium absorption, and mobilize calcium from bone by increasing turnover, mainly but not exclusively in cortical bone. PTH has therefore found clinical use as replacement therapy in hypoparathyroidism. PTH also may have a physiologic role in augmenting bone formation, particularly in trabecular and to some extent in cortical bone. This action has been applied to the clinic to provide anabolic therapy for osteoporosis.
Collapse
Affiliation(s)
- David Goltzman
- Department of Medicine and Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada; Departments of Medicine and of Physiology, McGill University, 845 Sherbrooke St West, Montreal, Quebec H3A 0B9, Canada.
| |
Collapse
|
23
|
Mazziotti G, Frara S, Giustina A. Pituitary Diseases and Bone. Endocr Rev 2018; 39:440-488. [PMID: 29684108 DOI: 10.1210/er.2018-00005] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Neuroendocrinology of bone is a new area of research based on the evidence that pituitary hormones may directly modulate bone remodeling and metabolism. Skeletal fragility associated with high risk of fractures is a common complication of several pituitary diseases such as hypopituitarism, Cushing disease, acromegaly, and hyperprolactinemia. As in other forms of secondary osteoporosis, pituitary diseases generally affect bone quality more than bone quantity, and fractures may occur even in the presence of normal or low-normal bone mineral density as measured by dual-energy X-ray absorptiometry, making difficult the prediction of fractures in these clinical settings. Treatment of pituitary hormone excess and deficiency generally improves skeletal health, although some patients remain at high risk of fractures, and treatment with bone-active drugs may become mandatory. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary diseases.
Collapse
Affiliation(s)
| | - Stefano Frara
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
24
|
Yakar S, Werner H, Rosen CJ. Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol 2018; 61:T115-T137. [PMID: 29626053 PMCID: PMC5966339 DOI: 10.1530/jme-17-0298] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
The discovery of the growth hormone (GH)-mediated somatic factors (somatomedins), insulin-like growth factor (IGF)-I and -II, has elicited an enormous interest primarily among endocrinologists who study growth and metabolism. The advancement of molecular endocrinology over the past four decades enables investigators to re-examine and refine the established somatomedin hypothesis. Specifically, gene deletions, transgene overexpression or more recently, cell-specific gene-ablations, have enabled investigators to study the effects of the Igf1 and Igf2 genes in temporal and spatial manners. The GH/IGF axis, acting in an endocrine and autocrine/paracrine fashion, is the major axis controlling skeletal growth. Studies in rodents have clearly shown that IGFs regulate bone length of the appendicular skeleton evidenced by changes in chondrocytes of the proliferative and hypertrophic zones of the growth plate. IGFs affect radial bone growth and regulate cortical and trabecular bone properties via their effects on osteoblast, osteocyte and osteoclast function. Interactions of the IGFs with sex steroid hormones and the parathyroid hormone demonstrate the significance and complexity of the IGF axis in the skeleton. Finally, IGFs have been implicated in skeletal aging. Decreases in serum IGFs during aging have been correlated with reductions in bone mineral density and increased fracture risk. This review highlights many of the most relevant studies in the IGF research landscape, focusing in particular on IGFs effects on the skeleton.
Collapse
Affiliation(s)
- Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010-4086, USA
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| |
Collapse
|
25
|
Garla VV, Akhtar I, Salim S, Subauste A. Osteitis fibrosa cystica masquerading as bone neoplasm. BMJ Case Rep 2018; 2018:bcr-2018-224546. [PMID: 29735505 DOI: 10.1136/bcr-2018-224546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 50-year-old female patient with no significant medical history presented with left knee pain. Radiographs of the knee showed a circumferential swelling of the distal femur suggestive of neoplasia. Further evaluation revealed multiple lesions in the left iliac bone and proximal femur. Biopsy was suggestive of a reparative granuloma or an aneurysmal bone cyst. Laboratory assessment showed hypercalcaemia and elevated parathyroid hormone consistent with severe primary hyperparathyroidism. Osseous survey was significant for salt and pepper appearance of the skull. Ultrasound of the neck and 99mTc-sestamibi parathyroid scintigraphy localised a left parathyroid adenoma/carcinoma. Parathyroidectomy was successful, and a large parathyroid adenoma was excised. Six months later, the patient was doing fine with her gait returning to normal. On follow-up 2 years later, she had no recurrence of the lesions.
Collapse
Affiliation(s)
- Vishnu Vardhan Garla
- Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Israh Akhtar
- Pathology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sohail Salim
- Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Angela Subauste
- Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
26
|
Maser RE, Lenhard MJ, Pohlig RT, Balagopal PB, Abdel-Misih R. Effect of parathyroidectomy on osteopontin and undercarboxylated osteocalcin in patients with primary hyperparathyroidism. Endocr Res 2018; 43:21-28. [PMID: 28937873 PMCID: PMC6082020 DOI: 10.1080/07435800.2017.1369432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE Surgical treatment for primary hyperparathyroidism (PHPT) improves bone metabolism. Osteocalcin (OC) and its undercarboxylated form (ucOC) are associated with bone and energy metabolism. Osteopontin (OPN), a multifunctional protein expressed in bone, is involved in resorption, along with β-carboxyl-terminal cross-linking telopeptide of type 1 collagen (β-CTX), and osteoprotegerin (OPG). Our aim was to investigate these biomarkers of bone metabolism in patients with PHPT. METHODS We examined 30 individuals with PHPT, in a clinical research facility, before and 1 month following parathyroidectomy. Circulating levels of OC, ucOC, OPN, β-CTX, and OPG were examined as bone biomarkers along with inflammatory markers (e.g., interleukin-6 [IL-6], lipocalin-2), insulin resistance (i.e., homeostasis model assessment for insulin resistance [HOMA-IR]), adiposity (i.e., leptin, adiponectin), PTH, calcium, 25-hydroxyvitamin D, creatinine, and demographics. RESULTS Participants (27 females/3 males) were 60 ± 9 (mean±SD) years old. There was a significant reduction of ucOC (7.9 ± 5.1 [median±SIQR] vs. 6.6 ± 3.7 ng/mL, p = 0.022) and OPN (75.4 ± 14.5 vs. 54.5 ± 9.2 ng/mL, p < 0.001) pre- versus post-parathyroidectomy. There were no univariate differences postoperatively for IL-6, HOMA-IR, leptin, or adiponectin. Regression analysis showed that postoperative levels of adiponectin, IL-6, and OPN were significantly associated with ucOC, while adjusting for PTH and albumin corrected calcium levels (model R2 = 0.610, p = 0.001). With OPN as the dependent variable, higher adiponectin and lower ucOC were significantly associated with lower OPN levels postoperatively (model R2 = 0.505, p = 0.010). CONCLUSION The lower 1-month postoperative OPN and ucOC levels in PHPT seem to indicate reduced bone resorption. Decreased ucOC levels may also suggest lower energy demands postoperatively.
Collapse
Affiliation(s)
- Raelene E. Maser
- Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, USA
- Diabetes and Metabolic Research Center, Christiana Care Health System, Newark, DE, USA
| | - M. James Lenhard
- Diabetes and Metabolic Research Center, Christiana Care Health System, Newark, DE, USA
- Diabetes and Metabolic Diseases Center, Christiana Care Health System, Wilmington, DE, USA
| | - Ryan T. Pohlig
- Biostatistics Core Facility, University of Delaware, Newark, DE, USA
| | - P. Babu Balagopal
- Biomedical Research & Analysis Laboratory, Nemours Children’s Specialty Care & Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | | |
Collapse
|
27
|
Singh K, Piprode V, Mhaske ST, Barhanpurkar-Naik A, Wani MR. IL-3 Differentially Regulates Membrane and Soluble RANKL in Osteoblasts through Metalloproteases and the JAK2/STAT5 Pathway and Improves the RANKL/OPG Ratio in Adult Mice. THE JOURNAL OF IMMUNOLOGY 2018; 200:595-606. [DOI: 10.4049/jimmunol.1601528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Bone remodeling comprises balanced activities between osteoclasts and osteoblasts, which is regulated by various factors, including hormones and cytokines. We previously reported that IL-3 inhibits osteoclast differentiation and pathological bone loss. IL-3 also enhances osteoblast differentiation and bone formation from mesenchymal stem cells. However, the role of IL-3 in regulation of osteoblast–osteoclast interactions and underlying mechanisms is not yet delineated. In this study, we investigated the role of IL-3 on the regulation of osteoblast-specific molecules, receptor activator of NF-κB ligand (RANKL), and osteoprotegerin (OPG) that modulate bone homeostasis. We found that IL-3 increases RANKL expression at both the transcriptional and translational levels, and it showed no effect on OPG expression in calvarial osteoblasts. The increased RANKL expression by IL-3 induces mononuclear osteoclasts; however, it does not induce multinuclear osteoclasts. Interestingly, IL-3 decreases soluble RANKL by reducing ectodomain shedding of membrane RANKL through downregulation of metalloproteases mainly a disintegrin and metalloproteinase (ADAM)10, ADAM17, ADAM19, and MMP3. Moreover, IL-3 increases membrane RANKL by activating the JAK2/STAT5 pathway. Furthermore, IL-3 enhances RANKL expression in mesenchymal stem cells of wild-type mice but not in STAT5a knockout mice. Interestingly, IL-3 restores RANKL expression in adult mice by enhancing bone-specific RANKL and decreasing serum RANKL. Furthermore, IL-3 increases the serum OPG level in adult mice. Thus, our results reveal, to our knowledge for the first time, that IL-3 differentially regulates two functional forms of RANKL through metalloproteases and the JAK2/STAT5 pathway, and it helps in restoring the decreased RANKL/OPG ratio in adult mice. Notably, our studies indicate the novel role of IL-3 in regulating bone homeostasis in important skeletal disorders.
Collapse
Affiliation(s)
- Kanupriya Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Vikrant Piprode
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Suhas T. Mhaske
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Amruta Barhanpurkar-Naik
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Mohan R. Wani
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411007, India
| |
Collapse
|
28
|
Witkowska-Sędek E, Rumińska M, Stelmaszczyk-Emmel A, Sobol M, Demkow U, Pyrżak B. Osteoprotegerin, Receptor Activator of Nuclear Factor Kappa B Ligand, and Growth Hormone/Insulin-Like Growth Factor-1 Axis in Children with Growth Hormone Deficiency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1116:63-73. [DOI: 10.1007/5584_2018_274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Catabolic Effects of Human PTH (1-34) on Bone: Requirement of Monocyte Chemoattractant Protein-1 in Murine Model of Hyperparathyroidism. Sci Rep 2017; 7:15300. [PMID: 29127344 PMCID: PMC5681546 DOI: 10.1038/s41598-017-15563-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/30/2017] [Indexed: 01/12/2023] Open
Abstract
The bone catabolic actions of parathyroid hormone (PTH) are seen in patients with hyperparathyroidism, or with infusion of PTH in rodents. We have previously shown that the chemokine, monocyte chemoattractant protein-1 (MCP-1), is a mediator of PTH’s anabolic effects on bone. To determine its role in PTH’s catabolic effects, we continuously infused female wild-type (WT) and MCP-1−/− mice with hPTH or vehicle. Microcomputed tomography (µCT) analysis of cortical bone showed that hPTH-infusion induced significant bone loss in WT mice. Further, μCT analysis of trabecular bone revealed that, compared with the vehicle-treated group, the PTH-treated WT mice had reduced trabecular thickness and trabecular number. Notably, MCP-1−/− mice were protected against PTH-induced cortical and trabecular bone loss as well as from increases in serum CTX (C-terminal crosslinking telopeptide of type I collagen) and TRACP-5b (tartrate-resistant acid phosphatase 5b). In vitro, bone marrow macrophages (BMMs) from MCP-1−/− and WT mice were cultured with M-CSF, RANKL and/or MCP-1. BMMs from MCP-1−/− mice showed decreased multinucleated osteoclast formation compared with WT mice. Taken together, our work demonstrates that MCP-1 has a role in PTH’s catabolic effects on bone including monocyte and macrophage recruitment, osteoclast formation, bone resorption, and cortical and trabecular bone loss.
Collapse
|
30
|
Zanotti S, Canalis E. Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes. Bone 2017; 103:159-167. [PMID: 28676438 PMCID: PMC5568480 DOI: 10.1016/j.bone.2017.06.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
Parathyroid hormone (PTH) and Notch receptors regulate bone formation by governing the function of osteoblastic cells. To determine whether PTH interacts with Notch signaling as a way to control osteoblast function, we tested the effects of PTH on Notch activity in osteoblast- and osteocyte-enriched cultures. Notch signaling was activated in osteoblast-enriched cells from wild-type C57BL/6J mice following exposure to the Notch ligand Delta-like (Dll)1 or by the transient transfection of the Notch intracellular domain (NICD), the transcriptionally active fragment of Notch1. To induce Notch signaling in osteocyte-enriched cultures, a murine model of Notch2 gain-of-function was used. PTH opposed the stimulatory effects of Dll1 on Hey1, Hey2 and HeyL mRNA levels in osteoblast-enriched cells and suppressed the expression of selected Notch target genes in osteocyte-enriched cultures, either under basal conditions or in the context of Notch2 gain-of-function. Induction of Notch signaling in osteocytes did not alter the inhibitory effect of PTH on Sost expression, but reduced the stimulation of Tnfsf11 mRNA levels by PTH. In agreement with these in vitro observations, male mice administered with PTH displayed suppressed Hey1 and HeyL expression in parietal bones. Transactivation experiments with a Notch reporter construct and electrophoretic mobility shift assays in osteoblast-enriched cells suggest that PTH acts by decreasing the capacity of Rbpjκ to bind to DNA. In conclusion, downregulation of Notch in osteoblasts and osteocytes may represent a mechanism contributing to the anabolic effects of PTH in bone.
Collapse
Affiliation(s)
- Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030-5456, USA.
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030-5456, USA
| |
Collapse
|
31
|
Yeon Won H, Hwan Mun S, Shin B, Lee SK. Contradictory Role of CD97 in Basal and Tumor Necrosis Factor-Induced Osteoclastogenesis In Vivo. Arthritis Rheumatol 2017; 68:1301-13. [PMID: 26663852 DOI: 10.1002/art.39538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 12/01/2015] [Indexed: 01/02/2023]
Abstract
OBJECTIVE CD97, a member of the 7-transmembrane epidermal growth factor family of adhesion G protein-coupled receptors, is expressed on various cell types. This study was undertaken to elucidate the functions of CD97 in bone and inflammation in an experimental mouse model, by examining the effect of CD97 on osteoclastogenesis in vitro, characterizing the skeletal phenotype of CD97-deficient (CD97-knockout [KO]) mice, and assessing the responses to tumor necrosis factor (TNF) treatment. METHODS Femoral tissue and bone marrow (BM)-derived cells from CD97-KO and wild-type (WT) mice were assessed using histomorphometric analyses, in vitro cultures, and reverse transcription-polymerase chain reaction. Serum cytokine and chemokine levels in the presence or absence of TNF challenge were analyzed by multiplex assay. RESULTS In cultures of mouse BM-derived macrophages in vitro, RANKL induced the expression of CD97. In vivo, the trabecular bone volume of the femurs of female CD97-KO mice was increased, and this was associated with a decrease in the number of osteoclasts. Compared to WT mice, CD97-KO mice had a reduced potential to form osteoclast-like cells in vitro. Furthermore, TNF treatment augmented the formation of osteoclasts in the calvaria of CD97-KO mice in vivo, by increasing the production of RANKL and other cytokines and chemokines and by reducing the production of osteoprotegerin by calvarial cells. CONCLUSION These findings demonstrate that CD97 is a positive regulator of osteoclast-like cell differentiation, a mechanism that influences bone homeostasis. However, the presence of CD97 may be essential to suppress the initial osteoclastogenesis that occurs in response to acute and local inflammatory stimuli.
Collapse
Affiliation(s)
| | | | - Bongjin Shin
- University of Connecticut Health Center, Farmington
| | | |
Collapse
|
32
|
Coronel-Restrepo N, Posso-Osorio I, Naranjo-Escobar J, Tobón GJ. Autoimmune diseases and their relation with immunological, neurological and endocrinological axes. Autoimmun Rev 2017; 16:684-692. [DOI: 10.1016/j.autrev.2017.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
33
|
Tartaglione L, Pasquali M, Rotondi S, Muci ML, Covic A, Mazzaferro S. Positioning novel biologicals in CKD-mineral and bone disorders. J Nephrol 2017; 30:689-699. [PMID: 28540603 DOI: 10.1007/s40620-017-0410-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/15/2017] [Indexed: 12/15/2022]
Abstract
Renal osteodystrophy (ROD), the histologic bone lesions of chronic kidney disease (CKD), is now included in a wider syndrome with laboratory abnormalities of mineral metabolism and extra-skeletal calcifications or CKD-mineral and bone disorders (CKD-MBD), to highlight the increased burden of mortality. Aging people, frequently identified as early CKD, could suffer from either the classical age-related osteoporosis (OP) or ROD. Distinguishing between these two bone diseases may not be easy without bone biopsy. In any case, besides classical therapies for ROD, nephrologists are now challenged by the possibility of using new drugs developed for OP. Importantly, while therapies for ROD mostly aim at controlling parathyroid secretion with bone effects regarded as indirect, new drugs for OP directly modulate bone cells activity. Thus, their action could be useful in specific types of ROD. Parathyroid hormone therapy, which is anabolic in OP, could be useful in renal patients with low turnover bone disease. Denosumab, the monoclonal antibody against receptor activator of NF-κB ligand (RANK-L) that inhibits osteoclast activity and proliferation, could be beneficial in cases with high turnover bone. Use of romosozumab, the monoclonal antibody against sclerostin, which both stimulates osteoblasts and inhibits osteoclasts, could allow both anabolic and anti-resorptive effects. However, we should not forget the systemic role now attributed to CKD-MBD. In fact, therapies targeting bone cells activity could also result in unpredicted extra-bone effects and affect cardiovascular outcomes. In conclusion, the new biologicals established for OP could be useful in renal patients with either OP or ROD. In addition, their potential non-bone effects warrant investigation.
Collapse
Affiliation(s)
- Lida Tartaglione
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthetic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Marzia Pasquali
- Department of Nephrology and Dialysis, University Hospital Company, Policlinico Umberto I, Rome, Italy
| | - Silverio Rotondi
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthetic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Maria Luisa Muci
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthetic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Adrian Covic
- Department of Nephrology, Gr. T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Sandro Mazzaferro
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthetic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
34
|
Bastepe M, Turan S, He Q. Heterotrimeric G proteins in the control of parathyroid hormone actions. J Mol Endocrinol 2017; 58:R203-R224. [PMID: 28363951 PMCID: PMC5650080 DOI: 10.1530/jme-16-0221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Parathyroid hormone (PTH) is a key regulator of skeletal physiology and calcium and phosphate homeostasis. It acts on bone and kidney to stimulate bone turnover, increase the circulating levels of 1,25 dihydroxyvitamin D and calcium and inhibit the reabsorption of phosphate from the glomerular filtrate. Dysregulated PTH actions contribute to or are the cause of several endocrine disorders. This calciotropic hormone exerts its actions via binding to the PTH/PTH-related peptide receptor (PTH1R), which couples to multiple heterotrimeric G proteins, including Gs and Gq/11 Genetic mutations affecting the activity or expression of the alpha-subunit of Gs, encoded by the GNAS complex locus, are responsible for several human diseases for which the clinical findings result, at least partly, from aberrant PTH signaling. Here, we review the bone and renal actions of PTH with respect to the different signaling pathways downstream of these G proteins, as well as the disorders caused by GNAS mutations.
Collapse
Affiliation(s)
- Murat Bastepe
- Endocrine UnitDepartment of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Serap Turan
- Department of Pediatric EndocrinologyMarmara University School of Medicine, Istanbul, Turkey
| | - Qing He
- Endocrine UnitDepartment of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Siddiqui JA, Partridge NC. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology (Bethesda) 2017; 31:233-45. [PMID: 27053737 DOI: 10.1152/physiol.00061.2014] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bone remodeling is essential for adult bone homeostasis. It comprises two phases: bone formation and resorption. The balance between the two phases is crucial for sustaining bone mass and systemic mineral homeostasis. This review highlights recent work on physiological bone remodeling and discusses our knowledge of how systemic and growth factors regulate this process.
Collapse
Affiliation(s)
- Jawed A Siddiqui
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Nicola C Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| |
Collapse
|
36
|
SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts. Nat Commun 2017; 8:14570. [PMID: 28216630 PMCID: PMC5321737 DOI: 10.1038/ncomms14570] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 01/10/2017] [Indexed: 01/17/2023] Open
Abstract
Coordination between osteoblasts and osteoclasts is required for bone health and homeostasis. Here we show that mice deficient in SMURF2 have severe osteoporosis in vivo. This low bone mass phenotype is accompanied by a pronounced increase in osteoclast numbers, although Smurf2-deficient osteoclasts have no intrinsic alterations in activity. Smurf2-deficient osteoblasts display increased expression of RANKL, the central osteoclastogenic cytokine. Mechanistically, SMURF2 regulates RANKL expression by disrupting the interaction between SMAD3 and vitamin D receptor by altering SMAD3 ubiquitination. Selective deletion of Smurf2 in the osteoblast lineage recapitulates the phenotype of germline Smurf2-deficient mice, indicating that SMURF2 regulates osteoblast-dependent osteoclast activity rather than directly affecting the osteoclast. Our results reveal SMURF2 as an important regulator of the critical communication between osteoblasts and osteoclasts. Furthermore, the bone mass phenotype in Smurf2- and Smurf1-deficient mice is opposite, indicating that SMURF2 has a non-overlapping and, in some respects, opposite function to SMURF1. The balance between osteoclast and osteoblast-mediated bone turnover is essential for bone health and homeostasis. Here the authors show that both germline and osteoblast-specific Smurf2-deficient mice have osteoporosis as a result of increased osteoblast RANKL production and excess osteoclastogenesis.
Collapse
|
37
|
Dhondup T, Qian Q. Electrolyte and Acid-Base Disorders in Chronic Kidney Disease and End-Stage Kidney Failure. Blood Purif 2017; 43:179-188. [PMID: 28114143 DOI: 10.1159/000452725] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The kidneys play a pivotal role in the regulation of electrolyte and acid-base balance. With progressive loss of kidney function, derangements in electrolytes and acid-base inevitably occur and contribute to poor patient outcomes. As chronic kidney disease (CKD) has become a worldwide epidemic, medical providers are increasingly confronted with such problems. Adequate diagnosis and treatment will minimize complications and can potentially be lifesaving. In this review, we discuss the current understanding of the disease process, clinical presentation, diagnosis and treatment strategies, integrating up-to-date knowledge in the field. Although electrolyte and acid-base derangements are significant causes of morbidity and mortality in CKD and end-stage renal disease patients, they can be effectively managed through a timely institution of combined preventive measures and pharmacological therapy. Exciting advances and several upcoming outcome trials will provide further information to guide treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Tsering Dhondup
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | | |
Collapse
|
38
|
Osagie-Clouard L, Sanghani A, Coathup M, Briggs T, Bostrom M, Blunn G. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017; 6:14-21. [PMID: 28062525 PMCID: PMC5227055 DOI: 10.1302/2046-3758.61.bjr-2016-0085.r1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022] Open
Abstract
Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called 'anabolic window'. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through 'coupled' and 'uncoupled' mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect. CITE THIS ARTICLE L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14-21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1.
Collapse
Affiliation(s)
- L Osagie-Clouard
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - A Sanghani
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - M Coathup
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - T Briggs
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - M Bostrom
- Hospital for Special Surgery, New York, New York, USA
| | - G Blunn
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| |
Collapse
|
39
|
Siddiqui JA, Partridge NC. CCL2/Monocyte Chemoattractant Protein 1 and Parathyroid Hormone Action on Bone. Front Endocrinol (Lausanne) 2017; 8:49. [PMID: 28424660 PMCID: PMC5372820 DOI: 10.3389/fendo.2017.00049] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
Chemokines are small molecules that play a crucial role as chemoattractants for several cell types, and their components are associated with host immune responses and repair mechanisms. Chemokines selectively recruit monocytes, neutrophils, and lymphocytes and induce chemotaxis through the activation of G protein-coupled receptors. Two well-described chemokine families (CXC and CC) are known to regulate the localization and trafficking of immune cells in cases of injury, infection, and tumors. Monocyte chemoattractant protein 1 (MCP-1/CCL2) is one of the important chemokines from the CC family that controls migration and infiltration of monocytes/macrophages during inflammation. CCL2 is profoundly expressed in osteoporotic bone and prostate cancer-induced bone resorption. CCL2 also regulates physiological bone remodeling in response to hormonal and mechanical stimuli. Parathyroid hormone (PTH) has multifaceted effects on bone, depending on the mode of administration. Intermittent PTH increases bone in vivo by increasing the number and activity of osteoblasts, whereas a continuous infusion of PTH decreases bone mass by stimulating a net increase in bone resorption. CCL2 is essential for both anabolic and catabolic effects of PTH. In this review, we will discuss the pharmacological role of PTH and involvement of CCL2 in the processes of PTH-mediated bone remodeling.
Collapse
Affiliation(s)
- Jawed Akhtar Siddiqui
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Nicola C. Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
- *Correspondence: Nicola C. Partridge,
| |
Collapse
|
40
|
Tay JYY, Bay BH, Yeo JF, Harris M, Meghji S, Dheen ST. Identification of RANKL in Osteolytic Lesions of the Facial Skeleton. J Dent Res 2016; 83:349-53. [PMID: 15044512 DOI: 10.1177/154405910408300415] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RANKL (receptor activator of nuclear factor κB ligand) promotes osteoclast differentiation, stimulates osteoclast activity, and prolongs osteoclast survival and adherence to bone. Abnormalities of the RANKL/RANK/osteoprotegerin system have been implicated in a range of diseases, including osteoporosis. To date, no work has been done in osteolytic lesions of the facial skeleton. In this study, specimens of ameloblastomas, dentigerous cysts, odontogenic keratocysts, and radicular cysts were subjected to immunohistochemical analysis for RANKL and tartrate-resistant acid phosphatase (TRAP). Immunofluorescence staining for TRAP was visualized under confocal microscopy. All specimens demonstrated distinct positive immunoreactivity to RANKL and TRAP. The TRAP-positive cells also stained with in situ hybridization for human calcitonin receptor, a definitive marker for osteoclasts. Mononuclear pre-osteoclasts were observed to migrate from blood to the connective tissue stroma and multinucleate toward the bone surface. It can be concluded that RANKL plays a role in bone resorption in osteolytic lesions of the facial skeleton.
Collapse
Affiliation(s)
- J Y Y Tay
- Dept. of Oral and Maxillofacial Surgery, National Dental Centre, 5 Second Hospital Avenue, S168938, Singapore.
| | | | | | | | | | | |
Collapse
|
41
|
Lossdörfer S, Götz W, Jäger A. PTH(1-34) Affects Osteoprotegerin Production in Human PDL Cells in vitro. J Dent Res 2016; 84:634-8. [PMID: 15972592 DOI: 10.1177/154405910508400710] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Since periodontal ligament (PDL) cells exhibit several osteoblastic traits, we hypothesized that human PDL cells will respond to hormonal stimulation in an osteoblast-like manner. Confluent and pre-confluent PDL cells from six patients were challenged with PTH(1-34). Cell number, ALP, osteocalcin, osteoprotegerin, and RANKL expression were determined. Intermittent PTH(1-34) treatment of confluent PDL cells caused a significant increase in proliferation, whereas differentiation and osteoprotegerin production decreased significantly. In pre-confluent PDL cells, this treatment regimen induced a biphasic decrease in proliferation, but a biphasic increase in differentiation and osteoprotegerin production. Continuous PTH(1-34) exposure enhanced proliferation but inhibited osteocalcin production in confluent cells and stimulated osteoprotegerin production in pre-confluent PDL cells. RANKL was hardly detectable and unaffected by PTH(1-34) treatment. These results indicate that human PDL cells respond to PTH(1-34) in an osteoblast-like manner, and that the PTH(1-34) effect depends on the maturation state of the cells and on the mode of administration.
Collapse
Affiliation(s)
- S Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany.
| | | | | |
Collapse
|
42
|
Oest ME, Mann KA, Zimmerman ND, Damron TA. Parathyroid Hormone (1-34) Transiently Protects Against Radiation-Induced Bone Fragility. Calcif Tissue Int 2016; 98:619-30. [PMID: 26847434 PMCID: PMC4860360 DOI: 10.1007/s00223-016-0111-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023]
Abstract
Radiation therapy for soft tissue sarcoma or tumor metastases is frequently associated with damage to the underlying bone. Using a mouse model of limited field hindlimb irradiation, we assessed the ability of parathyroid hormone (1-34) fragment (PTH) delivery to prevent radiation-associated bone damage, including loss of mechanical strength, trabecular architecture, cortical bone volume, and mineral density. Female BALB/cJ mice received four consecutive doses of 5 Gy to a single hindlimb, accompanied by daily injections of either PTH or saline (vehicle) for 8 weeks, and were followed for 26 weeks. Treatment with PTH maintained the mechanical strength of irradiated femurs in axial compression for the first eight weeks of the study, and the apparent strength of irradiated femurs in PTH-treated mice was greater than that of naïve bones during this time. PTH similarly protected against radiation-accelerated resorption of trabecular bone and transient decrease in mid-diaphyseal cortical bone volume, although this benefit was maintained only for the duration of PTH delivery. Overall, PTH conferred protection against radiation-induced fragility and morphologic changes by increasing the quantity of bone, but only during the period of administration. Following cessation of PTH delivery, bone strength and trabecular volume fraction rapidly decreased. These data suggest that PTH does not negate the longer-term potential for osteoclastic bone resorption, and therefore, finite-duration treatment with PTH alone may not be sufficient to prevent late onset radiotherapy-induced bone fragility.
Collapse
Affiliation(s)
- Megan E Oest
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Kenneth A Mann
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Nicholas D Zimmerman
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Timothy A Damron
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| |
Collapse
|
43
|
Maekawa T, Briones RA, Resuello RRG, Tuplano JV, Hajishengallis E, Kajikawa T, Koutsogiannaki S, Garcia CAG, Ricklin D, Lambris JD, Hajishengallis G. Inhibition of pre-existing natural periodontitis in non-human primates by a locally administered peptide inhibitor of complement C3. J Clin Periodontol 2016; 43:238-49. [PMID: 26728318 DOI: 10.1111/jcpe.12507] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2015] [Indexed: 11/26/2022]
Abstract
AIM Human periodontitis is associated with overactivation of complement, which is triggered by different mechanisms converging on C3, the central hub of the system. We assessed whether the C3 inhibitor Cp40 inhibits naturally occurring periodontitis in non-human primates (NHPs). MATERIALS AND METHODS Non-human primates with chronic periodontitis were intra-gingivally injected with Cp40 either once (5 animals) or three times (10 animals) weekly for 6 weeks followed by a 6-week follow-up period. Clinical periodontal examinations and collection of gingival crevicular fluid and biopsies of gingiva and bone were performed at baseline and during the study. A one-way repeated-measures anova was used for data analysis. RESULTS Whether administered once or three times weekly, Cp40 caused a significant reduction in clinical indices that measure periodontal inflammation (gingival index and bleeding on probing), tissue destruction (probing pocket depth and clinical attachment level) or tooth mobility. These clinical changes were associated with significantly reduced levels of pro-inflammatory mediators and decreased numbers of osteoclasts in bone biopsies. The protective effects of Cp40 persisted, albeit at reduced efficacy, for at least 6 weeks following drug discontinuation. CONCLUSION Cp40 inhibits pre-existing chronic periodontal inflammation and osteoclastogenesis in NHPs, suggesting a novel adjunctive anti-inflammatory therapy for treating human periodontitis.
Collapse
Affiliation(s)
- Tomoki Maekawa
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Ruel A Briones
- College of Dentistry, Manila Central University, Caloocan City, Philippines
| | - Ranillo R G Resuello
- Simian Conservation Breeding and Research Center (SICONBREC), Makati City, Philippines
| | - Joel V Tuplano
- Simian Conservation Breeding and Research Center (SICONBREC), Makati City, Philippines
| | - Evlambia Hajishengallis
- Division of Pediatric Dentistry, Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tetsuhiro Kajikawa
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sophia Koutsogiannaki
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Katsumata S, Matsuzaki H, Uehara M, Suzuki K. Effects of Dietary Calcium Supplementation on Bone Metabolism, Kidney Mineral Concentrations, and Kidney Function in Rats Fed a High-Phosphorus Diet. J Nutr Sci Vitaminol (Tokyo) 2016; 61:195-200. [PMID: 26052152 DOI: 10.3177/jnsv.61.195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the effects of dietary calcium (Ca) supplementation on bone metabolism, kidney mineral concentrations, and kidney function in rats fed a high-phosphorus (P) diet. Wistar strain rats were randomly divided into 4 dietary groups and fed their respective diets for 21 d: a diet containing 0.3% P and 0.5% Ca (C), a diet containing 1.5% P and 0.5% Ca (HP), a diet containing 0.3% P and 1.0% Ca (HCa), or a diet containing 1.5% P and 1.0% Ca (HPCa). Compared to the C group, the high-P diet increased serum parathyroid hormone concentration, markers of bone turnover, receptor activator of NF-κB ligand mRNA expression of the femur, kidney Ca and P concentrations, urinary N-acetyl-β-D-glucosaminidase activity, and urinary β2-microglobulin excretion, and decreased bone mineral content and bone mineral density of the femur and tibia. Dietary Ca supplementation improved the parameters of bone metabolism and kidney function in rats fed the high-P diet, while there were no significant differences in kidney Ca or P concentrations between the HP and HPCa groups. These results suggest that dietary Ca supplementation prevented the bone loss and decline in kidney function induced by a high-P diet, whereas dietary Ca supplementation did not affect kidney mineral concentrations in rats fed the high-P diet.
Collapse
Affiliation(s)
- Shinichi Katsumata
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | | | | | | |
Collapse
|
45
|
Onal M, St John HC, Danielson AL, Markert JW, Riley EM, Pike JW. Unique Distal Enhancers Linked to the Mouse Tnfsf11 Gene Direct Tissue-Specific and Inflammation-Induced Expression of RANKL. Endocrinology 2016; 157:482-96. [PMID: 26646205 PMCID: PMC4733116 DOI: 10.1210/en.2015-1788] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Receptor activator of nuclear factor κB ligand (RANKL) is expressed by a number of cell types to participate in diverse physiological functions. We have previously identified 10 distal RANKL enhancers. Earlier studies have shown that RL-D5 is a multifunctional RANKL enhancer. Deletion of RL-D5 from the mouse genome leads to lower skeletal and lymphoid tissue RANKL, causing a high bone mass phenotype. Herein, we determine the physiological role and lineage specificity of 2 additional RANKL enhancers, RL-D6 and RL-T1, which are located 83 and 123 kb upstream of the gene's transcriptional start site, respectively. Lack of RL-D6 or RL-T1 did not alter skeletal RANKL or bone mineral density up to 48 weeks of age. Although both RL-D5 and RL-T1 contributed to activation induction of T-cell RANKL, RL-T1 knockout mice had drastically low lymphocyte and lymphoid tissue RANKL levels, indicating that RL-T1 is the major regulator of lymphocyte RANKL. Moreover, RL-T1 knockout mice had lower circulating soluble RANKL, suggesting that lymphocytes are important sources of circulating soluble RANKL. Under physiological conditions, lack of RL-D6 did not alter RANKL expression. However, lack of RL-D5 or RL-D6, but not of RL-T1, blunted the oncostatin M and lipopolysaccharide induction of RANKL ex vivo and in vivo, suggesting that RL-D5 and RL-D6 coregulate the inflammation-mediated induction of RANKL in osteocytes and osteoblasts while lack of RL-D6 did not alter secondary hyperparathyroidism or lactation induction of RANKL or bone loss. These results suggest that although RL-D5 mediates RANKL expression in multiple lineages, other cell type- or factor-specific enhancers are required for its appropriate control, demonstrating the cell type-specific and complex regulation of RANKL expression.
Collapse
Affiliation(s)
- M Onal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - H C St John
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - A L Danielson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - J W Markert
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - E M Riley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - J W Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
46
|
Liu S, Zhu W, Li S, Ma J, Zhang H, Li Z, Zhang L, Zhang B, Li Z, Liang X, Shi W. Bovine parathyroid hormone enhances osteoclast bone resorption by modulating V-ATPase through PTH1R. Int J Mol Med 2015; 37:284-92. [PMID: 26647715 PMCID: PMC4716795 DOI: 10.3892/ijmm.2015.2423] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022] Open
Abstract
The vacuolar-type H+ adenosine triphosphatase (V-ATPase) plays an important role in cellular acidification and bone resorption by osteoclasts. However, the direct effect of bovine parathyroid hormone (bPTH) on V-ATPase has not yet been elucidated. The aim of the present study was to assess the effects of bPTH on V-ATPase and osteoclasts. Osteoclasts from bone marrow (BM)-derived monocytes of C57BL/6 mice were cultured with or without bPTH. The mRNA and protein expression levels of the V-ATPase a3-subunit and d2-subunit (by RT-qPCR and western blot analysis), V-ATPase activity (using the V type ATPase Activity Assay kit) and the bone resorption function of osteoclasts (by bone resorption assay) were examined following treatment with various concentrations of bPTH (0.1, 1.0, 10 and 100 ng/ml) alone or with bPTH and its inhibitor, bafilomycin A1. Furthermore, the expression of parathyroid hormone (PTH) receptors in osteoclasts was also detected. The results revealed that the mRNA and protein expression levels of V-ATPase a3-subunit and d2-subunit increased in a dose-dependent manner, paralleling the level of bPTH present. In addition, an increase in the concentration of bPTH was accompanied by the increased resorption capability of osteoclasts, whereas bone resorption was inhibited in the presence of bafilomycin A1. In addition, we confirmed the existence of parathyroid hormone 1 receptor (PTH1R) in osteoclasts using three different methods (RT-qPCR, western blot analysis and immunofluorescence staining). We found that bPTH enhanced the bone resorption capability of osteoclasts by modulating the expression of V-ATPase subunits, intracellular acidification and V-ATPase activity. Thus, we propose that PTH has a direct effect on osteoblasts and osteoclasts, and that this effect is mediated through PTH1R, thus contributing to bone remodeling.
Collapse
Affiliation(s)
- Shuangxin Liu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Weiping Zhu
- Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Sijia Li
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jianchao Ma
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Huitao Zhang
- Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Zhonghe Li
- Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Li Zhang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Bin Zhang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Zhuo Li
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Xinling Liang
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Shi
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
47
|
Notomi T, Kuno M, Hiyama A, Ezura Y, Honma M, Ishizuka T, Ohura K, Yawo H, Noda M. Membrane depolarization regulates intracellular RANKL transport in non-excitable osteoblasts. Bone 2015. [PMID: 26211991 DOI: 10.1016/j.bone.2015.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (VD3) are important factors in Ca(2+) homeostasis, and promote osteoclastogenesis by modulating receptor activator of nuclear factor kappa-B ligand (RANKL) mRNA expression. However, their contribution to RANKL intracellular transport (RANKLiT), including the trigger for RANKL lysosomal vesicle (RANKL-lv) fusion to the cell membrane, is unclear. In neurons, depolarization of membrane potential increases the intracellular Ca(2+) level ([Ca(2+)]i) and promotes neurotransmitter release via fusion of the synaptic vesicles to the cell membrane. To determine whether membrane depolarization also regulates cellular processes such as RANKLiT in MC3T3-E1 osteoblasts (OBs), we generated a light-sensitive OB cell line and developed a system for altering their membrane potential via delivery of a blue light stimulus. In the membrane fraction of RANKL-overexpressing OBs, PTH and VD3 increased the membrane-bound RANKL (mbRANKL) level at 10 min after application without affecting the mRNA expression level, and depolarized the cell membrane while transiently increasing [Ca(2+)]i. In our novel OB line stably expressing the channelrhodopsin-wide receiver, blue light-induced depolarization increased the mbRANKL level, which was reversed by treatment of blockers for L-type voltage-gated Ca(2+) channels and Ca(2+) release from the endoplasmic reticulum. In co-cultures of osteoclast precursor-like RAW264.7 cells and light-sensitive OBs overexpressing RANKL, light stimulation induced an increase in tartrate-resistant acid phosphatase activity and promoted osteoclast differentiation. These results indicate that depolarization of the cell membrane is a trigger for RANKL-lv fusion to the membrane and that membrane potential contributes to the function of OBs. In addition, the non-genomic action of VD3-induced RANKL-lv fusion included the membrane-bound VD3 receptor (1,25D3-MARRS receptor). Elucidating the mechanism of RANKLiT regulation by PTH and VD3 will be useful for the development of drugs to prevent bone loss in osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Takuya Notomi
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan; Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan; Global Center of Excellence Program for Molecular Science for Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan; Department of Physiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan.
| | - Miyuki Kuno
- Department of Physiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan
| | - Akiko Hiyama
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Kiyoshi Ohura
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan; Global Center of Excellence Program for Molecular Science for Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
48
|
Sinha P, Aarnisalo P, Chubb R, Poulton IJ, Guo J, Nachtrab G, Kimura T, Swami S, Saeed H, Chen M, Weinstein LS, Schipani E, Sims NA, Kronenberg HM, Wu JY. Loss of Gsα in the Postnatal Skeleton Leads to Low Bone Mass and a Blunted Response to Anabolic Parathyroid Hormone Therapy. J Biol Chem 2015; 291:1631-1642. [PMID: 26598522 DOI: 10.1074/jbc.m115.679753] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 12/25/2022] Open
Abstract
Parathyroid hormone (PTH) is an important regulator of osteoblast function and is the only anabolic therapy currently approved for treatment of osteoporosis. The PTH receptor (PTH1R) is a G protein-coupled receptor that signals via multiple G proteins including Gsα. Mice expressing a constitutively active mutant PTH1R exhibited a dramatic increase in trabecular bone that was dependent upon expression of Gsα in the osteoblast lineage. Postnatal removal of Gsα in the osteoblast lineage (P-Gsα(OsxKO) mice) yielded markedly reduced trabecular and cortical bone mass. Treatment with anabolic PTH(1-34) (80 μg/kg/day) for 4 weeks failed to increase trabecular bone volume or cortical thickness in male and female P-Gsα(OsxKO) mice. Surprisingly, in both male and female mice, PTH administration significantly increased osteoblast numbers and bone formation rate in both control and P-Gsα(OsxKO) mice. In mice that express a mutated PTH1R that activates adenylyl cyclase and protein kinase A (PKA) via Gsα but not phospholipase C via Gq/11 (D/D mice), PTH significantly enhanced bone formation, indicating that phospholipase C activation is not required for increased bone turnover in response to PTH. Therefore, although the anabolic effect of intermittent PTH treatment on trabecular bone volume is blunted by deletion of Gsα in osteoblasts, PTH can stimulate osteoblast differentiation and bone formation. Together these findings suggest that alternative signaling pathways beyond Gsα and Gq/11 act downstream of PTH on osteoblast differentiation.
Collapse
Affiliation(s)
- Partha Sinha
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Piia Aarnisalo
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114,; Department of Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Laboratory Services, HUSLAB, 00029 HUS, Finland
| | - Rhiannon Chubb
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Ingrid J Poulton
- St. Vincent's Institute and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Jun Guo
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Gregory Nachtrab
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Takaharu Kimura
- Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305
| | - Srilatha Swami
- Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305
| | - Hamid Saeed
- Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305
| | - Min Chen
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Lee S Weinstein
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Ernestina Schipani
- Departments of Orthopedic Surgery and Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Natalie A Sims
- St. Vincent's Institute and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Henry M Kronenberg
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Joy Y Wu
- From the Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114,; Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305,.
| |
Collapse
|
49
|
Kulcsar-Jakab E, Petho Z, Pap Z, Kalina E, Foldesi R, Balogh A, Antal-Szalmas P, Bhattoa HP. Cystatin C as a potential predictor of osteoprotegerin levels in healthy men, a cross-sectional, observational study. BMC Musculoskelet Disord 2015; 16:227. [PMID: 26311162 PMCID: PMC4551745 DOI: 10.1186/s12891-015-0684-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/14/2015] [Indexed: 11/16/2022] Open
Abstract
Background The aim of the present study is to evaluate serum osteoprotegerin (OPG) and soluble receptor activator of nuclear factor κB ligand (sRANKL) levels in a randomly selected male cohort over 50 years of age and its association with cystatin C, a cysteine proteinase inhibitor that decreases formation of osteoclasts by interfering at a late stage of pre-osteoclast differentiation, apart from being a marker of renal function independent of gender, muscle mass and age; in addition to known predictors such as age, sex hormones, vitamin D, bone mineral density (BMD) and biochemical markers of bone turnover. Methods We determined serum OPG and sRANKL levels and examined its relationship with cystatin C, age, osteocalcin, C-terminal telopeptides of type-I collagen, procollagen type 1 amino-terminal propeptide, 25-hydroxyvitamin D, parathyroid hormone, total 17β-estradiol (E2), total testosterone and L1–L4 (LS) and femur neck (FN) BMD data available from 194 (age, range: 51–81 years) randomly selected ambulatory men belonging to the HunMen cohort. Results OPG correlated significantly with age (Spearman’s rho (r) = 0.359, p < 0.001), cystatin C (r = 0.298, p < 0.001), E2 (r = 0.160, p = 0.028) and free testosterone index (FTI) (r = −0.230, p = 0.001). Compared to the middle-aged (age: ≤ 59 years, n = 98), older men (age > 59 years, n = 96) had significantly higher serum OPG (4.6 pmol/L vs. 5.4 pmol/L; p < 0.001), and lower sRANKL (0.226 pmol/L vs. 0.167 pmol/L; p = 0.048) levels. The older men showed a significant correlation between serum OPG levels and cystatin C (Spearman’s rho = 0.322, p = 0.002), and E2 (Spearman’s rho = 0.211, p = 0.043). Including cystatin C and E2 in a regression model showed that cystatin C (standard regression coefficient (β) = 0.345; p = 0.002) was the only significant predictor of serum OPG levels in the older men. Conclusions The results of this study demonstrated that in addition to age (which was the stronger predictor), other modifiable factors such as cystatin C, FTI and E2 were also significant predictors of OPG, and that the association between cystatin C and OPG was more evident with increased age (older age group). As such, cystatin C is a significant predictor of OPG independently of age, FTI and E2. Electronic supplementary material The online version of this article (doi:10.1186/s12891-015-0684-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Kulcsar-Jakab
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Zsofia Petho
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Zoltan Pap
- Department of Traumatology and Hand Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Edit Kalina
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Roza Foldesi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Adam Balogh
- Regional Osteoporosis Center, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Peter Antal-Szalmas
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Harjit Pal Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
50
|
Onal M, Bishop KA, St John HC, Danielson AL, Riley EM, Piemontese M, Xiong J, Goellner JJ, O'Brien CA, Pike JW. A DNA segment spanning the mouse Tnfsf11 transcription unit and its upstream regulatory domain rescues the pleiotropic biologic phenotype of the RANKL null mouse. J Bone Miner Res 2015; 30:855-68. [PMID: 25431114 PMCID: PMC5240630 DOI: 10.1002/jbmr.2417] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/15/2014] [Accepted: 11/24/2014] [Indexed: 12/26/2022]
Abstract
Receptor activator of NF-κB ligand (RANKL) is a TNFα-like cytokine that is produced by a diverse set of lineage-specific cells and is involved in a wide variety of physiological processes that include skeletal remodeling, lymph node organogenesis, mammary gland development, and thermal regulation. Consistent with these diverse functions, control of RANKL expression is accomplished in a cell-specific fashion via a set of at least 10 regulatory enhancers that are located up to 170 kb upstream of the gene's transcriptional start site. Here we examined the in vivo consequence of introducing a contiguous DNA segment containing these components into a genetically deleted RANKL null mouse strain. In contrast to RANKL null littermates, null mice containing the transgene exhibited normalized body size, skeletal development, and bone mass as well as normal bone marrow cavities, normalized spleen weights, and the presence of developed lymph nodes. These mice also manifested normalized reproductive capacity, including the ability to lactate and to produce normal healthy litters. Consistent with this, the transgene restored endogenous-like RANKL transcript levels in several RANKL-expressing tissues. Most importantly, restoration of RANKL expression from this segment of DNA was fully capable of rescuing the complex aberrant skeletal and immune phenotype of the RANKL null mouse. RANKL also restored appropriate levels of B220+ IgM+ and B220+ IgD+ B cells in spleen. Finally, we found that RANKL expression from this transgene was regulated by exogenously administered 1,25(OH)2 D3 , parathyroid hormone (PTH), and lipopolysaccharide (LPS), thus recapitulating the ability of these same factors to regulate the endogenous gene. These findings fully highlight the properties of the Tnfsf11 gene locus predicted through previous in vitro dissection. We conclude that the mouse Tnfsf11 gene locus identified originally through unbiased chromatin immunoprecipitation with DNA microarray (ChIP-chip) analysis contains the necessary genetic information to direct appropriate tissue-specific and factor-regulated RANKL expression in vivo.
Collapse
Affiliation(s)
- Melda Onal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|