1
|
Yavas Abali Z, Bas F, Houghton JAL, Abali S, Karakilic Ozturan E, Gulec C, Aslanger AD, Kandemir T, Durmaz D, Yucesoy MA, Flanagan SE, Poyrazoglu S, Bundak R, Darendeliler F. Comprehensive clinical and molecular characterization with long-term outcomes in 40 patients with congenital hyperinsulinism. Endocrine 2025:10.1007/s12020-025-04244-5. [PMID: 40382736 DOI: 10.1007/s12020-025-04244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/16/2025] [Indexed: 05/20/2025]
Abstract
PURPOSE Congenital hyperinsulinism (CHI) represents the most frequent cause of recurrent hypoglycemia in neonates and infants, stemming from defects in the regulatory pathways of insulin secretion from pancreatic beta cells. This study aims to assess the clinical and genetic characteristics of a CHI cohort and to discuss the complexities involved in managing this heterogeneous disorder. METHODS Forty patients (23 girls) with CHI were included in the study. Data on the diagnosis and treatment of CHI were obtained from the medical records. RESULTS The median age at diagnosis was 1.4 months (range 0.1-30 months). The mean gestational age was 37.8 ± 2.4 weeks, and the birth weight was 1.1 ± 2.0 SDS. The consanguinity ratio was 35.0%. Median glucose, insulin, and C-peptide concentrations at diagnosis were 34.0 mg/dl (IQR 25.2-41.7), 12.4µU/ml (IQR 4.4-27.1), and 1.5 ng/ml (IQR 0.7-3.8), respectively. Molecular genetic diagnosis could be established in 62.5% (n = 25). Pathogenic variants were predominantly identified in the KATP channel genes (17/25, 68%), with the ABCC8 being the most frequent (n = 15; biallelic: 8, monoallelic: 7). KCNJ11 variants were identified in two (5.0%), GLUD1 variants in three (7.5%), and HADH variants in five patients (12.5%). Pancreatectomy was performed in 10 patients, with a mean age at the time of surgery of 3.9 ± 3.2 months. The genetic etiology was identified in all patients who underwent pancreatectomy, all of whom had defects in the KATP channel. ABCC8 variants were detected in nine (biallelic: 5, monoallelic: 4), while a biallelic variant in the KCNJ11 was identified in one case. CONCLUSION A molecular genetic diagnosis was identified in approximately two-thirds of our cohort, underscoring the significance of genetic testing in the management of CHI. Ongoing advances in genetic technologies are anticipated to enhance our understanding of the etiopathogenesis of CHI and support the development of more personalized therapeutic strategies. Although the genotype-phenotype correlation remains only partially elucidated, specific genetic variants may provide predictive insights into treatment resistance, thereby informing more targeted treatment approaches.
Collapse
Affiliation(s)
- Zehra Yavas Abali
- Istanbul University, Institute of Health Sciences, Department of Genetics, Istanbul, Türkiye.
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye.
| | - Firdevs Bas
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
| | - Jayne A L Houghton
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Saygin Abali
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Istanbul, Türkiye
| | - Esin Karakilic Ozturan
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
| | - Cagrı Gulec
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul, Türkiye
| | - Ayca Dilruba Aslanger
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul, Türkiye
| | - Tugce Kandemir
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
| | - Durmus Durmaz
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul, Türkiye
| | - Mehmet Akif Yucesoy
- Istanbul University, Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul, Türkiye
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Science, University of Exeter, Exeter, UK
| | - Sukran Poyrazoglu
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
| | - Ruveyde Bundak
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
- Department of Pediatrics, Faculty of Medicine, University of Kyrenia, Kyrenia, Cyprus
| | - Feyza Darendeliler
- Istanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, Istanbul, Türkiye
| |
Collapse
|
2
|
Maly J, Urbanova J, Musil V, Broz J, Cerny M, Brunerova L. Neonatal hypoglycaemia in the offsprings of parents with maturity-onset diabetes of the young (MODY). J Pediatr Endocrinol Metab 2025:jpem-2025-0042. [PMID: 40287849 DOI: 10.1515/jpem-2025-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025]
Abstract
INTRODUCTION Neonatal hypoglycaemia is the most common metabolic disorder of various causes, relatively rare being MODY (Maturity Onset Diabetes of the Young). CONTENT Data search of relevant articles focused on hypoglycaemia in carriers of selected MODY gene mutations published from 2007 to 2022 was performed in databases Medline, Pubmed, Cochrane and UptoDate based on key words: 'hyperinsulinemic hypoglycaemia', 'congenital hyperinsulinism', 'MODY', 'HNF4A mutation', 'HNF1A mutation'. SUMMARY Loss of function of HNF4A and HNF1A genes comprises approximately to 5.9 % of diazoxide responsive hyperinsulinemic hypoglycaemia, which may appear in 15 % HNF4A mutation carriers. A typical finding of HNF4A mutation carriers with neonatal hypoglycaemia was a birth weight above 4000 g or above 97th percentile. OUTLOOK Although mutations in MODY genes represent a rare cause of neonatal hypoglycaemia, they should be considered in the differential diagnosis, particularly in cases of persistent hypoglycaemia requiring intensive care.
Collapse
Affiliation(s)
- Jakub Maly
- Department of Children and Adolescents, Faculty Hospital Kralovske Vinohrady, Prague, Czechia
- Third Faculty of Medicine, 60571 Charles University , Prague, Czechia
| | - Jana Urbanova
- Third Faculty of Medicine, 60571 Charles University , Prague, Czechia
- Department of Medicine, Faculty Hospital Kralovske Vinohrady, Prague, Czechia
| | - Vladimir Musil
- Centre of Scientific Information, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Broz
- Department of Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Milos Cerny
- Third Faculty of Medicine, 60571 Charles University , Prague, Czechia
- Department of Gynecology and Obsterics, Faculty Hospital Kralovske Vinohrady, Prague, Czechia
| | - Ludmila Brunerova
- Third Faculty of Medicine, 60571 Charles University , Prague, Czechia
- Department of Medicine, Faculty Hospital Kralovske Vinohrady, Prague, Czechia
| |
Collapse
|
3
|
Fujii Y, Matsumura H, Murayama K, Okazaki Y, Ashida A. Presence of mitochondrial dysfunction in a case of Fanconi syndrome with normoglycemic MODY1. CEN Case Rep 2025; 14:291-296. [PMID: 39527373 PMCID: PMC11958908 DOI: 10.1007/s13730-024-00948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Maturity-onset diabetes of the young 1 (MODY1) is characterized by macrosomia and transient hypoglycemia in neonates, in addition to diabetes mellitus (DM). Only patients with MODY1 harboring a pathogenic variant (c.187C > T; p.R63W) in HNF4A are sure to develop Fanconi syndrome (FS). Here we report the successful diagnosis of MODY1 in a patient harboring p.R63W before confirmation of DM-related hyperglycemia after being alerted to the presence of abnormal mitochondria in a kidney-biopsy specimen revealed by electron microscopy. The patient was born at 39 weeks of gestation with macrosomia, elevated levels of liver enzymes, and transient hypoglycemia. At three years of age, proteinuria was found by chance, and further laboratory investigations revealed metabolic acidosis, mild renal dysfunction, hypouricemia, proteinuria, aminoaciduria, and glycosuria. On this basis, we diagnosed the patient as having FS and performed percutaneous renal biopsy. Light microscopy revealed no evidence of proximal tubule disorder, but electron microscopy demonstrated mitochondria with disordered cristae in glomerular podocytes and giant mitochondria in proximal tubules. Mitochondrial nephropathy was suspected, and skin fibroblasts from the patient grown on galactose medium showed decreased oxygen consumption suggestive of mitochondrial dysfunction. Therefore, genetic testing was performed and a pathogenic variant (c.187C > T; p.R63W) in HNF4A was detected. Mitochondrial dysfunction in a Drosophila and murine model of patients with both MODY1 and FS has already been reported, and we detected it in this human MODY1/FS patient on the basis of functional tests and imaging. We believe mitochondrial dysfunction may be involved in the pathogenesis of MODY1/FS.
Collapse
Affiliation(s)
- Yuko Fujii
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, Japan.
| | - Hideki Matsumura
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-Cho, Midori-Ku, Chiba-City, Chiba, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Graduate School of Medicine, Intractable Disease Research Center, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Akira Ashida
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, Japan
| |
Collapse
|
4
|
Ren Q, Han X, Gong S, Zhang S, Ba T, Zhao Y, Li Y, Wang Y, Zhou X, Li Y, Ji L. Clinical features and search for genetic determinants of postprandial hypoglycaemia. Endocr Connect 2025; 14:e240409. [PMID: 39495171 PMCID: PMC11728931 DOI: 10.1530/ec-24-0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Objective To test whether postprandial hypoglycaemia is an extreme and repeatable phenotype of glucose metabolism. We also explored the genetic determinants of this phenotype. Design and methods We conducted this study using data from the Pinggu Metabolic Disease Study database (n = 3,345). We selected subjects after an oral glucose tolerance test (OGTT) (2 h glucose < 3 mmol/L) and compared their clinical features with those of subjects with normal glucose tolerance (NGT). In addition, we selected 75 subjects as a super-healthy control group. Whole-exome sequencing (WES) was performed on subjects with postprandial hypoglycaemic and super-healthy controls. We also evaluated several candidate genes believed to be important in pancreatic hypoglycaemia. Results We found 13 participants (0.39%) who had an OGTT (2 h glucose < 3 mmol/L). Ten of these patients were men (76.9%). All 13 participants had insulin >3 μU/mL when postprandial blood glucose levels were <3 mmol/L. WES analysis identified one gene, paternally expressed 3 (PEG3), which had three rare mutations in four patients (30.8%). Minor allele frequencies of rare PEG3 mutations were significantly higher in subjects with postprandial hypoglycaemia than in super-healthy controls. Among the four subjects with PEG3 gene mutations, 71.4% were men, and their body mass index was significantly lower than that of the NGT group. Conclusions Postprandial hypoglycaemia is an extreme and reproducible phenotype in the general population. PEG3 mutations may represent a potential genetic aetiology for postprandial hypoglycaemia. Further research with larger and more diverse populations and a broader genetic focus is needed to understand the genetic basis of postprandial hypoglycaemia.
Collapse
Affiliation(s)
- Qian Ren
- Department of Endocrinology, Peking University People’s Hospital, Beijing, China
| | - Xueyao Han
- Department of Endocrinology, Peking University People’s Hospital, Beijing, China
| | - Siqian Gong
- Department of Endocrinology, Peking University People’s Hospital, Beijing, China
| | - Simin Zhang
- Department of Endocrinology, Peking University People’s Hospital, Beijing, China
| | | | | | - Yating Li
- Department of Endocrinology, Peking University People’s Hospital, Beijing, China
| | - Yan’ai Wang
- Department of Endocrinology, Peking University People’s Hospital, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology, Peking University People’s Hospital, Beijing, China
| | - Yufeng Li
- Department of Endocrinology, Beijing Pinggu Hospital, Beijing, China
| | - Linong Ji
- Department of Endocrinology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
5
|
Chandran S, Verma D, Rajadurai VS, Yap F. Case report: A novel HNF1A variant linked to gestational diabetes, congenital hyperinsulinism, and diazoxide hypersensitivity. Front Endocrinol (Lausanne) 2024; 15:1471596. [PMID: 39421536 PMCID: PMC11484256 DOI: 10.3389/fendo.2024.1471596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
Diazoxide (DZX) remains the first-line medication for the treatment of prolonged and persistent forms of hyperinsulinemic hypoglycemia (HH). In nearly 40%-50% of cases of HH, the genetic mechanism is unidentified. Almost half of the infants with permanent or genetic causes are DZX sensitive, but hypersensitivity to DZX is extremely rare, and the mechanism is poorly understood. Here, we report for the first time a case of DZX hypersensitivity in a neonate with HH who inherited a novel HNF1A variant from the mother. A term, male large-for-gestational-age infant of a diabetic mother presented with early onset of severe, recurrent hypoglycemia. Critical blood samples when hypoglycemic confirmed HH. Diazoxide was initiated at conventional doses of 5 mg/kg/day, which resulted in hyperglycemia (blood glucose, 16.6 mmol/L) within 48 h. Glucose infusion was rapidly weaned off. DZX was withheld and eventually stopped. Following 3 days of milk feeds alone with a normal glucose profile, suspecting a resolution of HH, he underwent a 6-h fasting study and passed. While on glucose monitoring in the hospital, he again developed hypoglycemic episodes, and the critical blood samples confirmed HH. DZX was restarted at a lower dose of 3 mg/kg/day, which required further down-titration to 0.7 mg/kg/day before steady euglycemia was obtained. No more episodes of hypo- or hyperglycemia occurred, and he passed a safety fasting study before discharge. Molecular genetic testing identified a novel HNF1A mutation in the mother-child dyad, whereas the father tested negative. We concluded that the HH phenotype due to this novel HNF1A mutation can be mutation specific and require a very low dose of DZX. Clinicians should observe closely for the risk of diabetic ketoacidosis and hyperglycemic hyperosmolar state while initiating DZX therapy.
Collapse
Affiliation(s)
- Suresh Chandran
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Pediatric Academic Clinical Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Deepti Verma
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Victor Samuel Rajadurai
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Pediatric Academic Clinical Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Fabian Yap
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
6
|
Wang X, Cheng W, Wang Z, Liu C, Deng A, Li J. Chinese carrier of the HNF1A p.Gln444fs variant exhibits enhanced response to sulfonylureas. Heliyon 2024; 10:e35112. [PMID: 39170165 PMCID: PMC11336406 DOI: 10.1016/j.heliyon.2024.e35112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Background We assessed the response to sulfonylureas and the functional characteristics of HNF1A mutations in patients with maturity-onset diabetes of the young type 3 (MODY3). Methods We recruited a family with suspected MODY in this study, and gene sequencing (whole-exome sequencing) was used to screen germline mutations. Luciferase reporter assays were used to evaluate the activity of the mutated genes. Results Heterozygous HNF1A variant (NM_000545.8:c.1330_1331del, p.Gln444fs) was identified in the proband and was not found in his father, grandmother, and nonrelated healthy controls. The mutant protein had 552 amino acids, 110 fewer than the wild type protein. Furthermore, the amino acid sequence was completely different between the mutant protein and the wild type protein starting from the 444th amino acid. Luciferase reporter assays revealed that the variant had impaired HNF4A promoter-regulation activity. The patient did not achieve good hypoglycemic effects during long-term treatment with insulin and metformin. The effect of hypoglycemic treatment was highly significant after the addition of sulfonylurea drugs. Conclusions The HNF1A p.Gln444fs variant associated with MODY3, and most likely a truncated protein, impaired HNF1A transcriptional activity. The variant carrier experienced an enhanced response to sulfonylureas.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenzhuo Cheng
- Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhongjing Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Stanley CA, De Leon DD. Etiology of the Neonatal Hypoglycemias. Adv Pediatr 2024; 71:119-134. [PMID: 38944478 DOI: 10.1016/j.yapd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
To provide a more appropriate foundation for dealing with the problem of hypoglycemia in newborn infants, this article focuses on the mechanisms which underlie the various forms of neonatal hypoglycemia and discusses their implications for newborn care. Evidence indicates that all of the major forms of neonatal hypoglycemia are the result of hyperinsulinism due to dysregulation of pancreatic islet insulin secretion. Based on these observations, the authors propose that routine measurement of B-hydroxybutyrate should be considered an essential part of glucose monitoring in newborn infants.
Collapse
Affiliation(s)
- Charles A Stanley
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Diva D De Leon
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Li CY, Sun Y, Guo WC, Jiang WN, Zhou W, Chen ZS, Zhang YY, Wang Z, Liu XY, Zhang R, Shao LP. Complex phenotype in Fanconi renotubular syndrome type 1: Hypophosphatemic rickets as the predominant presentation. Clin Chim Acta 2024; 561:119812. [PMID: 38876250 DOI: 10.1016/j.cca.2024.119812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
GATM-related Fanconi renotubular syndrome 1 (FRTS1) is a form of renal Fanconi syndrome (RFS), which is a disorder of solute and water reabsorption caused by defects in the function of the entire proximal tubule. Recent findings reveal the molecular basis of FRTS1: Intramitochondrial fiber aggregation triggered by mutant GATM provides a starting point for proximal tubule damage and drives disease progression. As a rare and newly recognized inherited kidney disease, the complex manifestations of FRTS1 are easily underdiagnosed or misdiagnosed. We discuss the complex phenotype of a 26-year-old woman with onset in infancy and a long history of hypophosphatemic rickets. We also identified a novel heterozygous missense variant in the GATM gene in this patient. The novel variant and phenotype we report expand the disease spectrum of FRTS1. We recommend screening for GATM in children with RFS, especially in patients with resistant rickets who have previously had negative genetic testing. In addition, we found pathological deposition of mutant GATM proteins within mitochondria in the patient's urinary sediment cells by a combination of electron microscopy and immunofluorescence. This unique urine cytology experiment has the potential to be a valuable tool for identifying patients with RRTS1.
Collapse
Affiliation(s)
- Chang-Ying Li
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Wen-Cong Guo
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Wei-Na Jiang
- Department of Pathology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Wei Zhou
- Department of Radiology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zeng-Sheng Chen
- Department of Clinical Laboratory, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yi-Yin Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zhi Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xu-Yan Liu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Ran Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China.
| | - Le-Ping Shao
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
9
|
Larsen AR, Brusgaard K, Christesen HT, Detlefsen S. Genotype-histotype-phenotype correlations in hyperinsulinemic hypoglycemia. Histol Histopathol 2024; 39:817-844. [PMID: 38305063 DOI: 10.14670/hh-18-709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Hyperinsulinemic hypoglycemia (HH) of pancreatic origin includes congenital hyperinsulinism (CHI), insulinoma, insulinomatosis, and adult-onset non-insulinoma persistent hyperinsulinemic hypoglycemia syndrome (NI-PHHS). In this review, we describe the genotype-histotype-phenotype correlations in HH and their therapeutic implications. CHI can occur from birth or later on in life. Histologically, diffuse CHI shows diffuse beta cell hypertrophy with a few giant nuclei per islet of Langerhans, most frequently caused by loss-of-function mutations in ABCC8 or KCNJ11. Focal CHI is histologically characterized by focal adenomatous hyperplasia consisting of confluent hyperplastic islets, caused by a paternal ABCC8/KCNJ11 mutation combined with paternal uniparental disomy of 11p15. CHI in Beckwith-Wiedemann syndrome is caused by mosaic changes in the imprinting region 11p15.4-11p15.5, leading to segmental or diffuse overgrowth of endocrine tissue in the pancreas. Morphological mosaicism of pancreatic islets is characterized by occurence of hyperplastic (type 1) islets in one or a few lobules and small (type 2) islets in the entire pancreas. Other rare genetic causes of CHI show less characteristic or unspecific histology. HH with a predominant adult onset includes insulinomas, which are pancreatic insulin-producing endocrine neoplasms, in some cases with metastatic potential. Insulinomas occur sporadically or as part of multiple endocrine neoplasia type 1 due to MEN1 mutations. MAFA mutations may histologically lead to insulinomatosis with insulin-producing neuroendocrine microadenomas or neuroendocrine neoplasms. NI-PHHS is mainly seen in adults and shows slight histological changes in some patients, which have been defined as major and minor criteria. The genetic cause is unknown in most cases. The diagnosis of HH, as defined by genetic, histological, and phenotypic features, has important implications for patient management and outcome.
Collapse
Affiliation(s)
- Annette Rønholt Larsen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Steno Diabetes Center, Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Steno Diabetes Center, Odense University Hospital, Odense, Denmark
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
- Steno Diabetes Center, Odense University Hospital, Odense, Denmark
| | - Sönke Detlefsen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
10
|
Crowley MT, Paponette B, Bacon S, Byrne MM. Management of pregnancy in women with monogenic diabetes due to mutations in GCK, HNF1A and HNF4A genes. Front Genet 2024; 15:1362977. [PMID: 38933924 PMCID: PMC11199717 DOI: 10.3389/fgene.2024.1362977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Women with maturity-onset diabetes of the young (MODY) need tailored antenatal care and monitoring of their offspring. Each MODY subtype has different implications for glycaemic targets, treatment choices and neonatal management. Hyperglycaemia of MODY is often first diagnosed in adolescence or early adulthood and therefore is clinically relevant to pregnant women. MODY remains an under-recognised and undiagnosed condition. Pregnancy represents an opportune time to make a genetic diagnosis of MODY and provide precision treatment. This review describes the nuance of antenatal care in women with MODY and the implications for pregnancies affected by a positive paternal genotype. Mutations in hepatic nuclear factor 1-alpha (HNF1A) and 4-alpha (HNF4A) genes are associated with progressive β-cell dysfunction resulting in early onset diabetes. Patients are largely managed with sulphonylureas outside of pregnancy. Macrosomia and persistent neonatal hypoglycaemia are reported in 54% and 15% of HNF4A genotype positive offspring respectively with a median increase in birthweight of 790 g. Close observation of foetal growth in utero allows optimal timing of delivery to minimise peri- and postpartum materno-foetal complications. Glucokinase (GCK)-MODY causes mild fasting hyperglycaemia which does not require treatment outside of pregnancy. Birthweight of offspring of maternal carriers is dependent on foetal genotype; heterozygous mutation carriers are usually normal weight while genotype negative offspring are large for gestational age (600 g heavier). Affected offspring of paternal carriers may be small for gestational age (500 g lighter). Serial growth scans with measurement of the abdominal circumference indirectly differentiate foetal genotype. Measurement of cell free foetal DNA in maternal blood from the late first trimester is superior to traditionally used ultrasound to distinguish foetal genotype. Cost and accessibility may limit its use.
Collapse
Affiliation(s)
- M. T. Crowley
- Department of Endocrinology and Diabetes, Mater Misericordiae University Hospital, Dublin, Ireland
| | - B. Paponette
- Department of Endocrinology and Diabetes, Sligo University Hospital, Sligo, Ireland
| | - S. Bacon
- Department of Endocrinology and Diabetes, Sligo University Hospital, Sligo, Ireland
| | - M. M. Byrne
- Department of Endocrinology and Diabetes, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
11
|
Vedovato N, Salguero MV, Greeley SAW, Yu CH, Philipson LH, Ashcroft FM. A loss-of-function mutation in KCNJ11 causing sulfonylurea-sensitive diabetes in early adult life. Diabetologia 2024; 67:940-951. [PMID: 38366195 PMCID: PMC10954967 DOI: 10.1007/s00125-024-06103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 02/18/2024]
Abstract
AIMS/HYPOTHESIS The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life. METHODS A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays. RESULTS Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/INTERPRETATION Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.
Collapse
Affiliation(s)
- Natascia Vedovato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Maria V Salguero
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Siri Atma W Greeley
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Christine H Yu
- Division of Endocrinology, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK.
| |
Collapse
|
12
|
Hudson R, Abeysekera N, Wolski P, Simons C, Francis L, Farnsworth E, Bennetts B, Patel C, Spijker S, Mallett A. De novo HNF4A-associated atypical Fanconi renal tubulopathy syndrome. J Nephrol 2024; 37:191-197. [PMID: 37308774 PMCID: PMC10920409 DOI: 10.1007/s40620-023-01666-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/29/2023] [Indexed: 06/14/2023]
Affiliation(s)
- Rebecca Hudson
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Natasha Abeysekera
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Department of General Surgery, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Penny Wolski
- Department of Diabetes and Endocrinology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research, and University of New South Wales, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Leo Francis
- Anatomical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Elizabeth Farnsworth
- Sydney Genome Diagnostics, Western Sydney Genetics Program, Children's Hospital Westmead, Westmead, NSW, Australia
| | - Bruce Bennetts
- Sydney Genome Diagnostics, Western Sydney Genetics Program, Children's Hospital Westmead, Westmead, NSW, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Siebe Spijker
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Andrew Mallett
- Department of Renal Medicine, Townsville Hospital and Health Service, Townsville University Hospital, 100 Angus Smith Drive, Douglas, QLD, 4814, Australia.
- Faculty of Medicine, James Cook University, Townsville, QLD, Australia.
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
13
|
Shaikh MG, Lucas-Herald AK, Dastamani A, Salomon Estebanez M, Senniappan S, Abid N, Ahmad S, Alexander S, Avatapalle B, Awan N, Blair H, Boyle R, Chesover A, Cochrane B, Craigie R, Cunjamalay A, Dearman S, De Coppi P, Erlandson-Parry K, Flanagan SE, Gilbert C, Gilligan N, Hall C, Houghton J, Kapoor R, McDevitt H, Mohamed Z, Morgan K, Nicholson J, Nikiforovski A, O'Shea E, Shah P, Wilson K, Worth C, Worthington S, Banerjee I. Standardised practices in the networked management of congenital hyperinsulinism: a UK national collaborative consensus. Front Endocrinol (Lausanne) 2023; 14:1231043. [PMID: 38027197 PMCID: PMC10646160 DOI: 10.3389/fendo.2023.1231043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/04/2023] [Indexed: 12/01/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is a condition characterised by severe and recurrent hypoglycaemia in infants and young children caused by inappropriate insulin over-secretion. CHI is of heterogeneous aetiology with a significant genetic component and is often unresponsive to standard medical therapy options. The treatment of CHI can be multifaceted and complex, requiring multidisciplinary input. It is important to manage hypoglycaemia in CHI promptly as the risk of long-term neurodisability arising from neuroglycopaenia is high. The UK CHI consensus on the practice and management of CHI was developed to optimise and harmonise clinical management of patients in centres specialising in CHI as well as in non-specialist centres engaged in collaborative, networked models of care. Using current best practice and a consensus approach, it provides guidance and practical advice in the domains of diagnosis, clinical assessment and treatment to mitigate hypoglycaemia risk and improve long term outcomes for health and well-being.
Collapse
Affiliation(s)
- M. Guftar Shaikh
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Angela K. Lucas-Herald
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Antonia Dastamani
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Maria Salomon Estebanez
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children’s Hospital, Liverpool, United Kingdom
| | - Noina Abid
- Department of Paediatric Endocrinology, Royal Belfast Hospital for Sick Children, Belfast, United Kingdom
| | - Sumera Ahmad
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Sophie Alexander
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Bindu Avatapalle
- Department of Paediatric Endocrinology and Diabetes, University Hospital of Wales, Cardiff, United Kingdom
| | - Neelam Awan
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Hester Blair
- Department of Dietetics, The Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Roisin Boyle
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Alexander Chesover
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Barbara Cochrane
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Ross Craigie
- Department of Paediatric Surgery, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Annaruby Cunjamalay
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Sarah Dearman
- The Children’s Hyperinsulinism Charity, Accrington, United Kingdom
| | - Paolo De Coppi
- SNAPS, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- NIHR BRC UCL Institute of Child Health, London, United Kingdom
| | - Karen Erlandson-Parry
- Department of Paediatric Endocrinology, Alder Hey Children’s Hospital, Liverpool, United Kingdom
| | - Sarah E. Flanagan
- Department of Clinical and Biomedical Science, University of Exeter, Exeter, United Kingdom
| | - Clare Gilbert
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Niamh Gilligan
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Caroline Hall
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Jayne Houghton
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Ritika Kapoor
- Department of Paediatric Endocrinology, Faculty of Medicine and Life Sciences, King’s College London, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Helen McDevitt
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Zainab Mohamed
- Department of Paediatric Endocrinology, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Kate Morgan
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Jacqueline Nicholson
- Paediatric Psychosocial Service, Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Ana Nikiforovski
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Elaine O'Shea
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Pratik Shah
- Department of Paediatric Endocrinology, Barts Health NHS Trust, Royal London Children’s Hospital, London, United Kingdom
| | - Kirsty Wilson
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Chris Worth
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Sarah Worthington
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| |
Collapse
|
14
|
Radi SH, Vemuri K, Martinez-Lomeli J, Sladek FM. HNF4α isoforms: the fraternal twin master regulators of liver function. Front Endocrinol (Lausanne) 2023; 14:1226173. [PMID: 37600688 PMCID: PMC10438950 DOI: 10.3389/fendo.2023.1226173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
In the more than 30 years since the purification and cloning of Hepatocyte Nuclear Factor 4 (HNF4α), considerable insight into its role in liver function has been gleaned from its target genes and mouse experiments. HNF4α plays a key role in lipid and glucose metabolism and intersects with not just diabetes and circadian rhythms but also with liver cancer, although much remains to be elucidated about those interactions. Similarly, while we are beginning to elucidate the role of the isoforms expressed from its two promoters, we know little about the alternatively spliced variants in other portions of the protein and their impact on the 1000-plus HNF4α target genes. This review will address how HNF4α came to be called the master regulator of liver-specific gene expression with a focus on its role in basic metabolism, the contributions of the various isoforms and the intriguing intersection with the circadian clock.
Collapse
Affiliation(s)
- Sarah H. Radi
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Jose Martinez-Lomeli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
15
|
Grassi M, Laubscher B, Pandey AV, Tschumi S, Graber F, Schaller A, Janner M, Aeberli D, Hewer E, Nuoffer JM, Gautschi M. Expanding the p.(Arg85Trp) Variant-Specific Phenotype of HNF4A: Features of Glycogen Storage Disease, Liver Cirrhosis, Impaired Mitochondrial Function, and Glomerular Changes. Mol Syndromol 2023; 14:347-361. [PMID: 37766831 PMCID: PMC10521240 DOI: 10.1159/000529306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/22/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction The p.(Arg85Trp) variant-specific phenotype of hepatocyte nuclear factor 4 alpha shows a complex clinical picture affecting three different organ systems and their corresponding metabolisms. Little is known about the molecular mechanisms involved and their relationship with the diverse symptoms seen in the context of this specific variant. Here, we present data of a new patient that expand the clinical phenotype, suggesting possible disease mechanisms. Case Presentation Clinical data were extracted from the patient's charts. The liver, kidney, and muscle were analyzed with routine histology and electron microscopy. Mitochondrial function was assessed by respirometric analyses and enzymatic activity assays. Structure and sequence analyses of this specific variant were investigated by in silico analyses. Our patient showed the known features of the variant-specific phenotype, including macrosomia, congenital hyperinsulinism, transient hepatomegaly, and renal Fanconi syndrome. In addition to that, she showed liver cirrhosis, chronic kidney failure, and altered mitochondrial morphology and function. The clinical and biochemical phenotype had features of a new type of glycogen storage disease. Discussion This case expands the p.(Arg85Trp) variant-specific phenotype. Possible pathomechanistic explanations for the documented multiorgan involvement and changes of symptoms and signs during development of this ultra-rare but instructive disorder are discussed.
Collapse
Affiliation(s)
- Mara Grassi
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Bernard Laubscher
- Department of Pediatrics, Réseau hospitalier neuchâtelois, Neuchâtel, Switzerland
- Department of Pediatrics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Sibylle Tschumi
- Pediatric Nephrology, Inselspital, University Hospital Bern, Bern, Switzerland
| | | | - André Schaller
- Department of Human Genetics, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Marco Janner
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Daniel Aeberli
- Department of Rheumatology and Immunology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Ekkehard Hewer
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Nuoffer
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Matthias Gautschi
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
De Leon DD, Arnoux JB, Banerjee I, Bergada I, Bhatti T, Conwell LS, Fu J, Flanagan SE, Gillis D, Meissner T, Mohnike K, Pasquini TL, Shah P, Stanley CA, Vella A, Yorifuji T, Thornton PS. International Guidelines for the Diagnosis and Management of Hyperinsulinism. Horm Res Paediatr 2023; 97:279-298. [PMID: 37454648 PMCID: PMC11124746 DOI: 10.1159/000531766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Hyperinsulinism (HI) due to dysregulation of pancreatic beta-cell insulin secretion is the most common and most severe cause of persistent hypoglycemia in infants and children. In the 65 years since HI in children was first described, there has been a dramatic advancement in the diagnostic tools available, including new genetic techniques and novel radiologic imaging for focal HI; however, there have been almost no new therapeutic modalities since the development of diazoxide. SUMMARY Recent advances in neonatal research and genetics have improved our understanding of the pathophysiology of both transient and persistent forms of neonatal hyperinsulinism. Rapid turnaround of genetic test results combined with advanced radiologic imaging can permit identification and localization of surgically-curable focal lesions in a large proportion of children with congenital forms of HI, but are only available in certain centers in "developed" countries. Diazoxide, the only drug currently approved for treating HI, was recently designated as an "essential medicine" by the World Health Organization but has been approved in only 16% of Latin American countries and remains unavailable in many under-developed areas of the world. Novel treatments for HI are emerging, but they await completion of safety and efficacy trials before being considered for clinical use. KEY MESSAGES This international consensus statement on diagnosis and management of HI was developed in order to assist specialists, general pediatricians, and neonatologists in early recognition and treatment of HI with the ultimate aim of reducing the prevalence of brain injury caused by hypoglycemia. A previous statement on diagnosis and management of HI in Japan was published in 2017. The current document provides an updated guideline for management of infants and children with HI and includes potential accommodations for less-developed regions of the world where resources may be limited.
Collapse
Affiliation(s)
- Diva D. De Leon
- Congenital Hyperinsulinism Center and Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, AP-HP, University of Paris-Cité, Paris, France
| | - Indraneel Banerjee
- Paediatric Endocrinology, Royal Manchester Children’s Hospital, University of Manchester, Manchester, UK
| | - Ignacio Bergada
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CONICET – FEI), Division de Endrocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Tricia Bhatti
- Department of Clinical Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Louise S. Conwell
- Australia and Children’s Health Queensland Clinical Unit, Department of Endocrinology and Diabetes, Queensland Children’s Hospital, Children’s Health Queensland, Greater Brisbane Clinical School, Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Junfen Fu
- National Clinical Research Center for Child Health, Department of Endocrinology, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - David Gillis
- Hadassah Medical Center, Department of Pediatrics, Ein-Kerem, Jerusalem and Faculty of Medicine, Hebrew-University, Jerusalem, Israel
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Klaus Mohnike
- Department of General Pediatrics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Tai L.S. Pasquini
- Research and Policy Director, Congenital Hyperinsulinism International, Glen Ridge, NJ, USA
| | - Pratik Shah
- Pediatric Endocrinology, The Royal London Children’s Hospital, Queen Mary University of London, London, UK
| | - Charles A. Stanley
- Congenital Hyperinsulinism Center and Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adrian Vella
- Division of Diabetes, Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Tohru Yorifuji
- Pediatric Endocrinology and Metabolism, Children’s Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Paul S. Thornton
- Congenital Hyperinsulinism Center, Cook Children’s Medical Center and Texas Christian University Burnett School of Medicine, Fort Worth, TX, USA
| |
Collapse
|
17
|
Wolschendorf R, Eimicke T, Swartz J. Siblings With HNF4A Congenital Hyperinsulinism From Possible Parental Gonadal Mosaicism. JCEM CASE REPORTS 2023; 1:luad089. [PMID: 37908999 PMCID: PMC10580462 DOI: 10.1210/jcemcr/luad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 11/02/2023]
Abstract
Congenital hyperinsulinism is the most common cause of persistent hypoglycemia in early infancy. Mutations in the gene for heterozygous hepatocyte nuclear transcription factor 4-alpha (HNF4A) account for approximately 5% of cases and are inherited in an autosomal dominant fashion or arise as de novo mutations. This case describes a unique presentation of parental gonadal, or germline, mosaicism as the suspected inheritance pattern for siblings with congenital hyperinsulinism caused by HNF4A mutations. Two siblings presented with hypoglycemia in the first hours of life and were subsequently confirmed to have hyperinsulinism. In each patient, glycemic control was achieved at relatively low doses of diazoxide. Both siblings tested positive for the same HNF4A mutation, whereas the parents tested negative for HNF4A mutations. Gonadal, or germline, mosaicism became the presumed leading diagnosis, given 2 unaffected parents with 2 children with congenital hyperinsulinism. The older sibling demonstrated additional clinical features of liver disease and renal Fanconi syndrome, both of which are associated with HNF4A mutations. Genetic testing plays an important role in the diagnosis and management of congenital hyperinsulinism. HNF4A mutations may arise by a range of mechanisms, including gonadal, or germline, mosaicism. HNF4A mutations have phenotypic variance that may affect multiple organ systems at any age.
Collapse
Affiliation(s)
- Robin Wolschendorf
- Barbara Bush Children's Hospital at Maine Medical Center, Portland, ME 04102, USA
- C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI 48109, USA
| | - Toni Eimicke
- Barbara Bush Children's Hospital at Maine Medical Center, Portland, ME 04102, USA
- Maine Medical Partners Department of Pediatric Endocrinology, Portland, ME 04102, USA
| | - Jonathan Swartz
- Barbara Bush Children's Hospital at Maine Medical Center, Portland, ME 04102, USA
- C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Albuquerque ALB, Dos Santos Borges R, Conegundes AF, Dos Santos EE, Fu FMM, Araujo CT, Vaz de Castro PAS, Simões E Silva AC. Inherited Fanconi syndrome. World J Pediatr 2023; 19:619-634. [PMID: 36729281 DOI: 10.1007/s12519-023-00685-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/08/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Fanconi-Debré-de Toni syndrome (also known as Fanconi renotubular syndrome, or FRST) profoundly increased the understanding of the functions of the proximal convoluted tubule (PCT) and provided important insights into the pathophysiology of several kidney diseases and drug toxicities. DATA SOURCES We searched Pubmed and Scopus databases to find relevant articles about FRST. This review article focuses on the physiology of the PCT, as well as on the physiopathology of FRST in children, its diagnosis, and treatment. RESULTS FRST encompasses a wide variety of inherited and acquired PCT alterations that lead to impairment of PCT reabsorption. In children, FRST often presents as a secondary feature of systemic disorders that impair energy supply, such as Lowe's syndrome, Dent's disease, cystinosis, hereditary fructose intolerance, galactosemia, tyrosinemia, Alport syndrome, and Wilson's disease. Although rare, congenital causes of FRST greatly impact the morbidity and mortality of patients and impose diagnostic challenges. Furthermore, its treatment is diverse and considers the ability of the clinician to identify the correct etiology of the disease. CONCLUSION The early diagnosis and treatment of pediatric patients with FRST improve the prognosis and the quality of life.
Collapse
Affiliation(s)
- Anna Luiza Braga Albuquerque
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafael Dos Santos Borges
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Flávia Conegundes
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Erika Emmylaine Dos Santos
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Frederico Moreira Man Fu
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Clara Tavares Araujo
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pedro Alves Soares Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
- Department of Pediatrics, Faculty of Medicine, UFMG, Alfredo Balena Avenue, 190, 2Nd Floor, Room # 281, Belo Horizonte, MG, 30130-100, Brazil.
| |
Collapse
|
19
|
Beinsteiner B, Billas IML, Moras D. Structural insights into the HNF4 biology. Front Endocrinol (Lausanne) 2023; 14:1197063. [PMID: 37404310 PMCID: PMC10315846 DOI: 10.3389/fendo.2023.1197063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor (NR) family that is expressed in liver, kidney, intestine and pancreas. It is a master regulator of liver-specific gene expression, in particular those genes involved in lipid transport and glucose metabolism and is crucial for the cellular differentiation during development. Dysregulation of HNF4 is linked to human diseases, such as type I diabetes (MODY1) and hemophilia. Here, we review the structures of the isolated HNF4 DNA binding domain (DBD) and ligand binding domain (LBD) and that of the multidomain receptor and compare them with the structures of other NRs. We will further discuss the biology of the HNF4α receptors from a structural perspective, in particular the effect of pathological mutations and of functionally critical post-translational modifications on the structure-function of the receptor.
Collapse
Affiliation(s)
- Brice Beinsteiner
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle M. L. Billas
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Dino Moras
- Laboratory IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| |
Collapse
|
20
|
Hermann FM, Kjærgaard MF, Tian C, Tiemann U, Jackson A, Olsen LR, Kraft M, Carlsson PO, Elfving IM, Kettunen JLT, Tuomi T, Novak I, Semb H. An insulin hypersecretion phenotype precedes pancreatic β cell failure in MODY3 patient-specific cells. Cell Stem Cell 2023; 30:38-51.e8. [PMID: 36563694 DOI: 10.1016/j.stem.2022.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/04/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
MODY3 is a monogenic hereditary form of diabetes caused by mutations in the transcription factor HNF1A. The patients progressively develop hyperglycemia due to perturbed insulin secretion, but the pathogenesis is unknown. Using patient-specific hiPSCs, we recapitulate the insulin secretion sensitivity to the membrane depolarizing agent sulfonylurea commonly observed in MODY3 patients. Unexpectedly, MODY3 patient-specific HNF1A+/R272C β cells hypersecrete insulin both in vitro and in vivo after transplantation into mice. Consistently, we identified a trend of increased birth weight in human HNF1A mutation carriers compared with healthy siblings. Reduced expression of potassium channels, specifically the KATP channel, in MODY3 β cells, increased calcium signaling, and rescue of the insulin hypersecretion phenotype by pharmacological targeting ATP-sensitive potassium channels or low-voltage-activated calcium channels suggest that more efficient membrane depolarization underlies the hypersecretion of insulin in MODY3 β cells. Our findings identify a pathogenic mechanism leading to β cell failure in MODY3.
Collapse
Affiliation(s)
- Florian M Hermann
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Maya Friis Kjærgaard
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Chenglei Tian
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, München, Germany
| | - Ulf Tiemann
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Abigail Jackson
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria Kraft
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jarno L T Kettunen
- Folkhalsan Research Center, Helsinki, Finland; Institute for Molecular Medicine Finland, University of Finland, Helsinki, Finland; Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Tiinamaija Tuomi
- Folkhalsan Research Center, Helsinki, Finland; Institute for Molecular Medicine Finland, University of Finland, Helsinki, Finland; Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Ivana Novak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Semb
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, München, Germany.
| |
Collapse
|
21
|
Majewska A, Stanirowski P, Wielgoś M, Bomba-Opoń D. Maturity-onset Diabetes of the Young (MODY) in Pregnancy: A Review. Curr Diabetes Rev 2023; 19:28-32. [PMID: 35088675 DOI: 10.2174/1573399818666220128124043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/21/2021] [Accepted: 12/04/2021] [Indexed: 11/22/2022]
Abstract
Hyperglycaemia in pregnancy is one of the most common complications of pregnancy and is generally diagnosed as gestational diabetes mellitus (GDM). Nevertheless, clinical symptoms of hyperglycaemia in pregnancy in some cases do not match the clinical manifestations of GDM. It is suspected that 1-2 % of women diagnosed with GDM are misdiagnosed maturity-onset diabetes of the young (MODY). MODY often has a subclinical course; thus, it is challenging for clinicians to aptly diagnose monogenic diabetes in pregnancy. Proper diagnosis is crucial for the effective treatment of hyperglycaemia in pregnancy. Many studies revealed that misdiagnosis of MODY increases the rate of complications for both mother and fetus. This literature review reports the current knowledge regarding diagnosis, treatment, and complications of the most common types of MODY in pregnancy.
Collapse
Affiliation(s)
- Agata Majewska
- 1st Department of Obstetrics and Gynaecology, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Stanirowski
- 1st Department of Obstetrics and Gynaecology, Medical University of Warsaw, Warsaw, Poland
| | - Mirosław Wielgoś
- 1st Department of Obstetrics and Gynaecology, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Bomba-Opoń
- 1st Department of Obstetrics and Gynaecology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Zenker M, Mohnike K, Palm K. Syndromic forms of congenital hyperinsulinism. Front Endocrinol (Lausanne) 2023; 14:1013874. [PMID: 37065762 PMCID: PMC10098214 DOI: 10.3389/fendo.2023.1013874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Congenital hyperinsulinism (CHI), also called hyperinsulinemic hypoglycemia (HH), is a very heterogeneous condition and represents the most common cause of severe and persistent hypoglycemia in infancy and childhood. The majority of cases in which a genetic cause can be identified have monogenic defects affecting pancreatic β-cells and their glucose-sensing system that regulates insulin secretion. However, CHI/HH has also been observed in a variety of syndromic disorders. The major categories of syndromes that have been found to be associated with CHI include overgrowth syndromes (e.g. Beckwith-Wiedemann and Sotos syndromes), chromosomal and monogenic developmental syndromes with postnatal growth failure (e.g. Turner, Kabuki, and Costello syndromes), congenital disorders of glycosylation, and syndromic channelopathies (e.g. Timothy syndrome). This article reviews syndromic conditions that have been asserted by the literature to be associated with CHI. We assess the evidence of the association, as well as the prevalence of CHI, its possible pathophysiology and its natural course in the respective conditions. In many of the CHI-associated syndromic conditions, the mechanism of dysregulation of glucose-sensing and insulin secretion is not completely understood and not directly related to known CHI genes. Moreover, in most of those syndromes the association seems to be inconsistent and the metabolic disturbance is transient. However, since neonatal hypoglycemia is an early sign of possible compromise in the newborn, which requires immediate diagnostic efforts and intervention, this symptom may be the first to bring a patient to medical attention. As a consequence, HH in a newborn or infant with associated congenital anomalies or additional medical issues remains a differential diagnostic challenge and may require a broad genetic workup.
Collapse
Affiliation(s)
- Martin Zenker
- Institute of Human Genetics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Martin Zenker,
| | - Klaus Mohnike
- Department of Pediatrics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katja Palm
- Department of Pediatrics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
23
|
Perge K, Nicolino M. Variable phenotypes of individual and family monogenic cases with hyperinsulinism and diabetes: a systematic review. Rev Endocr Metab Disord 2022; 23:1063-1078. [PMID: 35996042 DOI: 10.1007/s11154-022-09749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Maturity-Onset Diabetes of the Youth (MODY) diabetes remains commonly misdiagnosed. A monogenic form should be suspected in individuals presenting hyperinsulinemic hypoglycemia (HH) associated with, either later development of MODY (hypoglycemia-remission-diabetes sequence), or with first/second-degree family history of diabetes. Herein, we aimed to describe this individual or family monogenic association between HH and diabetes, and identify potential genotype-phenotype correlations. We conducted a systematic review of 26 studies, including a total of 67 patients with this association resulting from variants in GCK (n = 5 cases), ABCC8 (n = 29), HNF1A (n = 5), or HNF4A (n = 28). A family history of hypoglycemia and/or diabetes was present in 91% of cases (61/67). Median age at first hypoglycemia was 24 h after birth. Diazoxide was initiated in 46 children (46/67-69%); responsiveness was found in 91% (42/46). Median HH duration was three years (1 day-25 years). Twenty-three patients (23/67-34%) later developed diabetes (median age: 13 years; range: 8-48); more frequently in those untreated with diazoxide. This association was most commonly inherited in an autosomal dominant manner (43/48-90%). Some genes were associated with less severe initial hypoglycemia (HNF1A), shorter duration of HH (HNF4A), and more maternal (ABCC8) or paternal (HNF4A) transmission. This study illustrates that the same genotype can give a biphasic phenotype in the same person or a reverse phenotype in the same family. Wider awareness of this association is necessary in pediatrics to establish annual monitoring of patients who have presented HH, and during maternity to screen diabetes and optimize genetic counseling and management of pregnancy, childbirth, and the newborn.PROSPERO registration: CRD42020178265.
Collapse
Affiliation(s)
- Kevin Perge
- Service d'Endocrinologie Pédiatrique Et Pédiatrie Générale, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, 59 Boulevard Pinel, 69677, Bron, France
- Université Claude Bernard, Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France
| | - Marc Nicolino
- Service d'Endocrinologie Pédiatrique Et Pédiatrie Générale, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, 59 Boulevard Pinel, 69677, Bron, France.
- Université Claude Bernard, Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
24
|
Cromer SJ, Sella AC, Rosenberg E, Scully K, McDonnell M, Abreu AP, Weil M, Bernstein SN, Quinn M, Powe C, Mitchell DM, Udler MS. Report of Prolonged Neonatal Hypoglycemia in Three Infants of Mothers With Variants in HNF1A. AACE Clin Case Rep 2022; 8:224-230. [PMID: 36189138 PMCID: PMC9508595 DOI: 10.1016/j.aace.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background/Objective Genetic variants in hepatic nuclear factor 1α (HNF1A) cause maturity-onset diabetes of the young (MODY). We sought to examine whether HNF1A MODY variants also cause neonatal hypoglycemia. Case Report We present 3 infants with variants in HNF1A shared with their mothers. The infants experienced neonatal hypoglycemia, 2 extending beyond 1 year and the third resolving by 28 days, and all were large for gestational age (birth weights of >99th percentile). In 2 cases, genetic testing for neonatal hypoglycemia revealed pathogenic variants in HNF1A; 1 mother was previously diagnosed with HNF1A MODY, and the other's genetic testing and ultimate MODY diagnosis were prompted by her child's hypoglycemia workup. In the third case, the infant's persistent hypoglycemia prompted genetic testing, revealing an HNF1A variant of uncertain significance, which was then identified in the mother. Discussion Genetic variants causing HNF1A MODY have not been definitively linked to neonatal hypoglycemia or fetal overgrowth in utero. MODY caused by HNF1A is clinically similar to that caused by HNF4A, for which a causal relationship with neonatal hypoglycemia is more certain. Case reports have previously implicated variants in HNF1A in congenital hyperinsulinism; however, these cases have generally not been in families with MODY. The cases presented here suggest that HNF1A variants causing MODY may also cause neonatal hypoglycemia. Conclusion Although confounding factors make the assessment of neonatal hypoglycemia challenging, these cases offer potential support for single genetic variants in HNF1A causing both MODY and neonatal hypoglycemia, with associated fetal overgrowth in utero.
Collapse
Key Words
- CGM, continuous glucose monitoring
- CHI, congenital hyperinsulinism
- EFW, estimated fetal weight
- HNF1A
- HNF1A, hepatic nuclear factor-1α
- HNF4A, hepatocyte nuclear factor-4α
- HbA1C, hemoglobin A1C
- MODY
- MODY, maturity-onset diabetes of the young
- NICU, neonatal intensive care unit
- T1D, type 1 diabetes
- T2D, type 2 diabetes
- VUS, variant of uncertain significance
- congenital hyperinsulinism
- diabetes
- genetic variants
- macrosomia
Collapse
Affiliation(s)
- Sara Jane Cromer
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- The Broad Institute, Boston, Massachusetts
| | - Aluma Chovel Sella
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Emily Rosenberg
- Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Kevin Scully
- Harvard Medical School, Boston, Massachusetts
- Division of Pediatric Endocrinology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
| | - Marie McDonnell
- Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Ana Paula Abreu
- Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Brigham Center for Endocrine Genetics, Boston, Massachusetts
| | - Michelle Weil
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Sarah N. Bernstein
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Maryanne Quinn
- Harvard Medical School, Boston, Massachusetts
- Division of Pediatric Endocrinology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
| | - Camille Powe
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- The Broad Institute, Boston, Massachusetts
| | - Deborah M. Mitchell
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Miriam S. Udler
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- The Broad Institute, Boston, Massachusetts
| |
Collapse
|
25
|
Boodhansingh KE, Rosenfeld E, Lord K, Adzick NS, Bhatti T, Ganguly A, De Leon DD, Stanley CA. Mosaic GLUD1 Mutations Associated with Hyperinsulinism Hyperammonemia Syndrome. Horm Res Paediatr 2022; 95:492-498. [PMID: 35952631 PMCID: PMC9671865 DOI: 10.1159/000526203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The hyperinsulinemia-hyperammonemia syndrome (HIHA) is the second most common cause of congenital hyperinsulinism and is caused by activating heterozygous missense mutations in GLUD1. In the majority of HIHA cases, the GLUD1 mutation is found to be de novo. We have identified 3 patients in whom clinical evaluation was suggestive of HIHA but with negative mutation analysis in peripheral blood DNA for GLUD1 as well as other known HI genes. METHODS We performed next-generation sequencing (NGS) on peripheral blood DNA from two children with clinical features of HIHA in order to look for mosaic mutations in GLUD1. Pancreas tissue was also available in one of these cases for NGS. In addition, NGS was performed on peripheral blood DNA from a woman with a history of HI in infancy whose child had HIHA due to a presumed de novo GLUD1 mutation. RESULTS Mosaic GLUD1 mutations were identified in these 3 cases at percent mosaicism ranging from 2.7% to 10.4% in peripheral blood. In one case with pancreas tissue available, the mosaic GLUD1 mutation was present at 17.9% and 28.9% in different sections of the pancreas. Two unique GLUD1 mutations were identified in these cases, both of which have been previously reported (c.1493c>t/p.Ser445Leu and c.820c>t/p.Arg221Cys). CONCLUSION The results suggest that low-level mosaic mutations in known HI genes may be the underlying molecular mechanism in some children with HI who have negative genetic testing in peripheral blood DNA.
Collapse
Affiliation(s)
- Kara E. Boodhansingh
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth Rosenfeld
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine Lord
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - N. Scott Adzick
- Department of Surgery, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tricia Bhatti
- Department of Pathology, The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arupa Ganguly
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Diva D. De Leon
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles A. Stanley
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Lao Y, Li Y, Wang W, Ren L, Qian X, He F, Chen X, Jiang Y. A Cytological Atlas of the Human Liver Proteome from PROTEOME SKY-LIVER Hu 2.0, a Publicly Available Database. J Proteome Res 2022; 21:1916-1929. [PMID: 35820117 DOI: 10.1021/acs.jproteome.2c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The liver plays a unique role as a metabolic center of the body, and also performs other important functions such as detoxification and immune response. Here, we establish a cell type-resolved healthy human liver proteome including hepatocytes (HCs), hepatic stellate cells (HSCs), Kupffer cells (KCs), and liver sinusoidal endothelial cells (LSECs) by high-resolution mass spectrometry. Overall, we quantify total 8354 proteins for four cell types and over 6000 proteins for each cell type. Analysis of this data set and regulatory pathway reveals the cellular labor division in the human liver follows the pattern that parenchymal cells make the main components of pathways, but nonparenchymal cells trigger these pathways. Human liver cells show some novel molecular features: HCs maintain KCs and LSECs homeostasis by producing cholesterol and ketone bodies; HSCs participate in xenobiotics metabolism as an agent deliverer; KCs and LSECs mediate immune response through MHC class II-TLRs and MHC class I-TGFβ cascade, respectively; and KCs play a central role in diurnal rhythms regulation through sensing diurnal IGF and temperature flux. Together, this work expands our understandings of liver physiology and provides a useful resource for future analyses of normal and diseased livers.
Collapse
Affiliation(s)
- Yuanxiang Lao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yanyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Liangliang Ren
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinguo Chen
- Institute of Liver Transplantation, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Ying Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,Anhui Medical University, Hefei 230031, China
| |
Collapse
|
27
|
Massese M, Tagliaferri F, Dionisi-Vici C, Maiorana A. Glycogen storage diseases with liver involvement: a literature review of GSD type 0, IV, VI, IX and XI. Orphanet J Rare Dis 2022; 17:241. [PMID: 35725468 PMCID: PMC9208159 DOI: 10.1186/s13023-022-02387-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 12/31/2022] Open
Abstract
Background Glycogen storage diseases (GSDs) with liver involvement are classified into types 0, I, III, IV, VI, IX and XI, depending on the affected enzyme. Hypoglycemia and hepatomegaly are hallmarks of disease, but muscular and renal tubular involvement, dyslipidemia and osteopenia can develop. Considering the paucity of literature available, herein we provide a narrative review of these latter forms of GSDs. Main body Diagnosis is based on clinical manifestations and laboratory test results, but molecular analysis is often necessary to distinguish the various forms, whose presentation can be similar. Compared to GSD type I and III, which are characterized by a more severe impact on metabolic and glycemic homeostasis, GSD type 0, VI, IX and XI are usually known to be responsive to the nutritional treatment for achieving a balanced metabolic homeostasis in the pediatric age. However, some patients can exhibit a more severe phenotype and an important progression of the liver and muscular disease. The effects of dietary adjustments in GSD type IV are encouraging, but data are limited. Conclusions Early diagnosis allows a good metabolic control, with improvement of quality of life and prognosis, therefore we underline the importance of building a proper knowledge among physicians about these rare conditions. Regular monitoring is necessary to restrain disease progression and complications.
Collapse
Affiliation(s)
- Miriam Massese
- Division of Metabolism, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.,Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Tagliaferri
- Division of Metabolism, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.,SCDU of Pediatrics, Azienda Ospedaliero-Universitaria Maggiore Della Carità, University of Piemonte Orientale, Novara, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Arianna Maiorana
- Division of Metabolism, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
28
|
Nichols CG, York NW, Remedi MS. ATP-Sensitive Potassium Channels in Hyperinsulinism and Type 2 Diabetes: Inconvenient Paradox or New Paradigm? Diabetes 2022; 71:367-375. [PMID: 35196393 PMCID: PMC8893938 DOI: 10.2337/db21-0755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/28/2021] [Indexed: 11/13/2022]
Abstract
Secretion of insulin from pancreatic β-cells is complex, but physiological glucose-dependent secretion is dominated by electrical activity, in turn controlled by ATP-sensitive potassium (KATP) channel activity. Accordingly, loss-of-function mutations of the KATP channel Kir6.2 (KCNJ11) or SUR1 (ABCC8) subunit increase electrical excitability and secretion, resulting in congenital hyperinsulinism (CHI), whereas gain-of-function mutations cause underexcitability and undersecretion, resulting in neonatal diabetes mellitus (NDM). Thus, diazoxide, which activates KATP channels, and sulfonylureas, which inhibit KATP channels, have dramatically improved therapies for CHI and NDM, respectively. However, key findings do not fit within this simple paradigm: mice with complete absence of β-cell KATP activity are not hyperinsulinemic; instead, they are paradoxically glucose intolerant and prone to diabetes, as are older human CHI patients. Critically, despite these advances, there has been little insight into any role of KATP channel activity changes in the development of type 2 diabetes (T2D). Intriguingly, the CHI progression from hypersecretion to undersecretion actually mirrors the classical response to insulin resistance in the progression of T2D. In seeking to explain the progression of CHI, multiple lines of evidence lead us to propose that underlying mechanisms are also similar and that development of T2D may involve loss of KATP activity.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Nathaniel W York
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Division of Endocrinology Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
29
|
Role of Actionable Genes in Pursuing a True Approach of Precision Medicine in Monogenic Diabetes. Genes (Basel) 2022; 13:genes13010117. [PMID: 35052457 PMCID: PMC8774614 DOI: 10.3390/genes13010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Monogenic diabetes is a genetic disorder caused by one or more variations in a single gene. It encompasses a broad spectrum of heterogeneous conditions, including neonatal diabetes, maturity onset diabetes of the young (MODY) and syndromic diabetes, affecting 1-5% of patients with diabetes. Some of these variants are harbored by genes whose altered function can be tackled by specific actions ("actionable genes"). In suspected patients, molecular diagnosis allows the implementation of effective approaches of precision medicine so as to allow individual interventions aimed to prevent, mitigate or delay clinical outcomes. This review will almost exclusively concentrate on the clinical strategy that can be specifically pursued in carriers of mutations in "actionable genes", including ABCC8, KCNJ11, GCK, HNF1A, HNF4A, HNF1B, PPARG, GATA4 and GATA6. For each of them we will provide a short background on what is known about gene function and dysfunction. Then, we will discuss how the identification of their mutations in individuals with this form of diabetes, can be used in daily clinical practice to implement specific monitoring and treatments. We hope this article will help clinical diabetologists carefully consider who of their patients deserves timely genetic testing for monogenic diabetes.
Collapse
|
30
|
Maiorana A, Lepri FR, Novelli A, Dionisi-Vici C. Hypoglycaemia Metabolic Gene Panel Testing. Front Endocrinol (Lausanne) 2022; 13:826167. [PMID: 35422763 PMCID: PMC9001947 DOI: 10.3389/fendo.2022.826167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
A large number of inborn errors of metabolism present with hypoglycemia. Impairment of glucose homeostasis may arise from different biochemical pathways involving insulin secretion, fatty acid oxidation, ketone bodies formation and degradation, glycogen metabolism, fructose and galactose metabolism, branched chain aminoacids and tyrosine metabolism, mitochondrial function and glycosylation proteins mechanisms. Historically, genetic analysis consisted of highly detailed molecular testing of nominated single genes. However, more recently, the genetic heterogeneity of these conditions imposed to perform extensive molecular testing within a useful timeframe via new generation sequencing technology. Indeed, the establishment of a rapid diagnosis drives specific nutritional and medical therapies. The biochemical and clinical phenotypes are critical to guide the molecular analysis toward those clusters of genes involved in specific pathways, and address data interpretation regarding the finding of possible disease-causing variants at first reported as variants of uncertain significance in known genes or the discovery of new disease genes. Also, the trio's analysis allows genetic counseling for recurrence risk in further pregnancies. Besides, this approach is allowing to expand the phenotypic characterization of a disease when pathogenic variants give raise to unexpected clinical pictures. Multidisciplinary input and collaboration are increasingly key for addressing the analysis and interpreting the significance of the genetic results, allowing rapidly their translation from bench to bedside.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
- *Correspondence: Arianna Maiorana,
| | - Francesca Romana Lepri
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| |
Collapse
|
31
|
Hewat TI, Johnson MB, Flanagan SE. Congenital Hyperinsulinism: Current Laboratory-Based Approaches to the Genetic Diagnosis of a Heterogeneous Disease. Front Endocrinol (Lausanne) 2022; 13:873254. [PMID: 35872984 PMCID: PMC9302115 DOI: 10.3389/fendo.2022.873254] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Congenital hyperinsulinism is characterised by the inappropriate release of insulin during hypoglycaemia. This potentially life-threatening disorder can occur in isolation, or present as a feature of syndromic disease. Establishing the underlying aetiology of the hyperinsulinism is critical for guiding medical management of this condition especially in children with diazoxide-unresponsive hyperinsulinism where the underlying genetics determines whether focal or diffuse pancreatic disease is present. Disease-causing single nucleotide variants affecting over 30 genes are known to cause persistent hyperinsulinism with mutations in the KATP channel genes (ABCC8 and KCNJ11) most commonly identified in children with severe persistent disease. Defects in methylation, changes in chromosome number, and large deletions and duplications disrupting multiple genes are also well described in congenital hyperinsulinism, further highlighting the genetic heterogeneity of this condition. Next-generation sequencing has revolutionised the approach to genetic testing for congenital hyperinsulinism with targeted gene panels, exome, and genome sequencing being highly sensitive methods for the analysis of multiple disease genes in a single reaction. It should though be recognised that limitations remain with next-generation sequencing with no single application able to detect all reported forms of genetic variation. This is an important consideration for hyperinsulinism genetic testing as comprehensive screening may require multiple investigations.
Collapse
|
32
|
Alwatban S, Alfaraidi H, Alosaimi A, Alluhaydan I, Alfadhel M, Polak M, Almutair A. Case Report: Homozygous DNAJC3 Mutation Causes Monogenic Diabetes Mellitus Associated With Pancreatic Atrophy. Front Endocrinol (Lausanne) 2021; 12:742278. [PMID: 34630333 PMCID: PMC8497828 DOI: 10.3389/fendo.2021.742278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction DNAJC3, abundant in the pancreatic cells, attenuates endoplasmic reticulum stress. Homozygous DNAJC3 mutations have been reported to cause non-immune juvenile-onset diabetes, neurodegeneration, hearing loss, short stature, and hypothyroidism. Case Description We report a case of homozygous DNAJC3 mutation in two siblings of a consanguineous family. A 3-year-old boy presented with short stature and a thyroid nodule. Laboratory findings confirmed hypothyroidism. Subsequently, levothyroxine was administered. Growth hormone (GH) stimulation test results were within the normal limits. His stature was exceedingly short (80.5 cm) (-3.79 SDS). The patient developed sensorineural hearing loss at age 6 years; his intellectual functioning was impaired. Recombinant Human Growth Hormine (rhGH) treatment was postponed until the age of 6.9 years due to a strong family history of diabetes. At age 9 years, he developed an ataxic gait. Brain magnetic resonance imaging (MRI) revealed neurodegeneration. The patient developed diabetes at the age of 11 years-5 years after the initiation of rhGH treatment. Tests for markers of autoimmune diabetes were negative. Lifestyle modification was introduced, but insulin therapy was eventually required. Whole-exome-sequencing (WES) revealed a homozygous DNAJC3 mutation, which explained his clinical presentation. MRI revealed a small, atrophic pancreas. At the age of 17, his final adult height was 143 cm (-4.7 SDS). His elder brother, who had the same mutation, had a similar history, except that he had milder ataxia and normal brain MRI finding at the age of 28 years. Conclusion We propose that DNAJC3 mutation can be considered as a cause of maturity onset diabetes of the young. Patients with DNAJC3 mutations may possess a small atrophic pancreas.
Collapse
Affiliation(s)
- Saud Alwatban
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
| | - Haifa Alfaraidi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Abdulaziz Alosaimi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Medical Imaging Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Iram Alluhaydan
- Genetics and Precision Medicine department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Centre (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Michel Polak
- Pediatric Endocrinology, Gynecology, and Diabetology Department, Necker University Children's Hospital, Assistance Publique-Hôpitaux de Paris, IMAGINE Institute affiliate, INSERM U1163; INSERM U1016, Université de Paris, Paris, France
| | - Angham Almutair
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Yang J, Hammoud B, Li C, Ridler A, Yau D, Kim J, Won KJ, Stanley CA, Hoshi T, Stanescu DE. Decreased KATP Channel Activity Contributes to the Low Glucose Threshold for Insulin Secretion of Rat Neonatal Islets. Endocrinology 2021; 162:6301135. [PMID: 34134142 PMCID: PMC8276892 DOI: 10.1210/endocr/bqab121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Transitional hypoglycemia in normal newborns occurs in the first 3 days of life and has clinical features consistent with hyperinsulinism. We found a lower threshold for glucose-stimulated insulin secretion from freshly isolated embryonic day (E) 22 rat islets, which persisted into the first postnatal days. The threshold reached the adult level by postnatal day (P) 14. Culturing P14 islets also decreased the glucose threshold. Freshly isolated P1 rat islets had a lower threshold for insulin secretion in response to 2-aminobicyclo-(2, 2, 1)-heptane-2-carboxylic acid, a nonmetabolizable leucine analog, and diminished insulin release in response to tolbutamide, an inhibitor of β-cell KATP channels. These findings suggested that decreased KATP channel function could be responsible for the lower glucose threshold for insulin secretion. Single-cell transcriptomic analysis did not reveal a lower expression of KATP subunit genes in E22 compared with P14 β cells. The investigation of electrophysiological characteristics of dispersed β cells showed that early neonatal and cultured cells had fewer functional KATP channels per unit membrane area. Our findings suggest that decreased surface density of KATP channels may contribute to the observed differences in glucose threshold for insulin release.
Collapse
Affiliation(s)
- Juxiang Yang
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Batoul Hammoud
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Abigail Ridler
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daphne Yau
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Junil Kim
- Biotech Research & Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, South Korea
| | - Kyoung-Jae Won
- Biotech Research & Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Charles A Stanley
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Toshinori Hoshi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diana E Stanescu
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: Diana Elena Stanescu, MD, The Children's Hospital of Philadelphia, Abramson Pediatric Research Center, 3615 Civic Center Blvd, #802G, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Amaratunga SA, Hussein Tayeb T, Rozenkova K, Kucerova P, Pruhova S, Lebl J. Congenital Hyperinsulinism Caused by Novel Homozygous KATP Channel Gene Variants May Be Linked to Unexplained Neonatal Deaths among Kurdish Consanguineous Families. Horm Res Paediatr 2021; 93:58-65. [PMID: 32203961 DOI: 10.1159/000506476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/01/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Neonatal hypoglycemia due to congenital hyperinsulinism (CHI) is a potentially life-threatening condition. Biallelic pathogenic variants in KATP channel subunit genes (ABCC8, KCNJ11), causing severe forms of CHI, are more prevalent in regions with a significant rate of consanguinity and may lead to unexplained neonatal deaths. We hypothesized that KATP channel gene variants are the cause of CHI in three unrelated children from consanguineous Kurdish families with histories of four unexplained neonatal deaths with convulsions. CASES (1) A girl presented on the 6th day of life with recurrent hypoglycemic convulsions (blood glucose 2.05 mmol/L, insulin 58 mIU/L, C-peptide 2,242 pmol/L). (2) A girl with severe developmental delay was diagnosed with CHI at 3 years of age (blood glucose 2.78 mmol/L, insulin 8.1 mIU/L, C-peptide 761 pmol/L) despite a history of recurrent hypoglycemia since neonatal age. (3) A girl presented at 3 weeks of age with convulsions and unconsciousness (blood glucose 2.5 mmol/L, insulin 14.6 mIU/L, C-peptide 523 pmol/L). Coding regions of the ABCC8 and KCNJ11 genes were tested by Sanger sequencing. Potential variants were evaluated using the American College of Medical Genetics standards. Three novel causative homozygous variants were found - p.Trp514Ter in the ABCC8 gene (Pt2), and p.Met1Val (Pt1) and p.Tyr26Ter (Pt3) in the KCNJ11 gene. CONCLUSION CHI caused by KATP channel variants was elucidated in three children, providing a highly probable retrospective diagnosis for their deceased siblings. Future lives can be saved by timely diagnosis of CHI when encountering a neonate with unexplained seizures or other signs of recurrent and/or persistent hypoglycemia.
Collapse
Affiliation(s)
- Shenali Anne Amaratunga
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia,
| | - Tara Hussein Tayeb
- Department of Pediatrics, Sulaymani University, College of Medicine, Sulaymani, Iraq
| | - Klara Rozenkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Petra Kucerova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
35
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
36
|
Ali AS, Brown F, Ekinci EI. Treatment implications of a delayed diagnosis of maturity-onset diabetes of the young. Intern Med J 2021; 51:116-120. [PMID: 33572031 DOI: 10.1111/imj.15157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/20/2020] [Accepted: 09/04/2020] [Indexed: 01/26/2023]
Abstract
Maturity-onset diabetes of the young (MODY) is a rare form of monogeneic diabetes that classically presents as non-insulin requiring diabetes with evidence of autosomal dominant inheritance in individuals who are typically young and lean. However, these criteria do not capture all cases and can also overlap with other types of diabetes. The hepatocyte nuclear factor-1 alpha (HNF1A) mutation is a common cause of MODY and is highly sensitive to sulphonylureas, which should be first-line therapy. Our case represents the diagnostic challenges of HNF1A MODY and the implications of a delayed diagnosis, which can lead to reduced success of sulphonylurea treatment.
Collapse
Affiliation(s)
- Aleena S Ali
- Department of General Medicine, Austin Health, Melbourne, Victoria, Australia
| | - Fran Brown
- Melbourne Diabetes Education and Support, Melbourne, Victoria, Australia
| | - Elif I Ekinci
- Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia.,Department of Medicine, Austin Health, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Sheppard SE, Barrett B, Muraresku C, McKnight H, De Leon DD, Lord K, Ganetzky R. Heterozygous recurrent HNF4A variant p.Arg85Trp causes Fanconi renotubular syndrome 4 with maturity onset diabetes of the young, an autosomal dominant phenocopy of Fanconi Bickel syndrome with colobomas. Am J Med Genet A 2021; 185:566-570. [PMID: 33251707 PMCID: PMC8132289 DOI: 10.1002/ajmg.a.61978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/19/2020] [Accepted: 10/31/2020] [Indexed: 01/31/2023]
Abstract
Heterozygous pathogenic variants in HNF4A cause hyperinsulinism, maturity onset diabetes of the young type 1, and more rarely Fanconi renotubular syndrome. Specifically, the recurrent missense pathogenic variant c.253C>T (p.Arg85Trp) has been associated with a syndromic form of hyperinsulinism with additional features of macrosomia, renal tubular nephropathy, hypophosphatemic rickets, and liver involvement. We present an affected mother, who had been previously diagnosed clinically with the autosomal recessive Fanconi Bickel Syndrome, and her affected son. The son's presentation expands the clinical phenotype to include multiple congenital anomalies, including penile chordee with hypospadias and coloboma. This specific pathogenic variant should be considered in the differential diagnosis of Fanconi Bickel Syndrome when genetics are negative or the family history is suggestive of autosomal dominant inheritance. The inclusion of hyperinsulinism and maturity onset of the diabetes of the young changes the management of this syndrome and the recurrence risk is distinct. Additionally, this family also emphasizes the importance of genetic confirmation of clinical diagnoses, especially in adults who grew up in the premolecular era that are now coming to childbearing age. Finally, the expansion of the phenotype to include multiple congenital anomalies suggests that the full spectrum of HNF4A is likely unknown.
Collapse
Affiliation(s)
- Sarah E. Sheppard
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Brett Barrett
- Division of Endocrinology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Colleen Muraresku
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Heather McKnight
- Division of Endocrinology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Diva D. De Leon
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA,Division of Endocrinology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Katherine Lord
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA,Division of Endocrinology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Rebecca Ganetzky
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA,Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
38
|
Casertano A, Rossi A, Fecarotta S, Rosanio FM, Moracas C, Di Candia F, Parenti G, Franzese A, Mozzillo E. An Overview of Hypoglycemia in Children Including a Comprehensive Practical Diagnostic Flowchart for Clinical Use. Front Endocrinol (Lausanne) 2021; 12:684011. [PMID: 34408725 PMCID: PMC8366517 DOI: 10.3389/fendo.2021.684011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/31/2021] [Indexed: 02/04/2023] Open
Abstract
Hypoglycemia is the result of defects/impairment in glucose homeostasis. The main etiological causes are metabolic and/or endocrine and/or other congenital disorders. Despite hypoglycemia is one of the most common emergencies in neonatal age and childhood, no consensus on the definition and diagnostic work-up exists yet. Aims of this review are to present the current age-related definitions of hypoglycemia in neonatal-pediatric age, to offer a concise and practical overview of its main causes and management and to discuss the current diagnostic-therapeutic approaches. Since a systematic and prompt approach to diagnosis and therapy is essential to prevent hypoglycemic brain injury and long-term neurological complications in children, a comprehensive diagnostic flowchart is also proposed.
Collapse
Affiliation(s)
- Alberto Casertano
- Department of Translational Medical Science, Section of Pediatrics, Regional Center of Pediatric Diabetes, Federico II University of Naples, Naples, Italy
| | - Alessandro Rossi
- Department of Translational Medical Science, Section of Pediatrics, Metabolic Diseases Unit, Federico II University of Naples, Naples, Italy
- Section of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Simona Fecarotta
- Department of Translational Medical Science, Section of Pediatrics, Metabolic Diseases Unit, Federico II University of Naples, Naples, Italy
- *Correspondence: Enza Mozzillo, ; Simona Fecarotta, ;
| | - Francesco Maria Rosanio
- Department of Translational Medical Science, Section of Pediatrics, Regional Center of Pediatric Diabetes, Federico II University of Naples, Naples, Italy
| | - Cristina Moracas
- Department of Translational Medical Science, Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Francesca Di Candia
- Department of Translational Medical Science, Section of Pediatrics, Regional Center of Pediatric Diabetes, Federico II University of Naples, Naples, Italy
| | - Giancarlo Parenti
- Department of Translational Medical Science, Section of Pediatrics, Metabolic Diseases Unit, Federico II University of Naples, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Adriana Franzese
- Department of Translational Medical Science, Section of Pediatrics, Regional Center of Pediatric Diabetes, Federico II University of Naples, Naples, Italy
| | - Enza Mozzillo
- Department of Translational Medical Science, Section of Pediatrics, Regional Center of Pediatric Diabetes, Federico II University of Naples, Naples, Italy
- *Correspondence: Enza Mozzillo, ; Simona Fecarotta, ;
| |
Collapse
|
39
|
Wolfsdorf JI, Stanley CA. Hypoglycemia in the Toddler and Child. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:904-938. [DOI: 10.1016/b978-0-323-62520-3.00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
Knapke A, Bourdat Michel G, Marey I, Le Tanno P. Hyperechoic Content of the Fetal Colon Is Not Always Cystinuria-Case Report. Front Pediatr 2021; 9:822114. [PMID: 35280445 PMCID: PMC8905345 DOI: 10.3389/fped.2021.822114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Cystinuria is a recessively inherited genetic disease causing recurrent kidney stones with risk of kidney failure. The discovery of hyperechoic colonic content on an antenatal ultrasound is considered to be a pathognomic sign of cystinuria. Herein, we present a clinical case with antenatal diagnosis of cystinuria in an ultrasound finding, which eventually revealed a multisystem disease, characterized by the association of renal Fanconi syndrome, hyperinsulinemic hypoglycemia, and hepatic dysfunction. Genetic investigations evidenced the recurrent heterozygous missense HNF4A (p.Arg76Trp) variant. Our case report shows that antenatal hyperechoic colonic content can hide a complex proximal renal tubulopathy, and questions the genetic counseling provided to families in the antenatal period.
Collapse
Affiliation(s)
- Antje Knapke
- Pediatrics, Grenoble University Hospital, Voiron, France
| | | | - Isabelle Marey
- Pediatrics, Grenoble University Hospital, Grenoble, France
| | | |
Collapse
|
41
|
Alhaidan Y, Christesen HT, Lundberg E, Balwi MAA, Brusgaard K. CRISPR/Cas9 ADCY7 Knockout Stimulates the Insulin Secretion Pathway Leading to Excessive Insulin Secretion. Front Endocrinol (Lausanne) 2021; 12:657873. [PMID: 34177802 PMCID: PMC8231291 DOI: 10.3389/fendo.2021.657873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 11/15/2022] Open
Abstract
AIM Despite the enormous efforts to understand Congenital hyperinsulinism (CHI), up to 50% of the patients are genetically unexplained. We aimed to functionally characterize a novel candidate gene in CHI. PATIENT A 4-month-old boy presented severe hyperinsulinemic hypoglycemia. A routine CHI genetic panel was negative. METHODS A trio-based whole-exome sequencing (WES) was performed. Gene knockout in the RIN-m cell line was established by CRISPR/Cas9. Gene expression was performed using real-time PCR. RESULTS Hyperinsulinemic hypoglycemia with diffuse beta-cell involvement was demonstrated in the patient, who was diazoxide-responsive. By WES, compound heterozygous variants were identified in the adenylyl cyclase 7, ADCY7 gene p.(Asp439Glu) and p.(Gly1045Arg). ADCY7 is calcium-sensitive, expressed in beta-cells and converts ATP to cAMP. The variants located in the cytoplasmic domains C1 and C2 in a highly conserved and functional amino acid region. RIN-m(-/-Adcy7) cells showed a significant increase in insulin secretion reaching 54% at low, and 49% at high glucose concentrations, compared to wild-type. In genetic expression analysis Adcy7 loss of function led to a 34.1-fold to 362.8-fold increase in mRNA levels of the insulin regulator genes Ins1 and Ins2 (p ≤ 0.0002), as well as increased glucose uptake and sensing indicated by higher mRNA levels of Scl2a2 and Gck via upregulation of Pdx1, and Foxa2 leading to the activation of the glucose stimulated-insulin secretion (GSIS) pathway. CONCLUSION This study identified a novel candidate gene, ADCY7, to cause CHI via activation of the GSIS pathway.
Collapse
Affiliation(s)
- Yazeid Alhaidan
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- *Correspondence: Yazeid Alhaidan,
| | - Henrik Thybo Christesen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Pancreas Center, Odense, Denmark
| | - Elena Lundberg
- Institute of Clinical Science, Pediatrics, Umea University, Umeå, Sweden
| | - Mohammed A. Al Balwi
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, NGHA, Riyadh, Saudi Arabia
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Near East University, Nicosia, Cyprus
| |
Collapse
|
42
|
Lemaire M. Novel Fanconi renotubular syndromes provide insights in proximal tubule pathophysiology. Am J Physiol Renal Physiol 2020; 320:F145-F160. [PMID: 33283647 DOI: 10.1152/ajprenal.00214.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The various forms of Fanconi renotubular syndromes (FRTS) offer significant challenges for clinicians and present unique opportunities for scientists who study proximal tubule physiology. This review will describe the clinical characteristics, genetic underpinnings, and underlying pathophysiology of the major forms of FRST. Although the classic forms of FRTS will be presented (e.g., Dent disease or Lowe syndrome), particular attention will be paid to five of the most recently discovered FRTS subtypes caused by mutations in the genes encoding for L-arginine:glycine amidinotransferase (GATM), solute carrier family 34 (type Ii sodium/phosphate cotransporter), member 1 (SLC34A1), enoyl-CoAhydratase/3-hydroxyacyl CoA dehydrogenase (EHHADH), hepatocyte nuclear factor 4A (HNF4A), or NADH dehydrogenase complex I, assembly factor 6 (NDUFAF6). We will explore how mutations in these genes revealed unexpected mechanisms that led to compromised proximal tubule functions. We will also describe the inherent challenges associated with gene discovery studies based on findings derived from small, single-family studies by focusing the story of FRTS type 2 (SLC34A1). Finally, we will explain how extensive alternative splicing of HNF4A has resulted in confusion with mutation nomenclature for FRTS type 4.
Collapse
Affiliation(s)
- Mathieu Lemaire
- Division of Nephrology and Cell Biology Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Gϋemes M, Rahman SA, Kapoor RR, Flanagan S, Houghton JAL, Misra S, Oliver N, Dattani MT, Shah P. Hyperinsulinemic hypoglycemia in children and adolescents: Recent advances in understanding of pathophysiology and management. Rev Endocr Metab Disord 2020; 21:577-597. [PMID: 32185602 PMCID: PMC7560934 DOI: 10.1007/s11154-020-09548-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyperinsulinemic hypoglycemia (HH) is characterized by unregulated insulin release, leading to persistently low blood glucose concentrations with lack of alternative fuels, which increases the risk of neurological damage in these patients. It is the most common cause of persistent and recurrent hypoglycemia in the neonatal period. HH may be primary, Congenital HH (CHH), when it is associated with variants in a number of genes implicated in pancreatic development and function. Alterations in fifteen genes have been recognized to date, being some of the most recently identified mutations in genes HK1, PGM1, PMM2, CACNA1D, FOXA2 and EIF2S3. Alternatively, HH can be secondary when associated with syndromes, intra-uterine growth restriction, maternal diabetes, birth asphyxia, following gastrointestinal surgery, amongst other causes. CHH can be histologically characterized into three groups: diffuse, focal or atypical. Diffuse and focal forms can be determined by scanning using fluorine-18 dihydroxyphenylalanine-positron emission tomography. Newer and improved isotopes are currently in development to provide increased diagnostic accuracy in identifying lesions and performing successful surgical resection with the ultimate aim of curing the condition. Rapid diagnostics and innovative methods of management, including a wider range of treatment options, have resulted in a reduction in co-morbidities associated with HH with improved quality of life and long-term outcomes. Potential future developments in the management of this condition as well as pathways to transition of the care of these highly vulnerable children into adulthood will also be discussed.
Collapse
Affiliation(s)
- Maria Gϋemes
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
- Endocrinology Service, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Sofia Asim Rahman
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
| | - Ritika R Kapoor
- Pediatric Diabetes and Endocrinology, King's College Hospital NHS Trust, Denmark Hill, London, UK
| | - Sarah Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Royal Devon and Exeter Foundation Trust, Exeter, UK
| | - Shivani Misra
- Department of Diabetes, Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Nick Oliver
- Department of Diabetes, Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Mehul Tulsidas Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - Pratik Shah
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK.
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
44
|
A study of associations between CUBN, HNF1A, and LIPC gene polymorphisms and coronary artery disease. Sci Rep 2020; 10:16294. [PMID: 33004870 PMCID: PMC7530657 DOI: 10.1038/s41598-020-73048-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to identify novel genetic markers related to coronary artery disease (CAD) using a whole-exome sequencing (WES) approach and determine any associations between the selected gene polymorphisms and CAD prevalence. CUBN, HNF1A and LIPC gene polymorphisms related to CAD susceptibility were identified using WES screening. Possible associations between the five gene polymorphisms and CAD susceptibility were examined in 452 CAD patients and 421 control subjects. Multivariate logistic regression analyses indicated that the CUBN rs2291521GA and HNF1A rs55783344CT genotypes were associated with CAD (GG vs. GA; adjusted odds ratio [AOR] = 1.530; 95% confidence interval [CI] 1.113–2.103; P = 0.002 and CC vs. CT; AOR = 1.512; 95% CI 1.119–2.045; P = 0.007, respectively). The CUBN rs2291521GA and HNF1A rs55783344CT genotype combinations exhibited a stronger association with CAD risk (AOR = 2.622; 95% CI 1.518–4.526; P = 0.001). Gene-environment combinatorial analyses indicated that the CUBN rs2291521GA, HNF1A rs55783344CT, and LIPC rs17269397AA genotype combination and several clinical factors (fasting blood sugar (FBS), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels) were associated with increased CAD risk. The CUBN rs2291521GA, HNF1A rs55783344CT, and LIPC rs17269397AA genotypes in conjunction with abnormally elevated cholesterol levels increase the risk of developing CAD. This exploratory study suggests that polymorphisms in the CUBN, HNF1A, and LIPC genes can be useful biomarkers for CAD diagnosis and treatment.
Collapse
|
45
|
Marchesin V, Pérez-Martí A, Le Meur G, Pichler R, Grand K, Klootwijk ED, Kesselheim A, Kleta R, Lienkamp S, Simons M. Molecular Basis for Autosomal-Dominant Renal Fanconi Syndrome Caused by HNF4A. Cell Rep 2020; 29:4407-4421.e5. [PMID: 31875549 PMCID: PMC6941224 DOI: 10.1016/j.celrep.2019.11.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/08/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022] Open
Abstract
HNF4A is a nuclear hormone receptor that binds DNA as an obligate homodimer. While all known human heterozygous mutations are associated with the autosomal-dominant diabetes form MODY1, one particular mutation (p.R85W) in the DNA-binding domain (DBD) causes additional renal Fanconi syndrome (FRTS). Here, we find that expression of the conserved fly ortholog dHNF4 harboring the FRTS mutation in Drosophila nephrocytes caused nuclear depletion and cytosolic aggregation of a wild-type dHNF4 reporter protein. While the nuclear depletion led to mitochondrial defects and lipid droplet accumulation, the cytosolic aggregates triggered the expansion of the endoplasmic reticulum (ER), autophagy, and eventually cell death. The latter effects could be fully rescued by preventing nuclear export through interfering with serine phosphorylation in the DBD. Our data describe a genomic and a non-genomic mechanism for FRTS in HNF4A-associated MODY1 with important implications for the renal proximal tubule and the regulation of other nuclear hormone receptors. HNF4 controls lipid metabolism in Drosophila nephrocytes The kidney disease mutation R85W shows dominant-negative effects in nephrocytes Dephosphorylation at S87 prevents the dominant-negative effects R85W mutation causes mitochondrial dysfunction in reprogrammed renal epithelial cells
Collapse
Affiliation(s)
- Valentina Marchesin
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Albert Pérez-Martí
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Gwenn Le Meur
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Roman Pichler
- Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Kelli Grand
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Enriko D Klootwijk
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | - Anne Kesselheim
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | - Robert Kleta
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | - Soeren Lienkamp
- Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, 75015 Paris, France.
| |
Collapse
|
46
|
Casertano A, De Matteis A, Mozzillo E, Rosanio FM, Buono P, Fattorusso V, Franzese A. Diagnosis of congenital Hyperinsulinism can occur not only in infancy but also in later age: a new flow chart from a single center experience. Ital J Pediatr 2020; 46:131. [PMID: 32928245 PMCID: PMC7490857 DOI: 10.1186/s13052-020-00894-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Congenital Hyperinsulinism typically occurs with a neonatal hypoglycemia but can appear even in childhood or in adolescence with different types of glucose metabolism derangements. Current diagnostic algorithms don't take into account cases with a late presentation. PATIENTS AND METHODS Clinical and laboratory data of twenty-two subjects diagnosed at Federico II University of Naples have been described: patients have been divided according to the molecular defect into channel defects, metabolic defects and unidentified molecular defects. A particular focus has been made on three cases with a late presentation. RESULTS AND CONCLUSIONS Late presentation cases may not be identified by previous diagnostic algorithms. Consequently, it seems appropriate to design a new flow-chart starting from the age of presentation, also considering that late presentation cases can show glucose metabolism derangements other than hypoglycaemic crises such as diabetes, glucose intolerance, postprandial hypoglycaemia and gestational diabetes.
Collapse
Affiliation(s)
- Alberto Casertano
- Department of Translational Medical Science, Section of Pediatrics, Federico II University of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Arianna De Matteis
- Department of Translational Medical Science, Section of Pediatrics, Federico II University of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Enza Mozzillo
- Department of Translational Medical Science, Section of Pediatrics, Federico II University of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Francesco Maria Rosanio
- Department of Translational Medical Science, Section of Pediatrics, Federico II University of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Pietro Buono
- Department of Translational Medical Science, Section of Pediatrics, Federico II University of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Valentina Fattorusso
- Department of Translational Medical Science, Section of Pediatrics, Federico II University of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Adriana Franzese
- Department of Translational Medical Science, Section of Pediatrics, Federico II University of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| |
Collapse
|
47
|
Yau D, Colclough K, Natarajan A, Parikh R, Canham N, Didi M, Senniappan S, Banerjee I. Congenital hyperinsulinism due to mutations in HNF1A. Eur J Med Genet 2020; 63:103928. [PMID: 32325224 DOI: 10.1016/j.ejmg.2020.103928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/04/2020] [Accepted: 04/11/2020] [Indexed: 12/27/2022]
Abstract
Congenital hyperinsulinism is a rare but significant cause of severe and persistent hypoglycaemia in infancy. Although a biphasic phenotype of congenital hyperinsulinism in infancy followed by Maturity-Onset Diabetes of the Young (MODY) in later life has been established for HNF4A, the existence of a similar phenotype for a related MODY gene, HNF1A, is less clear. We describe two cases of congenital hyperinsulinism in association with dominantly inherited variants in HNF1A. They presented in the early neonatal period with unequivocal biochemical evidence of congenital hyperinsulinism and persistence into childhood with ongoing need for medical therapy. Both cases inherited HNF1A variants from a parent with a diabetes phenotype consistent with MODY, without obesity, insulin resistance or other metabolic syndrome features. In the first case, a paternally inherited novel c.-230_-101del variant was found that deletes the minimal promoter region presumably required for HNF1A expression. In the second case, a maternally inherited missense variant (c.713G>T, p.(Arg238Met)) was identified. This variant is predicted to cause haploinsufficiency via aberrant splicing and has previously been associated with MODY but not congenital hyperinsulinism. Our cases further strengthen the evidence for HNF1A as a CHI-causing gene requiring long-term follow-up.
Collapse
Affiliation(s)
- Daphne Yau
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK.
| | - Kevin Colclough
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | - Ruchi Parikh
- Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| | | | - Mohammed Didi
- Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| | | | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| |
Collapse
|
48
|
Abstract
MODY (Maturity Onset Diabetes of the Young) is a type of diabetes resulting from a pathogenic effect of gene mutations. Up to date, 13 MODY genes are known. Gene HNF1A is one of the most common causes of MODY diabetes (HNF1A-MODY; MODY3). This gene is polymorphic and more than 1200 pathogenic and non-pathogenic HNF1A variants were described in its UTRs, exons and introns. For HNF1A-MODY, not just gene but also phenotype heterogeneity is typical. Although there are some clinical instructions, HNF1A-MODY patients often do not meet every diagnostic criteria or they are still misdiagnosed as type 1 and type 2 diabetics. There is a constant effort to find suitable biomarkers to help with in distinguishing of MODY3 from Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). DNA sequencing is still necessary for unambiguous confirmation of clinical suspicion of MODY. NGS (Next Generation Sequencing) methods brought discoveries of multiple new gene variants and new instructions for their pathogenicity classification were required. The most actual problem is classification of variants with uncertain significance (VUS) which is a stumbling-block for clinical interpretation. Since MODY is a hereditary disease, DNA analysis of family members is helpful or even crucial. This review is updated summary about HNF1A-MODY genetics, pathophysiology, clinics functional studies and variant classification.
Collapse
|
49
|
Hasbaoui BE, Elyajouri A, Abilkassem R, Agadr A. Congenital hyperinsulinsim: case report and review of literature. Pan Afr Med J 2020; 35:53. [PMID: 32537058 PMCID: PMC7250230 DOI: 10.11604/pamj.2020.35.53.16604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 06/29/2019] [Indexed: 11/11/2022] Open
Abstract
Neonatal hypoglycemia (NH) is one of the most common abnormalities encountered in the newborn. Hypoglycemia continues to be an important cause of morbidity in neonates and children. Prompt diagnosis and management of the underlying hypoglycemia disorder is critical for preventing brain damage and improving outcomes. Congenital hyperinsulinism (CHI) is the most common and severe cause of persistent hypoglycemia in neonates and children, it represents a group of clinically, genetically and morphologically heterogeneous disorders characterised by dysregulation of insulin secretion from pancreatic β-cells. It is extremely important to recognize this condition early and institute appropriate management to prevent significant brain injury leading to complications like epilepsy, cerebral palsy and neurological impairment. Histologically, CHI is divided mainly into two types focal and diffuse disease. The diffuse form is inherited in an autosomal recessive (or dominant) manner whereas the focal form is sporadic in inheritance and is localized to a small region of the pancreas. Recent discoveries of the genetic causes of CHI have improved our understanding of the pathophysiology, but its management is complex and requires the integration of clinical, biochemical, molecular, and imaging findings to establish the appropriate treatment according to the subtype. Here we present a case of sever congenital hyperinsulinism in a girl admitted for lethargy, irritability and general seizures accompanied with profound hypoglycemia, in spite of aggressive medical treatment, she died because of sever congenital hyperinsulinism diazoxide unresponsive.
Collapse
Affiliation(s)
- Brahim El Hasbaoui
- Department of pediatrics, Military Teaching Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Abdelhkim Elyajouri
- Department of pediatrics, Military Teaching Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Rachid Abilkassem
- Department of pediatrics, Military Teaching Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Aomar Agadr
- Department of pediatrics, Military Teaching Hospital Mohammed V, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| |
Collapse
|
50
|
Helping nephrologists find answers: hyperinsulinism and tubular dysfunction: Answers. Pediatr Nephrol 2020; 35:257-260. [PMID: 31529156 DOI: 10.1007/s00467-019-04348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 07/30/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|