1
|
Zuccaro MV, LeDuc CA, Thaker VV. Updates on Rare Genetic Variants, Genetic Testing, and Gene Therapy in Individuals With Obesity. Curr Obes Rep 2024; 13:626-641. [PMID: 38822963 PMCID: PMC11694263 DOI: 10.1007/s13679-024-00567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE OF REVIEW The goal of this paper is to aggregate information on monogenic contributions to obesity in the past five years and to provide guidance for genetic testing in clinical care. RECENT FINDINGS Advances in sequencing technologies, increasing awareness, access to testing, and new treatments have increased the utilization of genetics in clinical care. There is increasing recognition of the prevalence of rare genetic obesity from variants with mean allele frequency < 5% -new variants in known genes as well as identification of novel genes- causing monogenic obesity. While most of these genes are in the leptin melanocortin pathway, those in adipocytes may also contribute. Common variants may contribute either to higher lifetime tendency for weight gain or provide protection from monogenic obesity. While specific genetic mutations are rare, these segregate in individuals with early-onset severe obesity; thus, collectively genetic etiologies are not as rare. Some genetic conditions are amenable to targeted treatment. Research into the discovery of novel genetic causes as well as targeted treatment is growing over time. The utility of therapeutic strategies based on the genetic risk of obesity is an advancing frontier.
Collapse
Affiliation(s)
- Michael V Zuccaro
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, 1150, St. Nicholas Avenue, NY 10032, United States
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, United States
| | - Vidhu V Thaker
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, 1150, St. Nicholas Avenue, NY 10032, United States.
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, United States.
- Division of Pediatric Endocrinology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, 10032, United States.
| |
Collapse
|
2
|
Ludar H, Levy-Shraga Y, Admoni O, Majdoub H, Aronovitch KM, Koren I, Rath S, Elias-Assad G, Almashanu S, Mantovani G, Hamiel OP, Tenenbaum-Rakover Y. Clinical and Molecular Characteristics and Long-term Follow-up of Children With Pseudohypoparathyroidism Type IA. J Clin Endocrinol Metab 2024; 109:424-438. [PMID: 37669316 DOI: 10.1210/clinem/dgad524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
CONTEXT Pseudohypoparathyroidism type IA (PHPIA) is a rare genetic disorder characterized by hormone resistance and a typical phenotype named Albright hereditary osteodystrophy. Unawareness of this rare disease leads to delays in diagnosis. OBJECTIVE The aims of this study were to describe the clinical and molecular characteristics of patients with genetically confirmed GNAS mutations and to evaluate their long-term outcomes. METHODS A retrospective search for all patients diagnosed with PHPIA in 2 referral centers in Israel was conducted. RESULTS Nine children (8 females) belonging to 6 families were included in the study. Five patients had GNAS missense mutations, 2 had deletions, and 2 had frameshift mutations. Four mutations were novel. Patients were referred at a mean age of 2.4 years due to congenital hypothyroidism (5 patients), short stature (2 patients), or obesity (2 patients), with a follow-up duration of up to 20 years. Early obesity was observed in the majority of patients. Elevated parathyroid hormone was documented at a mean age of 3 years; however, hypocalcemia became evident at a mean age of 5.9 years, about 3 years later. All subjects were diagnosed with mild to moderate mental retardation. Female adult height was very short (mean -2.5 SD) and 5 females had primary or secondary amenorrhea. CONCLUSION Long-term follow-up of newborns with a combination of congenital hypothyroidism, early-onset obesity, and minor dysmorphic features associated with PHPIA is warranted and molecular analysis is recommended since the complete clinical phenotype may develop a long time after initial presentation.
Collapse
Affiliation(s)
- Hanna Ludar
- Pediatric Endocrinology and Diabetes Unit, Clalit Health Services, 35024 Haifa and Western Galilee District, Israel
| | - Yael Levy-Shraga
- Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52620 Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Osnat Admoni
- Pediatric Endocrine Clinic, Clalit Health Services, 17673 Northern Region, Israel
| | - Hussein Majdoub
- Pediatric Endocrinology and Diabetes Unit, Clalit Health Services, 35024 Haifa and Western Galilee District, Israel
| | - Kineret Mazor Aronovitch
- Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52620 Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Ilana Koren
- Pediatric Endocrinology and Diabetes Unit, Clalit Health Services, 35024 Haifa and Western Galilee District, Israel
- The Rappaport Faculty of Medicine, Technion, Institute of Technology, 32000 Haifa, Israel
| | - Shoshana Rath
- Pediatric Endocrine Clinic, Clalit Health Services, 17673 Northern Region, Israel
- Endocrinology and Diabetes Service, Tzafon Medical Center, 15208 Teveria, Israel
| | - Ghadir Elias-Assad
- Pediatric Endocrine Clinic, Clalit Health Services, 17673 Northern Region, Israel
- Pediatric Endocrine Institute, Saint Vincent Hospital, 16511 Nazareth, Israel
| | - Shlomo Almashanu
- The National Newborn Screening Program, Ministry of Health, Tel Hashomer, 52620 Ramat Gan, Israel
| | - Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Orit Pinhas Hamiel
- Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52620 Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Yardena Tenenbaum-Rakover
- The Rappaport Faculty of Medicine, Technion, Institute of Technology, 32000 Haifa, Israel
- Consulting Medicine in Pediatric Endocrinology, Clalit Health Services, 18343 Afula, Israel
| |
Collapse
|
3
|
Abbas A, Hammad AS, Al-Shafai M. The role of genetic and epigenetic GNAS alterations in the development of early-onset obesity. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108487. [PMID: 38103632 DOI: 10.1016/j.mrrev.2023.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND GNAS (guanine nucleotide-binding protein, alpha stimulating) is an imprinted gene that encodes Gsα, the α subunit of the heterotrimeric stimulatory G protein. This subunit mediates the signalling of a diverse array of G protein-coupled receptors (GPCRs), including the melanocortin 4 receptor (MC4R) that serves a pivotal role in regulating food intake, energy homoeostasis, and body weight. Genetic or epigenetic alterations in GNAS are known to cause pseudohypoparathyroidism in its different subtypes and have been recently associated with isolated, early-onset, severe obesity. Given the diverse biological functions that Gsα serves, multiple molecular mechanisms involving various GPCRs, such as MC4R, β2- and β3-adrenoceptors, and corticotropin-releasing hormone receptor, have been implicated in the pathophysiology of severe, early-onset obesity that results from genetic or epigenetic GNAS changes. SCOPE OF REVIEW This review examines the structure and function of GNAS and provides an overview of the disorders that are caused by defects in this gene and may feature early-onset obesity. Moreover, it elucidates the potential molecular mechanisms underlying Gsα deficiency-induced early-onset obesity, highlighting some of their implications for the diagnosis, management, and treatment of this complex condition. MAJOR CONCLUSIONS Gsα deficiency is an underappreciated cause of early-onset, severe obesity. Therefore, screening children with unexplained, severe obesity for GNAS defects is recommended, to enhance the molecular diagnosis and management of this condition.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ayat S Hammad
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Yang Y, Song A, Gong F, Jiang Y, Li M, Xia W, Xing X, Wang O, Pan H. Explorative research on glucolipid metabolism and levels of adipokines in pseudohypoparathyroidism type 1 patients. Orphanet J Rare Dis 2023; 18:367. [PMID: 38017461 PMCID: PMC10683200 DOI: 10.1186/s13023-023-02979-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Pseudohypoparathyroidism type 1 (PHP1) is a rare disease featuring hypocalcemia and elevated PTH level. Though disturbed calcium and phosphorus metabolism under PTH resistant have been widely studied, glucolipid metabolism abnormalities observed in PHP1 patients have received little attention. The aim of this research is to explore the glucolipid metabolism features in a rather large cohort of PHP1 patient. In the current study, PHP1 patients and primary hyperparathyroidism patients as well as normal control were recruited for the investigation. Glucolipid metabolic indices as well as the level of four adipokines were examined. RESULTS A total of 49 PHP1 patients, 64 PHPT patients and 30 healthy volunteers were enrolled. A trend of higher HOMA-β index was found in PHP1 patients than normal controls (median 97.08% vs 68.19%, p = 0.060). Both the PHP1 and PHPT group presented with significantly lower TNFα level compared to normal controls (average 10.74 pg/ml and 12.53 pg/ml vs 15.47 pg/ml, p = 0.002 and 0.041, respectively). FGF21 level was significantly higher in PHPT group than in PHP1 group (median 255.74 pg/ml vs 167.46 pg/ml, p = 0.019). No significant difference in glucolipid metabolic indices and adipokines was found between PHP1A or PHP1B patients and normal controls, while overweight/obese PHP1 patients tended to have higher leptin than normal-BMI cases (p = 0.055). Multiple linear regression analysis showed BMI rather than PTH or HOMA-IR to be an independent variable of leptin in PHP1. CONCLUSION Metabolic stress given upon especially overweight PHP1 patients may resulted in possible β-cell compensation. Elevated TNFα may be related with hyper-PTH level regardless of calcium level.
Collapse
Affiliation(s)
- Yi Yang
- Department of Endocrinology, Key Laboratory of Endocrinology, Dongcheng District, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - An Song
- Department of Endocrinology, Key Laboratory of Endocrinology, Dongcheng District, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Fengying Gong
- Department of Endocrinology, Key Laboratory of Endocrinology, Dongcheng District, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, Dongcheng District, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Dongcheng District, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Dongcheng District, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, Dongcheng District, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Dongcheng District, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China.
| | - Hui Pan
- Department of Endocrinology, Key Laboratory of Endocrinology, Dongcheng District, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China.
| |
Collapse
|
5
|
Del Sindaco G, Berkenou J, Pagnano A, Rothenbuhler A, Arosio M, Mantovani G, Linglart A. Neonatal and Early Infancy Features of Patients With Inactivating PTH/PTHrP Signaling Disorders/Pseudohypoparathyroidism. J Clin Endocrinol Metab 2023; 108:2961-2969. [PMID: 37098127 PMCID: PMC10583975 DOI: 10.1210/clinem/dgad236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Pseudohypoparathyroidism (PHP) and related disorders newly referred to as inactivating PTH/PTHrP signaling disorders (iPPSD) are rare endocrine diseases. Many clinical features including obesity, neurocognitive impairment, brachydactyly, short stature, parathyroid hormone (PTH) resistance, and resistance to other hormones such as thyroid-stimulating hormone (TSH) have been well described, yet they refer mainly to the full development of the disease during late childhood and adulthood. OBJECTIVE A significant delay in diagnosis has been reported; therefore, our objective is to increase awareness on neonatal and early infancy presentation of the diseases. To do so, we analyzed a large cohort of iPPSD/PHP patients. METHODS We included 136 patients diagnosed with iPPSD/PHP. We retrospectively collected data on birth and investigated the rate of neonatal complications occurring in each iPPSD/PHP category within the first month of life. RESULTS Overall 36% of patients presented at least one neonatal complication, far more than the general population; when considering only the patients with iPPSD2/PHP1A, it reached 47% of the patients. Neonatal hypoglycemia and transient respiratory distress appeared significantly frequent in this latter group, ie, 10.5% and 18.4%, respectively. The presence of neonatal features was associated with earlier resistance to TSH (P < 0.001) and with the development of neurocognitive impairment (P = 0.02) or constipation (P = 0.04) later in life. CONCLUSION Our findings suggest that iPPSD/PHP and especially iPPSD2/PHP1A newborns require specific care at birth because of an increased risk of neonatal complications. These complications may predict a more severe course of the disease; however, they are unspecific which likely explains the diagnostic delay.
Collapse
Affiliation(s)
- Giulia Del Sindaco
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Jugurtha Berkenou
- AP-HP, Service d’endocrinologie et diabète de l’enfant, Hôpital Bicêtre Paris-Saclay, Le Kremlin-Bicêtre 94270, France
- AP-HP, Centre de Référence des maladies rares du métabolisme du Calcium et du Phosphate, filière OSCAR, ERN BOND, ERN for rare endocrine disorders, Plateforme d’expertise des maladies rares de Paris Saclay, Paris, France
| | - Angela Pagnano
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Anya Rothenbuhler
- AP-HP, Service d’endocrinologie et diabète de l’enfant, Hôpital Bicêtre Paris-Saclay, Le Kremlin-Bicêtre 94270, France
- AP-HP, Centre de Référence des maladies rares du métabolisme du Calcium et du Phosphate, filière OSCAR, ERN BOND, ERN for rare endocrine disorders, Plateforme d’expertise des maladies rares de Paris Saclay, Paris, France
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Agnès Linglart
- AP-HP, Service d’endocrinologie et diabète de l’enfant, Hôpital Bicêtre Paris-Saclay, Le Kremlin-Bicêtre 94270, France
- AP-HP, Centre de Référence des maladies rares du métabolisme du Calcium et du Phosphate, filière OSCAR, ERN BOND, ERN for rare endocrine disorders, Plateforme d’expertise des maladies rares de Paris Saclay, Paris, France
- Université Paris Saclay, INSERM U1185, Le Kremlin-Bicêtre 94270, France
| |
Collapse
|
6
|
Miñones-Suarez L, Pérez de Nanclares G, Marín-Del Barrio S, Alcázar Villar MJ, de Sotto-Esteban D, Mogas E, Rey Cordo L, Riaño-Galán I, Lumbreras Fernández J, Leis R. Nutrition recommendations for patients with pseudohypoparathyroidism. An Pediatr (Barc) 2023; 99:129-135. [PMID: 37481364 DOI: 10.1016/j.anpede.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 07/24/2023] Open
Abstract
Pseudohypoparathyroidism (PHP) is a spectrum of diseases characterized by insensitivity of target tissues to the action of parathyroid hormone and, consequently, by the presence of hyperphosphatemia and hypocalcaemia of varying severity. Early-onset obesity is a feature of PHP type 1A. This article discusses the need to establish uniform criteria to guide the nutritional management of patients with PHP. A decrease in energy expenditure calls for an adjustment of the energy content of the diet. Reducing the intake of foods rich in inorganic phosphorus helps to manage hyperphosphataemia. Targeted nutrition should be part of the treatment plan of children and adolescents with PHP, since it contributes to modulating the calcium and phosphorus metabolism imbalances characteristic of these patients.
Collapse
Affiliation(s)
- Lorena Miñones-Suarez
- Endocrinología Pediátrica, Servicio de Pediatría, Hospital Reina Sofía, Tudela, Navarra, Spain
| | - Guiomar Pérez de Nanclares
- Laboratorio de (epi)Genética Molecular, Instituto de Investigación Sanitaria Bioaraba, Hospital Universitario Araba, Vitoria, Spain
| | - Silvia Marín-Del Barrio
- Servicio de Endocrinología Pediátrica, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - María José Alcázar Villar
- Endocrinología Pediátrica, Servicio de Pediatría, Hospital Universitario de Fuenlabrada, Fuenlabrada, Spain
| | - Diego de Sotto-Esteban
- Endocrinología Pediátrica, Servicio de Pediatría, Clínica Rotger, Palma, Baleares, Spain; Department of Medicine, University of the Balearic Islands, Palma, Baleares, Spain
| | - Eduard Mogas
- Endocrinología Pediátrica, Hospital Universitario Maternoinfantil Vall d'Hebron, Barcelona, Spain
| | - Lourdes Rey Cordo
- Endocrinología Pediátrica, Hospital Álvaro Cunqueiro, Vigo, Pontevedra, Spain
| | - Isolina Riaño-Galán
- Endocrinología Pediátrica, Área de Gestión Clínica de Pediatría, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, CIBER de Epidemiología y Salud Pública (CIBERESP), Oviedo, Asturias, Spain.
| | - Javier Lumbreras Fernández
- Nefrología Pediátrica, Hospital Universitari Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Baleares, Spain
| | - Rosaura Leis
- Unidad de Gastroenterología y Nutrición Pediátrica, Hospital Clínico Universitario de Santiago, Instituto de Investigación Sanitaria de Santiago (IDIS), CIBERObn, Santiago de Compostela, La Coruña, Spain
| |
Collapse
|
7
|
Abawi O, Koster EC, Welling MS, Boeters SC, van Rossum EFC, van Haelst MM, van der Voorn B, de Groot CJ, van den Akker ELT. Resting Energy Expenditure and Body Composition in Children and Adolescents With Genetic, Hypothalamic, Medication-Induced or Multifactorial Severe Obesity. Front Endocrinol (Lausanne) 2022; 13:862817. [PMID: 35898454 PMCID: PMC9309560 DOI: 10.3389/fendo.2022.862817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pediatric obesity is a multifactorial disease which can be caused by underlying medical disorders arising from disruptions in the hypothalamic leptin-melanocortin pathway, which regulates satiety and energy expenditure. Aim To investigate and compare resting energy expenditure (REE) and body composition characteristics of children and adolescents with severe obesity with or without underlying medical causes. Methods This prospective observational study included pediatric patients who underwent an extensive diagnostic workup in our academic centre that evaluated endocrine, non-syndromic and syndromic genetic, hypothalamic, and medication-induced causes of obesity. REE was assessed by indirect calorimetry; body composition by air displacement plethysmography. The ratio between measured REE (mREE) and predicted REE (Schofield equations), REE%, was calculated, with decreased mREE defined as REE% ≤90% and elevated mREE ≥110%. Additionally, the influence of fat-free-mass (FFM) on mREE was evaluated using multiple linear regression. Results We included 292 patients (146 [50%] with body composition measurements), of which 218 (75%) patients had multifactorial obesity and 74 (25%) an underlying medical cause: non-syndromic and syndromic genetic (n= 29 and 28, respectively), hypothalamic (n= 10), and medication-induced (n= 7) obesity. Mean age was 10.8 ± 4.3 years, 59% were female, mean BMI SDS was 3.8 ± 1.1, indicating severe obesity. Mean REE% was higher in children with non-syndromic genetic obesity (107.4% ± 12.7) and lower in children with hypothalamic obesity (87.6% ± 14.2) compared to multifactorial obesity (100.5% ± 12.6, both p<0.01). In 9 children with pseudohypoparathyroidism type 1a, mean REE% was similar (100.4 ± 5.1). Across all patients, mREE was decreased in 60 (21%) patients and elevated in 69 (24%) patients. After adjustment for FFM, mREE did not differ between patients within each of the subgroups of underlying medical causes compared to multifactorial obesity (all p>0.05). Conclusions In this cohort of children with severe obesity due to various etiologies, large inter-individual differences in mREE were found. Consistent with previous studies, almost half of patients had decreased or elevated mREE. This knowledge is important for patient-tailored treatment, e.g. personalized dietary and physical activity interventions and consideration of pharmacotherapy affecting central energy expenditure regulation in children with decreased mREE.
Collapse
Affiliation(s)
- Ozair Abawi
- Dept. of Pediatrics, div. of Endocrinology, Erasmus MC-Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Emma C. Koster
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dept. of Dietetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mila S. Welling
- Dept. of Pediatrics, div. of Endocrinology, Erasmus MC-Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dept. of Internal Medicine, div. of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sanne C.M. Boeters
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dept. of Dietetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elisabeth F. C. van Rossum
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dept. of Internal Medicine, div. of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mieke M. van Haelst
- Dept. of Human Genetics, Amsterdam University Medical Center, Location AMC, University of Amsterdam & Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bibian van der Voorn
- Dept. of Pediatrics, div. of Endocrinology, Erasmus MC-Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dept. of Internal Medicine, div. of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Cornelis J. de Groot
- Dept. of Pediatrics, div. of Endocrinology, Erasmus MC-Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Dept. of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Erica L. T. van den Akker
- Dept. of Pediatrics, div. of Endocrinology, Erasmus MC-Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
8
|
Zorn S, von Schnurbein J, Schirmer M, Brandt S, Wabitsch M. Measuring hyperphagia in patients with monogenic and syndromic obesity. Appetite 2022; 178:106161. [PMID: 35809703 DOI: 10.1016/j.appet.2022.106161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/07/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Hyperphagia is a key symptom in patients with monogenic obesity, but the assessment is challenging. OBJECTIVES We aimed to investigate the applicability of Dykens' Hyperphagia Questionnaire in patients with monogenic and syndromic obesity to assess the quality and severity of hyperphagia, and to compare our results with those reported in the literature. METHODS Patients with biallelic leptin receptor variants (LEPR, n = 8), heterozygous melanocortin-4 receptor variants (MC4R, n = 7) and 16p11.2 deletions, leading to a deletion of the Src homology 2B adaptor protein gene (n = 5) were included in the study. Hyperphagia was assessed by the parent-based, 13-item hyperphagia questionnaire from Dykens et al. (2007). A literature research was performed to identify published hyperphagia scores assessed by Dykens' Hyperphagia Questionnaire. RESULTS The total hyperphagia scores were similar in patients with biallelic LEPR and monoallelic MC4R variants (32.0 ± 9.3 vs. 31.4 ± 5.4), but significantly lower in patients with 16p11.2 deletions (21.4 ± 5.5, p < 0.05). Compared to patients with syndromic obesity (27.6 ± 9.0) from the literature, patients with LEPR and MC4R variants had higher total hyperphagia scores. Total hyperphagia scores in patients with 16p11.2 deletions were lower than for patients with other syndromic obesity forms (21.4 ± 5.5 vs. 24.6 ± 8.1), but similar to those for individuals with obesity without a genetic cause (22.9 ± 7.2). CONCLUSIONS Dykens' Hyperphagia Questionnaire seems to be a useful tool to assess hyperphagic behaviour in patients with monogenic and syndromic obesity.
Collapse
Affiliation(s)
- Stefanie Zorn
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Julia von Schnurbein
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Melanie Schirmer
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Stephanie Brandt
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
9
|
Mazoni L, Apicella M, Saponaro F, Mantovani G, Elli FM, Borsari S, Pardi E, Piaggi P, Marcocci C, Cetani F. Pseudohypoparathyroidism: Focus on Cerebral and Renal Calcifications. J Clin Endocrinol Metab 2021; 106:e3005-e3020. [PMID: 33780542 DOI: 10.1210/clinem/dgab208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Pseudohypoparathyroidism (PHP) is a group of disorders characterized by hypocalcemia, hyperphosphatemia, and elevated parathyroid hormone (PTH) levels as a result of end-organ resistance to PTH. OBJECTIVE To describe a cohort of 26 patients with PHP followed in a single tertiary center. METHODS Clinical, biochemical, radiological, and genetic analysis of the GNAS gene in 26 patients recruited since 2002. RESULTS Ten patients harbored a GNAS mutation, 15 epigenetic abnormalities at the GNAS locus, and 1 did not show genetic or epigenetic abnormalities. According to clinical, biochemical, and genetic features, patients were classified as PHP1A, PHP1B, and pseudopseudohypoparathyroidism. Patients with PHP1A had an earlier diagnosis and more cases with family history, Albright hereditary osteodystrophy (AHO) features, hormonal resistance, and hypertension. Obesity was a common feature. No difference in biochemical values was present among PHP1A and PHP1B. Intracerebral calcification occurred in 72% of patients with no difference among PHP1A and PHP1B subgroups. No significant difference was observed between patients with and without intracerebral calcification for the time-weighted average values of total serum calcium, phosphate, calcium-phosphate product, and PTH fold increase. A borderline association between cerebral calcification and age at the time of diagnosis (P = .04) was found in the whole cohort of patients. No renal calcifications were found in the overall cohort. CONCLUSION Patients with PHP1A more frequently have AHO features as well as hypertension than patients with PHP1B. Patients with PHP presented a high rate of intracerebral calcification with no significant difference between subgroups. No increased risk of renal calcifications was also found in the entire cohort.
Collapse
Affiliation(s)
- Laura Mazoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa,Italy
| | - Matteo Apicella
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa,Italy
| | - Federica Saponaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa,Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Grande Ospedale Maggiore Policlinico, Milan,Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan,Italy
| | - Francesca M Elli
- Endocrinology Unit, Fondazione IRCCS Ca' Grande Ospedale Maggiore Policlinico, Milan,Italy
| | - Simona Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa,Italy
| | - Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa,Italy
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa,Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa,Italy
- University Hospital of Pisa, Endocrine Unit 2, Pisa,Italy
| | | |
Collapse
|
10
|
Zervas A, Chrousos G, Livadas S. Snow White and the Seven Dwarfs: a fairytale for endocrinologists. Endocr Connect 2021; 10:R189-R199. [PMID: 33878729 PMCID: PMC8183629 DOI: 10.1530/ec-20-0615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
'Snow White and the Seven Dwarfs', a fairytale that is widely known across the Western world, was originally written by the Brothers Grimm, and published in 1812 as 'Snow White'. Though each dwarf was first given an individual name in the 1912 Broadway play, in Walt Disney's 1937 film 'Snow White and the Seven Dwarfs', they were renamed, and the dwarfs have become household names. It is well known that myths, fables, and fairytales, though appearing to be merely children's tales about fictional magical beings and places, have, more often than not, originated from real facts. Therefore, the presence of the seven brothers with short stature in the story is, from an endocrinological point of view, highly intriguing, in fact, thrilling. The diversity of the phenotypes among the seven dwarfs is also stimulating, although puzzling. We undertook a differential diagnosis of their common underlying disorder based on the original Disney production's drawings and the unique characteristics of these little gentlemen, while we additionally evaluated several causes of short stature and, focusing on endocrine disorders that could lead to these clinical features among siblings, we have, we believe, been able to reveal the underlying disease depicted in this archetypal tale.
Collapse
Affiliation(s)
| | - George Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Athens, Greece
- National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, Athens, Greece
| | - Sarantis Livadas
- Endocrine Unit, Athens Medical Centre, Athens, Greece
- Correspondence should be addressed to S Livadas:
| |
Collapse
|
11
|
Mantovani G, Bastepe M, Monk D, de Sanctis L, Thiele S, Ahmed SF, Bufo R, Choplin T, De Filippo G, Devernois G, Eggermann T, Elli FM, Ramirez AG, Germain-Lee EL, Groussin L, Hamdy NA, Hanna P, Hiort O, Jüppner H, Kamenický P, Knight N, Le Norcy E, Lecumberri B, Levine MA, Mäkitie O, Martin R, Martos-Moreno GÁ, Minagawa M, Murray P, Pereda A, Pignolo R, Rejnmark L, Rodado R, Rothenbuhler A, Saraff V, Shoemaker AH, Shore EM, Silve C, Turan S, Woods P, Zillikens MC, de Nanclares GP, Linglart A. Recommendations for Diagnosis and Treatment of Pseudohypoparathyroidism and Related Disorders: An Updated Practical Tool for Physicians and Patients. Horm Res Paediatr 2020; 93:182-196. [PMID: 32756064 PMCID: PMC8140671 DOI: 10.1159/000508985] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Patients affected by pseudohypoparathyroidism (PHP) or related disorders are characterized by physical findings that may include brachydactyly, a short stature, a stocky build, early-onset obesity, ectopic ossifications, and neurodevelopmental deficits, as well as hormonal resistance most prominently to parathyroid hormone (PTH). In addition to these alterations, patients may develop other hormonal resistances, leading to overt or subclinical hypothyroidism, hypogonadism and growth hormone (GH) deficiency, impaired growth without measurable evidence for hormonal abnormalities, type 2 diabetes, and skeletal issues with potentially severe limitation of mobility. PHP and related disorders are primarily clinical diagnoses. Given the variability of the clinical, radiological, and biochemical presentation, establishment of the molecular diagnosis is of critical importance for patients. It facilitates management, including prevention of complications, screening and treatment of endocrine deficits, supportive measures, and appropriate genetic counselling. Based on the first international consensus statement for these disorders, this article provides an updated and ready-to-use tool to help physicians and patients outlining relevant interventions and their timing. A life-long coordinated and multidisciplinary approach is recommended, starting as far as possible in early infancy and continuing throughout adulthood with an appropriate and timely transition from pediatric to adult care.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Endocrinology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Monk
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Luisa de Sanctis
- Pediatric Endocrinology Unit, Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Susanne Thiele
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - S. Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Roberto Bufo
- Italian Progressive Osseous Heteroplasia Association (IPOHA), Foggia, Italy
| | - Timothée Choplin
- K20, French PHP and Related Disorders Patient Association, Jouars-Pontchartrain, France
| | - Gianpaolo De Filippo
- APHP, Department of Medicine for Adolescents, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicetre, France
| | - Guillemette Devernois
- K20, French PHP and Related Disorders Patient Association, Jouars-Pontchartrain, France
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Francesca M. Elli
- Endocrinology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Emily L. Germain-Lee
- Albright Center and Center for Rare Bone Disorders, Division of Pediatric Endocrinology and Diabetes, Connecticut Children’s Medical Center, Farmington, CT, USA,Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lionel Groussin
- APHP, Department of Endocrinology, Cochin Hospital (HUPC), Paris, France,University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Neveen A.T. Hamdy
- Division of Endocrinology and Centre for Bone Quality, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick Hanna
- INSERM U1185, Bicêtre Paris Sud – Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Olaf Hiort
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Kamenický
- INSERM U1185, Bicêtre Paris Sud – Paris Saclay University, Le Kremlin-Bicêtre, France,APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Saclay for Rare Diseases and Filière OSCAR, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France,APHP, Department of Endocrinology and Reproductive Diseases, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Nina Knight
- Acrodysostosis Support and Research patients’ group, London, UK
| | - Elvire Le Norcy
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France,APHP, Department of Odontology, Bretonneau Hospital (PNVS), Paris, France
| | - Beatriz Lecumberri
- Department of Endocrinology and Nutrition, La Paz University Hospital, Madrid, Spain,Department of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Michael A. Levine
- Division of Endocrinology and Diabetes and Center for Bone Health, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Outi Mäkitie
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Regina Martin
- Osteometabolic Disorders Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Hospital das Clínicas HCFMUSP, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Gabriel Ángel Martos-Moreno
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Hospital La Princesa Institute for Health Research (IIS La Princesa), Madrid, Spain,Department of Pediatrics, Autonomous University of Madrid (UAM), Madrid, Spain,CIBERobn, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Philip Murray
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, BioAraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Spain
| | | | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rebeca Rodado
- AEPHP, Spanish PHP and Related Disorders Patient Association, Almeria, Spain
| | - Anya Rothenbuhler
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Saclay for Rare Diseases and Filière OSCAR, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France,APHP, Endocrinology and Diabetes for Children, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Vrinda Saraff
- Department of Endocrinology and Diabetes, Birmingham Children’s Hospital, Birmingham, UK
| | - Ashley H. Shoemaker
- Pediatric Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eileen M. Shore
- Departments of Orthopedic Surgery and Genetics, Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Silve
- APHP, Service de Biochimie et Génétique Moléculaires, Hôpital Cochin, Paris, France
| | - Serap Turan
- Department of Pediatrics, Division of Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | - Philip Woods
- Acrodysostosis Support and Research patients’ group, London, UK
| | - M. Carola Zillikens
- Department of Internal Medicine, Bone Center Erasmus MC – University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Agnès Linglart
- INSERM U1185, Bicêtre Paris Sud – Paris Saclay University, Le Kremlin-Bicêtre, France,APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Saclay for Rare Diseases and Filière OSCAR, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France,APHP, Endocrinology and Diabetes for Children, Bicêtre Paris Saclay Hospital (HUPS), Le Kremlin-Bicêtre, France
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This review is timely given the 2018 publication of the first international Consensus Statement for the diagnosis and management of pseudohypoparathyroidism (PHP) and related disorders. The purpose of this review is to provide the knowledge needed to recognize and manage PHP1A, pseudopseudohypoparathyroidism (PPHP) and PHP1B - the most common of the subtypes - with an overview of the entire spectrum and to provide a concise summary of management for clinical use. This review will draw from recent literature as well as personal experience in evaluating hundreds of children and adults with PHP. RECENT FINDINGS Progress is continually being made in understanding the mechanisms underlying the PHP spectrum. Every year, through clinical and laboratory studies, the phenotypes are elucidated in more detail, as are clinical issues such as short stature, brachydactyly, subcutaneous ossifications, cognitive/behavioural impairments, obesity and metabolic disturbances. Headed by a European PHP consortium, experts worldwide published the first international Consensus that provides detailed guidance in a systematic manner and will lead to exponential progress in understanding and managing these disorders. SUMMARY As more knowledge is gained from clinical and laboratory investigations, the mechanisms underlying the abnormalities associated with PHP are being uncovered as are improvements in management.
Collapse
|