1
|
Tzang BS, Tzang CC, Chuang PH, Kuo IY, Pan YC, Wu PH, Hsu TC. Impact of Oseltamivir and Diabetes Development. Pharmaceuticals (Basel) 2025; 18:128. [PMID: 39861189 PMCID: PMC11768443 DOI: 10.3390/ph18010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Influenza is a major global health challenge, causing thousands of deaths annually. Antiviral drugs, particularly oseltamivir, a neuraminidase inhibitor, have become essential therapeutic options due to their oral bioavailability and efficacy. Previous studies suggest a potential association between oseltamivir use and the onset of diabetes mellitus. However, further investigation is needed to establish a definitive link. Methods: This retrospective cohort study utilized data from the Taiwan National Health Insurance Research Database (NHIRD), including 1,631,968 patients (815,984 oseltamivir users) between 1 January 2009 and 28 December 2018. All statistical analyses were performed using SAS 9.4M8 software (SAS Institute Inc., Cary, NC, USA). Results: Cox proportional hazards regression and multivariate analyses revealed a statistically significant association between oseltamivir use and overall diabetes risk (HR = 1.027, p = 0.0186). While no significant association was observed for Type 1 diabetes (HR = 1.021; p = 0.06795), oseltamivir users showed a higher incidence of Type 2 diabetes (HR = 1.024; p < 0.05). Oseltamivir was also linked to increased risks of comorbidities, including dyslipidemia (HR = 1.295, p < 0.0001), chronic liver disease (HR = 1.446, p < 0.0001), hypertension (HR = 1.586, p < 0.0001), and obesity (HR = 2.949, p < 0.0001). Conclusions: Oseltamivir is associated with an increased risk of Type 2 diabetes but not Type 1, and related comorbidities.
Collapse
Affiliation(s)
- Bor-Show Tzang
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei City 100, Taiwan; (C.-C.T.); (Y.-C.P.); (P.-H.W.)
| | - Pei-Hua Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
| | - I-Ying Kuo
- Department of Biotechnology, College of Biomedical Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yu-Chun Pan
- School of Medicine, College of Medicine, National Taiwan University, Taipei City 100, Taiwan; (C.-C.T.); (Y.-C.P.); (P.-H.W.)
| | - Pei-Hsun Wu
- School of Medicine, College of Medicine, National Taiwan University, Taipei City 100, Taiwan; (C.-C.T.); (Y.-C.P.); (P.-H.W.)
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
2
|
Joshi G, Das A, Verma G, Guchhait P. Viral infection and host immune response in diabetes. IUBMB Life 2024; 76:242-266. [PMID: 38063433 DOI: 10.1002/iub.2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/05/2023] [Indexed: 04/24/2024]
Abstract
Diabetes, a chronic metabolic disorder disrupting blood sugar regulation, has emerged as a prominent silent pandemic. Uncontrolled diabetes predisposes an individual to develop fatal complications like cardiovascular disorders, kidney damage, and neuropathies and aggravates the severity of treatable infections. Escalating cases of Type 1 and Type 2 diabetes correlate with a global upswing in diabetes-linked mortality. As a growing global concern with limited preventive interventions, diabetes necessitates extensive research to mitigate its healthcare burden and assist ailing patients. An altered immune system exacerbated by chronic hyperinflammation heightens the susceptibility of diabetic individuals to microbial infections, including notable viruses like SARS-CoV-2, dengue, and influenza. Given such a scenario, we scrutinized the literature and compiled molecular pathways and signaling cascades related to immune compartments in diabetics that escalate the severity associated with the above-mentioned viral infections in them as compared to healthy individuals. The pathogenesis of these viral infections that trigger diabetes compromises both innate and adaptive immune functions and pre-existing diabetes also leads to heightened disease severity. Lastly, this review succinctly outlines available treatments for diabetics, which may hold promise as preventive or supportive measures to effectively combat these viral infections in the former.
Collapse
Affiliation(s)
- Garima Joshi
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Anushka Das
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Garima Verma
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
3
|
Raber J, Rhea EM, Banks WA. The Effects of Viruses on Insulin Sensitivity and Blood-Brain Barrier Function. Int J Mol Sci 2023; 24:2377. [PMID: 36768699 PMCID: PMC9917142 DOI: 10.3390/ijms24032377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
In this review manuscript, we discuss the effects of select common viruses on insulin sensitivity and blood-brain barrier (BBB) function and the potential overlapping and distinct mechanisms involved in these effects. More specifically, we discuss the effects of human immunodeficiency virus (HIV), herpes, hepatitis, influenza, respiratory syncytial virus (RSV), and SARS-CoV-2 viruses on insulin sensitivity and BBB function and the proposed underlying mechanisms. These viruses differ in their ability to be transported across the BBB, disrupt the BBB, and/or alter the function of the BBB. For RSV and SARS-CoV-2, diabetes increases the risk of infection with the virus, in addition to viral infection increasing the risk for development of diabetes. For HIV and hepatitis C and E, enhanced TNF-a levels play a role in the detrimental effects. The winter of 2022-2023 has been labeled as a tridemic as influenza, RSV, and COVID-19 are all of concern during this flu season. There is an ongoing discussion about whether combined viral exposures of influenza, RSV, and COVID-19 have additive, synergistic, or interference effects. Therefore, increased efforts are warranted to determine how combined viral exposures affect insulin sensitivity and BBB function.
Collapse
Affiliation(s)
- Jacob Raber
- Departments of Behavioral Neuroscience, Neurology and Radiation Medicine; Affiliate Scientist, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elizabeth M. Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, University of Washington, Seattle, WA 98108, USA
| | - William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, University of Washington, Seattle, WA 98108, USA
| |
Collapse
|
4
|
Krogvold L, Genoni A, Puggioni A, Campani D, Richardson SJ, Flaxman CS, Edwin B, Buanes T, Dahl-Jørgensen K, Toniolo A. Live enteroviruses, but not other viruses, detected in human pancreas at the onset of type 1 diabetes in the DiViD study. Diabetologia 2022; 65:2108-2120. [PMID: 35953727 PMCID: PMC9630231 DOI: 10.1007/s00125-022-05779-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS Enterovirus (EV) infection of pancreatic islet cells is one possible factor contributing to type 1 diabetes development. We have reported the presence of EV genome by PCR and of EV proteins by immunohistochemistry in pancreatic sections. Here we explore multiple human virus species in the Diabetes Virus Detection (DiViD) study cases using innovative methods, including virus passage in cell cultures. METHODS Six recent-onset type 1 diabetes patients (age 24-35) were included in the DiViD study. Minimal pancreatic tail resection was performed under sterile conditions. Eleven live cases (age 43-83) of pancreatic carcinoma without diabetes served as control cases. In the present study, we used EV detection methods that combine virus growth in cell culture, gene amplification and detection of virus-coded proteins by immunofluorescence. Pancreas homogenates in cell culture medium were incubated with EV-susceptible cell lines for 3 days. Two to three blind passages were performed. DNA and RNA were extracted from both pancreas tissue and cell cultures. Real-time PCR was used for detecting 20 different viral agents other than EVs (six herpesviruses, human polyomavirus [BK virus and JC virus], parvovirus B19, hepatitis B virus, hepatitis C virus, hepatitis A virus, mumps, rubella, influenza A/B, parainfluenza 1-4, respiratory syncytial virus, astrovirus, norovirus, rotavirus). EV genomes were detected by endpoint PCR using five primer pairs targeting the partially conserved 5' untranslated region genome region of the A, B, C and D species. Amplicons were sequenced. The expression of EV capsid proteins was evaluated in cultured cells using a panel of EV antibodies. RESULTS Samples from six of six individuals with type 1 diabetes (cases) and two of 11 individuals without diabetes (control cases) contained EV genomes (p<0.05). In contrast, genomes of 20 human viruses other than EVs could be detected only once in an individual with diabetes (Epstein-Barr virus) and once in an individual without diabetes (parvovirus B19). EV detection was confirmed by immunofluorescence of cultured cells incubated with pancreatic extracts: viral antigens were expressed in the cytoplasm of approximately 1% of cells. Notably, infection could be transmitted from EV-positive cell cultures to uninfected cell cultures using supernatants filtered through 100 nm membranes, indicating that infectious agents of less than 100 nm were present in pancreases. Due to the slow progression of infection in EV-carrying cell cultures, cytopathic effects were not observed by standard microscopy but were recognised by measuring cell viability. Sequences of 5' untranslated region amplicons were compatible with EVs of the B, A and C species. Compared with control cell cultures exposed to EV-negative pancreatic extracts, EV-carrying cell cultures produced significantly higher levels of IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP1). CONCLUSIONS/INTERPRETATION Sensitive assays confirm that the pancreases of all DiViD cases contain EVs but no other viruses. Analogous EV strains have been found in pancreases of two of 11 individuals without diabetes. The detected EV strains can be passaged in series from one cell culture to another in the form of poorly replicating live viruses encoding antigenic proteins recognised by multiple EV-specific antibodies. Thus, the early phase of type 1 diabetes is associated with a low-grade infection by EVs, but not by other viral agents.
Collapse
Affiliation(s)
- Lars Krogvold
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Angelo Genoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Anna Puggioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Daniela Campani
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Sarah J Richardson
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Christine S Flaxman
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Bjørn Edwin
- Department for HPB Surgery, Oslo University Hospital, Oslo, Norway
| | - Trond Buanes
- Department for HPB Surgery, Oslo University Hospital, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
5
|
Yin M, Zhang Y, Liu S, Huang J, Li X. Gene Expression Signatures Reveal Common Virus Infection Pathways in Target Tissues of Type 1 Diabetes, Hashimoto's Thyroiditis, and Celiac Disease. Front Immunol 2022; 13:891698. [PMID: 35795668 PMCID: PMC9251511 DOI: 10.3389/fimmu.2022.891698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes (T1D) patients are at heightened risk for other autoimmune disorders, particularly Hashimoto's thyroiditis (HT) and celiac disease (CD). Recent evidence suggests that target tissues of autoimmune diseases engage in a harmful dialogue with the immune system. However, it is unclear whether shared mechanisms drive similar molecular signatures at the target tissues among T1D, HT, and CD. In our current study, microarray datasets were obtained and mined to identify gene signatures from disease-specific targeted tissues including the pancreas, thyroid, and intestine from individuals with T1D, HT, and CD, as well as their matched controls. Further, the threshold-free algorithm rank-rank hypergeometric overlap analysis (RRHO) was used to compare the genomic signatures of the target tissues of the three autoimmune diseases. Next, promising drugs that could potentially reverse the observed signatures in patients with two or more autoimmune disorders were identified using the cloud-based CLUE software platform. Finally, microarray data of auto-antibody positive individuals but not diagnosed with T1D and single cell sequencing data of patients with T1D and HT were used to validate the shared transcriptomic fingerprint. Our findings revealed significant common gene expression changes in target tissues of the three autoimmune diseases studied, many of which are associated with virus infections, including influenza A, human T-lymphotropic virus type 1, and herpes simplex infection. These findings support the importance of common environmental factors in the pathogenesis of T1D, HT, and CD.
Collapse
Affiliation(s)
- Min Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Thomas S, Ouhtit A, Al Khatib HA, Eid AH, Mathew S, Nasrallah GK, Emara MM, Al Maslamani MA, Yassine HM. Burden and Disease Pathogenesis of Influenza and Other Respiratory Viruses in Diabetic Patients. J Infect Public Health 2022; 15:412-424. [DOI: 10.1016/j.jiph.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
|
7
|
Molinari C, Laurenzi A, Caretto A, Rovere-Querini P, Ciceri F, Lampasona V, Scavini M, Piemonti L. Dysglycemia after COVID-19 pneumonia: a six-month cohort study. Acta Diabetol 2021; 58:1481-1490. [PMID: 34089096 PMCID: PMC8177035 DOI: 10.1007/s00592-021-01751-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023]
Abstract
AIM The aim of this study was to understand whether the dysglycemia associated with SARS-CoV-2 infection persists or reverts when the viral infection resolves. METHODS We analyzed fasting blood glucose (FBG) after hospital discharge in a cohort of 621 adult cases with suspected COVID-19 pneumonia. RESULTS At admission, 18.8% of the patients in our cohort had pre-existing diabetes, 9.3% fasting glucose in the diabetes range without a prior diagnosis (DFG), 26% impaired fasting glucose (IFG), 44.9% normal fasting glucose (NFG), while 2% had no FBG available. FBG categories were similarly distributed in the 71 patients without confirmed COVID-19 pneumonia. During follow-up (median time 6 month) FBG was available for 321 out of the 453 (70.9%) surviving patients and showed a trend to a marginal increase [from 97 (87-116) to 100 (92-114) mg/dL; p = 0.071]. Transitions between FBG categories were analyzed in subjects without pre-existing diabetes (265 out of 321). We identified three groups: (i) patients who maintained or improved FBG during follow-up [Group A, n = 185; from 100 (86-109) to 94 (88-99) mg/dL; p < 0.001]; (ii) patients who moved from the NFG to IFG category [Group B, n = 66: from 89 (85-96) to 106 (102-113) mg/dl; p < 0.001]; (iii) patients who maintained or reached DFG during follow-up [Group C, n = 14: from 114 (94-138) to 134 (126-143) mg/dl; p = 0.035]. Male sex and ICU admission during the hospitalization were more prevalent in Group C compared to Group A or B. CONCLUSIONS Six months after the SARS-CoV-2 infection DFG was evident in only few patients who experienced severe COVID-19 pneumonia.
Collapse
Affiliation(s)
- Chiara Molinari
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Andrea Laurenzi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Amelia Caretto
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Patrizia Rovere-Querini
- Unit of Internal Medicine and Endocrinology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Fabio Ciceri
- Università Vita-Salute San Raffaele, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Marina Scavini
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
8
|
Zhang Y, Zhang Y, Xu Y, Huang Y. The associations between fasting blood glucose levels and mortality of SFTS in patients. BMC Infect Dis 2021; 21:761. [PMID: 34353296 PMCID: PMC8343909 DOI: 10.1186/s12879-021-06463-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Objective To identify the correlation between the level of at-admission fasting blood glucose (FBG) with poor outcomes in hospitalized patients suffering from severe fever with thrombocytopenia syndrome (SFTS). Methods Between April 1 and December 1, 2020, the list of hospitalized patients affected with SFTS infection was provided by the Infectious Disease Department at First Affiliated Hospital of Anhui Medical University, followed by the collection of information I.e., gender, age, diabetic history and the level of FBG on admission. Results In this study, a total of 77 patients were included and were categorized into three groups (< 5.6, 5.6–6.9, and ≥ 7.0 mmol/l) on the basis of their glucose level in the blood. The obtained results revealed that among three groups considerable variations were observed in leukocytes, FBG, D-Dimer, aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), fibrin degradation products (FDP), and interleukin (IL)-10 level. Correlation analysis indicated a linear negative correlation between PLT and FBG (r = − 0.28, P = 0.01), however, a linear positive correlation was observed between AST, IL10, D-Dimer, and FDP levels and FBG (P-value < 0.05). Multivariate statistical analysis results shown that there was significant difference between group comparison (F = 17.01, P < 0.001) and interaction between group and time (F = 8.48, P < 0.05); but there was no significant difference between time point comparison (F = 0.04, P = 0.96). With the prolongation of time, the changes of FBG were different between survivor group and non-survivor group. The FBG in survival group shown a downward trend; The non-survivor group shown an upward trend. Conclusions Elevated level of FBG has been correlated with hypercoagulability, inflammation, and lower PLT in SFTS patients. The measurement of FBG level can help in evaluating the inflammatory process, hypercoagulability, and prognosis of patients suffering from SFTS. FBG can predict the prognosis of SFTS. It is necessary to pay attention to the role of FBG in the process of treatment in patients with SFTS.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Rd, Hefei, Anhui Province, China
| | - Yu Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Rd, Hefei, Anhui Province, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Rd, Hefei, Anhui Province, China
| | - Ying Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Rd, Hefei, Anhui Province, China.
| |
Collapse
|
9
|
Veldhuis Kroeze E, Bauer L, Caliendo V, van Riel D. In Vivo Models to Study the Pathogenesis of Extra-Respiratory Complications of Influenza A Virus Infection. Viruses 2021; 13:v13050848. [PMID: 34066589 PMCID: PMC8148586 DOI: 10.3390/v13050848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Animal models are an inimitable method to study the systemic pathogenesis of virus-induced disease. Extra-respiratory complications of influenza A virus infections are not extensively studied even though they are often associated with severe disease and mortality. Here we review and recommend mammalian animal models that can be used to study extra-respiratory complications of the central nervous system and cardiovascular system as well as involvement of the eye, placenta, fetus, lacteal gland, liver, pancreas, intestinal tract, and lymphoid tissues during influenza A virus infections.
Collapse
|
10
|
d'Annunzio G, Maffeis C, Cherubini V, Rabbone I, Scaramuzza A, Schiaffini R, Minuto N, Piccolo G, Maghnie M. Caring for children and adolescents with type 1 diabetes mellitus: Italian Society for Pediatric Endocrinology and Diabetology (ISPED) statements during COVID-19 pandemia. Diabetes Res Clin Pract 2020; 168:108372. [PMID: 32827594 PMCID: PMC7438223 DOI: 10.1016/j.diabres.2020.108372] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
AIMS Our study aimed to review the impact of COVID-19 pandemia in children and adolescents with type 1 diabetes mellitus, to analyze the clinical characteristics of the infection and to propose clinical practice recommendations from the Italian Society for Pediatric Endocrinology and Diabetology (ISPED). METHODS A literature search was carried out in the guideline databases, Medline and Embase and in Diabetes Societies websites until May 21st, 2020 for guidelines and recommendations on type 1 diabetes mellitus management during COVID-19 pandemic. RESULTS COVID-19 infection in pediatric patients seems to be clinically less severe than in adults; children have so far accounted for 1-5% of diagnosed cases, with a median age of 6.7 years (1 day-15 years) and better prognosis. Clinical manifestations include mild, moderate, severe disease up to critical illness. There is currently no evidence suggesting a higher risk of COVID-19 infection in children with diabetes than unaffected peers. Besides general recommendations for pediatric patients, ISPED has proposed specific measures for patients with diabetes. CONCLUSION COVID-19 outbreak modified type 1 diabetes management, and telemedicine has been demonstrating to be an effective new tool for patients care. Moreover psychological aspects deserve attention and future researchs are mandatory.
Collapse
Affiliation(s)
- Giuseppe d'Annunzio
- Pediatric Clinic and Endocrinology, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Claudio Maffeis
- Pediatric Diabetes and Metabolic Disorders Unit, University Hospital, Verona, Italy
| | - Valentino Cherubini
- Department of Women's and Children's Health, G. Salesi Hospital, Azienda Ospedaliero-Universitaria Ospedali Riuniti Ancona, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | | | - Nicola Minuto
- Pediatric Clinic and Endocrinology, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Piccolo
- Pediatric Clinic and Endocrinology, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mohamad Maghnie
- Pediatric Clinic and Endocrinology, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Department of General and Specialist Pediatric Sciences, Pediatric Clinic, IRCCS Giannina Gaslini Institute, University of Genova, Genoa, Italy
| |
Collapse
|
11
|
Genetic Susceptibility of the Host in Virus-Induced Diabetes. Microorganisms 2020; 8:microorganisms8081133. [PMID: 32727064 PMCID: PMC7464158 DOI: 10.3390/microorganisms8081133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses, especially Coxsackie B viruses, are among the candidate environmental factors causative of type 1 diabetes. Host genetic factors have an impact on the development of virus-induced diabetes (VID). Host background, in terms of whether the host is prone to autoimmunity, should also be considered when analyzing the role of target genes in VID. In this review, we describe the genetic susceptibility of the host based on studies in humans and VID animal models. Understanding the host genetic factors should contribute not only to revealing the mechanisms of VID development, but also in taking measures to prevent VID.
Collapse
|
12
|
Assaf-Casals A, Saleh Z, Khafaja S, Fayad D, Ezzeddine H, Saleh M, Chamseddine S, Sayegh R, Sharara SL, Chmaisse A, Kanj SS, Kanafani Z, Hanna-Wakim R, Araj GF, Mahfouz R, Saito R, Suzuki H, Zaraket H, Dbaibo GS. The burden of laboratory-confirmed influenza infection in Lebanon between 2008 and 2016: a single tertiary care center experience. BMC Infect Dis 2020; 20:339. [PMID: 32397965 PMCID: PMC7216128 DOI: 10.1186/s12879-020-05013-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Influenza is a major cause of morbidity and mortality worldwide. Following the 2009 pandemic, there was widened interest in studying influenza burden in all regions. However, since data from the World Health Organization (WHO) Middle East and North Africa (MENA) region remain limited, we aimed to contribute to the understanding of influenza burden in Lebanon. METHODS A retrospective chart review extending over a period of 8 seasons from Jan 1st, 2008 till June 30th, 2016 at a tertiary care center in Beirut was performed. All cases confirmed to have influenza based on rapid antigen detection or/and polymerase chain reaction on a respiratory sample were included for analysis. Data on epidemiology, clinical presentation, complications, antiviral use and mortality were collected for analysis. RESULTS A total of 1829 cases of laboratory-confirmed influenza were identified. Average annual positivity rate was 14% (positive tests over total requested). Both influenza A and B co-circulated in each season with predominance of influenza A. Influenza virus started circulating in December and peaked in January and February. The age group of 19-50 years accounted for the largest proportion of cases (22.5%) followed by the age group of 5-19 years (18%). Pneumonia was the most common complication reported in 33% of cases. Mortality reached 3.8%. The two extremes of age (< 2 years and ≥ 65 years) were associated with a more severe course of disease, hospitalization, intensive care unit (ICU) admission, complications, and mortality rate. Of all the identified cases, 26% were hospitalized. Moderate-to-severe disease was more likely in influenza B cases but no difference in mortality was reported between the two types. Antivirals were prescribed in 68.8% and antibiotics in 41% of cases. There seemed to be an increasing trend in the number of diagnosed and hospitalized cases over the years of the study. CONCLUSION Patients with laboratory-confirmed influenza at our center had a high rate of hospitalization and mortality. A population based prospective surveillance study is needed to better estimate the burden of Influenza in Lebanon that would help formulate a policy on influenza control.
Collapse
Affiliation(s)
- Aia Assaf-Casals
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Zeina Saleh
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Sarah Khafaja
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Danielle Fayad
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Hady Ezzeddine
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Mohammad Saleh
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Sarah Chamseddine
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Rouba Sayegh
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Sima L Sharara
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Ahmad Chmaisse
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Souha S Kanj
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Zeina Kanafani
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Rima Hanna-Wakim
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - George F Araj
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Rami Mahfouz
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon
| | - Reiko Saito
- Department of Public Health at Niigata University, Niigata, Japan
| | - Hiroshi Suzuki
- Department of Public Health at Niigata University, Niigata, Japan
| | - Hassan Zaraket
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon.
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon.
| | - Ghassan S Dbaibo
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon.
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, PO Box: 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon.
| |
Collapse
|
13
|
Fallahi P, Ferrari SM, Ragusa F, Ruffilli I, Elia G, Paparo SR, Antonelli A. Th1 Chemokines in Autoimmune Endocrine Disorders. J Clin Endocrinol Metab 2020; 105:5683662. [PMID: 31863667 DOI: 10.1210/clinem/dgz289] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
CONTEXT The CXC chemokine receptor CXCR3 and its chemokines CXCL10, CXCL9, and CXCL11 are implicated in the pathogenesis of autoimmune diseases. Here, we review these chemokines in autoimmune thyroiditis (AT), Graves disease (GD), thyroid eye disease (TED), type 1 diabetes (T1D), and Addison's disease (AAD). EVIDENCE ACQUISITION A PubMed review of the literature was conducted, searching for the above-mentioned chemokines in combination with AT, GD, TED, T1D, and AAD. EVIDENCE SYNTHESIS Thyroid follicular cells in AT and GD, retroorbital cells in TED (fibroblasts, preadipocytes, myoblasts), β cells and islets in T1D, and adrenal cells in AAD respond to interferon-γ (IFN-γ) stimulation producing large amounts of these chemokines. Furthermore, lymphocytes and peripheral blood mononuclear cells (PBMC) are in part responsible for the secreted Th1 chemokines. In AT, GD, TED, T1D, and AAD, the circulating levels of these chemokines have been shown to be high. Furthermore, these chemokines have been associated with the early phases of the autoimmune response in all the above-mentioned disorders. High levels of these chemokines have been associated also with the "active phase" of the disease in GD, and also in TED. Other studies have shown an association with the severity of hypothyroidism in AD, of hyperthyroidism in GD, with severity of TED, or with fulminant T1D. CONCLUSION The reviewed data have shown the importance of the Th1 immune response in different endocrine autoimmune diseases, and many studies have suggested that CXCR3 and its chemokines might be considered as potential targets of new drugs for the treatment of these disorders.
Collapse
Affiliation(s)
- Poupak Fallahi
- Department of Translational Research of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Ruffilli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Influenza and sudden unexpected death: the possible role of peptide cross-reactivity. INFECTION INTERNATIONAL 2018. [DOI: 10.2478/ii-2018-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
This study investigates the hypothesis that cross-reactions may occur between human cardiac proteins and influenza antigens, thus possibly representing the molecular mechanism underlying influenzaassociated sudden unexpected death (SUD). Using titin protein as a research model, data were obtained on (1) the occurrence of the titin octapeptide AELLVLLE or its mimic AELLVALE in influenza A virus hemagglutinin (HA) sequences; (2) the immunological potential of AELLVLLE and its mimic AELLVALE; (3) the possible role of the flanking amino acid aa) context of the two octapeptide determinants in eliciting cross-reactivity between the human cardiac titin protein and HA antigens.
Collapse
|
15
|
The diabetes pandemic and associated infections: suggestions for clinical microbiology. ACTA ACUST UNITED AC 2018; 30:1-17. [PMID: 30662163 PMCID: PMC6319590 DOI: 10.1097/mrm.0000000000000155] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/08/2017] [Indexed: 12/15/2022]
Abstract
There are 425 million people with diabetes mellitus in the world. By 2045, this figure will grow to over 600 million. Diabetes mellitus is classified among noncommunicable diseases. Evidence points to a key role of microbes in diabetes mellitus, both as infectious agents associated with the diabetic status and as possible causative factors of diabetes mellitus. This review takes into account the different forms of diabetes mellitus, the genetic determinants that predispose to type 1 and type 2 diabetes mellitus (especially those with possible immunologic impact), the immune dysfunctions that have been documented in diabetes mellitus. Common infections occurring more frequently in diabetic vs. nondiabetic individuals are reviewed. Infectious agents that are suspected of playing an etiologic/triggering role in diabetes mellitus are presented, with emphasis on enteroviruses, the hygiene hypothesis, and the environment. Among biological agents possibly linked to diabetes mellitus, the gut microbiome, hepatitis C virus, and prion-like protein aggregates are discussed. Finally, preventive vaccines recommended in the management of diabetic patients are considered, including the bacillus calmette-Guerin vaccine that is being tested for type 1 diabetes mellitus. Evidence supports the notion that attenuation of immune defenses (both congenital and secondary to metabolic disturbances as well as to microangiopathy and neuropathy) makes diabetic people more prone to certain infections. Attentive microbiologic monitoring of diabetic patients is thus recommendable. As genetic predisposition cannot be changed, research needs to identify the biological agents that may have an etiologic role in diabetes mellitus, and to envisage curative and preventive ways to limit the diabetes pandemic.
Collapse
|