1
|
Omori Y, Rahman Sohan S, Hossain F, Hossain S, Tokumoto T. Expression and purification of Gpr33, a candidate membrane receptor for cortisol. Biochem Biophys Res Commun 2025; 764:151845. [PMID: 40253912 DOI: 10.1016/j.bbrc.2025.151845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Membrane receptors for the sex steroids progesterone, estrogen, and androgens have been identified, and membrane receptors for the adrenocortical steroids glucocorticoids and mineralocorticoids have also been suggested to exist but have not yet been identified. Because of their diverse physiological actions, corticoids have been artificially synthesized and widely used as steroid drugs, and membrane receptors for corticoids are expected to become new drug targets. Therefore, there is a need to identify membrane glucocorticoid receptors (mGRs). To screen candidate mGRs, we identified two common amino acid sequences between membrane progesterone receptor (mPR) and membrane estrogen receptor (mER). We searched the protein database PROSITE for these common sequences. This led us to select GPR33 as a candidate mGR. To determine whether GPR33 can bind to corticoids, recombinant mouse Gpr33 (MGpr33) was expressed in Pichia yeast. Recombinant MGpr33, which was present as an oligomer in the membrane fraction, was found to bind to cortisol (hydrocortisone), a type of glucocorticoid. These results verified that GPR33 is a candidate membrane corticoid receptor. Denaturation by urea resulted in the generation of MGpr33 monomers and reduced the cortisol-binding activity of MGpr33, suggesting that MGpr33 may function as an oligomer. MGpr33 oligomers purified by two-step column chromatography using a Ni-NTA column and a Sephacryl S-300 gel filtration column retained the ability to bind cortisol. The purified fraction bound to cortisol with a Kd = 11.9 nM and Bmax = 1.19 nM. Furthermore, MGpr33 specifically bound to cortisol but not to estradiol, progesterone or testosterone. MGpr33 was found to be a candidate mGR that may function as an oligomer.
Collapse
Affiliation(s)
- Yuki Omori
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Sohanur Rahman Sohan
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Forhad Hossain
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Shakhawat Hossain
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Toshinobu Tokumoto
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
2
|
Torres-Berrio A, Nava-Mesa MO. The opioid system in stress-induced memory disorders: From basic mechanisms to clinical implications in post-traumatic stress disorder and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:327-338. [PMID: 30118823 DOI: 10.1016/j.pnpbp.2018.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Cognitive and emotional impairment are a serious consequence of stress exposure and are core features of neurological and psychiatric conditions that involve memory disorders. Indeed, acute and chronic stress are high-risk factors for the onset of post-traumatic stress disorder (PTSD) and Alzheimer's disease (AD), two devastating brain disorders associated with memory dysfunction. Besides the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis, stress response also involves the activation of the opioid system in brain regions associated with stress regulation and memory processing. In this context, it is possible that stress-induced memory disorders may be attributed to alterations in the interaction between the neuroendocrine stress system and the opioid system. In this review, we: (1) describe the effects of acute and chronic stress on memory, and the modulatory role of the opioid system, (2) discuss the contribution of the opioid system to the pathophysiology of PTSD and AD, and (3) present evidence of current and potential therapies that target the opioid receptors to treat PTSD- and AD-associated symptoms.
Collapse
Affiliation(s)
| | - Mauricio O Nava-Mesa
- Neuroscience Research Group (NEUROS), School of Medicine, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
3
|
Analysis of natural product regulation of opioid receptors in the treatment of human disease. Pharmacol Ther 2018; 184:51-80. [DOI: 10.1016/j.pharmthera.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Crowley NA, Kash TL. Kappa opioid receptor signaling in the brain: Circuitry and implications for treatment. Prog Neuropsychopharmacol Biol Psychiatry 2015; 62:51-60. [PMID: 25592680 PMCID: PMC4465498 DOI: 10.1016/j.pnpbp.2015.01.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/20/2014] [Accepted: 01/04/2015] [Indexed: 12/15/2022]
Abstract
Kappa opioid receptors (KORs) in the central nervous system have been known to be important regulators of a variety of psychiatry illnesses, including anxiety and addiction, but their precise involvement in these disorders is complex and has yet to be fully elucidated. Here, we briefly review the pharmacology of KORs in the brain, including KOR's involvement in anxiety, depression, and drug addiction. We also review the known neuronal circuitry impacted by KOR signaling, and interactions with corticotrophin-releasing factor (CRF), another key peptide in anxiety-related illnesses, as well as the role of glucocorticoids. We suggest that KORs are a promising therapeutic target for a host of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Nicole A. Crowley
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Lombana K, Middleton N, Coddington E. Suppression of sex behavior by kappa opiates and stress steroids occurs via independent neuroendocrine pathways. Gen Comp Endocrinol 2015; 210:81-6. [PMID: 25307952 DOI: 10.1016/j.ygcen.2014.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/17/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
Abstract
Endocannabinoids and their receptors are found throughout the brain of all vertebrates. By virtue of their wide distribution, endocannabinoids have the potential to affect many behaviors. Prior research has shown that cannabinoids inhibit courtship-clasping and mediate behavioral responses to stress in male rough-skinned newts, Taricha granulosa, and cannabinoid signaling is initiated by rapid actions of the steroid corticosterone (CORT) at its specific membrane receptor (mCR). This same mCR also recognizes κ-opioid receptor agonists and antagonists. Prior behavioral studies show that κ-opioid agonists suppress clasping behavior in a dose dependent manner. Combined, these studies suggest that κ-opioid agonists might suppress clasping behavior via the same pathway initiated by CORT: up-regulation of endocannabinoid signaling. We examined whether pretreatment with a CB1 antagonist, AM281, would block κ-opioid-mediated suppression of clasping. We found that the CB1 antagonist did not reverse κ-opioid-induced suppression of clasping, revealing that while endocannabinoids mediate CORT-induced suppression of clasping, endocannabinoids do not mediate the κ-opioid-induced suppression of clasping.
Collapse
|
6
|
Leary CJ, Knapp R. The stress of elaborate male traits: integrating glucocorticoids with androgen-based models of sexual selection. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2013.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Munro TA, Huang XP, Inglese C, Perrone MG, Van't Veer A, Carroll FI, Béguin C, Carlezon WA, Colabufo NA, Cohen BM, Roth BL. Selective κ opioid antagonists nor-BNI, GNTI and JDTic have low affinities for non-opioid receptors and transporters. PLoS One 2013; 8:e70701. [PMID: 23976952 PMCID: PMC3747596 DOI: 10.1371/journal.pone.0070701] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/21/2013] [Indexed: 01/16/2023] Open
Abstract
Background Nor-BNI, GNTI and JDTic induce selective κ opioid antagonism that is delayed and extremely prolonged, but some other effects are of rapid onset and brief duration. The transient effects of these compounds differ, suggesting that some of them may be mediated by other targets. Results In binding assays, the three antagonists showed no detectable affinity (Ki≥10 µM) for most non-opioid receptors and transporters (26 of 43 tested). There was no non-opioid target for which all three compounds shared detectable affinity, or for which any two shared sub-micromolar affinity. All three compounds showed low nanomolar affinity for κ opioid receptors, with moderate selectivity over μ and δ (3 to 44-fold). Nor-BNI bound weakly to the α2C-adrenoceptor (Ki = 630 nM). GNTI enhanced calcium mobilization by noradrenaline at the α1A-adrenoceptor (EC50 = 41 nM), but did not activate the receptor, displace radioligands, or enhance PI hydrolysis. This suggests that it is a functionally-selective allosteric enhancer. GNTI was also a weak M1 receptor antagonist (KB = 3.7 µM). JDTic bound to the noradrenaline transporter (Ki = 54 nM), but only weakly inhibited transport (IC50 = 1.1 µM). JDTic also bound to the opioid-like receptor NOP (Ki = 12 nM), but gave little antagonism even at 30 µM. All three compounds exhibited rapid permeation and active efflux across Caco-2 cell monolayers. Conclusions Across 43 non-opioid CNS targets, only GNTI exhibited a potent functional effect (allosteric enhancement of α1A-adrenoceptors). This may contribute to GNTI's severe transient effects. Plasma concentrations of nor-BNI and GNTI may be high enough to affect some peripheral non-opioid targets. Nonetheless, κ opioid antagonism persists for weeks or months after these transient effects dissipate. With an adequate pre-administration interval, our results therefore strengthen the evidence that nor-BNI, GNTI and JDTic are highly selective κ opioid antagonists.
Collapse
MESH Headings
- Allosteric Regulation
- Biological Transport
- Caco-2 Cells
- Calcium/metabolism
- Guanidines/metabolism
- Guanidines/pharmacology
- Humans
- Kinetics
- Morphinans/metabolism
- Morphinans/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/metabolism
- Naltrexone/pharmacology
- Narcotic Antagonists/metabolism
- Narcotic Antagonists/pharmacology
- Norepinephrine/metabolism
- Norepinephrine Plasma Membrane Transport Proteins/metabolism
- Piperidines/metabolism
- Piperidines/pharmacology
- Protein Binding
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Tetrahydroisoquinolines/metabolism
- Tetrahydroisoquinolines/pharmacology
Collapse
Affiliation(s)
- Thomas A. Munro
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
- School of Chemistry and Bio21 Institute, University of Melbourne, Parkville, Australia
- * E-mail:
| | - Xi-Ping Huang
- National Institute of Mental Health Psychoactive Drug Screening Program and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Carmela Inglese
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Bari, Italy
| | - Maria Grazia Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Bari, Italy
| | - Ashlee Van't Veer
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - F. Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, North Carolina, United States of America
| | - Cécile Béguin
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William A. Carlezon
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicola A. Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Bari, Italy
| | - Bruce M. Cohen
- McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryan L. Roth
- National Institute of Mental Health Psychoactive Drug Screening Program and Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
8
|
Ruisanchez É, Cselenyák A, Papp RS, Németh T, Káldi K, Sándor P, Benyó Z. Perivascular expression and potent vasoconstrictor effect of dynorphin A in cerebral arteries. PLoS One 2012; 7:e37798. [PMID: 22662226 PMCID: PMC3360594 DOI: 10.1371/journal.pone.0037798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/27/2012] [Indexed: 12/30/2022] Open
Abstract
Background Numerous literary data indicate that dynorphin A (DYN-A) has a significant impact on cerebral circulation, especially under pathophysiological conditions, but its potential direct influence on the tone of cerebral vessels is obscure. The aim of the present study was threefold: 1) to clarify if DYN-A is present in cerebral vessels, 2) to determine if it exerts any direct effect on cerebrovascular tone, and if so, 3) to analyze the role of κ-opiate receptors in mediating the effect. Methodology/Principal Findings Immunohistochemical analysis revealed the expression of DYN-A in perivascular nerves of rat pial arteries as well as in both rat and human intraparenchymal vessels of the cerebral cortex. In isolated rat basilar and middle cerebral arteries (BAs and MCAs) DYN-A (1–13) and DYN-A (1–17) but not DYN-A (1–8) or dynorphin B (DYN-B) induced strong vasoconstriction in micromolar concentrations. The maximal effects, compared to a reference contraction induced by 124 mM K+, were 115±6% and 104±10% in BAs and 113±3% and 125±9% in MCAs for 10 µM of DYN-A (1–13) and DYN-A (1–17), respectively. The vasoconstrictor effects of DYN-A (1–13) could be inhibited but not abolished by both the κ-opiate receptor antagonist nor-Binaltorphimine dihydrochloride (NORBI) and blockade of Gi/o-protein mediated signaling by pertussis toxin. Finally, des-Tyr1 DYN-A (2–13), which reportedly fails to activate κ-opiate receptors, induced vasoconstriction of 45±11% in BAs and 50±5% in MCAs at 10 µM, which effects were resistant to NORBI. Conclusion/Significance DYN-A is present in rat and human cerebral perivascular nerves and induces sustained contraction of rat cerebral arteries. This vasoconstrictor effect is only partly mediated by κ-opiate receptors and heterotrimeric Gi/o-proteins. To our knowledge our present findings are the first to indicate that DYN-A has a direct cerebral vasoconstrictor effect and that a dynorphin-induced vascular action may be, at least in part, independent of κ-opiate receptors.
Collapse
Affiliation(s)
- Éva Ruisanchez
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
9
|
Thomas P. Rapid steroid hormone actions initiated at the cell surface and the receptors that mediate them with an emphasis on recent progress in fish models. Gen Comp Endocrinol 2012; 175:367-83. [PMID: 22154643 PMCID: PMC3264783 DOI: 10.1016/j.ygcen.2011.11.032] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 02/06/2023]
Abstract
In addition to the classic genomic mechanism of steroid action mediated by activation of intracellular nuclear receptors, there is now extensive evidence that steroids also activate receptors on the cell surface to initiate rapid intracellular signaling and biological responses that are often nongenomic. Recent progress in our understanding of rapid, cell surface-initiated actions of estrogens, progestins, androgens and corticosteroids and the identities of the membrane receptors that act as their intermediaries is briefly reviewed with a special emphasis on studies in teleost fish. Two recently discovered novel proteins with seven-transmembrane domains, G protein-coupled receptor 30 (GPR30), and membrane progestin receptors (mPRs) have the ligand binding and signaling characteristics of estrogen and progestin membrane receptors, respectively, but their functional significance is disputed by some researchers. GPR30 is expressed on the cell surface of fish oocytes and mediates estrogen inhibition of oocyte maturation. mPRα is also expressed on the oocyte cell surface and is the intermediary in progestin induction of oocyte maturation in fish. Recent results suggest there is cross-talk between these two hormonal pathways and that there is reciprocal down-regulation of GPR30 and mPRα expression by estrogens and progestins at different phases of oocyte development to regulate the onset of oocyte maturation. There is also evidence in fish that mPRs are involved in progestin induction of sperm hypermotility and anti-apoptotic actions in ovarian follicle cells. Nonclassical androgen and corticosteroid actions have also been described in fish models but the membrane receptors mediating these actions have not been identified.
Collapse
Affiliation(s)
- Peter Thomas
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
10
|
Remage-Healey L, Bass AH. Estradiol interacts with an opioidergic network to achieve rapid modulation of a vocal pattern generator. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 196:137-46. [PMID: 20035335 PMCID: PMC2809949 DOI: 10.1007/s00359-009-0500-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 12/12/2022]
Abstract
Estrogens rapidly regulate neuronal activity within seconds-to-minutes, yet it is unclear how estrogens interact with neural circuits to rapidly coordinate behavior. This study examines whether 17-beta-estradiol interacts with an opioidergic network to achieve rapid modulation of a vocal control circuit. Adult plainfin midshipman fish emit vocalizations that mainly differ in duration, and rhythmic activity of a hindbrain–spinal vocal pattern generator (VPG) directly establishes the temporal features of midshipman vocalizations. VPG activity is therefore predictive of natural calls, and ‘fictive calls’ can be elicited by electrical microstimulation of the VPG. Prior studies show that intramuscular estradiol injection rapidly (within 5 min) increases fictive call duration in midshipman. Here, we delivered opioid antagonists near the VPG prior to estradiol injection. Rapid estradiol actions on fictive calling were completely suppressed by the broad-spectrum opioid antagonist naloxone and the mu-opioid antagonist beta-funaltrexamine, but were unaffected by the kappa-opioid antagonist nor-binaltorphimine. Unexpectedly, prior to estradiol administration, all three opioid antagonists caused immediate, transient reductions in fictive call duration. Together, our results indicate that: (1) vocal activity is modulated by opioidergic networks, confirming hypotheses from birds and mammals, and (2) the rapid actions of estradiol on vocal patterning depend on interactions with a mu-opioid modulatory network.
Collapse
Affiliation(s)
- Luke Remage-Healey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
11
|
Thomas P, Pang Y, Dong J, Groenen P, Kelder J, de Vlieg J, Zhu Y, Tubbs C. Steroid and G protein binding characteristics of the seatrout and human progestin membrane receptor alpha subtypes and their evolutionary origins. Endocrinology 2007; 148:705-18. [PMID: 17082257 DOI: 10.1210/en.2006-0974] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel progestin receptor (mPR) with seven-transmembrane domains was recently discovered in spotted seatrout and homologous genes were identified in other vertebrates. We show that cDNAs for the mPR alpha subtypes from spotted seatrout (st-mPRalpha) and humans (hu-mPRalpha) encode progestin receptors that display many functional characteristics of G protein-coupled receptors. Flow cytometry and immunocytochemical staining of whole MDA-MB-231 cells stably transfected with the mPRalphas using antibodies directed against their N-terminal regions show the receptors are localized on the plasma membrane and suggest the N-terminal domain is extracellular. Both recombinant st-mPRalpha and hu-mPRalpha display high affinity (Kd 4.2-7.8 nm), limited capacity (Bmax 0.03-0.32 nm), and displaceable membrane binding specific for progestins. Progestins activate a pertussis toxin-sensitive inhibitory G protein (G(i)) to down-regulate membrane-bound adenylyl cyclase activity in both st-mPRalpha- and hu-mPRalpha-transfected cells. Coimmunoprecipitation experiments demonstrate the receptors are directly coupled to the G(i) protein. Similar to G protein-coupled receptors, dissociation of the receptor/G protein complex results in a decrease in ligand binding to the mPRalphas and mutation of the C-terminal, and third intracellular loop of st-mPRalpha causes loss of ligand-dependent G protein activation. Phylogenetic analysis indicates the mPRs are members of a progesterone and adipoQ receptor (PAQR) subfamily that is only present in chordates, whereas other PAQRs also occur in invertebrates and plants. Progesterone and adipoQ receptors are related to the hemolysin3 family and have origins in the Eubacteria. Thus, mPRs arose from Eubacteria independently from members of the GPCR superfamily, which arose from Archeabacteria, suggesting convergent evolution of seven-transmembrane hormone receptors coupled to G proteins.
Collapse
Affiliation(s)
- Peter Thomas
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, Texas 78373, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cornil CA, Ball GF, Balthazart J. Functional significance of the rapid regulation of brain estrogen action: where do the estrogens come from? Brain Res 2006; 1126:2-26. [PMID: 16978590 PMCID: PMC3523229 DOI: 10.1016/j.brainres.2006.07.098] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 12/20/2022]
Abstract
Estrogens exert a wide variety of actions on reproductive and non-reproductive functions. These effects are mediated by slow and long lasting genomic as well as rapid and transient non-genomic mechanisms. Besides the host of studies demonstrating the role of genomic actions at the physiological and behavioral level, mounting evidence highlights the functional significance of non-genomic effects. However, the source of the rapid changes in estrogen availability that are necessary to sustain their fast actions is rarely questioned. For example, the rise of plasma estrogens at pro-estrus that represents one of the fastest documented changes in plasma estrogen concentration appears too slow to explain these actions. Alternatively, estrogen can be synthesized in the brain by the enzyme aromatase providing a source of locally high concentrations of the steroid. Furthermore, recent studies demonstrate that brain aromatase can be rapidly modulated by afferent inputs, including glutamatergic afferents. A role for rapid changes in estrogen production in the central nervous system is supported by experiments showing that acute aromatase inhibition affects nociception as well as male sexual behavior and that preoptic aromatase activity is rapidly (within min) modulated following mating. Such mechanisms thus fulfill the gap existing between the fast actions of estrogen and their mode of production and open new avenues for the understanding of estrogenic effects on the brain.
Collapse
Affiliation(s)
- Charlotte A Cornil
- Department of Psychological and Brain Sciences, Johns Hopkins University, 108 Ames Hall, 3400 North Charles Street, Baltimore, MD 21218-2686, USA.
| | | | | |
Collapse
|
13
|
Leary CJ, Garcia AM, Knapp R. Stress Hormone Is Implicated in Satellite‐Caller Associations and Sexual Selection in the Great Plains Toad. Am Nat 2006; 168:431-40. [PMID: 17004216 DOI: 10.1086/506975] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 06/14/2006] [Indexed: 11/03/2022]
Abstract
The effects of androgens on male-typical traits suggest that variation among males in circulating levels can play a major role in sexual selection. We examined whether variation in vocal attractiveness is attributable to differences in androgen levels among Great Plains toads (Bufo cognatus). We found that noncalling "satellite" males practicing an alternative mating tactic were more likely to associate with males producing long calls. However, callers with satellites did not have higher androgen levels than callers without satellites. Rather, callers with satellites had significantly lower corticosterone (CORT) levels than callers without satellites. A CORT manipulation experiment suggested that differences in calls for males with and without satellites were related to differences in CORT levels. Furthermore, there was a negative correlation between CORT level and call duration within most nights of chorus activity. However, the correlation was weak for the pooled data (across all nights), suggesting that local environmental and/or social factors also affect call duration. Last, we show that females preferred broadcast calls of longer duration, characteristic of males with satellites and low CORT. These results imply that satellites optimize their reproductive success by associating with males producing long calls. However, this association should negatively affect the fitness of attractive callers.
Collapse
|
14
|
Cornil CA, Taziaux M, Baillien M, Ball GF, Balthazart J. Rapid effects of aromatase inhibition on male reproductive behaviors in Japanese quail. Horm Behav 2006; 49:45-67. [PMID: 15963995 PMCID: PMC3515763 DOI: 10.1016/j.yhbeh.2005.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 04/27/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Non-genomic effects of steroid hormones on cell physiology have been reported in the brain. However, relatively little is known about the behavioral significance of these actions. Male sexual behavior is activated by testosterone partly through its conversion to estradiol via the enzyme aromatase in the preoptic area (POA). Brain aromatase activity (AA) changes rapidly which might in turn be important for the rapid regulation of behavior. Here, acute effects of Vorozole, an aromatase inhibitor, injected IP at different doses and times before testing (between 15 and 60 min), were assessed on male sexual behavior in quail. To limit the risk of committing both types of statistical errors (I and II), data of all experiments were entered into a meta-analysis. Vorozole significantly inhibited mount attempts (P < 0.05, size effect [g] = 0.527) and increased the latency to first copulation (P < 0.05, g = 0.251). The treatment had no effect on the other measures of copulatory behavior. Vorozole also inhibited appetitive sexual behavior measured by the social proximity response (P < 0.05, g = 0.534) or rhythmic cloacal sphincter movements (P < 0.001, g = 0.408). Behavioral inhibitions always reached a maximum at 30 min. Another aromatase inhibitor, androstatrienedione, induced a similar rapid inhibition of sphincter movements. Radioenzyme assays demonstrated that within 30 min Vorozole had reached the POA and completely blocked AA measured in homogenates. When added to the extracellular milieu, Vorozole also blocked within 5 min the AA in POA explants maintained in vitro. Together, these data demonstrate that aromatase inhibition rapidly decreases both consummatory and appetitive aspects of male sexual behavior.
Collapse
Affiliation(s)
- Charlotte A Cornil
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, Belgium.
| | | | | | | | | |
Collapse
|
15
|
Marino M, Ascenzi P. Do steroid hormones function via multiple signaling pathways? IUBMB Life 2005; 57:825-7. [PMID: 16393786 DOI: 10.1080/15216540500415628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Maria Marino
- Department of Biology, University Roma Tre, Italy.
| | | |
Collapse
|
16
|
Maier C, Rünzler D, Schindelar J, Grabner G, Waldhäusl W, Köhler G, Luger A. G-protein-coupled glucocorticoid receptors on the pituitary cell membrane. J Cell Sci 2005; 118:3353-61. [PMID: 16079279 DOI: 10.1242/jcs.02462] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rapid, nongenomic actions of glucocorticoids (GCs) have been well documented, but information about putative membrane receptors that mediate them is scarce. We used fluorescence correlation spectroscopy to search for membrane GC-binding on the mouse pituitary cell line AtT-20. A slowly diffusing fraction (τ3; diffusion constant 3×10-10 cm2 s-1) of fluorescein-labeled dexamethasone on the cell membrane corresponds to fluorescein-dexamethasone binding. Preincubation experiments were performed to test binding specificity: a 500-fold excess of unlabeled dexamethasone abolished subsequent fluorescein-dexamethasone membrane binding from 58±2 (control) to 8±1 (% of τ3, mean ± s.e.m.), the natural ligand corticosterone prevented it partially (29±2), while the sex steroids estradiol (56±4) and progesterone (50±4) and the GC-receptor antagonist RU486 (56±2) had no effect. Preincubation with pertussis toxin resulted in disappearance of the slowest diffusion component (11±4) suggesting association of the receptor with a G-protein. Varying the concentration of fluorescein-dexamethasone showed that membrane binding is highly cooperative with an apparent Kd of 180 nM and Bmax of 230 nM. Taken together, these results demonstrate high-affinity GC-binding on the cell membrane of AtT-20 cells with characteristics distinct from intracellular binding.
Collapse
Affiliation(s)
- Christina Maier
- Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
17
|
Chivers JE, Cambridge LM, Catley MC, Mak JC, Donnelly LE, Barnes PJ, Newton R. Differential effects of RU486 reveal distinct mechanisms for glucocorticoid repression of prostaglandin E2 release. ACTA ACUST UNITED AC 2004; 271:4042-52. [PMID: 15479233 DOI: 10.1111/j.1432-1033.2004.04342.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In A549 pulmonary cells, the dexamethasone- and budesonide-dependent repression of interleukin-1beta-induced prostaglandin E2 release was mimicked by the steroid antagonist, RU486. Conversely, whereas dexamethasone and budesonide were highly effective inhibitors of interleukin-1beta-induced cyclooxygenase (COX)/prostaglandin E synthase (PGES) activity and COX-2 expression, RU486 (<1 microm) was a poor inhibitor, but was able to efficiently antagonize the effects of dexamethasone and budesonide. In addition, both dexamethasone and RU486 repressed [3H]arachidonate release, which is consistent with an effect at the level of phospholipase A2 activity. By contrast, glucocorticoid response element-dependent transcription was unaffected by RU486 but induced by dexamethasone and budesonide, whilst dexamethasone- and budesonide-dependent repression of nuclear factor-kappaB-dependent transcription was maximally 30-40% and RU486 (<1 microm) was without significant effect. Thus, two pharmacologically distinct mechanisms of glucocorticoid-dependent repression of prostaglandin E2 release are revealed. First, glucocorticoid-dependent repression of arachidonic acid is mimicked by RU486 and, second, repression of COX/PGES is antagonized by RU486. Finally, whilst all compounds induced glucocorticoid receptor translocation, no role for glucocorticoid response element-dependent transcription is supported in these inhibitory processes and only a limited role for glucocorticoid-dependent inhibition of nuclear factor-kappaB in the repression of COX-2 is indicated.
Collapse
Affiliation(s)
- Joanna E Chivers
- Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College London, Faculty of Medicine, London, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Alexaki VI, Charalampopoulos I, Kampa M, Vassalou H, Theodoropoulos P, Stathopoulos EN, Hatzoglou A, Gravanis A, Castanas E. Estrogen exerts neuroprotective effects via membrane estrogen receptors and rapid Akt/NOS activation. FASEB J 2004; 18:1594-6. [PMID: 15289442 DOI: 10.1096/fj.04-1495fje] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neuroprotective role of estrogen (E2) is supported by a multitude of experimental and epidemiological data, although its mode of action is not fully understood. The present work was conducted to study the underlying mechanisms of its neuroprotective action, using the rat cell line PC12, an established model for neuronal cell apoptosis and survival. Our results show that E2 (but not androgens or progestins) prevent growth inhibition and apoptosis of PC12 cells, induced by serum deprivation. Several mechanisms of action were investigated: 1) intracellular estrogen receptors (ERs) have been identified but do not appear to mediate the protective effect of E2. 2) The antioxidant properties of E2 cannot explain their protective actions at the concentrations used (10(-12)-10(-6) M). 3) Finally, membrane sites for E2 have been identified, and the underlying initial signaling cascade (2-30 min after E2) has been tested, showing Ca(2+) mobilization-->PI3K activation-->Akt phosporylation-->NOS activation. Inhibition of PI3K or NOS completely reversed the anti-apoptotic effect of E2. These results suggest a new mechanism of neuroprotective action of estrogen.
Collapse
Affiliation(s)
- Vasilia-Ismini Alexaki
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mikics E, Kruk MR, Haller J. Genomic and non-genomic effects of glucocorticoids on aggressive behavior in male rats. Psychoneuroendocrinology 2004; 29:618-35. [PMID: 15041085 DOI: 10.1016/s0306-4530(03)00090-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Revised: 03/26/2003] [Accepted: 03/28/2003] [Indexed: 10/27/2022]
Abstract
An increasing body of evidence suggests that glucocorticoids--besides their well-known genomic effects--can affect neuronal function via mechanisms that do not involve the genome. Data obtained mainly in amphibians and birds suggest that such mechanisms play a role in the control of behavior. Acute glucocorticoid treatments increase aggressive behavior in rats, but the mechanism of action has not been investigated to date. To clarify the issue, we have assessed the aggressiveness of male rats after treating them with the corticosterone synthesis inhibitor metyrapone, corticosterone, and the protein synthesis inhibitor cycloheximide. Metyrapone applied intraperitoneally (i.p.) decreased the aggressiveness of residents faced with smaller opponents. Corticosterone administered i.p. 20 or 2 min before a 5-min encounter abolished these changes irrespective of the delay of behavioral testing. Thus, the effects of glucocorticoids on aggressive behavior occurred in less than 7 min (the delay and duration of testing taken together), and lasted more than 25 min. Corticosterone applied centrally (infused into the right lateral ventricle) also stimulated aggressive behavior rapidly, which shows that the effect was centrally mediated. The protein synthesis inhibitor cycloheximide did not affect the aggression-promoting effects of corticosterone when the hormone was injected 2 min before the aggressive encounter. Surprisingly, however, the effects were completely abolished when the hormone was injected 20 min before the encounter. These data suggest that glucocorticoids rapidly increase aggressive behavior via non-genomic mechanisms. In later phases of the aggressive encounter, aggressive behavior appears to be stimulated by genomic mechanisms.
Collapse
Affiliation(s)
- Eva Mikics
- Hungarian Academy of Sciences, Institute of Experimental Medicine, P.O. Box 67, Budapest 1450, Hungary
| | | | | |
Collapse
|
20
|
Watson CS, Gametchu B. Proteins of multiple classes may participate in nongenomic steroid actions. Exp Biol Med (Maywood) 2004; 228:1272-81. [PMID: 14681543 PMCID: PMC1224708 DOI: 10.1177/153537020322801106] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Responses to steroids initiated from non-nuclear receptors impinge on a wide variety of cellular responses and utilize nearly all known signal transduction webs. While the mechanisms by which steroid receptors localize in the membrane are still unclear, it is apparent that this alternative localization allows steroid receptors to participate in a wide range of complex functions influencing cell proliferation, death, and differentiation. The central debate still remains the identity of the protein class or classes that mediate membrane-initiated (nongenomic) responses. The data thus far have supported several possibilities, including: nuclear steroid receptor-like forms in non-nuclear locations; other known (nonsteroid) membrane receptors or channels with additional steroid-binding sites; enzymes; transporters; receptors for serum steroid-binding proteins; unique and previously undescribed proteins; or chimeras of typical steroid receptor domains with other unique or known protein domains. Categorizing membrane steroid receptor proteins based exclusively on the actions of antagonists and agonists, without considering cell context and protein partnering issues, may mislead us into predicting more receptor subtypes than really exist. However, the plethora of signaling and functional outcomes may indicate the participation of more than one kind of steroid-binding protein. Resolving such unanswered questions will require future investigative focus on this alternative arm of steroid action, which is likely to yield as many therapeutic opportunities as have nuclear steroid mechanisms.
Collapse
Affiliation(s)
- Cheryl S Watson
- Department of Human Biological Chemistry and Genetics, University of Texas, Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|
21
|
Chiyo T, Yamazaki T, Aoshika K, Kominami S, Ohta Y. Corticosterone enhances adrenocorticotropin-induced calcium signals in bovine adrenocortical cells. Endocrinology 2003; 144:3376-81. [PMID: 12865316 DOI: 10.1210/en.2002-221126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rapid effects of steroid hormones on Ca(2+) signals have been examined in bovine adrenocortical cells. Among the steroid molecules tested, only corticosterone rapidly stimulated Ca(2+) signals upon addition of ACTH, although corticosterone alone did not induce Ca(2+) signals. Corticosterone also enhanced steroidogenesis induced by ACTH. The enhancement of ACTH-induced Ca(2+) signals was also observed with membrane-impermeable corticosterone conjugated to BSA and was not inhibited by cycloheximide. In addition, corticosterone did not enhance Ca(2+) signals induced by ATP or angiotensin II. These results suggest that corticosterone selectively stimulates ACTH-induced Ca(2+) signals in a nongenomic way by acting on a target in the plasma membrane. Furthermore, the supernatants of cells incubated with ACTH or ATP enhanced Ca(2+) signals, suggesting that steroids produced by such treatment act in an autocrine fashion. Consistent with this idea, these effects were inhibited by inhibitors of steroidogenesis (aminoglutethimide or metyrapone). These results show that steroid molecules synthesized in adrenocortical cells facilitate ACTH-induced Ca(2+) signals. Taken together, corticosterone secreted from adrenocortical cells activates ACTH-induced Ca(2+) signals and steroidogenesis by nongenomic means.
Collapse
Affiliation(s)
- Tomoko Chiyo
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo, 184-8588, Japan
| | | | | | | | | |
Collapse
|
22
|
Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, Wehling M. Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 2003; 83:965-1016. [PMID: 12843413 DOI: 10.1152/physrev.00003.2003] [Citation(s) in RCA: 393] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Steroids may exert their action in living cells by several ways: 1). the well-known genomic pathway, involving hormone binding to cytosolic (classic) receptors and subsequent modulation of gene expression followed by protein synthesis. 2). Alternatively, pathways are operating that do not act on the genome, therefore indicating nongenomic action. Although it is comparatively easy to confirm the nongenomic nature of a particular phenomenon observed, e.g., by using inhibitors of transcription or translation, considerable controversy exists about the identity of receptors that mediate these responses. Many different approaches have been employed to answer this question, including pharmacology, knock-out animals, and numerous biochemical studies. Evidence is presented for and against both the participation of classic receptors, or proteins closely related to them, as well as for the involvement of yet poorly understood, novel membrane steroid receptors. In addition, clinical implications for a wide array of nongenomic steroid actions are outlined.
Collapse
Affiliation(s)
- Ralf M Losel
- Institut für klinische Pharmakologie, Klinikum Mannheim, Theodor-Kutzer-Ufer, D-68167 Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Steroid hormones modulate many physiological processes. The effects of steroids that are mediated by the modulation of gene expression are known to occur with a time lag of hours or even days. Research that has been carried out mainly in the past decade has identified other responses to steroids that are much more rapid and take place in seconds or minutes. These responses follow nongenomic pathways, and they are not rare.
Collapse
Affiliation(s)
- Ralf Lösel
- Institute of Clinical Pharmacology, Faculty of Clinical Medicine Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | | |
Collapse
|
24
|
Makara GB, Haller J. Non-genomic effects of glucocorticoids in the neural system. Evidence, mechanisms and implications. Prog Neurobiol 2001; 65:367-90. [PMID: 11527573 DOI: 10.1016/s0301-0082(01)00012-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Complementing the classical concept of genomic steroid actions, here we (i) review evidence showing that important neural effects of glucocorticoids are exerted by non-genomic mechanisms; (ii) describe known mechanisms that may underlie such effects; (iii) summarize the functions and implications of non-genomic mechanisms and (iv) outline future directions of research. The role of non-genomic mechanisms is to shape the response of the organism to challenges that require a substantial reorganization of neural and somatic functions and involve massive behavioral shifts. Non-genomic effects may (i) prepare the cell for subsequent glucocorticoid-induced genomic changes, (ii) bridge the gap between the early need of change and the delay in the expression of genomic effects and (iii) may induce specific changes that in some instances are opposite to those induced by genomic mechanisms. The latter can be explained by the fact that challenging situations require different responses in early (acute) and later (chronic) phases. Data show that non-genomic mechanisms of glucocorticoid action play a role in both pathological phenomena and the expression of ameliorative pharmacological effects. Non-genomic mechanisms that underlie many glucocorticoid-induced neural changes constitute a for long overlooked controlling factor. Despite the multitude and the variety of accumulated data, important questions remain to be answered.
Collapse
Affiliation(s)
- G B Makara
- Institute of Experimental Medicine, Hungarian Academy of Science, P.O. Box 67, 1450, Budapest, Hungary.
| | | |
Collapse
|