1
|
Suda K, Pignatelli J, Genis L, Fernandez AM, de Sevilla EF, de la Cruz IF, Pozo-Rodrigalvarez A, de Ceballos ML, Díaz-Pacheco S, Herrero-Labrador R, Aleman IT. A role for astrocytic insulin-like growth factor I receptors in the response to ischemic insult. J Cereb Blood Flow Metab 2024; 44:970-984. [PMID: 38017004 PMCID: PMC11318401 DOI: 10.1177/0271678x231217669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023]
Abstract
Increased neurotrophic support, including insulin-like growth factor I (IGF-I), is an important aspect of the adaptive response to ischemic insult. However, recent findings indicate that the IGF-I receptor (IGF-IR) in neurons plays a detrimental role in the response to stroke. Thus, we investigated the role of astrocytic IGF-IR on ischemic insults using tamoxifen-regulated Cre deletion of IGF-IR in glial fibrillary acidic protein (GFAP) astrocytes, a major cellular component in the response to injury. Ablation of IGF-IR in astrocytes (GFAP-IGF-IR KO mice) resulted in larger ischemic lesions, greater blood-brain-barrier disruption and more deteriorated sensorimotor coordination. RNAseq detected increases in inflammatory, cell adhesion and angiogenic pathways, while the expression of various classical biomarkers of response to ischemic lesion were significantly increased at the lesion site compared to control littermates. While serum IGF-I levels after injury were decreased in both control and GFAP-IR KO mice, brain IGF-I mRNA expression show larger increases in the latter. Further, greater damage was also accompanied by altered glial reactivity as reflected by changes in the morphology of GFAP astrocytes, and relative abundance of ionized calcium binding adaptor molecule 1 (Iba 1) microglia. These results suggest a protective role for astrocytic IGF-IR in the response to ischemic injury.
Collapse
Affiliation(s)
- Kentaro Suda
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jaime Pignatelli
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Laura Genis
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Ana M Fernandez
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | | | | | | | - Maria L de Ceballos
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sonia Díaz-Pacheco
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Raquel Herrero-Labrador
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Ignacio Torres Aleman
- CIBERNED, Madrid, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
3
|
Gadd G, Åberg D, Wall A, Zetterberg H, Blennow K, Jood K, Jern C, Isgaard J, Svensson J, Åberg ND. A Nonlinear Relation between Body Mass Index and Long-Term Poststroke Functional Outcome-The Importance of Insulin Resistance, Inflammation, and Insulin-like Growth Factor-Binding Protein-1. Int J Mol Sci 2024; 25:4931. [PMID: 38732147 PMCID: PMC11084577 DOI: 10.3390/ijms25094931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Both high serum insulin-like growth factor-binding protein-1 (s-IGFBP-1) and insulin resistance (IR) are associated with poor functional outcome poststroke, whereas overweight body mass index (BMI; 25-30) is related to fewer deaths and favorable functional outcome in a phenomenon labeled "the obesity paradox". Furthermore, IGFBP-1 is inversely related to BMI, in contrast to the linear relation between IR and BMI. Here, we investigated s-IGFBP-1 and IR concerning BMI and 7-year poststroke functional outcome. We included 451 stroke patients from the Sahlgrenska Study on Ischemic Stroke (SAHLSIS) with baseline measurements of s-IGFBP1, homeostasis model assessment of IR (HOMA-IR), BMI (categories: normal-weight (8.5-25), overweight (25-30), and obesity (>30)), and high-sensitivity C-reactive protein (hs-CRP) as a measure of general inflammation. Associations with poor functional outcome (modified Rankin scale [mRS] score: 3-6) after 7 years were evaluated using multivariable binary logistic regression, with overweight as reference due to the nonlinear relationship. Both normal-weight (odds-ratio [OR] 2.32, 95% confidence interval [CI] 1.30-4.14) and obese (OR 2.25, 95% CI 1.08-4.71) patients had an increased risk of poor functional outcome, driven by deaths only in the normal-weight. In normal-weight, s-IGFBP-1 modestly attenuated (8.3%) this association. In the obese, the association was instead attenuated by HOMA-IR (22.4%) and hs-CRP (10.4%). Thus, a nonlinear relation between BMI and poor 7-year functional outcome was differently attenuated in the normal-weight and the obese.
Collapse
Affiliation(s)
- Gustaf Gadd
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (D.Å.); (A.W.); (J.I.); (J.S.); (N.D.Å.)
- Region Västra Götaland, Department of Acute Medicine and Geriatrics, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Daniel Åberg
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (D.Å.); (A.W.); (J.I.); (J.S.); (N.D.Å.)
- Region Västra Götaland, Department of Specialist Medicine, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Alexander Wall
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (D.Å.); (A.W.); (J.I.); (J.S.); (N.D.Å.)
- Närhälsan, Region Västra Götaland, 411 04 Gothenburg, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53707, USA
- UK Dementia Research Institute, University College London (UCL), London WC1E 6BT, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75005 Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230001, China
| | - Katarina Jood
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Christina Jern
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Jörgen Isgaard
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (D.Å.); (A.W.); (J.I.); (J.S.); (N.D.Å.)
- Region Västra Götaland, Department of Specialist Medicine, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (D.Å.); (A.W.); (J.I.); (J.S.); (N.D.Å.)
- Region Västra Götaland, Department of Internal Medicine, Skaraborg Central Hospital, 549 49 Skövde, Sweden
| | - N. David Åberg
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (D.Å.); (A.W.); (J.I.); (J.S.); (N.D.Å.)
- Region Västra Götaland, Department of Acute Medicine and Geriatrics, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| |
Collapse
|
4
|
Wypych M, Domitrz I, Kochanowski J. Insulin-like growth factor 1 and its prognostic value in the course of acute ischemic cerebrovascular events. Arch Med Sci Atheroscler Dis 2023; 8:e146-e154. [PMID: 38283930 PMCID: PMC10811535 DOI: 10.5114/amsad/172970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction The aim of the study was to evaluate insulin-like growth factor 1 (IGF-1) as a predictor of the course of an acute cerebral ischemic event (AICE). This polypeptide, by activating receptors that are present in most tissues, including the brain, mediates the anabolic activity of growth hormone (GH) and its impact on growth and maturation processes, as well as organisms' survival time. AICE can occur in the form of a transient ischemic attack (TIA) or an ischemic stroke (IS). Material and methods The study included 86 participants. The correlation between serum IGF-1 concentration and the clinical status of 56 patients on days 1 and 9 of AICE, as well as risk factors and the course of the disease, were prospectively analyzed. The control group consisted of 30 healthy volunteers. Results Patients with a minor baseline neurological syndrome had higher serum IGF-1 concentrations than patients with severe baseline neurological dysfunctions. Multidimensional analyses showed that high IGF-1 values independently determined the worse course of the disease, especially in patients with a severe neurological deficit present on the first day of AICE. Conclusions Our results indicate that the high level of circulating IGF-1 on the first day of AICE is an independent factor determining the unfavorable course of the stroke, and this relationship is proportional to the severity of the baseline neurological deficit. The study also revealed a positive correlation between the decreased plasma IGF-1 concentration on the first day of AICE and the severity of neurological symptoms.
Collapse
Affiliation(s)
- Martyna Wypych
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Warsaw, Poland
| | - Izabela Domitrz
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Warsaw, Poland
| | - Jan Kochanowski
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Du H, Xia J, Huang L, Zheng L, Gu W, Yi F. Relationship between insulin-like growth factor-1 and cerebral small vessel disease and its mechanisms: advances in the field. Front Aging Neurosci 2023; 15:1190869. [PMID: 37358957 PMCID: PMC10285072 DOI: 10.3389/fnagi.2023.1190869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is an active polypeptide protein that closely resembles the structural sequence of insulin and is involved in a variety of metabolic processes in the body. Decreased IGF-1 circulation levels are associated with an increased risk of stroke and a poorer prognosis, but the relationship with cerebral small vessel disease (cSVD) is unclear. Some studies found that the level of IGF-1 in patients with cSVD was significantly reduced, but the clinical significance and underlying mechanisms are unknown. This article reviews the correlation between IGF-1 and cerebrovascular disease and explores the potential relationship and mechanism between IGF-1 and cSVD.
Collapse
Affiliation(s)
- Hao Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Huang
- Department of Rehabilitation, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Lan Zheng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenping Gu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Yi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Åberg D, Gadd G, Jood K, Redfors P, Stanne TM, Isgaard J, Blennow K, Zetterberg H, Jern C, Åberg ND, Svensson J. Serum IGFBP-1 Concentration as a Predictor of Outcome after Ischemic Stroke-A Prospective Observational Study. Int J Mol Sci 2023; 24:ijms24119120. [PMID: 37298072 DOI: 10.3390/ijms24119120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Insulin-like growth factor-binding protein-1 (IGFBP-1) regulates insulin-like growth factor-I (IGF-I) bioactivity, and is a central player in normal growth, metabolism, and stroke recovery. However, the role of serum IGFBP-1 (s-IGFBP-1) after ischemic stroke is unclear. We determined whether s-IGFBP-1 is predictive of poststroke outcome. The study population comprised patients (n = 470) and controls (n = 471) from the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS). Functional outcome was evaluated after 3 months, 2, and 7 years using the modified Rankin Scale (mRS). Survival was followed for a minimum of 7 years or until death. S-IGFBP-1 was increased after 3 months (p < 0.01), but not in the acute phase after stroke, compared with the controls. Higher acute s-IGFBP-1 was associated with poor functional outcome (mRS score > 2) after 7 years [fully adjusted odds ratio (OR) per log increase 2.9, 95% confidence interval (CI): 1.4-5.9]. Moreover, higher s-IGFBP-1 after 3 months was associated with a risk of poor functional outcome after 2 and 7 years (fully adjusted: OR 3.4, 95% CI: 1.4-8.5 and OR 5.7, 95% CI: 2.5-12.8, respectively) and with increased mortality risk (fully adjusted: HR 2.0, 95% CI: 1.1-3.7). Thus, high acute s-IGFBP-1 was only associated with poor functional outcome after 7 years, whereas s-IGFBP-1 after 3 months was an independent predictor of poor long-term functional outcome and poststroke mortality.
Collapse
Affiliation(s)
- Daniel Åberg
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Specialist Medicine, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - Gustaf Gadd
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Acute Medicine and Geriatrics, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - Katarina Jood
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - Petra Redfors
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - Tara M Stanne
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jörgen Isgaard
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Specialist Medicine, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - Kaj Blennow
- Region Västra Götaland, Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- Region Västra Götaland, Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London (UCL), London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706-1380, USA
| | - Christina Jern
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Region Västra Götaland, Department of Genetics and Genomics, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - N David Åberg
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Acute Medicine and Geriatrics, Sahlgrenska University Hospital, Blå Stråket 5, 413 45 Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Blå Stråket 5, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Internal Medicine, Skaraborg Central Hospital, 541 42 Skövde, Sweden
| |
Collapse
|
7
|
Zorina II, Avrova NF, Zakharova IO, Shpakov AO. Prospects for the Use of Intranasally Administered Insulin and Insulin-Like Growth Factor-1 in Cerebral Ischemia. BIOCHEMISTRY (MOSCOW) 2023; 88:374-391. [PMID: 37076284 DOI: 10.1134/s0006297923030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Current approaches to the treatment of stroke have significant limitations, and neuroprotective therapy is ineffective. In view of this, searching for effective neuroprotectors and developing new neuroprotective strategies remain a pressing topic in research of cerebral ischemia. Insulin and insulin-like growth factor-1 (IGF-1) play a key role in the brain functioning by regulating the growth, differentiation, and survival of neurons, neuronal plasticity, food intake, peripheral metabolism, and endocrine functions. Insulin and IGF-1 produce multiple effects in the brain, including neuroprotective action in cerebral ischemia and stroke. Experiments in animals and cell cultures have shown that under hypoxic conditions, insulin and IGF-1 improve energy metabolism in neurons and glial cells, promote blood microcirculation in the brain, restore nerve cell functions and neurotransmission, and produce the anti-inflammatory and antiapoptotic effects on brain cells. The intranasal route of insulin and IGF-1 administration is of particular interest in the clinical practice, since it allows controlled delivery of these hormones directly to the brain, bypassing the blood-brain barrier. Intranasally administered insulin alleviated cognitive impairments in elderly people with neurodegenerative and metabolic disorders; intranasally administered insulin and IGF-1 promoted survival of animals with ischemic stroke. The review discusses the published data and results of our own studies on the mechanisms of neuroprotective action of intranasally administered insulin and IGF-1 in cerebral ischemia, as well as the prospects of using these hormones for normalization of CNS functions and reduction of neurodegenerative changes in this pathology.
Collapse
Affiliation(s)
- Inna I Zorina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia.
| | - Natalia F Avrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| | - Irina O Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| | - Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| |
Collapse
|
8
|
Guan J, Li F, Kang D, Anderson T, Pitcher T, Dalrymple-Alford J, Shorten P, Singh-Mallah G. Cyclic Glycine-Proline (cGP) Normalises Insulin-Like Growth Factor-1 (IGF-1) Function: Clinical Significance in the Ageing Brain and in Age-Related Neurological Conditions. Molecules 2023; 28:molecules28031021. [PMID: 36770687 PMCID: PMC9919809 DOI: 10.3390/molecules28031021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) function declines with age and is associated with brain ageing and the progression of age-related neurological conditions. The reversible binding of IGF-1 to IGF binding protein (IGFBP)-3 regulates the amount of bioavailable, functional IGF-1 in circulation. Cyclic glycine-proline (cGP), a metabolite from the binding site of IGF-1, retains its affinity for IGFBP-3 and competes against IGF-1 for IGFBP-3 binding. Thus, cGP and IGFBP-3 collectively regulate the bioavailability of IGF-1. The molar ratio of cGP/IGF-1 represents the amount of bioavailable and functional IGF-1 in circulation. The cGP/IGF-1 molar ratio is low in patients with age-related conditions, including hypertension, stroke, and neurological disorders with cognitive impairment. Stroke patients with a higher cGP/IGF-1 molar ratio have more favourable clinical outcomes. The elderly with more cGP have better memory retention. An increase in the cGP/IGF-1 molar ratio with age is associated with normal cognition, whereas a decrease in this ratio with age is associated with dementia in Parkinson disease. In addition, cGP administration reduces systolic blood pressure, improves memory, and aids in stroke recovery. These clinical and experimental observations demonstrate the role of cGP in regulating IGF-1 function and its potential clinical applications in age-related brain diseases as a plasma biomarker for-and an intervention to improve-IGF-1 function.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Brain Research New Zealand, The Centre for Research Excellent, Dunedin 9016, New Zealand
- The cGP Lab Limited New Zealand, Auckland 1021, New Zealand
- Correspondence: ; Tel.: +64-9-923-6134
| | - Fengxia Li
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510075, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Dali Kang
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Brain Research New Zealand, The Centre for Research Excellent, Dunedin 9016, New Zealand
- Shenyang Medical College, Shenyang 110034, China
| | - Tim Anderson
- New Zealand Brain Research Institute, Christchurch 4710, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
| | - Toni Pitcher
- New Zealand Brain Research Institute, Christchurch 4710, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
| | - John Dalrymple-Alford
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
- Department of Psychology, University of Canterbury, Christchurch 4710, New Zealand
| | - Paul Shorten
- AgResearch Ltd., Ruakura Research Centre, Hamilton 3214, New Zealand
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | - Gagandeep Singh-Mallah
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
9
|
Lagging C, Klasson S, Pedersen A, Nilsson S, Jood K, Stanne TM, Jern C. Investigation of 91 proteins implicated in neurobiological processes identifies multiple candidate plasma biomarkers of stroke outcome. Sci Rep 2022; 12:20080. [PMID: 36418382 PMCID: PMC9684578 DOI: 10.1038/s41598-022-23288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
The inter-individual variation in stroke outcomes is large and protein studies could point to potential underlying biological mechanisms. We measured plasma levels of 91 neurobiological proteins in 209 cases included in the Sahlgrenska Academy Study on Ischemic Stroke using a Proximity Extension Assay, and blood was sampled in the acute phase and at 3-month and 7-year follow-ups. Levels were also determined once in 209 controls. Acute stroke severity and neurological outcome were evaluated by the National Institutes of Health Stroke Scale. In linear regression models corrected for age, sex, and sampling day, acute phase levels of 37 proteins were associated with acute stroke severity, and 47 with 3-month and/or 7-year outcome at false discovery rate < 0.05. Three-month levels of 8 proteins were associated with 7-year outcome, of which the associations for BCAN and Nr-CAM were independent also of acute stroke severity. Most proteins followed a trajectory with lower levels in the acute phase compared to the 3-month follow-up and the control sampling point. Conclusively, we identified multiple candidate plasma biomarkers of stroke severity and neurological outcome meriting further investigation. This study adds novel information, as most of the reported proteins have not been previously investigated in a stroke cohort.
Collapse
Affiliation(s)
- Cecilia Lagging
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Sofia Klasson
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Annie Pedersen
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Staffan Nilsson
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.5371.00000 0001 0775 6028Division of Applied Mathematics and Statistics, Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Katarina Jood
- grid.8761.80000 0000 9919 9582Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Tara M. Stanne
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Christina Jern
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
10
|
Li Y, Yang W, Li J, Zhang Y, Zhang L, Chen S, He L, Zhang Y. Relationship between serum insulin-like growth factor 1 levels and ischaemic stroke: a systematic review and meta-analysis. BMJ Open 2022; 12:e045776. [PMID: 35705353 PMCID: PMC9204407 DOI: 10.1136/bmjopen-2020-045776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To assess the association of insulin-like growth factor 1 (IGF-1) with the risk of incident ischaemic stroke and outcome after ischaemic stroke. DESIGN A systematic review of primary studies. SETTING Hospitals in Western Sweden, Italy, China and Denmark. METHODS A search was carried out in eligible studies in electronic databases (PubMed, Scopus, Embase, China National Knowledge Infrastructure and Web of Science) updated to 29 December 2020. The relevant data were extracted in order to conduct the meta-analysis. Review Manager V.5.2 was used to pool data and calculate the mean difference (MD) and its 95% CI. Heterogeneity, subgroup analysis, sensitivity analysis and publication bias were also performed in this meta-analysis. RESULTS A total of 2277 patients were included in 17 studies. This meta-analysis indicated that higher serum IGF-1 levels were significantly correlated with less risk of ischaemic stroke (MD=-45.32 95% CI -63.70 to -26.94], p < 0.00001, I2=99%) and better improvement of outcome after ischaemic stroke (MD=27.52, 95% CI 3.89 to 51.14, p=0.02, I2=96%). According to subgroup analysis, heterogeneity comes from country, sample size, male and the time from symptom onset to blood collection. Sensitivity analysis showed that there was no significant influence of any individual study on the pooled MD. The effect of high heterogeneity on result credibility was eliminated when four included studies were merged (MD=-30.32, 95% CI -36.52 to -24.11, p< 0.00001, I2=0%). Moreover, no potential publication bias was discovered in this meta-analysis. CONCLUSION Higher serum IGF-1 was significantly correlated with a lower risk of ischaemic stroke. In view of the high degree of heterogeneity, it may need more studies to confirm the prognostic value of serum IGF-1 levels in ischaemic stroke and explore the sources of heterogeneity.
Collapse
Affiliation(s)
- Yangni Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Weinan Yang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinhui Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yishu Zhang
- Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Simiao Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Lan He
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyan Zhang
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Hoffmann CJ, Kuffner MTC, Lips J, Lorenz S, Endres M, Harms C. Zfp580 Regulates Paracrine and Endocrine Igf1 and Igfbp3 Differently in the Brain and Blood After a Murine Stroke. Front Physiol 2022; 13:887180. [PMID: 35557964 PMCID: PMC9089756 DOI: 10.3389/fphys.2022.887180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Insulin-like growth factor 1 (Igf1) and insulin-like growth factor binding protein 3 (Igfbp3) are endocrine and paracrine factors that influence stroke occurrence, severity, and recovery. Low levels of endocrine Igf1 and Igfbp3 were associated with larger infarct volumes and unfavorable outcomes. Paracrine Igf1 is brain cytoprotective and improves functional recovery after stroke. In this study, we evaluated the effects of zinc finger protein 580 (Zfp580) on endocrine and paracrine Igf1 and Igfbp3 after stroke. Zfp580 suppressed the expression of Igf1 and Igfbp3 in cerebral microvascular endothelial cells (bEnd.3) as determined by real-time RT-PCR. Zfp580 was suppressed by combined oxygen and glucose deprivation (OGD) and mediated the effect of OGD on Igf1 and Igfbp3. In vivo, we evaluated paracrine regulation by real-time RT-PCR of brain lysates and endocrine regulation by ELISA of blood samples. Genomic ablation of Zfp580 did not alter basal paracrine or endocrine Igf1 and Igfbp3 levels. After transient middle cerebral artery occlusion (MCAo), Zfp580 was globally elevated in the brain for up to 3 days. Paracrine Igf1 and Igfbp3 were selectively induced in the ischemic hemisphere from day 2 to day 3 or day 1 to day 7, respectively. In Zfp580 knockout mice, the paracrine regulations of Igf1 and Igfbp3 were attenuated while endocrine Igf1 and the molar Igf1/Igfbp3 ratio were increased. In conclusion, Zfp580 differentially controls paracrine and endocrine Igf1 and Igfbp3 after stroke. Inhibition of Zfp580 might be a new treatment target leading to increased activity of Igf1 to improve stroke outcome.
Collapse
Affiliation(s)
- Christian J Hoffmann
- Klinik und Hochschulambulanz Für Neurologie Mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Melanie T C Kuffner
- Klinik und Hochschulambulanz Für Neurologie Mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Janet Lips
- Klinik und Hochschulambulanz Für Neurologie Mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stephanie Lorenz
- Klinik und Hochschulambulanz Für Neurologie Mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- Klinik und Hochschulambulanz Für Neurologie Mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany
| | - Christoph Harms
- Klinik und Hochschulambulanz Für Neurologie Mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany
| |
Collapse
|
12
|
Growth Hormone Increases BDNF and mTOR Expression in Specific Brain Regions after Photothrombotic Stroke in Mice. Neural Plast 2022; 2022:9983042. [PMID: 35465399 PMCID: PMC9033347 DOI: 10.1155/2022/9983042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Aims We have shown that growth hormone (GH) treatment poststroke increases neuroplasticity in peri-infarct areas and the hippocampus, improving motor and cognitive outcomes. We aimed to explore the mechanisms of GH treatment by investigating how GH modulates pathways known to induce neuroplasticity, focusing on association between brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) in the peri-infarct area, hippocampus, and thalamus. Methods Recombinant human growth hormone (r-hGH) or saline was delivered (0.25 μl/hr, 0.04 mg/day) to mice for 28 days, commencing 48 hours after photothrombotic stroke. Protein levels of pro-BDNF, total-mTOR, phosphorylated-mTOR, total-p70S6K, and phosporylated-p70S6K within the peri-infarct area, hippocampus, and thalamus were evaluated by western blotting at 30 days poststroke. Results r-hGH treatment significantly increased pro-BDNF in peri-infarct area, hippocampus, and thalamus (p < 0.01). r-hGH treatment significantly increased expression levels of total-mTOR in the peri-infarct area and thalamus (p < 0.05). r-hGH treatment significantly increased expression of total-p70S6K in the hippocampus (p < 0.05). Conclusion r-hGH increases pro-BDNF within the peri-infarct area and regions that are known to experience secondary neurodegeneration after stroke. Upregulation of total-mTOR protein expression in the peri-infarct and thalamus suggests that this might be a pathway that is involved in the neurorestorative effects previously reported in these animals and warrants further investigation. These findings suggest region-specific mechanisms of action of GH treatment and provide further understanding for how GH treatment promotes neurorestorative effects after stroke.
Collapse
|
13
|
Duan R, Wang N, Shang Y, Li H, Liu Q, Li L, Zhao X. TNF-α (G-308A) Polymorphism, Circulating Levels of TNF-α and IGF-1: Risk Factors for Ischemic Stroke—An Updated Meta-Analysis. Front Aging Neurosci 2022; 14:831910. [PMID: 35370618 PMCID: PMC8966404 DOI: 10.3389/fnagi.2022.831910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Objective Accumulated studies have explored gene polymorphisms and circulating levels of tumor necrosis factor (TNF)-α and insulin-like growth factor (IGF)-1 in the etiology of ischemic stroke (IS). Of the numerous etiopathological factors for IS, a single-nucleotide polymorphism (SNP) rs1800629 located in the TNF-α gene promoter region and increased levels of TNF-α were found to be associated with IS in different ethnic backgrounds. However, the published results are inconsistent and inconclusive. The primary objective of this meta-analysis was to investigate the concordance between rs1800629 polymorphism and IS. A secondary aim was to explore circulating levels of TNF-α and IGF-1 with IS in different ethnic backgrounds and different sourced specimens. Methods In this study, we examined whether rs1800629 genetic variant and levels of TNF-α and IGF-1 were related to the etiology of IS by performing a meta-analysis. Relevant case-control studies were retrieved by database searching and systematically selected according to established inclusion criteria. Results A total of 47 articles were identified that explored the relationship between the rs1800629 polymorphism and levels of TNF-α and IGF-1 with IS risk susceptibility. Statistical analyses revealed a significant association between the rs1800629 polymorphism and levels of TNF-α and IGF-1 with IS pathogenesis. Conclusion Our findings demonstrated that the TNF-α rs1800629 polymorphism, the increased levels of TNF-α, and decreased levels of IGF-1 were involved in the etiology of IS.
Collapse
Affiliation(s)
- Ranran Duan
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Wang
- Department of Neurorehabilitation, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Shang
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hengfen Li
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Liu
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Li Li,
| | - Xiaofeng Zhao
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Xiaofeng Zhao,
| |
Collapse
|
14
|
Kristinsson S, Fridriksson J. Genetics in aphasia recovery. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:283-296. [PMID: 35078606 DOI: 10.1016/b978-0-12-823384-9.00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Considerable research efforts have been exerted toward understanding the mechanisms underlying recovery in aphasia. However, predictive models of spontaneous and treatment-induced recovery remain imprecise. Some of the hitherto unexplained variability in recovery may be accounted for with genetic data. A few studies have examined the effects of the BDNF val66met polymorphism on aphasia recovery, yielding mixed results. Advances in the study of stroke genetics and genetics of stroke recovery, including identification of several susceptibility genes through candidate-gene or genome-wide association studies, may have implications for the recovery of language function. The current chapter discusses both the direct and indirect evidence for a genetic basis of aphasia recovery, the implications of recent findings within the field, and potential future directions to advance understanding of the genetics-recovery associations.
Collapse
Affiliation(s)
- Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
15
|
Gong P, Zou Y, Zhang W, Tian Q, Han S, Xu Z, Chen Q, Wang X, Li M. The neuroprotective effects of Insulin-Like Growth Factor 1 via the Hippo/YAP signaling pathway are mediated by the PI3K/AKT cascade following cerebral ischemia/reperfusion injury. Brain Res Bull 2021; 177:373-387. [PMID: 34717965 DOI: 10.1016/j.brainresbull.2021.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 10/07/2021] [Accepted: 10/26/2021] [Indexed: 10/20/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) has neuroprotective actions, including vasodilatory, anti-inflammatory, and antithrombotic effects, following ischemic stroke. However, the molecular mechanisms underlying the neuroprotective effects of IGF-1 following ischemic stroke remain unknown. Therefore, in the present study, we investigated whether IGF-1 exerted its neuroprotective effects by regulating the Hippo/YAP signaling pathway, potentially via activation of the PI3K/AKT cascade, following ischemic stroke. In the in vitro study, we exposed cultured PC12 and SH-5YSY cells, and cortical primary neurons, to oxygen-glucose deprivation. Cell viability was measured using CCK-8 assay. In the in vivo study, Sprague-Dawley rats were subjected to middle cerebral artery occlusion. Neurological function was assessed using a modified neurologic scoring system and the modified neurological severity score (mNSS) test, brain edema was detected by brain water content measurement, infarct volume was measured using triphenyltetrazolium chloride staining, and neuronal death and apoptosis were evaluated by TUNEL/NeuN double staining, HE and Nissl staining, and immunohistochemistry staining for NeuN. Finally, western blot analysis was used to measure the level of IGF-1 in vivo and levels of YAP/TAZ, PI3K and phosphorylated AKT (p-AKT) both in vitro and in vivo. IGF-1 induced activation of YAP/TAZ, which resulted in improved cell viability in vitro, and reduced neurological deficits, brain water content, neuronal death and apoptosis, and cerebral infarct volume in vivo. Notably, the neuroprotective effects of IGF-1 were blocked by an inhibitor of the PI3K/AKT cascade, LY294002. LY294002 treatment not only downregulated PI3K and p-AKT, but YAP/TAZ as well, leading to aggravation of neurological dysfunction and worsening of brain damage. Our findings indicate that the neuroprotective effects of IGF-1 are, at least in part mediated by upregulation of YAP/TAZ via activation of the PI3K/AKT cascade following cerebral ischemic stroke.
Collapse
Affiliation(s)
- Pian Gong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Yichun Zou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Wei Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Shoumeng Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| |
Collapse
|
16
|
Hayes CA, Valcarcel-Ares MN, Ashpole NM. Preclinical and clinical evidence of IGF-1 as a prognostic marker and acute intervention with ischemic stroke. J Cereb Blood Flow Metab 2021; 41:2475-2491. [PMID: 33757314 PMCID: PMC8504958 DOI: 10.1177/0271678x211000894] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ischemic strokes are highly prevalent in the elderly population and are a leading cause of mortality and morbidity worldwide. The risk of ischemic stroke increases in advanced age, corresponding with a noted decrease in circulating insulin growth factor-1 (IGF-1). IGF-1 is a known neuroprotectant involved in embryonic development, neurogenesis, neurotransmission, cognition, and lifespan. Clinically, several studies have shown that reduced levels of IGF-1 correlate with increased mortality rate, poorer functional outcomes, and increased morbidities following an ischemic stroke. In animal models of ischemia, administering exogenous IGF-1 using various routes of administration (intranasal, intravenous, subcutaneous, or topical) at various time points prior to and following insult attenuates neurological damage and accompanying behavioral changes caused by ischemia. However, there are some contrasting findings in select clinical and preclinical studies. This review discusses the role of IGF-1 as a determinant factor of ischemic stroke outcomes, both within the clinical settings and preclinical animal models. Furthermore, the review provides insight on the role of IGF-1 in mechanisms and cellular processes that contribute to stroke damage.
Collapse
Affiliation(s)
- Cellas A Hayes
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, USA
| | - M Noa Valcarcel-Ares
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Mississippi, USA.,Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
17
|
Insulin-Like Growth Factor-II and Ischemic Stroke-A Prospective Observational Study. Life (Basel) 2021; 11:life11060499. [PMID: 34072372 PMCID: PMC8230196 DOI: 10.3390/life11060499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
Insulin-like growth factor-II (IGF-II) regulates prenatal brain development, but the role in adult brain function and injury is unclear. Here, we determined whether serum levels of IGF-II (s-IGF-II) are associated with mortality and functional outcome after ischemic stroke (IS). The study population comprised ischemic stroke cases (n = 492) and controls (n = 514) from the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS). Functional outcome was evaluated after 3 months and 2 years using the modified Rankin Scale (mRS), and additionally, survival was followed at a minimum of 7 years or until death. S-IGF-II levels were higher in IS cases both in the acute phase and at 3-month follow-up compared to controls (p < 0.05 and p < 0.01, respectively). The lowest quintile of acute s-IGF-II was, compared to the four higher quintiles, associated with an increased risk of post-stroke mortality (median follow-up 10.6 years, crude hazard ratio (HR) 2.34, 95% confidence interval (CI) 1.56–3.49, and fully adjusted HR 1.64, 95% CI 1.02–2.61). In contrast, crude associations with poor functional outcome (mRS 3–6) lost significance after full adjustment for covariates. In conclusion, s-IGF-II was higher in IS cases than in controls, and low acute s-IGF-II was an independent risk marker of increased mortality.
Collapse
|
18
|
Salzmann A, James SN, Williams DM, Richards M, Cadar D, Schott JM, Coath W, Sudre CH, Chaturvedi N, Garfield V. Investigating the Relationship Between IGF-I, IGF-II, and IGFBP-3 Concentrations and Later-Life Cognition and Brain Volume. J Clin Endocrinol Metab 2021; 106:1617-1629. [PMID: 33631000 PMCID: PMC8118585 DOI: 10.1210/clinem/dgab121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND The insulin/insulin-like signaling (IIS) pathways, including insulin-like growth factors (IGFs), vary with age. However, their association with late-life cognition and neuroimaging parameters is not well characterized. METHODS Using data from the British 1946 birth cohort, we investigated associations of IGF-I, IGF-II and IGF binding protein 3 (IGFBP-3; measured at 53 and 60-64 years of age) with cognitive performance [word-learning test (WLT) and visual letter search (VLS) at 60-64 years and 69 years of age] and cognitive state [Addenbrooke's Cognitive Exam III (ACE-III) at 69-71 years of age], and in a proportion, quantified neuroimaging measures [whole brain volume (WBV), white matter hyperintensity volume (WMHV), hippocampal volume (HV)]. Regression models included adjustments for demographic, lifestyle, and health factors. RESULTS Higher IGF-I and IGF-II at 53 years of age was associated with higher ACE-III scores [ß 0.07 95% confidence interval (CI) (0.02, 0.12); scoreACE-III 89.48 (88.86, 90.1), respectively). IGF-II at 53 years of age was additionally associated with higher WLT scores [scoreWLT 20 (19.35, 20.65)]. IGFBP-3 at 60 to 64 years of age was associated with favorable VLS score at 60 to 64 and 69 years of age [ß 0.07 (0.01, 0.12); ß 0.07 (0.02, 0.12), respectively], higher memory and cognitive state at 69 years of age [ß 0.07 (0.01, 0.12); ß 0.07 (0.01, 0.13), respectively], and reduced WMHV [ß -0.1 (-0.21, -0.00)]. IGF-I/IGFBP-3 at 60 to 64 years of was associated with lower VLS scores at 69 years of age [ß -0.08 (-0.15, -0.02)]. CONCLUSIONS Increased measure in IIS parameters (IGF-I, IGF-II, and IGFBP-3) relate to better cognitive state in later life. There were apparent associations with specific cognitive domains (IGF-II relating to memory; IGFBP-3 relating to memory, processing speed, and WMHV; and IGF-I/IGFBP-3 molar ratio related to slower processing speed). IGFs and IGFBP-3 are associated with favorable cognitive function outcomes.
Collapse
Affiliation(s)
- Antoine Salzmann
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Dylan M Williams
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Dorina Cadar
- Department of Behavioural Science and Health, University College London, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, The Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - William Coath
- Department of Neurodegenerative Disease, The Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Carole H Sudre
- Department of Neurodegenerative Disease, The Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Nishi Chaturvedi
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Victoria Garfield
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| |
Collapse
|
19
|
Yang W, Li G, Cao K, Ma P, Guo Y, Tong W, Wan J. Exogenous insulin-like growth factor 1 attenuates acute ischemic stroke-induced spatial memory impairment via modulating inflammatory response and tau phosphorylation. Neuropeptides 2020; 83:102082. [PMID: 32863068 DOI: 10.1016/j.npep.2020.102082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 01/22/2023]
Abstract
Acute ischemic stroke is one of the main causes of mortality and morbidity worldwide. The present study aimed to explore the effects of exogenous insulin-like growth factor 1 (IGF-1) on the cognitive injuries induced by acute ischemic stroke and the underlying mechanisms. Acute ischemic stroke rat model was established via transient occlusion of the left middle cerebral artery to male Sprague-Dawley rats. IGF-1 was administered intravenously every other day 24 h after surgery for 14 days. Cognitive functions were determined by Morris water maze assay. Cerebral infarction and edema were determined by riphenyltetrazolium chloride staining and cerebral water content measurement. ELISA and Western blot were performed to detect concentrations of target proteins. Ischemic stroke rats exhibited reduced plasma IGF-1 level and impaired cognitive functions. Intravenous IGF-1 delivery increased the IGF-1 levels in plasma, ischemic amygdala, hippocampus and cortex, improved the neurological dysfunction, cognitive deficits, cerebral infarction and brain edema. Furthermore, IGF-1 relieved the systemic and cerebral inflammatory response by inhibiting the secretion of pro-inflammatory cytokines, interleukin (IL)-6, IL-1β, and tumor necrosis factor alpha (TNF-α), in serum and ischemic hippocampus of ischemic rats. Additionally, IGF-1 attenuated tau phosphorylation in ischemic hippocampus. In short, intravenous IGF-1 administration attenuates acute ischemic stroke-induced cognitive injuries in the experimental rat model possibly via modulating inflammatory response and tau phosphorylation, and might be of promising therapeutic value to ischemic stroke in the future.
Collapse
Affiliation(s)
- Wenjin Yang
- Department of Neurosurgery, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China
| | - Gaoyi Li
- Department of Neurosurgery, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China
| | - Ke Cao
- Department of Neurosurgery, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China
| | - Peng Ma
- Department of Neurosurgery, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China
| | - Yijun Guo
- Department of Neurosurgery, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China
| | - Wusong Tong
- Department of Neurosurgery, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China.
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, the People's Hospital of Pudong New Area, No. 490 South Chuanhuan Road, Pudong New Area, Shanghai 201299, China.
| |
Collapse
|
20
|
Åberg ND, Wall A, Anger O, Jood K, Andreasson U, Blennow K, Zetterberg H, Isgaard J, Jern C, Svensson J. Circulating levels of vascular endothelial growth factor and post-stroke long-term functional outcome. Acta Neurol Scand 2020; 141:405-414. [PMID: 31919840 DOI: 10.1111/ane.13219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Vascular endothelial growth factor (VEGF) acts in angiogenesis and neuroprotection, although the beneficial effects on experimental ischemic stroke (IS) have not been replicated in clinical studies. We investigated serum VEGF (s-VEGF) in the acute stage (baseline) and 3 months post-stroke in relation to stroke severity and functional outcome. METHODS The s-VEGF and serum high-sensitivity C-reactive protein (hs-CRP) concentrations were measured in patients enrolled in the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS) at the acute time-point (median 4 days, N = 492, 36% female; mean age, 57 years) and at 3 months post-stroke (N = 469). Baseline stroke severity was classified according to the National Institutes of Health Stroke Scale (NIHSS), and functional outcomes (3 months and 2 years) were evaluated using the modified Rankin Scale (mRS), dichotomized into good (mRS 0-2), and poor (mRS 3-6) outcomes. Multivariable logistic regression analyses were adjusted for covariates. RESULTS The baseline s-VEGF did not correlate with stroke severity but correlated moderately with hs-CRP (r = .17, P < .001). The baseline s-VEGF was 39.8% higher in total anterior cerebral infarctions than in lacunar cerebral infarctions. In binary logistic regression analysis, associations with 3-month functional outcome were non-significant. However, an association between the 3-month s-VEGF and poor 2-year outcome withstood adjustments for age, sex, cardiovascular covariates, and stroke severity (per 10-fold increase in s-VEGF, odds ratio [OR], 2.56, 95% confidence interval [CI] 1.12-5.82) or hs-CRP (OR 2.53, CI 1.15-5.55). CONCLUSIONS High 3-month s-VEGF is independently associated with poor 2-year functional outcome but not with 3-month outcome.
Collapse
Affiliation(s)
- N. David Åberg
- Department of Internal Medicine Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Alexander Wall
- Department of Internal Medicine Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Olof Anger
- Department of Internal Medicine Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Katarina Jood
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
- Department for Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Ulf Andreasson
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Mölndal Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Mölndal Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Mölndal Sweden
- Department of Laboratory Medicine Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Neurodegenerative Disease UCL Institute of Neurology London UK
- UK Dementia Research Institute at UCL London UK
| | - Jörgen Isgaard
- Department of Internal Medicine Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Christina Jern
- Department of Laboratory Medicine Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Clinical Genetics and Genomics Sahlgrenska University Hospital Gothenburg Sweden
| | - Johan Svensson
- Department of Internal Medicine Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Region Västra Götaland Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
21
|
Åberg ND, Gadd G, Åberg D, Hällgren P, Blomstrand C, Jood K, Nilsson M, Walker FR, Svensson J, Jern C, Isgaard J. Relationship between Levels of Pre-Stroke Physical Activity and Post-Stroke Serum Insulin-Like Growth Factor I. Biomedicines 2020; 8:biomedicines8030052. [PMID: 32143318 PMCID: PMC7148508 DOI: 10.3390/biomedicines8030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Physical activity (PA) and insulin-like growth factor I (IGF-I) have beneficial effects for patients who have suffered an ischemic stroke (stroke). However, the relationship between the levels of PA and IGF-I after stroke has not been explored in detail. We investigated the pre-stroke PA level in relation to the post-stroke serum IGF-I (s-IGF-I) level, at baseline and at 3 months after the index stroke, and calculated the change that occurred between these two time-points (ΔIGF-I). Patients (N = 380; 63.4% males; mean age, 54.7 years) with data on 1-year leisure-time pre-stroke PA and post-stroke s-IGF-I levels were included from the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS). Stroke severity was assessed using the National Institutes of Health Stroke Scale (NIHSS). Pre-stroke, leisure-time PA was self-reported as PA1–4, with PA1 representing sedentary and PA2–4 indicating progressively higher PA levels. Associations between s-IGF-I and PA were evaluated by multiple linear regressions with PA1 as the reference and adjustments being made for sex, age, history of previous stroke or myocardial infarctions, cardiovascular risk factors, and stroke severity. PA correlated with baseline s-IGF-I and ΔIGF-I, but not with the 3-month s-IGF-I. In the linear regressions, there were corresponding associations that remained as a tendency (baseline s-IGF-I, p = 0.06) or as a significant effect (ΔIGF-I, p = 0.03) after all the adjustments. Specifically, for each unit of PA, ΔIGF-I increased by 9.7 (95% CI 1,1−18.4) ng/mL after full adjustment. This supports the notion that pre-stroke PA is independently related to ΔIGF-I.
Collapse
Affiliation(s)
- N. David Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden; (G.G.); (D.Å.); (J.S.); (J.I.)
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg SE-41345, Sweden;
- Correspondence: ; Tel.: +46-31-342-8422
| | - Gustaf Gadd
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden; (G.G.); (D.Å.); (J.S.); (J.I.)
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg SE-41345, Sweden;
| | - Daniel Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden; (G.G.); (D.Å.); (J.S.); (J.I.)
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg SE-41345, Sweden;
| | - Peter Hällgren
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg SE-41345, Sweden;
| | - Christian Blomstrand
- Department for Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (C.B.); (K.J.)
| | - Katarina Jood
- Department for Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (C.B.); (K.J.)
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, the University of Newcastle, University Dr, Callaghan, NSW 2308, Australia; (M.N.); (F.R.W.)
- Hunter Medical Research Institute, Lot 1, Kookaburra Cct, New Lambton Heights, NSW 2305, Australia
| | - Fredrick R. Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, the University of Newcastle, University Dr, Callaghan, NSW 2308, Australia; (M.N.); (F.R.W.)
- Hunter Medical Research Institute, Lot 1, Kookaburra Cct, New Lambton Heights, NSW 2305, Australia
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden; (G.G.); (D.Å.); (J.S.); (J.I.)
| | - Christina Jern
- Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden;
- Department of Clinical genetics and genomics, Sahlgrenska University Hospital, SE-41345 Gothenburg, Sweden
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden; (G.G.); (D.Å.); (J.S.); (J.I.)
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, the University of Newcastle, University Dr, Callaghan, NSW 2308, Australia; (M.N.); (F.R.W.)
| |
Collapse
|
22
|
Serhan A, Aerts JL, Boddeke EW, Kooijman R. Neuroprotection by Insulin-like Growth Factor-1 in Rats with Ischemic Stroke is Associated with Microglial Changes and a Reduction in Neuroinflammation. Neuroscience 2020; 426:101-114. [DOI: 10.1016/j.neuroscience.2019.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/27/2023]
|
23
|
Walser M, Svensson J, Karlsson L, Motalleb R, Åberg M, Kuhn HG, Isgaard J, Åberg ND. Growth Hormone and Neuronal Hemoglobin in the Brain-Roles in Neuroprotection and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2020; 11:606089. [PMID: 33488521 PMCID: PMC7821093 DOI: 10.3389/fendo.2020.606089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, evidence for hemoglobin (Hb) synthesis in both animal and human brains has been accumulating. While circulating Hb originating from cerebral hemorrhage or other conditions is toxic, there is also substantial production of neuronal Hb, which is influenced by conditions such as ischemia and regulated by growth hormone (GH), insulin-like growth factor-I (IGF-I), and other growth factors. In this review, we discuss the possible functions of circulating and brain Hb, mainly the neuronal form, with respect to the neuroprotective activities of GH and IGF-I against ischemia and neurodegenerative diseases. The molecular pathways that link Hb to the GH/IGF-I system are also reviewed, although the limited number of reports on this topic suggests a need for further studies. In summary, GH and/or IGF-I appear to be significant determinants of systemic and local brain Hb concentrations through mediating responses to oxygen and metabolic demand, as part of the neuroprotective effects exerted by GH and IGF-I. The nature and quantity of the latter deserve further exploration in specific experiments.
Collapse
Affiliation(s)
- Marion Walser
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Marion Walser,
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Karlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Reza Motalleb
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maria Åberg
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- School of Public Health and Community Medicine at University of Gothenburg, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Institute for Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - N David Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
24
|
Serhan A, Boddeke E, Kooijman R. Insulin-Like Growth Factor-1 Is Neuroprotective in Aged Rats With Ischemic Stroke. Front Aging Neurosci 2019; 11:349. [PMID: 31920629 PMCID: PMC6918863 DOI: 10.3389/fnagi.2019.00349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/29/2019] [Indexed: 01/01/2023] Open
Abstract
Post-stroke systemic injections of insulin-like growth factor-1 (IGF-1) exert neuroprotective effects in rats. In the current study, we aimed to test the efficacy of IGF-1 neuroprotection in aged rats (24–25 months old) and to compare the results with adult rats (6–7 months old). Furthermore, we addressed putative differences in microglial responses to IGF-1 in adult and aged rats. Rats were subjected to ischemic stroke while they were conscious by infusing endothelin-1 (Et-1) through a guide cannula that was implemented in the vicinity of the middle cerebral artery (MCA). Rats were given subcutaneous injections of IGF-1 (1 mg/kg) at 30 min and 120 min after the insult. Post-stroke IGF-1 treatment reduced the infarct size by 34% and 38% in aged and adult rats, respectively. The IGF-1 treated adult rats also showed significant improvement in sensorimotor function following stroke, while this function was not significantly affected in aged rats. Furthermore, aged rats displayed exaggerated activation of microglia in the ischemic hemisphere. Significant reduction of microglial activation by IGF-1 was only detected at specific regions in the ipsilateral hemisphere of adult rats. We show that IGF-1 reduced infarct size in aged rats with an ischemic stroke. It remains to be established, however, whether the age-related changes in microglial function affect the improvement in behavioral outcomes.
Collapse
Affiliation(s)
- Ahmad Serhan
- Department of Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium.,Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erik Boddeke
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ron Kooijman
- Department of Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
25
|
Åberg D, Åberg ND, Jood K, Holmegaard L, Redfors P, Blomstrand C, Isgaard J, Jern C, Svensson J. Homeostasis model assessment of insulin resistance and outcome of ischemic stroke in non-diabetic patients - a prospective observational study. BMC Neurol 2019; 19:177. [PMID: 31345181 PMCID: PMC6657049 DOI: 10.1186/s12883-019-1406-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background Insulin resistance (IR) in relation to diabetes is a risk factor for ischemic stroke (IS), whereas less is known about non-diabetic IR and outcome after IS. Methods In non-diabetic IS (n = 441) and controls (n = 560) from the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS), IR was investigated in relation to IS severity and functional outcome. IR was evaluated acutely and after 3 months using the Homeostasis model assessment of IR (HOMA-IR). Stroke severity was assessed by the National Institutes of Health Stroke Scale (NIHSS). Functional outcome was evaluated using the modified Rankin Scale (mRS) after 3 months, 2 and 7 years. Associations were evaluated by logistic regression. Results Higher acute and 3-month HOMA-IR was observed in IS compared to the controls (both p < 0.001) and in severe compared to mild IS (both p < 0.05). High acute HOMA-IR was associated with poor outcome (mRS 3–6) after 3 months and 7 years [crude Odds ratios (ORs), 95% confidence intervals (CIs) 1.50, 1.07–2.11 and 1.59, 1.11–2.30, respectively], but not after 2 years. These associations lost significance after adjustment for all covariates including initial stroke severity. In the largest IS subtype (cryptogenic stroke), acute HOMA-IR was associated with poor outcome after 2 years also after adjustment for age and stroke severity (OR 2.86, 95% CI 1.01–8.12). Conclusions In non-diabetic IS patients, HOMA-IR was elevated and related to stroke severity, but after adjustment for IS severity, the associations between HOMR-IR and poor outcome lost significance. This could suggest that elevated IR mostly is a part of the acute IS morbidity. However, in the subgroup of cryptogenic stroke, the associations with poor outcome withstood correction for stroke severity.
Collapse
Affiliation(s)
- Daniel Åberg
- Department of Internal Medicine, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden. .,Department of Internal Medicine, Sahlgrenska University Hospital, University of Gothenburg, Blå stråket 5, SE-413 45, Göteborg, Sweden.
| | - N David Åberg
- Department of Internal Medicine, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Center of Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Katarina Jood
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lukas Holmegaard
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Redfors
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Christian Blomstrand
- Center of Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Christina Jern
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Pathology and Clinical Genetics, Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Erlandsson MC, Lyngfelt L, Åberg ND, Wasén C, Espino RA, Silfverswärd ST, Nadali M, Jood K, Andersson KM, Pullerits R, Bokarewa MI. Low serum IGF1 is associated with hypertension and predicts early cardiovascular events in women with rheumatoid arthritis. BMC Med 2019; 17:141. [PMID: 31327319 PMCID: PMC6643304 DOI: 10.1186/s12916-019-1374-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Since low insulin-like growth factor (IGF) 1 is often linked to inflammation, we analyze whether serum levels of IGF1 are associated with cardiovascular disease (CVD) in rheumatoid arthritis (RA) in a longitudinal observational study. METHODS A CVD risk was estimated (eCVR) in 184 female RA patients (mean age 52 years) and in 132 female patients after ischemic stroke (mean age 56 years) with no rheumatic disease, using the Framingham algorithm. The median level of IGF1 divided the cohorts in IGF1high and IGF1low groups. A 5-year prospective follow-up for new CVD events was completed in all RA patients. The Mantel-Cox analysis and event-free survival curves were prepared. Unsupervised clustering of proteins within the IGF1 signaling pathway was employed to identify their association with eCVR. RESULTS Low IGF1 resulted in a higher eCVR in RA patients (7.2% and 3.3%, p = 0.0063) and in stroke (9.3% and 7.1%, p = 0.033). RA had higher rate for new CVD events at prospective follow-up (OR 4.96, p = 0.028). Hypertension was the major risk factor associated with low IGF1 in RA and stroke. In hypertension, IGF1 was no longer responsible for intracellular activation and lost its correlation to IRS1/2 adaptor proteins. The clustering analysis confirmed that combination of low IGF1 and IRS1/2 with high IL6, insulin, and glucose predisposed to high eCVR and emphasized the functional role of serum IGF1. CONCLUSIONS Low serum IGF1 precedes and predicts development of early CVD events in female RA patients. Hypertension and aberrant IGF1 receptor signaling are highlighted as the important contributors to IGF1-related CVD events.
Collapse
Affiliation(s)
- Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Guldhedsgatan 10A, SE-41345 Gothenburg, Sweden
- Rheumatology Clinic, the Sahlgrenska University Hospital, Gothenburg, Region of West Götaland Sweden
| | - Lovisa Lyngfelt
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Guldhedsgatan 10A, SE-41345 Gothenburg, Sweden
| | - N. David Åberg
- Department of Internal Medicine, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Caroline Wasén
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Guldhedsgatan 10A, SE-41345 Gothenburg, Sweden
| | - Rachelle A. Espino
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Guldhedsgatan 10A, SE-41345 Gothenburg, Sweden
- Keele University, Keele, UK
| | - Sofia Töyrä Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Guldhedsgatan 10A, SE-41345 Gothenburg, Sweden
| | - Mitra Nadali
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Guldhedsgatan 10A, SE-41345 Gothenburg, Sweden
- Rheumatology Clinic, the Sahlgrenska University Hospital, Gothenburg, Region of West Götaland Sweden
| | - Katharina Jood
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, the Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin M.E. Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Guldhedsgatan 10A, SE-41345 Gothenburg, Sweden
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Guldhedsgatan 10A, SE-41345 Gothenburg, Sweden
- Rheumatology Clinic, the Sahlgrenska University Hospital, Gothenburg, Region of West Götaland Sweden
- Department of Clinical Immunology and Transfusion Medicine, the Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Guldhedsgatan 10A, SE-41345 Gothenburg, Sweden
- Rheumatology Clinic, the Sahlgrenska University Hospital, Gothenburg, Region of West Götaland Sweden
| |
Collapse
|
27
|
Abstract
Non-communicable diseases, such as cardiovascular diseases, are the leading cause of mortality worldwide. For this reason, a tremendous effort is being made worldwide to effectively circumvent these afflictions, where insulin-like growth factor 1 (IGF1) is being proposed both as a marker and as a central cornerstone in these diseases, making it an interesting molecule to focus on. Firstly, at the initiation of metabolic deregulation by overfeeding, IGF1 is decreased/inhibited. Secondly, such deficiency seems to be intimately related to the onset of MetS and establishment of vascular derangements leading to atherosclerosis and finally playing a definitive part in cerebrovascular and myocardial accidents, where IGF1 deficiency seems to render these organs vulnerable to oxidative and apoptotic/necrotic damage. Several human cohort correlations together with basic/translational experimental data seem to confirm deep IGF1 implication, albeit with controversy, which might, in part, be given by experimental design leading to blurred result interpretation.
Collapse
|
28
|
Ploughman M, Eskes GA, Kelly LP, Kirkland MC, Devasahayam AJ, Wallack EM, Abraha B, Hasan SMM, Downer MB, Keeler L, Wilson G, Skene E, Sharma I, Chaves AR, Curtis ME, Bedford E, Robertson GS, Moore CS, McCarthy J, Mackay-Lyons M. Synergistic Benefits of Combined Aerobic and Cognitive Training on Fluid Intelligence and the Role of IGF-1 in Chronic Stroke. Neurorehabil Neural Repair 2019; 33:199-212. [PMID: 30816066 DOI: 10.1177/1545968319832605] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Paired exercise and cognitive training have the potential to enhance cognition by "priming" the brain and upregulating neurotrophins. METHODS Two-site randomized controlled trial. Fifty-two patients >6 months poststroke with concerns about cognitive impairment trained 50 to 70 minutes, 3× week for 10 weeks with 12-week follow-up. Participants were randomized to 1 of 2 physical interventions: Aerobic (>60% VO2peak using <10% body weight-supported treadmill) or Activity (range of movement and functional tasks). Exercise was paired with 1 of 2 cognitive interventions (computerized dual working memory training [COG] or control computer games [Games]). The primary outcome for the 4 groups (Aerobic + COG, Aerobic + Games, Activity + COG, and Activity + Games) was fluid intelligence measured using Raven's Progressive Matrices Test administered at baseline, posttraining, and 3-month follow-up. Serum neurotrophins collected at one site (N = 30) included brain-derived neurotrophic factor (BDNF) at rest (BDNFresting) and after a graded exercise test (BDNFresponse) and insulin-like growth factor-1 at the same timepoints (IGF-1rest, IGF-1response). RESULTS At follow-up, fluid intelligence scores significantly improved compared to baseline in the Aerobic + COG and Activity + COG groups; however, only the Aerobic + COG group was significantly different (+47.8%) from control (Activity + Games -8.5%). Greater IGF-1response at baseline predicted 40% of the variance in cognitive improvement. There was no effect of the interventions on BDNFresting or BDNFresponse; nor was BDNF predictive of the outcome. CONCLUSIONS Aerobic exercise combined with cognitive training improved fluid intelligence by almost 50% in patients >6 months poststroke. Participants with more robust improvements in cognition were able to upregulate higher levels of serum IGF-1 suggesting that this neurotrophin may be involved in behaviorally induced plasticity.
Collapse
Affiliation(s)
- Michelle Ploughman
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Gail A Eskes
- 2 Dalhousie University, Halifax, Nova Scotia, Canada NL, Canada
| | - Liam P Kelly
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Megan C Kirkland
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | | | - Elizabeth M Wallack
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Beraki Abraha
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - S M Mahmudul Hasan
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Matthew B Downer
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Laura Keeler
- 2 Dalhousie University, Halifax, Nova Scotia, Canada NL, Canada
| | - Graham Wilson
- 2 Dalhousie University, Halifax, Nova Scotia, Canada NL, Canada
| | - Elaine Skene
- 2 Dalhousie University, Halifax, Nova Scotia, Canada NL, Canada
| | - Ishika Sharma
- 2 Dalhousie University, Halifax, Nova Scotia, Canada NL, Canada
| | - Arthur R Chaves
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Marie E Curtis
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Emily Bedford
- 2 Dalhousie University, Halifax, Nova Scotia, Canada NL, Canada
| | | | - Craig S Moore
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jason McCarthy
- 1 Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | | |
Collapse
|
29
|
Fan D, Krishnamurthi R, Harris P, Barber PA, Guan J. Plasma cyclic glycine proline/IGF-1 ratio predicts clinical outcome and recovery in stroke patients. Ann Clin Transl Neurol 2019; 6:669-677. [PMID: 31019991 PMCID: PMC6469247 DOI: 10.1002/acn3.743] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Many stroke patients make a partial recovery in function during the first 3 months, partially through promoting insulin‐like growth factor‐1 (IGF‐1) function. A prognostic biomarker that associates with IGF‐1 function may predict clinical outcome and recovery of stroke. This study evaluated plasma concentrations of IGF‐1, IGF binding protein (IGFBP)‐3 and cyclic‐glycine‐proline (cGP) and their associations with clinical outcome in stroke patients. Methods Thirty‐four patients were recruited within 3 days of stroke. Clinical assessments included the National Institutes of Health Stroke Scale (NIHSS) within 3 days (baseline), and at days 7 and 90; the modified Rankin Scale (mRS) and Fugl‐Meyer Upper‐Limb Assessment Scale (FM‐UL) at days 7 and 90. Plasma samples were collected from the patients at the baseline, days 7 and 90. Fifty age‐matched control participants with no history of stroke were also recruited and provided plasma samples. IGF‐1, IGFBP‐3, and cGP concentrations were analyzed using ELISA or HPLC‐MS. Results Baseline concentrations of IGFBP‐3, cGP, and cGP/IGF‐1 ratio were lower in stroke patients than the control group. The neurological scores of stroke patients were improved and plasma cGP and cGP/IGF‐1 ratio increased over time. Baseline cGP/IGF‐1 ratio was correlated with the NIHSS scores at day 90 and the changes in NIHSS scores from the baseline to 90 days. Interpretation Low cGP concentrations and cGP/IGF‐1 ratio in stroke patients suggest an impaired IGF‐1 function. The cGP/IGF‐1 ratio at admission maybe further developed as a prognostic biomarker for stroke recovery.
Collapse
Affiliation(s)
- Dawei Fan
- Department of Pharmacology and Clinical Pharmacology School of Medical Sciences Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand.,Centre for Brain Research School of Medical Sciences Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand.,Brain Research New Zealand - A Centre of Research Excellence Auckland New Zealand
| | - Rita Krishnamurthi
- Brain Research New Zealand - A Centre of Research Excellence Auckland New Zealand.,National Institute for Stroke and Applied Neurosciences Auckland University of Technology Auckland New Zealand
| | - Paul Harris
- School of Chemical Sciences School of Biological Sciences University of Auckland Auckland New Zealand
| | - P Alan Barber
- Centre for Brain Research School of Medical Sciences Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand.,Brain Research New Zealand - A Centre of Research Excellence Auckland New Zealand.,Department of Neurology School of Medicine University of Auckland Auckland New Zealand
| | - Jian Guan
- Department of Pharmacology and Clinical Pharmacology School of Medical Sciences Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand.,Centre for Brain Research School of Medical Sciences Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand.,Brain Research New Zealand - A Centre of Research Excellence Auckland New Zealand
| |
Collapse
|
30
|
King M, Kelly LP, Wallack EM, Hasan SMM, Kirkland MC, Curtis ME, Chatterjee T, McCarthy J, Ploughman M. Serum levels of insulin-like growth factor-1 and brain-derived neurotrophic factor as potential recovery biomarkers in stroke. Neurol Res 2019; 41:354-363. [PMID: 30620251 DOI: 10.1080/01616412.2018.1564451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Our objectives were: 1) to determine whether maximal aerobic exercise increased serum neurotrophins in chronic stroke and 2) to determine the factors that predict resting and exercise-dependent levels. METHODS We investigated the potential predictors of resting and exercise-dependent serum insulin-like growth factor-1 and brain-derived neurotrophic factor among 35 chronic stroke patients. Predictors from three domains (demographic, disease burden, and cardiometabolic) were entered into 4 separate stepwise linear regression models with outcome variables: resting insulin-like growth factor, resting brain-derived neurotrophic factor, exercise-dependent change in insulin-like growth factor, and exercise-dependent change brain-derived neurotrophic factor. RESULTS Insulin-like growth factor decreased after exercise (p = 0.001) while brain-derived neurotrophic factor did not change (p = 0.38). Greater lower extremity impairment predicted higher resting brain-derived neurotrophic factor (p = 0.004, r2 = 0.23). Higher fluid intelligence predicted greater brain-derived neurotrophic factor response to exercise (p = 0.01, r2 = 0.18). There were no significant predictors of resting or percent change insulin-like growth factor-1. DISCUSSION Biomarkers have the potential to characterize an individual's potential for recovery from stroke. Neurotrophins such as insulin-like growth factor-1 and brain-derived neurotrophic factor are thought to be important in neurorehabilitation; however, the factors that modulate these biomarkers are not well understood. Resting brain-derived neurotrophic factor and percent change in brain-derived neurotrophic factor were related to physical and cognitive recovery in chronic stroke, albeit weakly. Insulin-like growth factor-1 was not an informative biomarker among chronic stroke patients. The novel finding that fluid intelligence positively correlated with exercise-induced change in brain-derived neurotrophic factor warrants further research.
Collapse
Affiliation(s)
- Michael King
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Liam P Kelly
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Elizabeth M Wallack
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - S M Mahmudul Hasan
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Megan C Kirkland
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Marie E Curtis
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Tanaya Chatterjee
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Jason McCarthy
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| | - Michelle Ploughman
- a Recovery and Performance Laboratory, Faculty of Medicine , Memorial University , St. John's , Canada
| |
Collapse
|
31
|
Dubiel R, Callender L, Dunklin C, Harper C, Bennett M, Kreber L, Auchus R, Diaz-Arrastia R. Phase 2 Randomized, Placebo-Controlled Clinical Trial of Recombinant Human Growth Hormone (rhGH) During Rehabilitation From Traumatic Brain Injury. Front Endocrinol (Lausanne) 2018; 9:520. [PMID: 30250451 PMCID: PMC6139310 DOI: 10.3389/fendo.2018.00520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability, but there are currently no therapies with proven efficacy for optimizing regeneration of repair during rehabilitation. Using standard stimulation tests, as many as 40-50% of survivors of severe TBI have deficiency of one or more pituitary hormones. Of these, the somatotropic axis is the most commonly affected, with Growth Hormone (GH) deficiency affecting ~20% of persons with severe TBI. Treatment with recombinant human Growth Hormone (rhGH) is generally effective in reversing the effects of acquired GH deficiency, but there is no evidence documenting functional or neurocognitive improvement after GH replacement in TBI patients. As a consequence, screening for GH deficiency and GH replacement when deficiency is found is not routinely performed as part of the rehabilitation of TBI survivors. Given that most of the recovery after TBI occurs within the first 6-12 months after injury and IGF-1 and GH are part of a coordinated restorative neurotrophic system, we hypothesized that patients will optimally benefit from GH therapy during the window of maximal neuroregenerative activity. We performed a Phase IIa, randomized, double-blind, placebo-controlled feasibility trial of recombinant human Growth Hormone (rhGH), starting at discharge from an inpatient rehabilitation unit, with follow up at 6 and 12 months. Our primary hypothesis was that treatment with rhGH in the subacute period would result in improved functional outcomes 6 months after injury. Our secondary hypothesis proposed that treatment with rhGH would increase IGF-1 levels and be well tolerated. Sixty-three subjects were randomized, and 40 completed the trial. At baseline, there was no correlation between IGF-1 levels and peak GH levels after L-arginine stimulation. IGF-1 levels increased after rhGH treatment, but it took longer than 1 month for levels to be higher than for placebo-treated patients. rhGH therapy was well-tolerated. The rhGH group was no different from placebo in the Disability Rating Scale, Glasgow Outcome Scale-Extended, or neuropsychological function. However, a trend toward greater improvement from baseline in Functional Independence Measure (FIM) was noted in the rhGH treated group. Future studies should include longer treatment periods, faster titration of rhGH, and larger sample sizes.
Collapse
Affiliation(s)
- Rosemary Dubiel
- Department of Physical Medicine and Rehabilitation, Baylor Institute for Rehabilitation, Dallas, TX, United States
| | - Librada Callender
- Department of Physical Medicine and Rehabilitation, Baylor Institute for Rehabilitation, Dallas, TX, United States
| | - Cynthia Dunklin
- Department of Physical Medicine and Rehabilitation, Baylor Institute for Rehabilitation, Dallas, TX, United States
| | - Caryn Harper
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Monica Bennett
- Department of Physical Medicine and Rehabilitation, Baylor Institute for Rehabilitation, Dallas, TX, United States
| | - Lisa Kreber
- Center for Neuro Skills, Bakersfield, CA, United States
| | - Richard Auchus
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
32
|
Åberg ND, Åberg D, Jood K, Nilsson M, Blomstrand C, Kuhn HG, Svensson J, Jern C, Isgaard J. Altered levels of circulating insulin-like growth factor I (IGF-I) following ischemic stroke are associated with outcome - a prospective observational study. BMC Neurol 2018; 18:106. [PMID: 30081862 PMCID: PMC6091156 DOI: 10.1186/s12883-018-1107-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/22/2018] [Indexed: 01/12/2023] Open
Abstract
Background Insulin-like growth factor I (IGF-I) has neuroprotective effects in experimental ischemic stroke (IS). However, in patients who have suffered IS, various associations between the levels of serum IGF-I (s-IGF-I) and clinical outcome have been reported, probably reflecting differences in sampling time-points and follow-up periods. Since changes in the levels of post-stroke s-IGF-I have not been extensively explored, we investigated whether decreases in the levels of s-IGF-I between the acute time-point (median, 4 days) and 3 months (ΔIGF-I, further transformed into ΔIGF-I-quintiles, ΔIGF-I-q) are associated with IS severity and outcome. Methods In the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS) conducted in Gothenburg, Sweden, patients with IS who had s-IGF-I measurements available were included (N = 354; 65% males; mean age, 55 years). Baseline stroke severity was evaluated using the National Institutes of Health Stroke Scale (NIHSS) and converted into NIHSS-quintiles (NIHSS-q). Outcomes were assessed using the modified Rankin Scale (mRS) at 3 months and 2 years. Results In general, the levels of s-IGF-I decreased (positive ΔIGF-I), except for those patients with the most severe NIHSS-q. After correction for sex and age, the 3rd ΔIGF-I-q showed the strongest association to mRS 0–2 [Odds Ratio (OR) 5.11, 95% confidence interval (CI) 2.18–11.9], and after 2 years, the 5th ΔIGF-I-q (OR 3.63, 95% CI 1.40–9.38) showed the strongest association to mRS 0–2. The associations remained significant after multivariate correction for diabetes, smoking, hypertension, and hyperlipidemia after 3 months, but were not significant (p = 0.057) after 2 years. The 3-month associations withstood additional correction for baseline stroke severity (p = 0.035), whereas the 2-year associations were further attenuated (p = 0.31). Conclusions Changes in the levels of s-IGF-I are associated primarily with temporally near 3-month outcomes, while associations with long-term 2-year outcomes are weakened and attenuated by other factors. The significance of the change in post-stroke s-IGF-I is compatible with a positive role for IGF-I in IS recovery. However, the exact mechanisms are unknown and probably reflects combinations of multiple peripheral and central actions. Electronic supplementary material The online version of this article (10.1186/s12883-018-1107-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- N David Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gröna Stråket 8, SE-413 45, Gothenburg, Sweden.
| | - Daniel Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gröna Stråket 8, SE-413 45, Gothenburg, Sweden
| | - Katarina Jood
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Christian Blomstrand
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gröna Stråket 8, SE-413 45, Gothenburg, Sweden
| | - Christina Jern
- Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gröna Stråket 8, SE-413 45, Gothenburg, Sweden
| |
Collapse
|
33
|
Gubbi S, Quipildor GF, Barzilai N, Huffman DM, Milman S. 40 YEARS of IGF1: IGF1: the Jekyll and Hyde of the aging brain. J Mol Endocrinol 2018; 61:T171-T185. [PMID: 29739805 PMCID: PMC5988994 DOI: 10.1530/jme-18-0093] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
The insulin-like growth factor 1 (IGF1) signaling pathway has emerged as a major regulator of the aging process, from rodents to humans. However, given the pleiotropic actions of IGF1, its role in the aging brain remains complex and controversial. While IGF1 is clearly essential for normal development of the central nervous system, conflicting evidence has emerged from preclinical and human studies regarding its relationship to cognitive function, as well as cerebrovascular and neurodegenerative disorders. This review delves into the current state of the evidence examining the role of IGF1 in the aging brain, encompassing preclinical and clinical studies. A broad examination of the data indicates that IGF1 may indeed play opposing roles in the aging brain, depending on the underlying pathology and context. Some evidence suggests that in the setting of neurodegenerative diseases that manifest with abnormal protein deposition in the brain, such as Alzheimer's disease, reducing IGF1 signaling may serve a protective role by slowing disease progression and augmenting clearance of pathologic proteins to maintain cellular homeostasis. In contrast, inducing IGF1 deficiency has also been implicated in dysregulated function of cognition and the neurovascular system, suggesting that some IGF1 signaling may be necessary for normal brain function. Furthermore, states of acute neuronal injury, which necessitate growth, repair and survival signals to persevere, typically demonstrate salutary effects of IGF1 in that context. Appreciating the dual, at times opposing 'Dr Jekyll' and 'Mr Hyde' characteristics of IGF1 in the aging brain, will bring us closer to understanding its impact and devising more targeted IGF1-related interventions.
Collapse
Affiliation(s)
- Sriram Gubbi
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Internal MedicineJacobi Medical Center, Bronx, New York, USA
| | - Gabriela Farias Quipildor
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nir Barzilai
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of GeneticsAlbert Einstein College of Medicine, Bronx, New York, USA
| | - Derek M Huffman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sofiya Milman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
34
|
Zhang Z, Zhang L, Ding Y, Han Z, Ji X. Effects of Therapeutic Hypothermia Combined with Other Neuroprotective Strategies on Ischemic Stroke: Review of Evidence. Aging Dis 2018; 9:507-522. [PMID: 29896438 PMCID: PMC5988605 DOI: 10.14336/ad.2017.0628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability globally, and its incidence is increasing. The only treatment approved by the US Food and Drug Administration for acute ischemic stroke is thrombolytic treatment with recombinant tissue plasminogen activator. As an alternative, therapeutic hypothermia has shown excellent potential in preclinical and small clinical studies, but it has largely failed in large clinical studies. This has led clinicians to explore the combination of therapeutic hypothermia with other neuroprotective strategies. This review examines preclinical and clinical progress towards developing highly effective combination therapy involving hypothermia for stroke patients.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Linlei Zhang
- Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhao Han
- Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Leviton A, Allred EN, Fichorova RN, O'Shea TM, Fordham LA, Kuban KKC, Dammann O. Circulating biomarkers in extremely preterm infants associated with ultrasound indicators of brain damage. Eur J Paediatr Neurol 2018; 22:440-450. [PMID: 29429901 PMCID: PMC5899659 DOI: 10.1016/j.ejpn.2018.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 12/09/2017] [Accepted: 01/20/2018] [Indexed: 02/06/2023]
Abstract
AIM To assess to what extent the blood concentrations of proteins with neurotrophic and angiogenic properties measured during the first postnatal month convey information about the risk of sonographically-identified brain damage among very preterm newborns. METHODS Study participants were 1219 children who had a cranial ultrasound scan during their stay in the intensive care nursery and blood specimens collected on 2 separate days at least a week apart during the first postnatal month. Concentrations of selected proteins in blood spots were measured with electrochemiluminescence or with a multiplex immunobead assay and the risks of cranial ultrasound images associated with top-quartile concentrations were assessed. RESULTS High concentrations of multiple inflammation-related proteins during the first 2 postnatal weeks were associated with increased risk of ventriculomegaly, while high concentrations of just 3 inflammation-related proteins were associated with increased risk of an echolucent/hypoechoic lesion (IL-6, IL-8, ICAM-1), especially on day 7. Concomitant high concentrations of IL6R and bFGF appeared to modulate the increased risks of ventriculomegaly and an echolucent lesion associated with inflammation. More commonly high concentrations of putative protectors/repair-enhancers did not appear to diminish these increased risks. CONCLUSION Our findings provide support for the hypothesis that endogenous proteins are capable of either protecting the brain against damage and/or enhancing repair of damage.
Collapse
Affiliation(s)
- Alan Leviton
- Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA.
| | | | - Raina N Fichorova
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Karl K C Kuban
- Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | - Olaf Dammann
- Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
36
|
Ong LK, Chow WZ, TeBay C, Kluge M, Pietrogrande G, Zalewska K, Crock P, Åberg ND, Bivard A, Johnson SJ, Walker FR, Nilsson M, Isgaard J. Growth Hormone Improves Cognitive Function After Experimental Stroke. Stroke 2018; 49:1257-1266. [PMID: 29636425 DOI: 10.1161/strokeaha.117.020557] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cognitive impairment is a common outcome for stroke survivors. Growth hormone (GH) could represent a potential therapeutic option as this peptide hormone has been shown to improve cognition in various clinical conditions. In this study, we evaluated the effects of peripheral administration of GH at 48 hours poststroke for 28 days on cognitive function and the underlying mechanisms. METHODS Experimental stroke was induced by photothrombotic occlusion in young adult mice. We assessed the associative memory cognitive domain using mouse touchscreen platform for paired-associate learning task. We also evaluated neural tissue loss, neurotrophic factors, and markers of neuroplasticity and cerebrovascular remodeling using biochemical and histology analyses. RESULTS Our results show that GH-treated stroked mice made a significant improvement on the paired-associate learning task relative to non-GH-treated mice at the end of the study. Furthermore, we observed reduction of neural tissue loss in GH-treated stroked mice. We identified that GH treatment resulted in significantly higher levels of neurotrophic factors (IGF-1 [insulin-like growth factor-1] and VEGF [vascular endothelial growth factor]) in both the circulatory and peri-infarct regions. GH treatment in stroked mice not only promoted protein levels and density of presynaptic marker (SYN-1 [synapsin-1]) and marker of myelination (MBP [myelin basic protein]) but also increased the density and area coverage of 2 major vasculature markers (CD31 and collagen-IV), within the peri-infarct region. CONCLUSIONS These findings provide compelling preclinical evidence for the usage of GH as a potential therapeutic tool in the recovery phase of patients after stroke.
Collapse
Affiliation(s)
- Lin Kooi Ong
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.) .,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.).,National Health and Medical Research Council Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia (F.R.W., M.N., L.K.O.)
| | - Wei Zhen Chow
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Clifford TeBay
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Murielle Kluge
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Patricia Crock
- Department of Paediatric Endocrinology and Diabetes, Priority Research Centre Grow Up Well, John Hunter Children's Hospital (P.C.)
| | - N David Åberg
- Sahlgrenska University Hospital, University of Gothenburg, Sweden (N.D.A.)
| | - Andrew Bivard
- Department of Neurology, John Hunter Hospital (A.B.), University of Newcastle, Australia.,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Sarah J Johnson
- School of Electrical Engineering and Computing (S.J.J.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Frederick R Walker
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.).,National Health and Medical Research Council Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia (F.R.W., M.N., L.K.O.)
| | - Michael Nilsson
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.).,National Health and Medical Research Council Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia (F.R.W., M.N., L.K.O.)
| | - Jörgen Isgaard
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.) .,Centre for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology and Department of Internal Medicine (J.I.)
| |
Collapse
|
37
|
Frater J, Lie D, Bartlett P, McGrath JJ. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: A review. Ageing Res Rev 2018; 42:14-27. [PMID: 29233786 DOI: 10.1016/j.arr.2017.12.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
Abstract
Insulin-like Growth Factor 1 (IGF-1) and its signaling pathway play a primary role in normal growth and ageing, however serum IGF-1 is known to reduce with advancing age. Recent findings suggest IGF-1 is essential for neurogenesis in the adult brain, and this reduction of IGF-1 with ageing may contribute to age-related cognitive decline. Experimental studies have shown manipulation of the GH/GF-1 axis can slow rates of cognitive decline in animals, making IGF-1 a potential biomarker of cognition, and/or its signaling pathway a possible therapeutic target to prevent or slow age-related cognitive decline. A systematic literature review and qualitative narrative summary of current evidence for IGF-1 as a biomarker of cognitive decline in the ageing brain was undertaken. Results indicate IGF-1 concentrations do not confer additional diagnostic information for those with cognitive decline, and routine clinical measurement of IGF-1 is not currently justified. In cases of established cognitive impairment, it remains unclear whether increasing circulating or brain IGF-1 may reverse or slow down the rate of further decline. Advances in neuroimaging, genetics, neuroscience and the availability of large well characterized biobanks will facilitate research exploring the role of IGF-1 in both normal ageing and age-related cognitive decline.
Collapse
|
38
|
Ciobanu O, Elena Sandu R, Tudor Balseanu A, Zavaleanu A, Gresita A, Petcu EB, Uzoni A, Popa‐Wagner A. Caloric restriction stabilizes body weight and accelerates behavioral recovery in aged rats after focal ischemia. Aging Cell 2017; 16:1394-1403. [PMID: 28961383 PMCID: PMC5676058 DOI: 10.1111/acel.12678] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2017] [Indexed: 12/15/2022] Open
Abstract
Obesity and hyperinsulinemia are risk factors for stroke. We tested the hypothesis that caloric restriction, which reduces the incidence of age‐related obesity and metabolic syndrome, may represent an efficient and cost‐effective strategy for preventing stroke and its devastating consequences. To this end, we placed aged, obese Sprague‐Dawley aged rats on a calorie‐restricted diet for 8 weeks prior to the experimental infarction. Stroke in this animal model caused a progressive decrease in weight that reached a minimum at day 6 for the young rats, and at day 10 for the aged, ad libitum‐fed rats. However, in aged animals that were calorie‐restricted prior to stroke, body weight did not decrease after stroke, but we noted accelerated body weight gain shortly thereafter starting at day 5 poststroke. Moreover, calorie‐restricted aged animals showed improved behavioral recovery in tasks requiring complex sensorimotor skills, or in tasks requiring cutaneous sensitivity and sensorimotor integration or spatial memory. Likewise, calorie‐restricted aged rats showed significant poststroke increases in serum glucose, insulin, and IGF1 levels, as well as CR‐specific changes in the expression of gene transcripts involved in glycogen metabolism, IGF signaling, apoptosis, arteriogenesis, and hypoxia. In conclusion, our study shows that recovery from stroke is enhanced in aged rats by a dietary regimen that reduces body weight prior to infarct.
Collapse
Affiliation(s)
| | - Raluca Elena Sandu
- University of Medicine and Pharmacy Craiova Neurobiology of Aging Group Craiova Romania
| | - Adrian Tudor Balseanu
- University of Medicine and Pharmacy Craiova Neurobiology of Aging Group Craiova Romania
| | - Alexandra Zavaleanu
- University of Medicine and Pharmacy Craiova Neurobiology of Aging Group Craiova Romania
| | - Andrei Gresita
- University of Medicine and Pharmacy Craiova Neurobiology of Aging Group Craiova Romania
| | - Eugen Bogdan Petcu
- University Psychiatric Center Basel Switzerland
- Griffith University School of Medicine Gold Coast Campus Gold Coast Qld 4222 Australia
| | - Adriana Uzoni
- Department of Psychiatry Aging & Psychiatric Disorders Group University of Medicine Rostock Rostock Germany
| | - Aurel Popa‐Wagner
- University of Medicine and Pharmacy Craiova Neurobiology of Aging Group Craiova Romania
- Griffith University School of Medicine Gold Coast Campus Gold Coast Qld 4222 Australia
| |
Collapse
|
39
|
Bianchi VE, Locatelli V, Rizzi L. Neurotrophic and Neuroregenerative Effects of GH/IGF1. Int J Mol Sci 2017; 18:ijms18112441. [PMID: 29149058 PMCID: PMC5713408 DOI: 10.3390/ijms18112441] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction. Human neurodegenerative diseases increase progressively with age and present a high social and economic burden. Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are both growth factors exerting trophic effects on neuronal regeneration in the central nervous system (CNS) and peripheral nervous system (PNS). GH and IGF-1 stimulate protein synthesis in neurons, glia, oligodendrocytes, and Schwann cells, and favor neuronal survival, inhibiting apoptosis. This study aims to evaluate the effect of GH and IGF-1 on neurons, and their possible therapeutic clinical applications on neuron regeneration in human subjects. Methods. In the literature, we searched the clinical trials and followed up studies in humans, which have evaluated the effect of GH/IGF-1 on CNS and PNS. The following keywords have been used: “GH/IGF-1” associated with “neuroregeneration”, “amyotrophic lateral sclerosis”, “Alzheimer disease”, “Parkinson’s disease”, “brain”, and “neuron”. Results. Of the retrieved articles, we found nine articles about the effect of GH in healthy patients who suffered from traumatic brain injury (TBI), and six studies (four using IGF-1 and two GH therapy) in patients with amyotrophic lateral sclerosis (ALS). The administration of GH in patients after TBI showed a significantly positive recovery of brain and mental function. Treatment with GH and IGF-1 therapy in ALS produced contradictory results. Conclusions. Although strong findings have shown the positive effects of GH/IGF-1 administration on neuroregeneration in animal models, a very limited number of clinical studies have been conducted in humans. GH/IGF-1 therapy had different effects in patients with TBI, evidencing a high recovery of neurons and clinical outcome, while in ALS patients, the results are contradictory. More complex clinical protocols are necessary to evaluate the effect of GH/IGF-1 efficacy in neurodegenerative diseases. It seems evident that GH and IGF-1 therapy favors the optimal recovery of neurons when a consistent residual activity is still present. Furthermore, the effect of GH/IGF-1 could be mediated by, or be overlapped with that of other hormones, such as estradiol and testosterone.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, 42-47891 Falciano, San Marino.
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca via Cadore, 48-20900 Monza Brianza, Italy.
| | - Laura Rizzi
- Molecular Biology, School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, 48-20900 Monza Brianza, Italy.
| |
Collapse
|
40
|
Allred EN, Dammann O, Fichorova RN, Hooper SR, Hunter SJ, Joseph RM, Kuban K, Leviton A, O'Shea TM, Scott MN. Systemic Inflammation during the First Postnatal Month and the Risk of Attention Deficit Hyperactivity Disorder Characteristics among 10 year-old Children Born Extremely Preterm. J Neuroimmune Pharmacol 2017; 12:531-543. [PMID: 28405874 PMCID: PMC6508968 DOI: 10.1007/s11481-017-9742-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/23/2017] [Indexed: 01/19/2023]
Abstract
Although multiple sources link inflammation with attention difficulties, the only human study that evaluated the relationship between systemic inflammation and attention problems assessed attention at age 2 years. Parent and/or teacher completion of the Childhood Symptom Inventory-4 (CSI-4) provided information about characteristics that screen for attention deficit hyperactive disorder (ADHD) among 793 10-year-old children born before the 28th week of gestation who had an IQ ≥ 70. The concentrations of 27 proteins in blood spots obtained during the first postnatal month were measured. 151 children with ADHD behaviors were identified by parent report, while 128 children were identified by teacher report. Top-quartile concentrations of IL-6R, TNF-α, IL-8, VEGF, VEFG-R1, and VEGF-R2 on multiple days were associated with increased risk of ADHD symptoms as assessed by a teacher. Some of this increased risk was modulated by top-quartile concentrations of IL-6R, RANTES, EPO, NT-4, BDNF, bFGF, IGF-1, PIGF, Ang-1, and Ang-2. Systemic inflammation during the first postnatal month among children born extremely preterm appears to increase the risk of teacher-identified ADHD characteristics, and high concentrations of proteins with neurotrophic properties appear capable of modulating this increased risk.
Collapse
Affiliation(s)
- Elizabeth N Allred
- Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115-5724, USA
| | - Olaf Dammann
- Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Raina N Fichorova
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen R Hooper
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Scott J Hunter
- The University of Chicago Medicine Comer Children's Hospital, Chicago, IL, USA
| | | | - Karl Kuban
- Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | - Alan Leviton
- Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115-5724, USA.
| | | | - Megan N Scott
- The University of Chicago Medicine Comer Children's Hospital, Chicago, IL, USA
| |
Collapse
|
41
|
Feeney C, Sharp DJ, Hellyer PJ, Jolly AE, Cole JH, Scott G, Baxter D, Jilka S, Ross E, Ham TE, Jenkins PO, Li LM, Gorgoraptis N, Midwinter M, Goldstone AP. Serum insulin-like growth factor-I levels are associated with improved white matter recovery after traumatic brain injury. Ann Neurol 2017; 82:30-43. [PMID: 28574152 PMCID: PMC5601275 DOI: 10.1002/ana.24971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
Abstract
Objective Traumatic brain injury (TBI) is a common disabling condition with limited treatment options. Diffusion tensor imaging measures recovery of axonal injury in white matter (WM) tracts after TBI. Growth hormone deficiency (GHD) after TBI may impair axonal and neuropsychological recovery, and serum insulin‐like growth factor‐I (IGF‐I) may mediate this effect. We conducted a longitudinal study to determine the effects of baseline serum IGF‐I concentrations on WM tract and neuropsychological recovery after TBI. Methods Thirty‐nine adults after TBI (84.6% male, median age = 30.5 years, 87.2% moderate–severe, median time since TBI = 16.3 months, n = 4 with GHD) were scanned twice, 13.3 months (range = 12.1–14.9) apart, and 35 healthy controls were scanned once. Symptom and quality of life questionnaires and cognitive assessments were completed at both visits (n = 33). Our main outcome measure was fractional anisotropy (FA), a measure of WM tract integrity, in a priori regions of interest: splenium of corpus callosum (SPCC) and posterior limb of internal capsule (PLIC). Results At baseline, FA was reduced in many WM tracts including SPCC and PLIC following TBI compared to controls, indicating axonal injury, with longitudinal increases indicating axonal recovery. There was a significantly greater increase in SPCC FA over time in patients with serum IGF‐I above versus below the median for age. Only the higher IGF‐I group had significant improvements in immediate verbal memory recall over time. Interpretation WM recovery and memory improvements after TBI were greater in patients with higher serum IGF‐I at baseline. These findings suggest that the growth hormone/IGF‐I system may be a potential therapeutic target following TBI. Ann Neurol 2017;82:30–43
Collapse
Affiliation(s)
- Claire Feeney
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, St Mary's and Charing Cross Hospitals, London, United Kingdom
| | - David J Sharp
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Peter J Hellyer
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Amy E Jolly
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - James H Cole
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Gregory Scott
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - David Baxter
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Royal Centre for Defence Medicine, Academic Department of Military Surgery and Trauma, Birmingham, United Kingdom
| | - Sagar Jilka
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ewan Ross
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Timothy E Ham
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Peter O Jenkins
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Lucia M Li
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Nikos Gorgoraptis
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Mark Midwinter
- Royal Centre for Defence Medicine, Academic Department of Military Surgery and Trauma, Birmingham, United Kingdom.,Academic Section for Musculoskeletal Disease, Chapel Allerton Hospital, University of Leeds, Leeds
| | - Anthony P Goldstone
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, St Mary's and Charing Cross Hospitals, London, United Kingdom.,PsychoNeuroEndocrinology Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
42
|
Parker K, Berretta A, Saenger S, Sivaramakrishnan M, Shirley SA, Metzger F, Clarkson AN. PEGylated insulin-like growth factor-I affords protection and facilitates recovery of lost functions post-focal ischemia. Sci Rep 2017; 7:241. [PMID: 28325900 PMCID: PMC5428211 DOI: 10.1038/s41598-017-00336-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/21/2017] [Indexed: 12/04/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) is involved in the maturation and maintenance of neurons, and impaired IGF-I signaling has been shown to play a role in various neurological diseases including stroke. The aim of the present study was to investigate the efficacy of an optimized IGF-I variant by adding a 40 kDa polyethylene glycol (PEG) chain to IGF-I to form PEG-IGF-I. We show that PEG-IGF-I has a slower clearance which allows for twice-weekly dosing to maintain steady-state serum levels in mice. Using a photothrombotic model of focal stroke, dosing from 3 hrs post-stroke dose-dependently (0.3–1 mg/kg) decreases the volume of infarction and improves motor behavioural function in both young 3-month and aged 22–24 month old mice. Further, PEG-IGF-I treatment increases GFAP expression when given early (3 hrs post-stroke), increases Synaptophysin expression and increases neurogenesis in young and aged. Finally, neurons (P5–6) cultured in vitro on reactive astrocytes in the presence of PEG-IGF-I showed an increase in neurite length, indicating that PEG-IGF-I can aid in sprouting of new connections. This data suggests a modulatory role of IGF-I in both protective and regenerative processes, and indicates that therapeutic approaches using PEG-IGF-I should be given early and where the endogenous regenerative potential is still high.
Collapse
Affiliation(s)
- Kim Parker
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand
| | - Antonio Berretta
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand
| | - Stefanie Saenger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Manaswini Sivaramakrishnan
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Simon A Shirley
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand
| | - Friedrich Metzger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Andrew N Clarkson
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand. .,Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand. .,Faculty of Pharmacy, The University of Sydney, Sydney, Australia.
| |
Collapse
|
43
|
Rayasam A, Hsu M, Hernández G, Kijak J, Lindstedt A, Gerhart C, Sandor M, Fabry Z. Contrasting roles of immune cells in tissue injury and repair in stroke: The dark and bright side of immunity in the brain. Neurochem Int 2017; 107:104-116. [PMID: 28245997 DOI: 10.1016/j.neuint.2017.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 01/09/2023]
Abstract
Despite considerable efforts in research and clinical studies, stroke is still one of the leading causes of death and disability worldwide. Originally, stroke was considered a vascular thrombotic disease without significant immune involvement. However, over the last few decades it has become increasingly obvious that the immune responses can significantly contribute to both tissue injury and protection following stroke. Recently, much research has been focused on the immune system's role in stroke pathology and trying to elucidate the mechanism used by immune cells in tissue injury and protection. Since the discovery of tissue plasminogen activator therapy in 1996, there have been no new treatments for stroke. For this reason, research into understanding how the immune system contributes to stroke pathology may lead to better therapies or enhance the efficacy of current treatments. Here, we discuss the contrasting roles of immune cells to stroke pathology while emphasizing myeloid cells and T cells. We propose that focusing future research on balancing the beneficial-versus-detrimental roles of immunity may lead to the discovery of better and novel stroke therapies.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin Hsu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gianna Hernández
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie Kijak
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anders Lindstedt
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian Gerhart
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
44
|
Laurent MR, Dubois V, Claessens F, Verschueren SMP, Vanderschueren D, Gielen E, Jardí F. Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol Cell Endocrinol 2016; 432:14-36. [PMID: 26506009 DOI: 10.1016/j.mce.2015.10.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023]
Abstract
Bone is a biomechanical tissue shaped by forces from muscles and gravitation. Simultaneous bone and muscle decay and dysfunction (osteosarcopenia or sarco-osteoporosis) is seen in ageing, numerous clinical situations including after stroke or paralysis, in neuromuscular dystrophies, glucocorticoid excess, or in association with vitamin D, growth hormone/insulin like growth factor or sex steroid deficiency, as well as in spaceflight. Physical exercise may be beneficial in these situations, but further work is still needed to translate acceptable and effective biomechanical interventions like vibration therapy from animal models to humans. Novel antiresorptive and anabolic therapies are emerging for osteoporosis as well as drugs for sarcopenia, cancer cachexia or muscle wasting disorders, including antibodies against myostatin or activin receptor type IIA and IIB (e.g. bimagrumab). Ideally, increasing muscle mass would increase muscle strength and restore bone loss from disuse. However, the classical view that muscle is unidirectionally dominant over bone via mechanical loading is overly simplistic. Indeed, recent studies indicate a role for neuronal regulation of not only muscle but also bone metabolism, bone signaling pathways like receptor activator of nuclear factor kappa-B ligand (RANKL) implicated in muscle biology, myokines affecting bone and possible bone-to-muscle communication. Moreover, pharmacological strategies inducing isolated myocyte hypertrophy may not translate into increased muscle power because tendons, connective tissue, neurons and energy metabolism need to adapt as well. We aim here to critically review key musculoskeletal molecular pathways involved in mechanoregulation and their effect on the bone-muscle unit as a whole, as well as preclinical and emerging clinical evidence regarding the effects of sarcopenia therapies on osteoporosis and vice versa.
Collapse
Affiliation(s)
- Michaël R Laurent
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dubois
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sabine M P Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Science, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Evelien Gielen
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ferran Jardí
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
45
|
Coelho Junior HJ, Gambassi BB, Diniz TA, Fernandes IMDC, Caperuto ÉC, Uchida MC, Lira FS, Rodrigues B. Inflammatory Mechanisms Associated with Skeletal Muscle Sequelae after Stroke: Role of Physical Exercise. Mediators Inflamm 2016; 2016:3957958. [PMID: 27647951 PMCID: PMC5018330 DOI: 10.1155/2016/3957958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/26/2016] [Indexed: 12/25/2022] Open
Abstract
Inflammatory markers are increased systematically and locally (e.g., skeletal muscle) in stroke patients. Besides being associated with cardiovascular risk factors, proinflammatory cytokines seem to play a key role in muscle atrophy by regulating the pathways involved in this condition. As such, they may cause severe decrease in muscle strength and power, as well as impairment in cardiorespiratory fitness. On the other hand, physical exercise (PE) has been widely suggested as a powerful tool for treating stroke patients, since PE is able to regenerate, even if partially, physical and cognitive functions. However, the mechanisms underlying the beneficial effects of physical exercise in poststroke patients remain poorly understood. Thus, in this study we analyze the candidate mechanisms associated with muscle atrophy in stroke patients, as well as the modulatory effect of inflammation in this condition. Later, we suggest the two strongest anti-inflammatory candidate mechanisms, myokines and the cholinergic anti-inflammatory pathway, which may be activated by physical exercise and may contribute to a decrease in proinflammatory markers of poststroke patients.
Collapse
Affiliation(s)
| | | | - Tiego Aparecido Diniz
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), 19060-900 Presidente Prudente, SP, Brazil
| | - Isabela Maia da Cruz Fernandes
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), 19060-900 Presidente Prudente, SP, Brazil
| | - Érico Chagas Caperuto
- Human Movement Laboratory, São Judas Tadeu University (USJT), 03166-000 São Paulo, SP, Brazil
| | - Marco Carlos Uchida
- Faculty of Physical Education, University of Campinas (UNICAMP), 13083-851 Campinas, SP, Brazil
| | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), 19060-900 Presidente Prudente, SP, Brazil
| | - Bruno Rodrigues
- Faculty of Physical Education, University of Campinas (UNICAMP), 13083-851 Campinas, SP, Brazil
| |
Collapse
|
46
|
Mattlage AE, Rippee MA, Abraham MG, Sandt J, Billinger SA. Estimated Prestroke Peak VO2 Is Related to Circulating IGF-1 Levels During Acute Stroke. Neurorehabil Neural Repair 2016; 31:65-71. [PMID: 27377914 DOI: 10.1177/1545968316656056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Insulin-like growth factor-1 (IGF-1) is neuroprotective after stroke and is regulated by insulin-like binding protein-3 (IGFBP-3). In healthy individuals, exercise and improved aerobic fitness (peak oxygen uptake; peak VO2) increases IGF-1 in circulation. Understanding the relationship between estimated prestroke aerobic fitness and IGF-1 and IGFBP-3 after stroke may provide insight into the benefits of exercise and aerobic fitness on stroke recovery. Objective The purpose of this study was to determine the relationship of IGF-1 and IGFBP-3 to estimated prestroke peak VO2 in individuals with acute stroke. We hypothesized that (1) estimated prestroke peak VO2 would be related to IGF-1 and IGFBP-3 and (2) individuals with higher than median IGF-1 levels will have higher estimated prestroke peak VO2 compared to those with lower than median levels. Methods Fifteen individuals with acute stroke had blood sampled within 72 hours of hospital admission. Prestroke peak VO2 was estimated using a nonexercise prediction equation. IGF-1 and IGFBP-3 levels were quantified using enzyme-linked immunoassay. Results Estimated prestroke peak VO2 was significantly related to circulating IGF-1 levels (r = .60; P = .02) but not IGFBP-3. Individuals with higher than median IGF-1 (117.9 ng/mL) had significantly better estimated aerobic fitness (32.4 ± 6.9 mL kg-1 min-1) than those with lower than median IGF-1 (20.7 ± 7.8 mL kg-1 min-1; P = .03). Conclusions Improving aerobic fitness prior to stroke may be beneficial by increasing baseline IGF-1 levels. These results set the groundwork for future clinical trials to determine whether high IGF-1 and aerobic fitness are beneficial to stroke recovery by providing neuroprotection and improving function.
Collapse
Affiliation(s)
| | | | | | - Janice Sandt
- University of Kansas Hospital, Kansas City, KS, USA
| | | |
Collapse
|
47
|
De Geyter D, De Smedt A, Stoop W, De Keyser J, Kooijman R. Central IGF-I Receptors in the Brain are Instrumental to Neuroprotection by Systemically Injected IGF-I in a Rat Model for Ischemic Stroke. CNS Neurosci Ther 2016; 22:611-6. [PMID: 27080541 PMCID: PMC6492886 DOI: 10.1111/cns.12550] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/08/2016] [Accepted: 03/20/2016] [Indexed: 01/07/2023] Open
Abstract
AIM Insulin-like growth factor I (IGF-I) is a neuroprotective agent in animal models of ischemic stroke. The purpose of this study was to determine whether systemically injected IGF-I exerts its neuroprotective action by binding to IGF-I receptors in the brain after crossing the blood-brain barrier, or via peripheral effects. METHODS To differentiate the central effects of IGF-I from systemic effects, ischemic stroke was induced in conscious male Wistar Kyoto rats by the injection of endothelin-1 adjacent to the middle cerebral artery in the right hemisphere, while either the IGF-I receptor antagonist JB-1 or vehicle was introduced into the right lateral ventricle. RESULTS Intravenous injection of recombinant human (rh)IGF-I resulted in 50% reduction in infarct size, which was counteracted by the central administration of JB-1. Furthermore, rhIGF-I was detected in both the ischemic and nonischemic hemisphere. CONCLUSIONS Systemically injected rhIGF-I passes the blood-brain barrier and protects neurons via IGF-I receptors in the brain in rats with an ischemic stroke.
Collapse
Affiliation(s)
- Deborah De Geyter
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Ann De Smedt
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
- Department of NeurologyUniversitair Ziekenhuis BrusselBrusselsBelgium
| | - Wendy Stoop
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Jacques De Keyser
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
- Department of NeurologyUniversitair Ziekenhuis BrusselBrusselsBelgium
- Department of NeurologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Ron Kooijman
- Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB)BrusselsBelgium
| |
Collapse
|
48
|
Mattlage AE, Rippee MA, Sandt J, Billinger SA. Decrease in Insulin-Like Growth Factor-1 and Insulin-Like Growth Factor-1 Ratio in the First Week of Stroke Is Related to Positive Outcomes. J Stroke Cerebrovasc Dis 2016; 25:1800-1806. [PMID: 27113779 DOI: 10.1016/j.jstrokecerebrovasdis.2016.03.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/13/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND High insulin-like growth factor-1 (IGF-1), measured once during acute stroke, is associated with greater survival rates and lower stroke severity. However, information is lacking regarding how IGF-1 availability, determined by IGF-1's ratio to insulin-like growth factor binding protein-3 (IGFBP-3), relates to recovery and how the response of IGF-1 during the first week of stroke relates to outcomes. The purpose of this study was to determine the following: (1) the relationship between percent change in IGF-1 and IGF-1 ratio during the first week of stroke and stroke outcomes; and (2) the difference in percent change in IGF-1 and IGF-1 ratio in individuals being discharged home and individuals being discharged to inpatient facilities. METHODS IGF-1 and IGFBP-3 were quantified from blood sampled twice (<72 hours of admission; 1 week post stroke) in 15 individuals with acute stroke. Length of stay, modified Rankin Scale at 1 month, and discharge destination were obtained from electronic medical records. RESULTS Percent change in IGF-1 ratio was related to length of stay (r = .54; P = .04). Modified Rankin Scale (n = 10) was related to percent change in IGF-1 (r = .90; P < .001) and IGF-1 ratio (r = .75 P = .01). Individuals who went home (n = 7) had decreases in IGF-1 (-24 + 25%) and IGF-1 ratio (-36 + 50%), whereas individuals who went to inpatient facilities (n = 8) had increases in IGF-1 (37 + 46%) and IGF-1 ratio (30 + 40%). These differences were significant (IGF-1: P = .008; IGF-1 ratio: P = .01). CONCLUSION Our findings suggest that a decrease in IGF-1 and IGF-1 ratio during the first week of stroke is associated with favorable outcomes: shorter length of stay, greater independence at 1 month on the modified Rankin Scale, and discharging home.
Collapse
Affiliation(s)
- Anna E Mattlage
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael A Rippee
- Department of Neurology, The University of Kansas Hospital, Kansas City, Kansas
| | - Janice Sandt
- Advanced Comprehensive Stroke Center, The University of Kansas Hospital, Kansas City, Kansas
| | - Sandra A Billinger
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
49
|
Åberg ND, Stanne TM, Jood K, Schiöler L, Blomstrand C, Andreasson U, Blennow K, Zetterberg H, Isgaard J, Jern C, Svensson J. Serum erythropoietin and outcome after ischaemic stroke: a prospective study. BMJ Open 2016; 6:e009827. [PMID: 26916692 PMCID: PMC4769431 DOI: 10.1136/bmjopen-2015-009827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Erythropoietin (EPO), which is inversely associated with blood haemoglobin (Hb), exerts neuroprotective effects in experimental ischaemic stroke (IS). However, clinical treatment trials have so far been negative. Here, in patients with IS, we analysed whether serum EPO is associated with (1) initial stroke severity, (2) recovery and (3) functional outcome. DESIGN Prospective. Controls available at baseline. SETTING A Swedish hospital-initiated study with outpatient follow-up after 3 months. PARTICIPANTS Patients (n=600; 64% males, mean age 56 years, controls n=600) were included from the Sahlgrenska Academy Study on IS (SAHLSIS). PRIMARY AND SECONDARY OUTCOME MEASURES In addition to EPO and Hb, initial stroke severity was assessed by the Scandinavian Stroke Scale (SSS) and compared with SSS after 3 months (follow-up) as a measure of recovery. Functional outcome was evaluated using the modified Rankin Scale (mRS) at follow-up. Serum EPO and SSS were divided into quintiles in the multivariate regression analyses. RESULTS Serum EPO was 21% and 31% higher than in controls at the acute phase of IS and follow-up, respectively. In patients, acute serum EPO was 19.5% higher in severe versus mild IS. The highest acute EPO quintile adjusted for sex, age and Hb was associated with worse stroke severity quintile (OR 1.70, 95% CI 1.00 to 2.87), better stroke recovery quintile (OR 1.93, CI 1.09 to 3.41) and unfavourable mRS 3-6 (OR 2.59, CI 1.15 to 5.80). However, the fourth quintile of EPO increase (from acute to follow-up) was associated with favourable mRS 0-2 (OR 3.42, CI 1.46 to 8.03). Only the last association withstood full adjustment. CONCLUSIONS The crude associations between EPO and worse stroke severity and outcome lost significance after multivariate modelling. However, in patients in whom EPO increased, the association with favourable outcome remained after adjustment for multiple covariates.
Collapse
Affiliation(s)
- N David Åberg
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center of Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tara M Stanne
- Department of Medical and Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Jood
- Department for Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linus Schiöler
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christian Blomstrand
- Center of Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department for Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- UCL Institute of Neurology, London, UK
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Christina Jern
- Department of Medical and Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
50
|
Harmatina OY. [INSULIN-LIKE GROWTH FACTOR 1 UNDER CONDITIONS OF THE BRAIN VASCULAR DISEASES.]. ACTA ACUST UNITED AC 2016; 62:95-102. [PMID: 29975480 DOI: 10.15407/fz62.04.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The system insulin-like growth factors (IGF) occupies an important place in the development and growth of the central nervous system (CNS). Gene expression of insulin-like growth factor I (IGF-1) and IGF-1 receptor are represented in all parts of the brain and are heavily concentrated in the cerebral vessels. IGF-1 is involved in neuro-, angiogenesis, in the stimulation of cell proliferation, and repair responses to damage for both the central and peripheral nervous system. IGF- 1 exerts antioxidant, anti-inflammatory and protective effects on the CNS. The review discusses the importance and the role of IGF-I in vascular diseases of the brain, in particular, aneurysms, the ischemic stroke, the aneurysmal subarachnoid hemorrhage, as well as neuroprotection.
Collapse
|