1
|
ElSheikh A, Shyng SL. K ATP channel mutations in congenital hyperinsulinism: Progress and challenges towards mechanism-based therapies. Front Endocrinol (Lausanne) 2023; 14:1161117. [PMID: 37056678 PMCID: PMC10086357 DOI: 10.3389/fendo.2023.1161117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycemia in infancy/childhood and is a serious condition associated with severe recurrent attacks of hypoglycemia due to dysregulated insulin secretion. Timely diagnosis and effective treatment are crucial to prevent severe hypoglycemia that may lead to life-long neurological complications. In pancreatic β-cells, adenosine triphosphate (ATP)-sensitive K+ (KATP) channels are a central regulator of insulin secretion vital for glucose homeostasis. Genetic defects that lead to loss of expression or function of KATP channels are the most common cause of HI (KATP-HI). Much progress has been made in our understanding of the molecular genetics and pathophysiology of KATP-HI in the past decades; however, treatment remains challenging, in particular for patients with diffuse disease who do not respond to the KATP channel activator diazoxide. In this review, we discuss current approaches and limitations on the diagnosis and treatment of KATP-HI, and offer perspectives on alternative therapeutic strategies.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
2
|
Ivanoshchuk D, Shakhtshneider E, Mikhailova S, Ovsyannikova A, Rymar O, Valeeva E, Orlov P, Voevoda M. The Mutation Spectrum of Rare Variants in the Gene of Adenosine Triphosphate (ATP)-Binding Cassette Subfamily C Member 8 in Patients with a MODY Phenotype in Western Siberia. J Pers Med 2023; 13:jpm13020172. [PMID: 36836406 PMCID: PMC9967647 DOI: 10.3390/jpm13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
During differential diagnosis of diabetes mellitus, the greatest difficulties are encountered with young patients because various types of diabetes can manifest themselves in this age group (type 1, type 2, and monogenic types of diabetes mellitus, including maturity-onset diabetes of the young (MODY)). The MODY phenotype is associated with gene mutations leading to pancreatic-β-cell dysfunction. Using next-generation sequencing technology, targeted sequencing of coding regions and adjacent splicing sites of MODY-associated genes (HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, KCNJ11, ABCC8, and APPL1) was carried out in 285 probands. Previously reported missense variants c.970G>A (p.Val324Met) and c.1562G>A (p.Arg521Gln) in the ABCC8 gene were found once each in different probands. Variant c.1562G>A (p.Arg521Gln) in ABCC8 was detected in a compound heterozygous state with a pathogenic variant of the HNF1A gene in a diabetes patient and his mother. Novel frameshift mutation c.4609_4610insC (p.His1537ProfsTer22) in this gene was found in one patient. All these variants were detected in available family members of the patients and cosegregated with diabetes mellitus. Thus, next-generation sequencing of MODY-associated genes is an important step in the diagnosis of rare MODY subtypes.
Collapse
Affiliation(s)
- Dinara Ivanoshchuk
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-4963; Fax: +7-(383)-333-1278
| | - Elena Shakhtshneider
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Svetlana Mikhailova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Alla Ovsyannikova
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Oksana Rymar
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Emil Valeeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Pavel Orlov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Mikhail Voevoda
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Crespo-García T, Rubio-Alarcón M, Cámara-Checa A, Dago M, Rapún J, Nieto-Marín P, Marín M, Cebrián J, Tamargo J, Delpón E, Caballero R. A Cantú syndrome mutation produces dual effects on KATP channels by disrupting ankyrin B regulation. J Gen Physiol 2022; 155:213613. [PMID: 36287534 PMCID: PMC9614705 DOI: 10.1085/jgp.202112995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 02/01/2023] Open
Abstract
ATP-sensitive potassium (KATP) channels composed of Kir6.x and sulfonylurea receptor (SURs) subunits couple cellular metabolism to electrical activity. Cantú syndrome (CS) is a rare disease caused by mutations in the genes encoding Kir6.1 (KCNJ8) and SUR2A (ABCC9) that produce KATP channel hyperactivity due to a reduced channel block by physiological ATP concentrations. We functionally characterized the p.S1054Y SUR2A mutation identified in two CS carriers, who exhibited a mild phenotype although the mutation was predicted as highly pathogenic. We recorded macroscopic and single-channel currents in CHO and HEK-293 cells and measured the membrane expression of the channel subunits by biotinylation assays in HEK-293 cells. The mutation increased basal whole-cell current density and at the single-channel level, it augmented opening frequency, slope conductance, and open probability (Po), and promoted the appearance of multiple conductance levels. p.S1054Y also reduced Kir6.2 and SUR2A expression specifically at the membrane. Overexpression of ankyrin B (AnkB) prevented these gain- and loss-of-function effects, as well as the p.S1054Y-induced reduction of ATP inhibition of currents measured in inside-out macropatches. Yeast two-hybrid assays suggested that SUR2A WT and AnkB interact, while p.S1054Y interaction with AnkB is decreased. The p.E322K Kir6.2 mutation, which prevents AnkB binding to Kir6.2, produced similar biophysical alterations than p.S1054Y. Our results are the first demonstration of a CS mutation whose functional consequences involve the disruption of AnkB effects on KATP channels providing a novel mechanism by which CS mutations can reduce ATP block. Furthermore, they may help explain the mild phenotype associated with this mutation.
Collapse
Affiliation(s)
- Teresa Crespo-García
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - María Dago
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Josu Rapún
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Paloma Nieto-Marín
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - María Marín
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Jorge Cebrián
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain,Correspondence to Eva Delpón:
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Gregorio Marañón, Madrid, Spain,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
4
|
Yang HQ, Echeverry FA, ElSheikh A, Gando I, Anez Arredondo S, Samper N, Cardozo T, Delmar M, Shyng SL, Coetzee WA. Subcellular trafficking and endocytic recycling of K ATP channels. Am J Physiol Cell Physiol 2022; 322:C1230-C1247. [PMID: 35508187 PMCID: PMC9169827 DOI: 10.1152/ajpcell.00099.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Sarcolemmal/plasmalemmal ATP-sensitive K+ (KATP) channels have key roles in many cell types and tissues. Hundreds of studies have described how the KATP channel activity and ATP sensitivity can be regulated by changes in the cellular metabolic state, by receptor signaling pathways and by pharmacological interventions. These alterations in channel activity directly translate to alterations in cell or tissue function, that can range from modulating secretory responses, such as insulin release from pancreatic β-cells or neurotransmitters from neurons, to modulating contractile behavior of smooth muscle or cardiac cells to elicit alterations in blood flow or cardiac contractility. It is increasingly becoming apparent, however, that KATP channels are regulated beyond changes in their activity. Recent studies have highlighted that KATP channel surface expression is a tightly regulated process with similar implications in health and disease. The surface expression of KATP channels is finely balanced by several trafficking steps including synthesis, assembly, anterograde trafficking, membrane anchoring, endocytosis, endocytic recycling, and degradation. This review aims to summarize the physiological and pathophysiological implications of KATP channel trafficking and mechanisms that regulate KATP channel trafficking. A better understanding of this topic has potential to identify new approaches to develop therapeutically useful drugs to treat KATP channel-related diseases.
Collapse
Affiliation(s)
- Hua-Qian Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China
| | | | - Assmaa ElSheikh
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Ivan Gando
- Department of Pathology, NYU School of Medicine, New York, New York
| | | | - Natalie Samper
- Department of Pathology, NYU School of Medicine, New York, New York
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - Mario Delmar
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
- Department of Medicine, NYU School of Medicine, New York, New York
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| | - William A Coetzee
- Department of Pathology, NYU School of Medicine, New York, New York
- Department of Neuroscience & Physiology, NYU School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
5
|
Welch CL, Chung WK. Channelopathy Genes in Pulmonary Arterial Hypertension. Biomolecules 2022; 12:265. [PMID: 35204766 PMCID: PMC8961593 DOI: 10.3390/biom12020265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. The underlying pathogenetic mechanisms are heterogeneous and current therapies aim to decrease pulmonary vascular resistance but no curative treatments are available. Causal genetic variants can be identified in ~13% of adults and 43% of children with PAH. Knowledge of genetic diagnoses can inform clinical management of PAH, including multimodal medical treatment, surgical intervention and transplantation decisions, and screening for associated conditions, as well as risk stratification for family members. Roles for rare variants in three channelopathy genes-ABCC8, ATP13A3, and KCNK3-have been validated in multiple PAH cohorts, and in aggregate explain ~2.7% of PAH cases. Complete or partial loss of function has been demonstrated for PAH-associated variants in ABCC8 and KCNK3. Channels can be excellent targets for drugs, and knowledge of mechanisms for channel mutations may provide an opportunity for the development of PAH biomarkers and novel therapeutics for patients with hereditary PAH but also potentially more broadly for all patients with PAH.
Collapse
Affiliation(s)
- Carrie L. Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Wendy K. Chung
- Department of Pediatrics, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
6
|
Role of Actionable Genes in Pursuing a True Approach of Precision Medicine in Monogenic Diabetes. Genes (Basel) 2022; 13:genes13010117. [PMID: 35052457 PMCID: PMC8774614 DOI: 10.3390/genes13010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Monogenic diabetes is a genetic disorder caused by one or more variations in a single gene. It encompasses a broad spectrum of heterogeneous conditions, including neonatal diabetes, maturity onset diabetes of the young (MODY) and syndromic diabetes, affecting 1-5% of patients with diabetes. Some of these variants are harbored by genes whose altered function can be tackled by specific actions ("actionable genes"). In suspected patients, molecular diagnosis allows the implementation of effective approaches of precision medicine so as to allow individual interventions aimed to prevent, mitigate or delay clinical outcomes. This review will almost exclusively concentrate on the clinical strategy that can be specifically pursued in carriers of mutations in "actionable genes", including ABCC8, KCNJ11, GCK, HNF1A, HNF4A, HNF1B, PPARG, GATA4 and GATA6. For each of them we will provide a short background on what is known about gene function and dysfunction. Then, we will discuss how the identification of their mutations in individuals with this form of diabetes, can be used in daily clinical practice to implement specific monitoring and treatments. We hope this article will help clinical diabetologists carefully consider who of their patients deserves timely genetic testing for monogenic diabetes.
Collapse
|
7
|
Feng J, Wang H, Jing Z, Wang Y, Cheng Y, Wang W, Sun W. Role of Magnesium in Type 2 Diabetes Mellitus. Biol Trace Elem Res 2020; 196:74-85. [PMID: 31713111 DOI: 10.1007/s12011-019-01922-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Magnesium (in its ionized and biologically active form, Mg2+) is an essential trace element that participates in numerous physiologic processes. Abnormal Mg2+ homeostasis can lead to many metabolic disorders, including diabetes mellitus (DM) and its complications. Mg2+ participates in energy generation and is required for DNA and RNA synthesis, reproduction, and protein synthesis. Additionally, Mg2+ acts as a calcium antagonist and protects vascular endothelial cells from oxidative stress. Imbalances in Mg2+ status, more frequently hypomagnesemia, inhibit glucose transporter type 4 translocation, increase insulin resistance, affect lipid metabolism, induce oxidative stress, and impair the antioxidant system of endothelial cells, In these ways, hypomagnesemia contributes to the initiation and progression of DM and its macrovascular and microvascular complications. In this review, we summarize recent advances in knowledge of the mechanisms whereby Mg2+ regulates insulin secretion and sensitivity. In addition, we discuss the future prospects for research regarding the mechanisms whereby Mg2+ status impacts DM and its complications.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Jilin Province, Changchun, 130021, China
| | - Heyuan Wang
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Zhe Jing
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Jilin Province, Changchun, 130021, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yue Wang
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Jilin Province, Changchun, 130021, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Jilin Province, Changchun, 130021, China
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Jilin Province, Changchun, 130021, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Jilin Province, Changchun, 130021, China.
| |
Collapse
|
8
|
Pipatpolkai T, Usher S, Stansfeld PJ, Ashcroft FM. New insights into K ATP channel gene mutations and neonatal diabetes mellitus. Nat Rev Endocrinol 2020; 16:378-393. [PMID: 32376986 DOI: 10.1038/s41574-020-0351-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
The ATP-sensitive potassium channel (KATP channel) couples blood levels of glucose to insulin secretion from pancreatic β-cells. KATP channel closure triggers a cascade of events that results in insulin release. Metabolically generated changes in the intracellular concentrations of adenosine nucleotides are integral to this regulation, with ATP and ADP closing the channel and MgATP and MgADP increasing channel activity. Activating mutations in the genes encoding either of the two types of KATP channel subunit (Kir6.2 and SUR1) result in neonatal diabetes mellitus, whereas loss-of-function mutations cause hyperinsulinaemic hypoglycaemia of infancy. Sulfonylurea and glinide drugs, which bind to SUR1, close the channel through a pathway independent of ATP and are now the primary therapy for neonatal diabetes mellitus caused by mutations in the genes encoding KATP channel subunits. Insight into the molecular details of drug and nucleotide regulation of channel activity has been illuminated by cryo-electron microscopy structures that reveal the atomic-level organization of the KATP channel complex. Here we review how these structures aid our understanding of how the various mutations in the genes encoding Kir6.2 (KCNJ11) and SUR1 (ABCC8) lead to a reduction in ATP inhibition and thereby neonatal diabetes mellitus. We also provide an update on known mutations and sulfonylurea therapy in neonatal diabetes mellitus.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samuel Usher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Boodhansingh KE, Kandasamy B, Mitteer L, Givler S, De Leon DD, Shyng S, Ganguly A, Stanley CA. Novel dominant K ATP channel mutations in infants with congenital hyperinsulinism: Validation by in vitro expression studies and in vivo carrier phenotyping. Am J Med Genet A 2019; 179:2214-2227. [PMID: 31464105 PMCID: PMC6852436 DOI: 10.1002/ajmg.a.61335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/02/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
Inactivating mutations in the genes encoding the two subunits of the pancreatic beta-cell KATP channel, ABCC8 and KCNJ11, are the most common finding in children with congenital hyperinsulinism (HI). Interpreting novel missense variants in these genes is problematic, because they can be either dominant or recessive mutations, benign polymorphisms, or diabetes mutations. This report describes six novel missense variants in ABCC8 and KCNJ11 that were identified in 11 probands with congenital HI. One of the three ABCC8 mutations (p.Ala1458Thr) and all three KCNJ11 mutations were associated with responsiveness to diazoxide. Sixteen family members carried the ABCC8 or KCNJ11 mutations; only two had hypoglycemia detected at birth and four others reported symptoms of hypoglycemia. Phenotype testing of seven adult mutation carriers revealed abnormal protein-induced hypoglycemia in all; fasting hypoketotic hypoglycemia was demonstrated in four of the seven. All of six mutations were confirmed to cause dominant pathogenic defects based on in vitro expression studies in COSm6 cells demonstrating normal trafficking, but reduced responses to MgADP and diazoxide. These results indicate a combination of in vitro and in vivo phenotype tests can be used to differentiate dominant from recessive KATP channel HI mutations and personalize management of children with congenital HI.
Collapse
Affiliation(s)
- Kara E. Boodhansingh
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Balamurugan Kandasamy
- Department of Biochemistry and Molecular BiologyOregon Health & Science UniversityPortlandOregon
| | - Lauren Mitteer
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Stephanie Givler
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Diva D. De Leon
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Show‐Ling Shyng
- Department of Biochemistry and Molecular BiologyOregon Health & Science UniversityPortlandOregon
| | - Arupa Ganguly
- Department of GeneticsThe Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Charles A. Stanley
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
10
|
Balamurugan K, Kavitha B, Yang Z, Mohan V, Radha V, Shyng SL. Functional characterization of activating mutations in the sulfonylurea receptor 1 (ABCC8) causing neonatal diabetes mellitus in Asian Indian children. Pediatr Diabetes 2019; 20:397-407. [PMID: 30861254 PMCID: PMC11423867 DOI: 10.1111/pedi.12843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/28/2019] [Accepted: 02/24/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Gain-of-function of ATP-sensitive K+ (KATP ) channels because of mutations in the genes encoding SUR1 (ABCC8) or Kir6.2 (KCNJ11) is a major cause of neonatal diabetes mellitus (NDM). Our aim is to determine molecular defects in KATP channels caused by ABCC8 mutations in Asian Indian children with NDM by in vitro functional studies. METHODS Wild-type (WT; NM_000352.4) or mutant sulfonylurea receptor 1 (SUR1) and Kir6.2 were co-expressed in COSm6 cells. Biogenesis efficiency and surface expression of mutant channels were assessed by immunoblotting and immunostaining. The response of mutant channels to cytoplasmic ATP and ADP was assessed by inside-out patch-clamp recordings. The response of mutant channels to known KATP inhibitors in intact cells were determined by 86 Rb efflux assays. RESULTS Five SUR1 missense mutations, D212Y, P254S, R653Q, R992C, and Q1224H, were studied and showed increased activity in MgATP/MgADP. Two of the mutants, D212Y and P254S, also showed reduced response to ATP4- inhibition, as well as markedly reduced surface expression. Moreover, all five mutants were inhibited by the KATP channel inhibitors glibenclamide and carbamazepine. CONCLUSIONS The study shows the mechanisms by which five SUR1 mutations identified in Asian Indian NDM patients affect KATP channel function to cause the disease. The reduced ATP4- sensitivity caused by the D212Y and P254S mutations in the L0 of SUR1 provides novel insight into the role of L0 in channel inhibition by ATP. The results also explain why sulfonylurea therapy is effective in two patients and inform how it should be effective for the other three patients.
Collapse
Affiliation(s)
- Kandasamy Balamurugan
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - Babu Kavitha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
| | - Zhongying Yang
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - Viswanathan Mohan
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Advanced Centre for Genomics of Type 2 Diabetes and Dr. Mohan's Diabetes Specialties Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention & Control, IDF Centre of Education, Chennai, India
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
11
|
Bohnen MS, Ma L, Zhu N, Qi H, McClenaghan C, Gonzaga-Jauregui C, Dewey FE, Overton JD, Reid JG, Shuldiner AR, Baras A, Sampson KJ, Bleda M, Hadinnapola C, Haimel M, Bogaard HJ, Church C, Coghlan G, Corris PA, Eyries M, Gibbs JSR, Girerd B, Houweling AC, Humbert M, Guignabert C, Kiely DG, Lawrie A, MacKenzie Ross RV, Martin JM, Montani D, Peacock AJ, Pepke-Zaba J, Soubrier F, Suntharalingam J, Toshner M, Treacy CM, Trembath RC, Vonk Noordegraaf A, Wharton J, Wilkins MR, Wort SJ, Yates K, Gräf S, Morrell NW, Krishnan U, Rosenzweig EB, Shen Y, Nichols CG, Kass RS, Chung WK. Loss-of-Function ABCC8 Mutations in Pulmonary Arterial Hypertension. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e002087. [PMID: 30354297 PMCID: PMC6206877 DOI: 10.1161/circgen.118.002087] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND In pulmonary arterial hypertension (PAH), pathological changes in pulmonary arterioles progressively raise pulmonary artery pressure and increase pulmonary vascular resistance, leading to right heart failure and high mortality rates. Recently, the first potassium channelopathy in PAH, because of mutations in KCNK3, was identified as a genetic cause and pharmacological target. METHODS Exome sequencing was performed to identify novel genes in a cohort of 99 pediatric and 134 adult-onset group I PAH patients. Novel rare variants in the gene identified were independently identified in a cohort of 680 adult-onset patients. Variants were expressed in COS cells and function assessed by patch-clamp and rubidium flux analysis. RESULTS We identified a de novo novel heterozygous predicted deleterious missense variant c.G2873A (p.R958H) in ABCC8 in a child with idiopathic PAH. We then evaluated all individuals in the original and a second cohort for rare or novel variants in ABCC8 and identified 11 additional heterozygous predicted damaging ABCC8 variants. ABCC8 encodes SUR1 (sulfonylurea receptor 1)-a regulatory subunit of the ATP-sensitive potassium channel. We observed loss of ATP-sensitive potassium channel function for all ABCC8 variants evaluated and pharmacological rescue of all channel currents in vitro by the SUR1 activator, diazoxide. CONCLUSIONS Novel and rare missense variants in ABCC8 are associated with PAH. Identified ABCC8 mutations decreased ATP-sensitive potassium channel function, which was pharmacologically recovered.
Collapse
Affiliation(s)
- Michael S. Bohnen
- Dept of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Lijiang Ma
- Dept of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY
| | - Na Zhu
- Dept of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY
- Dept of Systems Biology, Columbia University, New York, NY
| | - Hongjian Qi
- Dept of Applied Physics & Applied Mathematics, Columbia University, New York, NY
- Dept of Systems Biology, Columbia University, New York, NY
| | - Conor McClenaghan
- Dept of Cell Biology & Physiology, and the Centre for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Washington University in St Louis, St Louis, MO
| | | | | | - John D. Overton
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc. Tarrytown, NY
| | - Jeffrey G. Reid
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc. Tarrytown, NY
| | - Alan R. Shuldiner
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc. Tarrytown, NY
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc. Tarrytown, NY
| | - Kevin J. Sampson
- Dept of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Marta Bleda
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - Charaka Hadinnapola
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - Matthias Haimel
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | | | - Colin Church
- Golden Jubilee National Hospital, Glasgow, Scotland
| | | | - Paul A. Corris
- Newcastle University & The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Mélanie Eyries
- Dépt de génétique, hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | - J. Simon R. Gibbs
- National Heart & Lung Institute, Imperial College London, United Kingdom
| | - Barbara Girerd
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, AP-HP, Centre de référence de l’hypertension pulmonaire sévère, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Marc Humbert
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, AP-HP, Centre de référence de l’hypertension pulmonaire sévère, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, AP-HP, Centre de référence de l’hypertension pulmonaire sévère, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Allan Lawrie
- Dept of Infection, Immunity & Cardiovascular Disease, University of Sheffield
| | | | - Jennifer M. Martin
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - David Montani
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, AP-HP, Centre de référence de l’hypertension pulmonaire sévère, INSERM UMR_S 999, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | | | | | - Florent Soubrier
- Dépt de génétique, hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, and UMR_S 1166-ICAN, INSERM, UPMC Sorbonne Universités, Paris, France
| | | | - Mark Toshner
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
- Papworth Hospital, Cambridge
| | - Carmen M. Treacy
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - Richard C. Trembath
- Division of Genetics & Molecular Medicine, King’s College, London, Hammersmith Campus, London
| | | | - John Wharton
- Dept of Medicine, Imperial College London, Hammersmith Campus, London
| | - Martin R. Wilkins
- Dept of Medicine, Imperial College London, Hammersmith Campus, London
| | - Stephen J. Wort
- National Heart & Lung Institute, Imperial College London, United Kingdom
- Royal Brompton Hospital, London, United Kingdom
| | - Katherine Yates
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - Stefan Gräf
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
- Dept of Haematology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - Nicholas W. Morrell
- Dept of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, United Kingdom
| | - Usha Krishnan
- Dept of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY
| | - Erika B. Rosenzweig
- Dept of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY
| | - Yufeng Shen
- Dept of Applied Physics & Applied Mathematics, Columbia University, New York, NY
- Dept of Systems Biology, Columbia University, New York, NY
| | - Colin G. Nichols
- Dept of Cell Biology & Physiology, and the Centre for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Washington University in St Louis, St Louis, MO
| | - Robert S. Kass
- Dept of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Wendy K. Chung
- Dept of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY
| |
Collapse
|
12
|
Kandasamy B, Shyng SL. Methods for Characterizing Disease-Associated ATP-Sensitive Potassium Channel Mutations. Methods Mol Biol 2018; 1684:85-104. [PMID: 29058186 DOI: 10.1007/978-1-4939-7362-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ATP-sensitive potassium (KATP) channel formed by the inwardly rectifying potassium channel Kir6.2 and the sulfonylurea receptor 1 (SUR1) plays a key role in regulating insulin secretion. Genetic mutations in KCNJ11 or ABCC8 which encode Kir6.2 and SUR1 respectively are major causes of insulin secretion disorders: those causing loss of channel function lead to congenital hyperinsulinism, whereas those causing gain of channel function result in neonatal diabetes and in some cases developmental delay, epilepsy, and neonatal diabetes, referred to as the DEND syndrome. Understanding how disease mutations disrupt channel expression and function is important for disease diagnosis and for devising effective therapeutic strategies. Here, we describe a workflow including several biochemical and functional assays to assess the effects of mutations on channel expression and function.
Collapse
Affiliation(s)
- Balamurugan Kandasamy
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd., Mail Code L224, Portland, OR, 97239, USA
| | - Show-Ling Shyng
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd., Mail Code L224, Portland, OR, 97239, USA.
| |
Collapse
|
13
|
Abstract
Since the discovery of the KATP channel in 1983, numerous studies have revealed its physiological functions. The KATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the KATP channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the KATP channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the KATP channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.
Collapse
Affiliation(s)
- Kenju Shimomura
- Department of Medical Electrophysiology, Fukushima Medical University School of Medicine, Japan
| | - Yuko Maejima
- Department of Medical Electrophysiology, Fukushima Medical University School of Medicine, Japan
| |
Collapse
|
14
|
Zammit MA, Agius SM, Calleja-Agius J. Transient Neonatal Diabetes Mellitus: A Challenge and Opportunity for Specialized Nursing Care. Neonatal Netw 2017; 36:196-205. [PMID: 28764822 DOI: 10.1891/0730-0832.36.4.196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transient neonatal diabetes mellitus (TNDM) is a rare disorder, with a reported incidence of approximately 1 in 450,000 live births. It is characterized by insulin-requiring hyperglycemia in the neonatal period. The disease improves by early childhood, but the patient may relapse in later life. Diagnosis is made after genetic testing following presentation with hyperglycemia not conforming to Type 1 or Type 2 diabetes. Management is based on insulin and possible sulfonylurea administration. Three genetically distinct subtypes of TNDM are recognized. Type 1 TNDM is due to overexpression of genes at the 6q24 locus, whereas the 11p15 locus is involved in Type 2 and 3 TNDM. In this article the clinical presentation, management, and genetics of TNDM are discussed, particularly emphasizing the role of the neonatal nurse.
Collapse
|
15
|
Cooper PE, Sala-Rabanal M, Lee SJ, Nichols CG. Differential mechanisms of Cantú syndrome-associated gain of function mutations in the ABCC9 (SUR2) subunit of the KATP channel. ACTA ACUST UNITED AC 2017; 146:527-40. [PMID: 26621776 PMCID: PMC4664827 DOI: 10.1085/jgp.201511495] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations that increase the activity of ATP-sensitive potassium channels through either enhanced activation by MgADP or decreased sensitivity to inhibition by ATP can lead to Cantú syndrome. Cantú syndrome (CS) is a rare disease characterized by congenital hypertrichosis, distinct facial features, osteochondrodysplasia, and cardiac defects. Recent genetic analysis has revealed that the majority of CS patients carry a missense mutation in ABCC9, which codes for the sulfonylurea receptor SUR2. SUR2 subunits couple with Kir6.x, inwardly rectifying potassium pore-forming subunits, to form adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, which link cell metabolism to membrane excitability in a variety of tissues including vascular smooth muscle, skeletal muscle, and the heart. The functional consequences of multiple uncharacterized CS mutations remain unclear. Here, we have focused on determining the functional consequences of three documented human CS-associated ABCC9 mutations: human P432L, A478V, and C1043Y. The mutations were engineered in the equivalent position in rat SUR2A (P429L, A475V, and C1039Y), and each was coexpressed with mouse Kir6.2. Using macroscopic rubidium (86Rb+) efflux assays, we show that KATP channels formed with P429L, A475V, or C1039Y mutants enhance KATP activity compared with wild-type (WT) channels. We used inside-out patch-clamp electrophysiology to measure channel sensitivity to ATP inhibition and to MgADP activation. For P429L and A475V mutants, sensitivity to ATP inhibition was comparable to WT channels, but activation by MgADP was significantly greater. C1039Y-dependent channels were significantly less sensitive to inhibition by ATP or by glibenclamide, but MgADP activation was comparable to WT. The results indicate that these three CS mutations all lead to overactive KATP channels, but at least two mechanisms underlie the observed gain of function: decreased ATP inhibition and enhanced MgADP activation.
Collapse
Affiliation(s)
- Paige E Cooper
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110 Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110
| | - Monica Sala-Rabanal
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110 Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110
| | - Sun Joo Lee
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110 Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110 Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
16
|
Chidrawar VR. Exploiting the role of various types of ion-channels against chemically induced inflammatory bowel disease in male Wistar rats. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)60992-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Zhou Q, Chen PC, Devaraneni PK, Martin GM, Olson EM, Shyng SL. Carbamazepine inhibits ATP-sensitive potassium channel activity by disrupting channel response to MgADP. Channels (Austin) 2015; 8:376-82. [PMID: 24849284 DOI: 10.4161/chan.29117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In pancreatic β-cells, K(ATP) channels consisting of Kir6.2 and SUR1 couple cell metabolism to membrane excitability and regulate insulin secretion. Sulfonylureas, insulin secretagogues used to treat type II diabetes, inhibit K(ATP) channel activity primarily by abolishing the stimulatory effect of MgADP endowed by SUR1. In addition, sulfonylureas have been shown to function as pharmacological chaperones to correct channel biogenesis and trafficking defects. Recently, we reported that carbamazepine, an anticonvulsant known to inhibit voltage-gated sodium channels, has profound effects on K(ATP) channels. Like sulfonylureas, carbamazepine corrects trafficking defects in channels bearing mutations in the first transmembrane domain of SUR1. Moreover, carbamazepine inhibits the activity of K(ATP) channels such that rescued mutant channels are unable to open when the intracellular ATP/ADP ratio is lowered by metabolic inhibition. Here, we investigated the mechanism by which carbamazepine inhibits K(ATP) channel activity. We show that carbamazepine specifically blocks channel response to MgADP. This gating effect resembles that of sulfonylureas. Our results reveal striking similarities between carbamazepine and sulfonylureas in their effects on K(ATP) channel biogenesis and gating and suggest that the 2 classes of drugs may act via a converging mechanism.
Collapse
|
18
|
Devaraneni PK, Martin GM, Olson EM, Zhou Q, Shyng SL. Structurally distinct ligands rescue biogenesis defects of the KATP channel complex via a converging mechanism. J Biol Chem 2015; 290:7980-91. [PMID: 25637631 DOI: 10.1074/jbc.m114.634576] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small molecules that correct protein misfolding and misprocessing defects offer a potential therapy for numerous human diseases. However, mechanisms underlying pharmacological correction of such defects, especially in heteromeric complexes with structurally diverse constituent proteins, are not well understood. Here we investigate how two chemically distinct compounds, glibenclamide and carbamazepine, correct biogenesis defects in ATP-sensitive potassium (KATP) channels composed of sulfonylurea receptor 1 (SUR1) and Kir6.2. We present evidence that despite structural differences, carbamazepine and glibenclamide compete for binding to KATP channels, and both drugs share a binding pocket in SUR1 to exert their effects. Moreover, both compounds engage Kir6.2, in particular the distal N terminus of Kir6.2, which is involved in normal channel biogenesis, for their chaperoning effects on SUR1 mutants. Conversely, both drugs can correct channel biogenesis defects caused by Kir6.2 mutations in a SUR1-dependent manner. Using an unnatural, photocross-linkable amino acid, azidophenylalanine, genetically encoded in Kir6.2, we demonstrate in living cells that both drugs promote interactions between the distal N terminus of Kir6.2 and SUR1. These findings reveal a converging pharmacological chaperoning mechanism wherein glibenclamide and carbamazepine stabilize the heteromeric subunit interface critical for channel biogenesis to overcome defective biogenesis caused by mutations in individual subunits.
Collapse
Affiliation(s)
- Prasanna K Devaraneni
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Gregory M Martin
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Erik M Olson
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Qing Zhou
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Show-Ling Shyng
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
19
|
Martin GM, Chen PC, Devaraneni P, Shyng SL. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels. Front Physiol 2013; 4:386. [PMID: 24399968 PMCID: PMC3870925 DOI: 10.3389/fphys.2013.00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/09/2013] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Pei-Chun Chen
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Prasanna Devaraneni
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|
20
|
Abstract
Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels in pancreatic β-cells play a crucial role in insulin secretion and glucose homeostasis. These channels are composed of two subunits: a pore-forming subunit (Kir6.2) and a regulatory subunit (sulphonylurea receptor-1). Recent studies identified large number of gain of function mutations in the regulatory subunit of the channel which cause neonatal diabetes. Majority of mutations cause neonatal diabetes alone, however some lead to a severe form of neonatal diabetes with associated neurological complications. This review focuses on the functional effects of these mutations as well as the implications for treatment.
Collapse
Affiliation(s)
- Peter Proks
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Denton JS, Jacobson DA. Channeling dysglycemia: ion-channel variations perturbing glucose homeostasis. Trends Endocrinol Metab 2012; 23:41-8. [PMID: 22134088 PMCID: PMC3733341 DOI: 10.1016/j.tem.2011.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 01/26/2023]
Abstract
Maintaining blood glucose homeostasis is a complex process that depends on pancreatic islet hormone secretion. Hormone secretion from islets is coupled to calcium entry which results from regenerative islet cell electrical activity. Therefore, the ionic mechanisms that regulate calcium entry into islet cells are crucial for maintaining normal glucose homeostasis. Genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs), including five located in or near ion-channel or associated subunit genes, which show an association with human diseases characterized by dysglycemia. This review focuses on polymorphisms and mutations in ion-channel genes that are associated with perturbations in human glucose homeostasis and discusses their potential roles in modulating pancreatic islet hormone secretion.
Collapse
Affiliation(s)
- Jerod Scott Denton
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
22
|
Babenko AP, Vaxillaire M. Mechanism of KATP hyperactivity and sulfonylurea tolerance due to a diabetogenic mutation in L0 helix of sulfonylurea receptor 1 (ABCC8). FEBS Lett 2011; 585:3555-9. [PMID: 22020219 DOI: 10.1016/j.febslet.2011.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/07/2011] [Indexed: 01/21/2023]
Abstract
Activating mutations in different domains of the ABCC8 gene-coded sulfonylurea receptor 1 (SUR1) cause neonatal diabetes. Here we show that a diabetogenic mutation in an unexplored helix preceding the ABC core of SUR1 dramatically increases open probability of (SUR1/Kir6.2)(4) channel (KATP) by reciprocally changing rates of its transitions to and from the long-lived, inhibitory ligand-stabilized closed state. This kinetic mechanism attenuates ATP and sulfonylurea inhibition, but not Mg-nucleotide stimulation, of SUR1/Kir6.2. The results suggest a key role for L0 helix in KATP gating and together with previous findings from mutant KATP clarify why many patients with neonatal diabetes require high doses of sulfonylureas.
Collapse
Affiliation(s)
- Andrey P Babenko
- Pacific Northwest Research Institute, University of Washington Diabetes Endocrinology Research Center, Seattle, WA 98122, United States.
| | | |
Collapse
|
23
|
Quan Y, Barszczyk A, Feng ZP, Sun HS. Current understanding of K ATP channels in neonatal diseases: focus on insulin secretion disorders. Acta Pharmacol Sin 2011; 32:765-80. [PMID: 21602835 PMCID: PMC4009965 DOI: 10.1038/aps.2011.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/13/2011] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels are cell metabolic sensors that couple cell metabolic status to electric activity, thus regulating many cellular functions. In pancreatic beta cells, K(ATP) channels modulate insulin secretion in response to fluctuations in plasma glucose level, and play an important role in glucose homeostasis. Recent studies show that gain-of-function and loss-of-function mutations in K(ATP) channel subunits cause neonatal diabetes mellitus and congenital hyperinsulinism respectively. These findings lead to significant changes in the diagnosis and treatment for neonatal insulin secretion disorders. This review describes the physiological and pathophysiological functions of K(ATP) channels in glucose homeostasis, their specific roles in neonatal diabetes mellitus and congenital hyperinsulinism, as well as future perspectives of K(ATP) channels in neonatal diseases.
Collapse
Affiliation(s)
- Yi Quan
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Andrew Barszczyk
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Hong-shuo Sun
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|