1
|
Herrera-Martínez Y, Alzas Teomiro C, León Idougourram S, Molina Puertas MJ, Calañas Continente A, Serrano Blanch R, Castaño JP, Gálvez Moreno MÁ, Gahete MD, Luque RM, Herrera-Martínez AD. Sarcopenia and Ghrelin System in the Clinical Outcome and Prognosis of Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2021; 14:cancers14010111. [PMID: 35008278 PMCID: PMC8750458 DOI: 10.3390/cancers14010111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Malnutrition and sarcopenia affect clinical outcomes in cancer patients. Nutritional evaluation in patients with neuroendocrine neoplasms (NENs) is not routinely performed. Currently, the evaluation of sarcopenia using CT scans is the gold standard in cancer patients, additionally, anthropometric, biochemical and molecular analysis of patients with gastroenteropancreatic NENs at diagnosis was perfomed. The expression levels of key ghrelin system components were assessed in 63 tumor samples. Results: Nutritional parameters were similar in GEP-NEN tumors of different origin. Relapsed disease was associated with decreased BMI. Patients who presented with weight loss at diagnosis had significantly lower overall survival (108 (25–302) vs. 263 (79–136) months). Ghrelin O-acyltransferase (GOAT) enzyme expression was higher in these patients. The prevalence of sarcopenia using CT images reached 87.2%. Mortality was observed only in patients with sarcopenia. Muscle evaluation was correlated with biochemical parameters but not with the expression of ghrelin system components. Conclusion: Survival is related to the nutritional status of patients with GEP-NENs and also to the molecular expression of some relevant ghrelin system components. Routine nutritional evaluation should be performed in these patients, in order to prescribe appropriate nutritional support, when necessary, for increasing quality of life and improving clinical outcomes. Abstract Background: Malnutrition and sarcopenia affect clinical outcomes and treatment response in cancer patients. Patients with neuroendocrine neoplasms (NENs) may present with additional symptoms related to tumor localization in the gastrointestinal tract and hormone secretion, increasing the risk and effects of sarcopenia. Aim: To explore the presence of malnutrition and sarcopenia in gastroenteropancreatic (GEP)-NEN patients, their relation to tumor characteristics, patient outcomes, survival and the molecular expression of ghrelin system components in the tumor. Patients and methods: One-hundred-and-four patients were included. Anthropometric, biochemical and CT-scans at diagnosis were evaluated. The expression levels of key ghrelin system components were assessed in 63 tumor samples. Results: Nutritional parameters were similar in GEP-NEN tumors of different origin. Relapsed disease was associated with decreased BMI. Patients who presented with weight loss at diagnosis had significantly lower overall survival (108 (25–302) vs. 263 (79–136) months). Ghrelin O-acyltransferase (GOAT) enzyme expression was higher in these patients. The prevalence of sarcopenia using CT images reached 87.2%. Mortality was observed only in patients with sarcopenia. Muscle evaluation was correlated with biochemical parameters but not with the expression of ghrelin system components. Conclusion: Survival is related to the nutritional status of patients with GEP-NENs and also to the molecular expression of some relevant ghrelin system components. Routine nutritional evaluation should be performed in these patients, in order to prescribe appropriate nutritional support, when necessary, for increasing quality of life and improving clinical outcomes.
Collapse
Affiliation(s)
| | - Carlos Alzas Teomiro
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Soraya León Idougourram
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - María José Molina Puertas
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Alfonso Calañas Continente
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Raquel Serrano Blanch
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Medical Oncology Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14014 Cordova, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 14004 Cordova, Spain
| | - María Ángeles Gálvez Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
| | - Manuel D. Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14014 Cordova, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 14004 Cordova, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, 14014 Cordova, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 14004 Cordova, Spain
| | - Aura D. Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, 14004 Cordova, Spain; (C.A.T.); (S.L.I.); (M.J.M.P.); (A.C.C.); (R.S.B.); (J.P.C.); (M.Á.G.M.); (M.D.G.); (R.M.L.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Cordova, Spain
- Correspondence:
| |
Collapse
|
2
|
Devesa J. The Complex World of Regulation of Pituitary Growth Hormone Secretion: The Role of Ghrelin, Klotho, and Nesfatins in It. Front Endocrinol (Lausanne) 2021; 12:636403. [PMID: 33776931 PMCID: PMC7991839 DOI: 10.3389/fendo.2021.636403] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
The classic concept of how pituitary GH is regulated by somatostatin and GHRH has changed in recent years, following the discovery of peripheral hormones involved in the regulation of energy homeostasis and mineral homeostasis. These hormones are ghrelin, nesfatins, and klotho. Ghrelin is an orexigenic hormone, released primarily by the gastric mucosa, although it is widely expressed in many different tissues, including the central nervous system and the pituitary. To be active, ghrelin must bind to an n-octanoyl group (n = 8, generally) on serine 3, forming acyl ghrelin which can then bind and activate a G-protein-coupled receptor leading to phospholipase C activation that induces the formation of inositol 1,4,5-triphosphate and diacylglycerol that produce an increase in cytosolic calcium that allows the release of GH. In addition to its direct action on somatotrophs, ghrelin co-localizes with GHRH in several neurons, facilitating its release by inhibiting somatostatin, and acts synergistically with GHRH stimulating the synthesis and secretion of pituitary GH. Gastric ghrelin production declines with age, as does GH. Klotho is an anti-aging agent, produced mainly in the kidneys, whose soluble circulating form directly induces GH secretion through the activation of ERK1/2 and inhibits the inhibitory effect that IGF-I exerts on GH. Children and adults with untreated GH-deficiency show reduced plasma levels of klotho, but treatment with GH restores them to normal values. Deletions or mutations of the Klotho gene affect GH production. Nesfatins 1 and 2 are satiety hormones, they inhibit food intake. They have been found in GH3 cell cultures where they significantly reduce the expression of gh mRNA and that of pituitary-specific positive transcription factor 1, consequently acting as inhibitors of GH production. This is a consequence of the down-regulation of the cAMP/PKA/CREB signaling pathway. Interestingly, nesfatins eliminate the strong positive effect that ghrelin has on GH synthesis and secretion. Throughout this review, we will attempt to broadly analyze the role of these hormones in the complex world of GH regulation, a world in which these hormones already play a very important role.
Collapse
Affiliation(s)
- Jesús Devesa
- Scientific and Medical Direction, Medical Center Foltra, Teo, Spain
| |
Collapse
|
3
|
Moose JE, Leets KA, Mate NA, Chisholm JD, Hougland JL. An overview of ghrelin O-acyltransferase inhibitors: a literature and patent review for 2010-2019. Expert Opin Ther Pat 2020; 30:581-593. [PMID: 32564644 DOI: 10.1080/13543776.2020.1776263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The peptide hormone ghrelin regulates physiological processes associated with energy homeostasis such as appetite, insulin signaling, glucose metabolism, and adiposity. Ghrelin has also been implicated in a growing number of neurological pathways involved in stress response and addiction behavior. For ghrelin to bind the growth hormone secretagogue receptor 1a (GHS-R1a) and activate signaling, the hormone must first be octanoylated on a specific serine side chain. This key transformation is performed by the enzyme ghrelin O-acyltransferase (GOAT), and therefore GOAT inhibitors may be useful in treating disorders related to ghrelin signaling such as diabetes, obesity, and related metabolic syndromes. AREAS COVERED This report covers ghrelin and GOAT as potential therapeutic targets and summarizes work on GOAT inhibitors through the end of 2019, highlighting recent successes with both peptidomimetics and small molecule GOAT inhibitors as potent modulators of GOAT-catalyzed ghrelin octanoylation. EXPERT OPINION A growing body of biochemical and structural knowledge regarding the ghrelin/GOAT system now enables multiple avenues for identifying and optimizing GOAT inhibitors. We are at the beginning of a new era with increased opportunities for leveraging ghrelin and GOAT in the understanding and treatment of multiple health conditions including diabetes, obesity, and addiction.
Collapse
Affiliation(s)
- Jacob E Moose
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - Katelyn A Leets
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - Nilamber A Mate
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - John D Chisholm
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - James L Hougland
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| |
Collapse
|
4
|
Akalu Y, Molla MD, Dessie G, Ayelign B. Physiological Effect of Ghrelin on Body Systems. Int J Endocrinol 2020; 2020:1385138. [PMID: 32565790 PMCID: PMC7267865 DOI: 10.1155/2020/1385138] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a relatively novel multifaceted hormone that has been found to exert a plethora of physiological effects. In this review, we found/confirmed that ghrelin has effect on all body systems. It induces appetite; promotes the use of carbohydrates as a source of fuel while sparing fat; inhibits lipid oxidation and promotes lipogenesis; stimulates the gastric acid secretion and motility; improves cardiac performance; decreases blood pressure; and protects the kidneys, heart, and brain. Ghrelin is important for learning, memory, cognition, reward, sleep, taste sensation, olfaction, and sniffing. It has sympatholytic, analgesic, antimicrobial, antifibrotic, and osteogenic effects. Moreover, ghrelin makes the skeletal muscle more excitable and stimulates its regeneration following injury; delays puberty; promotes fetal lung development; decreases thyroid hormone and testosterone; stimulates release of growth hormone, prolactin, glucagon, adrenocorticotropic hormone, cortisol, vasopressin, and oxytocin; inhibits insulin release; and promotes wound healing. Ghrelin protects the body by different mechanisms including inhibition of unwanted inflammation and induction of autophagy. Having a clear understanding of the ghrelin effect in each system has therapeutic implications. Future studies are necessary to elucidate the molecular mechanisms of ghrelin actions as well as its application as a GHSR agonist to treat most common diseases in each system without any paradoxical outcomes on the other systems.
Collapse
Affiliation(s)
- Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
5
|
Zhang J, Xie T. Ghrelin inhibits cisplatin-induced MDA-MB-231 breast cancer cell apoptosis via PI3K/Akt/mTOR signaling. Exp Ther Med 2019; 19:1633-1640. [PMID: 32104214 PMCID: PMC7027091 DOI: 10.3892/etm.2019.8398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023] Open
Abstract
Ghrelin is a multi-functional peptide, its role on cancer cell apoptosis remains controversial. The present study examined the effects and mechanisms of ghrelin on cisplatin-induced apoptosis in human breast cancer cells. It was identified that ghrelin inhibited apoptosis in MDA-MB-231 cells in vitro and reversed the expression of B-cell lymphoma 2 (Bcl2) and Bcl2-associated X, and cleaved caspase-3 induced by cisplatin. Furthermore, ghrelin activated the phosphoinositide 3-kinases/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway after cisplatin treatment. The effects of ghrelin on the cisplatin-induced apoptosis and PI3K/Akt/mTOR signaling were reversed by the growth hormone secretagogue receptor small interfering RNA. The present study suggests that ghrelin may serve as a novel target for cisplatin resistance and a potential indicator of cisplatin sensitivity in breast cancer treatment.
Collapse
Affiliation(s)
- Jinyu Zhang
- Department of Oncology, Medical College of Heibei University, Baoding, Hebei 071000, P.R. China
| | - Tianhao Xie
- Department of General Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
6
|
Gortan Cappellari G, Barazzoni R. Ghrelin forms in the modulation of energy balance and metabolism. Eat Weight Disord 2019; 24:997-1013. [PMID: 30353455 DOI: 10.1007/s40519-018-0599-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a gastric hormone circulating in acylated (AG) and unacylated (UnAG) forms. This narrative review aims at presenting current emerging knowledge on the impact of ghrelin forms on energy balance and metabolism. AG represents ~ 10% of total plasma ghrelin, has an appetite-stimulating effect and is the only form for which a receptor has been identified. Moreover, other metabolic AG-induced effects have been reported, including the modulation of glucose homeostasis with stimulation of liver gluconeogenesis, the increase of fat mass and the improvement of skeletal muscle mitochondrial function. On the other hand, UnAG has no orexigenic effects, however recent reports have shown that it is directly involved in the modulation of skeletal muscle energy metabolism by improving a cluster of interlinked functions including mitochondrial redox activities, tissue inflammation and insulin signalling and action. These findings are in agreement with human studies which show that UnAG circulating levels are positively associated with insulin sensitivity both in metabolic syndrome patients and in a large cohort from the general population. Moreover, ghrelin acylation is regulated by a nutrient sensor mechanism, specifically set on fatty acids availability. These recent findings consistently point towards a novel independent role of UnAG as a regulator of muscle metabolic pathways maintaining energy status and tissue anabolism. While a specific receptor for UnAG still needs to be identified, recent evidence strongly supports the hypothesis that the modulation of ghrelin-related molecular pathways, including those involved in its acylation, may be a potential novel target in the treatment of metabolic derangements in disease states characterized by metabolic and nutritional complications.Level of evidence Level V, narrative review.
Collapse
Affiliation(s)
- Gianluca Gortan Cappellari
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
- Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy.
| |
Collapse
|
7
|
Ghrelin octanoylation by ghrelin O-acyltransferase: Unique protein biochemistry underlying metabolic signaling. Biochem Soc Trans 2019; 47:169-178. [PMID: 30626708 DOI: 10.1042/bst20180436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
Ghrelin is a small peptide hormone that requires a unique post-translational modification, serine octanoylation, to bind and activate the GHS-R1a receptor. Ghrelin signaling is implicated in a variety of neurological and physiological processes, but is most well known for its roles in controlling hunger and metabolic regulation. Ghrelin octanoylation is catalyzed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. From the status of ghrelin as the only substrate for GOAT in the human genome to the source and requirement for the octanoyl acyl donor, the ghrelin-GOAT system is defined by multiple unique aspects within both protein biochemistry and endocrinology. In this review, we examine recent advances in our understanding of the interactions and mechanisms leading to ghrelin modification by GOAT, discuss the potential sources for the octanoyl acyl donor required for ghrelin's activation, and summarize the current landscape of molecules targeting ghrelin octanoylation through GOAT inhibition.
Collapse
|
8
|
Elaghori A, Salem P, Azzam E, Abu Elfotoh N. GHRELIN LEVEL IN PATIENTS WITH LIVER CIRRHOSIS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2019; -5:62-68. [PMID: 31149061 PMCID: PMC6535318 DOI: 10.4183/aeb.2019.62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ghrelin is a gastro-duodenal hormone which plays a major role in the regulation of food intake, energy balance and gastrokinesis. Ghrelin represents a novel biological marker for assessment of the presence as well as the severity of liver cirrhosis. We aimed to measure the level of plasma ghrelin in patients with liver cirrhosis (compensated and decompensated) and to correlate its level with different studied clinical and laboratory parameters. SUBJECTS AND METHODS 40 cirrhotic patients were included in a cross-sectional study and divided equally according to the Child-Pugh classification into Group I: patients with compensated liver cirrhosis (Child A), and Group II: patients with decompensated liver cirrhosis (Child B|C). Also, 20 age and sex matched healthy subjects were included as a control group (Group III). All patients were subjected to: full history taking, full clinical examination, routine biochemical studies together with estimation of plasma ghrelin level, assessment of the severity of liver disease according to Child-Pugh classification, also, abdominal ultrasonography was done. RESULTS Plasma ghrelin level was low among cirrhotic patients (both compensated and decompensated) in comparison to normal control subjects. CONCLUSION Ghrelin can be used as a serum biomarker for detection and assessment of the severity of liver cirrhosis.
Collapse
Affiliation(s)
| | - P.E.S. Salem
- Alexandria University, Faculty of Medicine, Egypt
| | | | | |
Collapse
|
9
|
MK-0677, a Ghrelin Agonist, Alleviates Amyloid Beta-Related Pathology in 5XFAD Mice, an Animal Model of Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19061800. [PMID: 29912176 PMCID: PMC6032329 DOI: 10.3390/ijms19061800] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive deficits, neuroinflammation, and neuronal death. The primary pathogenic cause is believed to be the accumulation of pathogenic amyloid beta (Aβ) assemblies in the brain. Ghrelin, which is a peptide hormone predominantly secreted from the stomach, is an endogenous ligand for the growth hormone secretagogue-receptor type 1a (GHS-R1a). MK-0677 is a ghrelin agonist that potently stimulates the GHS-R1a ghrelin receptor. Interestingly, previous studies have shown that ghrelin improves cognitive impairments and attenuates neuronal death and neuroinflammation in several neurological disorders. However, it is unknown whether MK-0677 can affect Aβ accumulation or Aβ-mediated pathology in the brains of patients with AD. Therefore, we examined the effects of MK-0677 administration on AD-related pathology in 5XFAD mice, an Aβ-overexpressing transgenic mouse model of AD. MK-0677 was intraperitoneally administered to three-month-old 5XFAD mice. To visualize Aβ accumulation, neuroinflammation, and neurodegeneration, thioflavin-S staining and immunostaining with antibodies against Aβ (4G8), ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), neuronal nuclear antigen (NeuN), and synaptophysin were conducted in the neocortex of 5XFAD and wild-type mice, and to evaluate changes of phosphorylated cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB) levels, immunostaining with antibody against pCREB was performed in dentate gyrus of the hippocampus of 5XFAD and wild-type mice. The histological analyses indicated that MK-0677-treated 5XFAD mice showed reduced Aβ deposition, gliosis, and neuronal and synaptic loss in the deep cortical layers, and inhibited the decrement of pCREB levels in dentate gyrus of the hippocampus compared to vehicle-treated 5XFAD mice. Our results showed that activation of the ghrelin receptor with MK-0677 inhibited the Aβ burden, neuroinflammation, and neurodegeneration, which suggested that MK-0677 might have potential as a treatment of the early phase of AD.
Collapse
|
10
|
Alhambra-Expósito MR, Ibáñez-Costa A, Moreno-Moreno P, Rivero-Cortés E, Vázquez-Borrego MC, Blanco-Acevedo C, Toledano-Delgado Á, Lombardo-Galera MS, Vallejo-Casas JA, Gahete MD, Castaño JP, Gálvez MA, Luque RM. Association between radiological parameters and clinical and molecular characteristics in human somatotropinomas. Sci Rep 2018; 8:6173. [PMID: 29670116 PMCID: PMC5906631 DOI: 10.1038/s41598-018-24260-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/09/2018] [Indexed: 02/08/2023] Open
Abstract
Acromegaly is a rare but severe disease, originated in 95% of cases by a growth hormone-secreting adenoma (somatotropinoma) in the pituitary. Magnetic resonance imaging (MRI) is a non-invasive technique used for the diagnosis and prognosis of pituitary tumours. The aim of this study was to determine whether the use of T2-weighted signal intensity at MRI could help to improve the characterisation of somatotropinomas, by analysing its relationship with clinical/molecular features. An observational study was implemented in a cohort of 22 patients (mean age = 42.1 ± 17.2 years; 59% women; 95% size>10 mm). Suprasellar-extended somatotropinomas presented larger diameters vs. non-extended tumours. T2-imaging revealed that 59% of tumours were hyperintense and 41% isointense adenomas, wherein hyperintense were more invasive (according to Knosp-score) than isointense adenomas. A higher proportion of hyperintense somatotropinomas presented extrasellar-growth, suprasellar-growth and invasion of the cavernous sinus compared to isointense adenomas. Interestingly, somatostatin receptor-3 and dopamine receptor-5 (DRD5) expression levels were associated with extrasellar and/or suprasellar extension. Additionally, DRD5 was also higher in hyperintense adenomas and its expression was directly correlated with Knosp-score and with tumour diameter. Hence, T2-weighted MRI on somatotropinomas represents a potential tool to refine their diagnosis and prognosis, and could support the election of preoperative treatment, when required.
Collapse
Affiliation(s)
- María R Alhambra-Expósito
- Maimonides Institute of Biomedical Research of Cordoba, Córdoba, 14004, Spain.,Reina Sofia University Hospital (HURS), Córdoba, 14004, Spain.,Service of Endocrinology and Nutrition, HURS, Córdoba, 14004, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Institute of Biomedical Research of Cordoba, Córdoba, 14004, Spain.,Reina Sofia University Hospital (HURS), Córdoba, 14004, Spain.,Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, 14004, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, 14004, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, 14004, Spain
| | - Paloma Moreno-Moreno
- Maimonides Institute of Biomedical Research of Cordoba, Córdoba, 14004, Spain.,Reina Sofia University Hospital (HURS), Córdoba, 14004, Spain.,Service of Endocrinology and Nutrition, HURS, Córdoba, 14004, Spain
| | - Esther Rivero-Cortés
- Maimonides Institute of Biomedical Research of Cordoba, Córdoba, 14004, Spain.,Reina Sofia University Hospital (HURS), Córdoba, 14004, Spain.,Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, 14004, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, 14004, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, 14004, Spain
| | - Mari C Vázquez-Borrego
- Maimonides Institute of Biomedical Research of Cordoba, Córdoba, 14004, Spain.,Reina Sofia University Hospital (HURS), Córdoba, 14004, Spain.,Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, 14004, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, 14004, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, 14004, Spain
| | - Cristóbal Blanco-Acevedo
- Maimonides Institute of Biomedical Research of Cordoba, Córdoba, 14004, Spain.,Reina Sofia University Hospital (HURS), Córdoba, 14004, Spain.,Service of Neurosurgery, HURS, Córdoba, 14004, Spain
| | - Álvaro Toledano-Delgado
- Maimonides Institute of Biomedical Research of Cordoba, Córdoba, 14004, Spain.,Reina Sofia University Hospital (HURS), Córdoba, 14004, Spain.,Service of Neurosurgery, HURS, Córdoba, 14004, Spain
| | | | | | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba, Córdoba, 14004, Spain.,Reina Sofia University Hospital (HURS), Córdoba, 14004, Spain.,Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, 14004, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, 14004, Spain.,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, 14004, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba, Córdoba, 14004, Spain. .,Reina Sofia University Hospital (HURS), Córdoba, 14004, Spain. .,Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, 14004, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, 14004, Spain. .,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, 14004, Spain.
| | - María A Gálvez
- Maimonides Institute of Biomedical Research of Cordoba, Córdoba, 14004, Spain. .,Reina Sofia University Hospital (HURS), Córdoba, 14004, Spain. .,Service of Endocrinology and Nutrition, HURS, Córdoba, 14004, Spain.
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba, Córdoba, 14004, Spain. .,Reina Sofia University Hospital (HURS), Córdoba, 14004, Spain. .,Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, 14004, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, 14004, Spain. .,Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, 14004, Spain.
| |
Collapse
|
11
|
Ajdžanovic VZ, Trifunovic S, Miljic D, Šošic-Jurjevic B, Filipovic B, Miler M, Ristic N, Manojlovic-Stojanoski M, Miloševic V. Somatopause, weaknesses of the therapeutic approaches and the cautious optimism based on experimental ageing studies with soy isoflavones. EXCLI JOURNAL 2018; 17:279-301. [PMID: 29743865 PMCID: PMC5938552 DOI: 10.17179/excli2017-956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/10/2018] [Indexed: 12/15/2022]
Abstract
The pathological phenomenon of somatopause, noticeable in hypogonadal ageing subjects, is based on the growth hormone (GH) production and secretion decrease along with the fall in GH binding protein and insulin-like growth factor 1 (IGF-1) levels, causing different musculoskeletal, metabolic and mental issues. From the perspective of safety and efficacy, GH treatment is considered to be highly controversial, while some other therapeutic approaches (application of IGF-1, GH secretagogues, gonadal steroids, cholinesterase-inhibitors or various combinations) exhibit more or less pronounced weaknesses in this respect. Soy isoflavones, phytochemicals that have already demonstrated the health benefits in treated elderly, at least experimentally reveal their potential for the somatopausal symptoms remediation. Namely, genistein enhanced GHRH-stimulated cAMP accumulation and GH release in rat anterior pituitary cells; refreshed and stimulated the somatotropic system (hypothalamic nuclei and pituitary GH cells) function in a rat model of the mild andropause, and stimulated the GH output in ovariectomized ewes as well as the amplitude of GH pulses in the rams. Daidzein, on the other hand, increased body mass, trabecular bone mass and decreased bone turnover in the animal model of severe andropause, while both isoflavones demonstrated blood cholesterol-lowering effect in the same model. These data, which necessarily need to be preclinically and clinically filtered, hint some cautious optimism and call for further innovative designing of balanced soy isoflavone-based therapeutics.
Collapse
Affiliation(s)
- Vladimir Z Ajdžanovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Svetlana Trifunovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Dragana Miljic
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branka Šošic-Jurjevic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Branko Filipovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Nataša Ristic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Milica Manojlovic-Stojanoski
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Verica Miloševic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Khatib MN, Shankar AH, Kirubakaran R, Gaidhane A, Gaidhane S, Simkhada P, Quazi Syed Z. Ghrelin for the management of cachexia associated with cancer. Cochrane Database Syst Rev 2018; 2:CD012229. [PMID: 29489032 PMCID: PMC6491219 DOI: 10.1002/14651858.cd012229.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cancer sufferers are amongst the most malnourished of all the patient groups. Studies have shown that ghrelin, a gut hormone can be a potential therapeutic agent for cachexia (wasting syndrome) associated with cancer. A variety of mechanisms of action of ghrelin in people with cancer cachexia have been proposed. However, safety and efficacy of ghrelin for cancer-associated cachexia have not been systematically reviewed. The aim of this review was to assess whether ghrelin is associated with better food intake, body composition and survival than other options for adults with cancer cachexia. OBJECTIVES To assess the efficacy and safety of ghrelin in improving food intake, body composition and survival in people with cachexia associated with cancer. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase without language restrictions up to July 2017. We also searched for ongoing studies in trials registers, performed handsearching, checked bibliographic references of relevant articles and contacted authors and experts in the field to seek potentially relevant research. We applied no restrictions on language, date, or publication status. SELECTION CRITERIA We included randomised controlled (parallel-group or cross-over) trials comparing ghrelin (any formulation or route of administration) with placebo or an active comparator in adults (aged 18 years and over) who met any of the international criteria for cancer cachexia. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for eligibility. Two review authors then extracted data and assessed the risk of bias for individual studies using standard Cochrane methodology. For dichotomous variables, we planned to calculate risk ratio with 95% confidence intervals (CI) and for continuous data, we planned to calculate mean differences (MD) with 95% CI. We assessed the evidence using GRADE and created 'Summary of findings' tables. MAIN RESULTS We screened 926 individual references and identified three studies that satisfied the inclusion criteria. Fifty-nine participants (37 men and 22 women) aged between 54 and 78 years were randomised initially, 47 participants completed the treatment. One study had a parallel design and two had a cross-over design. The studies included people with a variety of cancers and also differed in the dosage, route of administration, frequency and duration of treatment.One trial, which compared ghrelin with placebo, found that ghrelin improved food intake (very low-quality evidence) and had no adverse events (very low-quality evidence). Due to unavailability of data we were unable to report on comparisons for ghrelin versus no treatment or alternative experimental treatment modalities, or ghrelin in combination with other treatments or ghrelin analogues/ghrelin mimetics/ghrelin potentiators. Two studies compared a higher dose of ghrelin with a lower dose of ghrelin, however due to differences in study designs and great diversity in the treatment provided we did not pool the results. In both trials, food intake did not differ between participants on higher-dose and lower-dose ghrelin. None of the included studies assessed data on body weight. One study reported higher adverse events with a higher dose as compared to a lower dose of ghrelin.All studies were at high risk of attrition bias and bias for size of the study. Risk of bias in other domains was unclear or low.We rated the overall quality of the evidence for primary outcomes (food intake, body weight, adverse events) as very low. We downgraded the quality of the evidence due to lack of data, high or unclear risk of bias of the studies and small study size. AUTHORS' CONCLUSIONS There is insufficient evidence to be able to support or refute the use of ghrelin in people with cancer cachexia. Adequately powered randomised controlled trials focusing on evaluation of safety and efficacy of ghrelin in people with cancer cachexia is warranted.
Collapse
Affiliation(s)
- Mahalaqua Nazli Khatib
- Division of Evidence Synthesis; School of Epidemiology and Public Health & Department of Physiology, Datta Meghe Institute of Medical Sciences, Sawangi Meghe, Wardha, Maharashtra, India, 442004
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhu CZ, Liu D, Kang WM, Yu JC, Ma ZQ, Ye X, Li K. Ghrelin and gastrointestinal stromal tumors. World J Gastroenterol 2017; 23:1758-1763. [PMID: 28348480 PMCID: PMC5352915 DOI: 10.3748/wjg.v23.i10.1758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Ghrelin, as a kind of multifunctional protein polypeptide, is mainly produced in the fundus of the stomach and can promote occurrence and development of many tumors, including gastrointestinal tumors, which has been proved by the relevant researches. Most gastrointestinal stromal tumors (GISTs, about 80%), as the most common mesenchymal tumor, also develop in the fundus. Scientific research has confirmed that ghrelin, its receptors and mRNA respectively can be found in GISTs, which demonstrated the existence of a ghrelin autocrine/paracrine loop in GIST tissues. However, no reports to date have specified the mechanism whether ghrelin can promote the occurrence and development of GISTs. Studies of pulmonary artery endothelial cells in a low-oxygen environment and cardiac muscle cells in an ischemic environment have shown that ghrelin can activate the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway. Moreover, some studies of GISTs have confirmed that activation of the PI3K/AKT/mTOR pathway can indeed promote the growth and progression of GISTs. Whether ghrelin is involved in the development or progression of GISTs through certain pathways remains unknown. Can we find a new target for the treatment of GISTs? This review explores and summaries the relationship among ghrelin, the PI3K/AKT/mTOR pathway and the development of GISTs.
Collapse
|
14
|
Au CC, Furness JB, Brown KA. Ghrelin and Breast Cancer: Emerging Roles in Obesity, Estrogen Regulation, and Cancer. Front Oncol 2017; 6:265. [PMID: 28119851 PMCID: PMC5220482 DOI: 10.3389/fonc.2016.00265] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/12/2016] [Indexed: 01/26/2023] Open
Abstract
Local and systemic factors have been shown to drive the growth of breast cancer cells in postmenopausal obese women, who have increased risk of estrogen receptor-positive breast cancer. Estrogens, produced locally in the breast fat by the enzyme aromatase, have an important role in promoting cancer cell proliferation. Ghrelin, a 28-amino acid peptide hormone, may also influence cancer growth. This peptide is produced in the stomach and acts centrally to regulate appetite and growth hormone release. Circulating levels of ghrelin, and its unacylated form, des-acyl ghrelin, are almost always inversely correlated with obesity, and these peptide hormones have recently been shown to inhibit adipose tissue aromatase expression. Ghrelin and des-acyl ghrelin have also been shown to be produced by some tumor cells and influence tumor growth. The ghrelin/des-acyl ghrelin–cancer axis is complex, one reason being that tumor cells have been shown to express splice variants of ghrelin, and ghrelin and des-acyl ghrelin might act at receptors other than the cognate ghrelin receptor, growth hormone secretagogue receptor 1a, in tumors. Effects of ghrelin and des-acyl ghrelin on energy homeostasis may also affect tumor development and growth. This review will summarize our current understanding of the role of ghrelin and des-acyl ghrelin in hormone-dependent cancers, breast cancer in particular.
Collapse
Affiliation(s)
- CheukMan Cherie Au
- Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne and Florey Institute of Neuroscience and Mental Health , Parkville, VIC , Australia
| | - Kristy A Brown
- Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
15
|
Murphy CF, le Roux CW. The Neurobiological Impact of Ghrelin Suppression after Oesophagectomy. Int J Mol Sci 2016; 18:ijms18010035. [PMID: 28035969 PMCID: PMC5297670 DOI: 10.3390/ijms18010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022] Open
Abstract
Ghrelin, discovered in 1999, is a 28-amino-acid hormone, best recognized as a stimulator of growth hormone secretion, but with pleiotropic functions in the area of energy homeostasis, such as appetite stimulation and energy expenditure regulation. As the intrinsic ligand of the growth hormone secretagogue receptor (GHS-R), ghrelin appears to have a broad array of effects, but its primary role is still an area of debate. Produced mainly from oxyntic glands in the stomach, but with a multitude of extra-metabolic roles, ghrelin is implicated in complex neurobiological processes. Comprehensive studies within the areas of obesity and metabolic surgery have clarified the mechanism of these operations. As a stimulator of growth hormone (GH), and an apparent inducer of positive energy balance, other areas of interest include its impact on carcinogenesis and tumour proliferation and its role in the cancer cachexia syndrome. This has led several authors to study the hormone in the cancer setting. Ghrelin levels are acutely reduced following an oesophagectomy, a primary treatment modality for oesophageal cancer. We sought to investigate the nature of this postoperative ghrelin suppression, and its neurobiological implications.
Collapse
Affiliation(s)
- Conor F Murphy
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin 4, Ireland.
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin 4, Ireland.
- Gastrosurgical Laboratory, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
16
|
Ghrelin and Neurodegenerative Disorders-a Review. Mol Neurobiol 2016; 54:1144-1155. [PMID: 26809582 DOI: 10.1007/s12035-016-9729-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor 1a (GHS-R1a), is a gut-derived, orexigenic peptide hormone that primarily regulates growth hormone secretion, food intake, and energy homeostasis. With the wide expression of GHS-R1a in extra-hypothalamic regions, the physiological role of ghrelin is more extensive than solely its involvement in metabolic function. Ghrelin has been shown to be involved in numerous higher brain functions, such as memory, reward, mood, and sleep. Some of these functions are disrupted in neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). This link between ghrelin and these neurodegenerative diseases is supported by numerous studies. This review aims to provide a comprehensive overview of the most recent evidence of the novel neuromodulatory role of ghrelin in PD, AD, and HD. Moreover, the changes in circulating and/or central ghrelin levels that are associated with disease progression are also postulated to be a biomarker for clinical diagnosis and therapy.
Collapse
|
17
|
Luque RM, Sampedro-Nuñez M, Gahete MD, Ramos-Levi A, Ibáñez-Costa A, Rivero-Cortés E, Serrano-Somavilla A, Adrados M, Culler MD, Castaño JP, Marazuela M. In1-ghrelin, a splice variant of ghrelin gene, is associated with the evolution and aggressiveness of human neuroendocrine tumors: Evidence from clinical, cellular and molecular parameters. Oncotarget 2015; 6:19619-33. [PMID: 26124083 PMCID: PMC4637309 DOI: 10.18632/oncotarget.4316] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/06/2015] [Indexed: 01/27/2023] Open
Abstract
Ghrelin system comprises a complex family of peptides, receptors (GHSRs), and modifying enzymes [e.g. ghrelin-O-acyl-transferase (GOAT)] that control multiple pathophysiological processes. Aberrant alternative splicing is an emerging cancer hallmark that generates altered proteins with tumorigenic capacity. Indeed, In1-ghrelin and truncated-GHSR1b splicing variants can promote development/progression of certain endocrine-related cancers. Here, we determined the expression levels of key ghrelin system components in neuroendocrine tumor (NETs) and explored their potential functional role. Twenty-six patients with NETs were prospectively/retrospectively studied [72 samples from primary and metastatic tissues (30 normal/42 tumors)] and clinical data were obtained. The role of In1-ghrelin in aggressiveness was studied in vitro using NET cell lines (BON-1/QGP-1). In1-ghrelin, GOAT and GHSR1a/1b expression levels were elevated in tumoral compared to normal/adjacent tissues. Moreover, In1-ghrelin, GOAT, and GHSR1b expression levels were positively correlated within tumoral, but not within normal/adjacent samples, and were higher in patients with progressive vs. with stable/cured disease. Finally, In1-ghrelin increased aggressiveness (e.g. proliferation/migration) of NET cells. Altogether, our data strongly suggests a potential implication of ghrelin system in the pathogenesis and/or clinical outcome of NETs, and warrant further studies on their possible value for the future development of molecular biomarkers with diagnostic/prognostic/therapeutic value.
Collapse
Affiliation(s)
- Raul M Luque
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomèdica de Córdoba (IMIBIC), Campus de Excelencia Internacional Agroalimentario (ceiA3), CIBER Fisiopatología de la Obesidad y Nutricón (CIBERObn), Córdoba, España
| | - Miguel Sampedro-Nuñez
- Servicio de Endocrinología y Nutrición, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa, Madrid, España
| | - Manuel D Gahete
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomèdica de Córdoba (IMIBIC), Campus de Excelencia Internacional Agroalimentario (ceiA3), CIBER Fisiopatología de la Obesidad y Nutricón (CIBERObn), Córdoba, España
| | - Ana Ramos-Levi
- Servicio de Endocrinología y Nutrición, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa, Madrid, España
| | - Alejandro Ibáñez-Costa
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomèdica de Córdoba (IMIBIC), Campus de Excelencia Internacional Agroalimentario (ceiA3), CIBER Fisiopatología de la Obesidad y Nutricón (CIBERObn), Córdoba, España
| | - Esther Rivero-Cortés
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomèdica de Córdoba (IMIBIC), Campus de Excelencia Internacional Agroalimentario (ceiA3), CIBER Fisiopatología de la Obesidad y Nutricón (CIBERObn), Córdoba, España
| | - Ana Serrano-Somavilla
- Servicio de Endocrinología y Nutrición, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa, Madrid, España
| | - Magdalena Adrados
- Servicio de Patología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa, Madrid, España
| | | | - Justo P Castaño
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomèdica de Córdoba (IMIBIC), Campus de Excelencia Internacional Agroalimentario (ceiA3), CIBER Fisiopatología de la Obesidad y Nutricón (CIBERObn), Córdoba, España
| | - Mónica Marazuela
- Servicio de Endocrinología y Nutrición, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa, Madrid, España
| |
Collapse
|
18
|
Hatef A, Yufa R, Unniappan S. Ghrelin O-Acyl Transferase in Zebrafish Is an Evolutionarily Conserved Peptide Upregulated During Calorie Restriction. Zebrafish 2015; 12:327-38. [PMID: 26226634 DOI: 10.1089/zeb.2014.1062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ghrelin is a multifunctional orexigenic hormone with a unique acyl modification enabled by ghrelin O-acyl transferase (GOAT). Ghrelin is well-characterized in nonmammals, and GOAT sequences of several fishes are available in the GenBank. However, endogenous GOAT in non-mammals remains poorly understood. In this research, GOAT sequence comparison, tissue-specific GOAT expression, and its regulation by nutrient status and exogenous ghrelin were studied. It was found that the bioactive core of zebrafish GOAT amino acid sequence share high identity with that of mammals. GOAT mRNA was most abundant in the gut. GOAT-like immunoreactivity (i.r.) was found colocalized with ghrelin in the gastric mucosa. Food deprivation increased, and feeding decreased GOAT and preproghrelin mRNA expression in the brain and gut. GOAT and ghrelin peptides in the gut and brain showed corresponding decrease in food-deprived state. Intraperitoneal injection of acylated fish ghrelin caused a significant decrease in GOAT mRNA expression, suggesting a feedback mechanism regulating its abundance. Together, these results provide the first in-depth characterization of GOAT in a non-mammal. Our results demonstrate that endogenous GOAT expression is responsive to metabolic status and availability of acylated ghrelin, providing further evidences for GOAT in the regulation of feeding in teleosts.
Collapse
Affiliation(s)
- Azadeh Hatef
- 1 Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan, Canada
| | - Roman Yufa
- 2 Department of Biology, York University , Toronto, Ontario, Canada
| | - Suraj Unniappan
- 1 Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan, Canada
| |
Collapse
|
19
|
Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, Batterham RL, Benoit SC, Bowers CY, Broglio F, Casanueva FF, D'Alessio D, Depoortere I, Geliebter A, Ghigo E, Cole PA, Cowley M, Cummings DE, Dagher A, Diano S, Dickson SL, Diéguez C, Granata R, Grill HJ, Grove K, Habegger KM, Heppner K, Heiman ML, Holsen L, Holst B, Inui A, Jansson JO, Kirchner H, Korbonits M, Laferrère B, LeRoux CW, Lopez M, Morin S, Nakazato M, Nass R, Perez-Tilve D, Pfluger PT, Schwartz TW, Seeley RJ, Sleeman M, Sun Y, Sussel L, Tong J, Thorner MO, van der Lely AJ, van der Ploeg LHT, Zigman JM, Kojima M, Kangawa K, Smith RG, Horvath T, Tschöp MH. Ghrelin. Mol Metab 2015; 4:437-60. [PMID: 26042199 PMCID: PMC4443295 DOI: 10.1016/j.molmet.2015.03.005] [Citation(s) in RCA: 772] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism. SCOPE OF REVIEW In this review, we discuss the diverse biological functions of ghrelin, the regulation of its secretion, and address questions that still remain 15 years after its discovery. MAJOR CONCLUSIONS In recent years, ghrelin has been found to have a plethora of central and peripheral actions in distinct areas including learning and memory, gut motility and gastric acid secretion, sleep/wake rhythm, reward seeking behavior, taste sensation and glucose metabolism.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - R Nogueiras
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, University of Santiago de Compostela (CIMUS)-Instituto de Investigación Sanitaria (IDIS)-CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - M L Andermann
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Z B Andrews
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - S D Anker
- Applied Cachexia Research, Department of Cardiology, Charité Universitätsmedizin Berlin, Germany
| | - J Argente
- Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain ; Department of Pediatrics, Universidad Autónoma de Madrid and CIBER Fisiopatología de la obesidad y nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - R L Batterham
- Centre for Obesity Research, University College London, London, United Kingdom
| | - S C Benoit
- Metabolic Disease Institute, Division of Endocrinology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - C Y Bowers
- Tulane University Health Sciences Center, Endocrinology and Metabolism Section, Peptide Research Section, New Orleans, LA, USA
| | - F Broglio
- Division of Endocrinology, Diabetes and Metabolism, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - F F Casanueva
- Department of Medicine, Santiago de Compostela University, Complejo Hospitalario Universitario de Santiago (CHUS), CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - D D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - I Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - A Geliebter
- New York Obesity Nutrition Research Center, Department of Medicine, St Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E Ghigo
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P A Cole
- Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria, Australia
| | - M Cowley
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia ; Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria, Australia
| | - D E Cummings
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - A Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - S Diano
- Dept of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - S L Dickson
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - C Diéguez
- Department of Physiology, School of Medicine, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Spain
| | - R Granata
- Division of Endocrinology, Diabetes and Metabolism, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - H J Grill
- Department of Psychology, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - K Grove
- Department of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - K M Habegger
- Comprehensive Diabetes Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - K Heppner
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - M L Heiman
- NuMe Health, 1441 Canal Street, New Orleans, LA 70112, USA
| | - L Holsen
- Departments of Psychiatry and Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - B Holst
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | - A Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - J O Jansson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - H Kirchner
- Medizinische Klinik I, Universitätsklinikum Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - M Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| | - B Laferrère
- New York Obesity Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - C W LeRoux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Ireland
| | - M Lopez
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, University of Santiago de Compostela (CIMUS)-Instituto de Investigación Sanitaria (IDIS)-CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - S Morin
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - M Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - R Nass
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - D Perez-Tilve
- Department of Internal Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - P T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - T W Schwartz
- Department of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - M Sleeman
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Y Sun
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - L Sussel
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - J Tong
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - M O Thorner
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - A J van der Lely
- Department of Medicine, Erasmus University MC, Rotterdam, The Netherlands
| | | | - J M Zigman
- Departments of Internal Medicine and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Kojima
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
| | - K Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - R G Smith
- The Scripps Research Institute, Florida Department of Metabolism & Aging, Jupiter, FL, USA
| | - T Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany ; Division of Metabolic Diseases, Department of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
20
|
Wang J, Guo S, Han L, Fang M, Wang L, Bartsch JW, Li J. Correlation of ghrelin and growth hormone secretagogue receptor expression with clinical features in human pituitary adenomas. Exp Ther Med 2015; 9:1909-1914. [PMID: 26136913 DOI: 10.3892/etm.2015.2341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/03/2015] [Indexed: 12/12/2022] Open
Abstract
Ghrelin, as a brain-gut peptide, has growth hormone (GH)-releasing and appetite-inducing activities and a widespread tissue distribution. Furthermore, ghrelin is an endogenous ligand of the GH secretagogue receptor (GHSR), and both ghrelin and GHSR are expressed in the pituitary; however, the data regarding the expression of ghrelin and GHSR in pituitary adenomas are divergent and conflicting. In the present study, therefore, the expression of ghrelin and GHSR was examined in the full spectrum of human pituitary adenoma subtypes (n=34) and in normal pituitary tissue (n=3). The mRNA and protein expression levels were quantified using a competitive reverse transcription-polymerase chain reaction and western blotting and the correlation of the results with the clinical parameters was assessed. mRNA and protein expression of ghrelin and GHSR was detected in all samples with the highest mean level in GH adenomas, a moderate level in clinically non-functioning adenomas and the lowest level in adrenocorticotropin adenomas. A significant correlation between the ghrelin and GHSR mRNA expression levels was observed in the GH adenomas (n=12) (r=0.8435, P=0.0006). The ghrelin mRNA expression level in the GH adenomas correlated positively with the basic serum GH level (n=12) (r=0.6488, P=0.0225). Furthermore, the mean level of ghrelin mRNA expression was significantly higher in invasive adenomas than in noninvasive adenomas (P<0.01). Collectively, the results of the study provided evidence that ghrelin and GHSR are expressed in the various subtypes of pituitary adenoma, with specific overexpression in GH adenomas. The study suggests that the binding of ghrelin to GHSR promotes the secretion of GH and plays an important role in the development of GH adenomas via autocrine and/or paracrine effects.
Collapse
Affiliation(s)
- Junwen Wang
- Department of Neurosurgery, Wuhan Central Hospital, Wuhan, Hubei 430014, P.R. China
| | - Songbo Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College Affiliated to Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Lin Han
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College Affiliated to Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Mingbo Fang
- Department of Neurosurgery, Wuhan Central Hospital, Wuhan, Hubei 430014, P.R. China
| | - Lei Wang
- Department of Neurosurgery, Wuhan Central Hospital, Wuhan, Hubei 430014, P.R. China
| | - Jörg W Bartsch
- Department of Neurosurgery, Marburg University, D-35033 Marburg, Germany
| | - Jun Li
- Department of Neurosurgery, Wuhan Central Hospital, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
21
|
Ibáñez-Costa A, Gahete MD, Rivero-Cortés E, Rincón-Fernández D, Nelson R, Beltrán M, de la Riva A, Japón MA, Venegas-Moreno E, Gálvez MÁ, García-Arnés JA, Soto-Moreno A, Morgan J, Tsomaia N, Culler MD, Dieguez C, Castaño JP, Luque RM. In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features. Sci Rep 2015; 5:8714. [PMID: 25737012 PMCID: PMC4649711 DOI: 10.1038/srep08714] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/02/2015] [Indexed: 01/26/2023] Open
Abstract
Pituitary adenomas comprise a heterogeneous subset of pathologies causing serious comorbidities, which would benefit from identification of novel, common molecular/cellular biomarkers and therapeutic targets. The ghrelin system has been linked to development of certain endocrine-related cancers. Systematic analysis of the presence and functional implications of some components of the ghrelin system, including native ghrelin, receptors and the recently discovered splicing variant In1-ghrelin, in human normal pituitaries (n = 11) and pituitary adenomas (n = 169) revealed that expression pattern of ghrelin system suffers a clear alteration in pituitary adenomasas comparedwith normal pituitary, where In1-ghrelin is markedly overexpressed. Interestingly, in cultured pituitary adenoma cells In1-ghrelin treatment (acylated peptides at 100 nM; 24–72 h) increased GH and ACTH secretion, Ca2+ and ERK1/2 signaling and cell viability, whereas In1-ghrelin silencing (using a specific siRNA; 100 nM) reduced cell viability. These results indicate that an alteration of the ghrelin system, specially its In1-ghrelin variant, could contribute to pathogenesis of different pituitary adenomas types, and suggest that this variant and its related ghrelin system could provide new tools to identify novel, more general diagnostic, prognostic and potential therapeutic targets in pituitary tumors.
Collapse
Affiliation(s)
- Alejandro Ibáñez-Costa
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia; CIBER Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014 Córdoba, Spain
| | - Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia; CIBER Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014 Córdoba, Spain
| | - Esther Rivero-Cortés
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia; CIBER Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014 Córdoba, Spain
| | - David Rincón-Fernández
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia; CIBER Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014 Córdoba, Spain
| | | | - Manuel Beltrán
- Department of Pathology, Puerta del Mar University Hospital, Cádiz
| | - Andrés de la Riva
- Service of Neurosurgery, Hospital Universitario Reina Sofia, 14004 Córdoba, Spain
| | - Miguel A Japón
- Department of Pathology, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Eva Venegas-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), 41013 Seville, Spain
| | - Ma Ángeles Gálvez
- Service of Endocrinology and Nutrition, Hospital Universitario Reina Sofia, and Instituto Maimónides de Investigación Biomédica de Córdoba, 14004 Córdoba, Spain
| | - Juan A García-Arnés
- Department of Endocrinology and Nutrition, Carlos Haya Hospital, 29010 Málaga, Spain
| | - Alfonso Soto-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), 41013 Seville, Spain
| | | | - Natia Tsomaia
- IPSEN Bioscience, Cambridge, 02142 Massachusetts, USA
| | | | - Carlos Dieguez
- Department of Physiology, University of Santiago de Compostela, and CIBER Fisiopatología de la Obesidad y Nutrición, 15782 Santiago de Compostela, Spain
| | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia; CIBER Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014 Córdoba, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia; CIBER Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014 Córdoba, Spain
| |
Collapse
|
22
|
Panagopoulos VN, Ralevski E. The role of ghrelin in addiction: a review. Psychopharmacology (Berl) 2014; 231:2725-40. [PMID: 24947976 DOI: 10.1007/s00213-014-3640-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/19/2014] [Indexed: 12/24/2022]
Abstract
RATIONALE Ghrelin is a fast-acting hormone that is produced primarily by the stomach and by the brain although in smaller quantities. The regulation and the secretion of ghrelin are complex and not limited to aspects of feeding. Ghrelin exerts powerful effects on multiple processes, and it has been demonstrated that it mediates the rewarding properties of food as well as of drugs of abuse. OBJECTIVES The purpose of this review is to summarize the findings of preclinical and clinical studies related to ghrelin's possible role in addiction for each specific class of substances. Questions related to ghrelin's involvement in addiction are highlighted. Recurrent methodological issues that render the interpretation of the findings challenging are discussed. Also, the potential of targeting ghrelin as a pharmacologic treatment strategy for addiction is explored. RESULTS Ghrelin signaling is implicated in the mediation of behavioral and biochemical effects of drugs of abuse that are cardinal for the development of addiction, especially for alcohol, nicotine, and stimulants. The available literature implicating ghrelin in opioid or cannabis use disorders is currently limited and inconclusive. CONCLUSIONS There is intriguing, although not always consistent, evidence for the involvement of ghrelin signaling in aspects of addiction, especially in the cases of alcohol, nicotine, and stimulants. Further research, particularly in humans, is recommended to replicate and expand on the findings of the current literature. Improved and novel methodologies that take into account the volatile and complex nature of ghrelin are required to clarify the inconsistencies of the findings.
Collapse
Affiliation(s)
- Vassilis N Panagopoulos
- Department of Psychiatry, VA St. Louis Health Care System, 915 North Grand Blvd, St. Louis, MO, 63106, USA
| | | |
Collapse
|
23
|
Expression stability of reference genes for quantitative RT-PCR of healthy and diseased pituitary tissue samples varies between humans, mice, and dogs. Mol Neurobiol 2013; 49:893-9. [PMID: 24135907 DOI: 10.1007/s12035-013-8567-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
Pituitary surgery generates pituitary tissue for histology, immunohistochemistry, and molecular biological research. In the last decade, the pathogenesis of pituitary adenomas has been extensively studied in humans, and to a lesser degree in dogs, and tumor oncogenesis has been studied in knock-out mice, often by means of quantitative reversed-transcriptase PCR (RT-qPCR). A precondition of such analyses is that so-called reference genes are stably expressed regardless of changes in disease status or treatment. In this study, the expression of six frequently used reference genes, namely, tata box binding protein (tbp), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (ywhaz), hydroxymethylbilane synthase (hmbs), beta-2-microglobulin (b2m), succinate dehydrogenase complex subunit A (sdha), and glyceraldehyde 3 phosphate dehydrogenase 1 (gapdh), was studied in pituitary tissue (normal and adenoma) from three species (humans, mice, and dogs). The stability of expression of these reference genes differed between species and between healthy and diseased tissue within one species. Quantitative analysis based on a single reference gene that is assumed to be stably expressed might lead to wrong conclusions. This cross-species analysis clearly emphasizes the need to evaluate the expression stability of reference genes as a standard and integral aspect of study design and data analysis, in order to improve the validity of the conclusions drawn on the basis of quantitative molecular analyses.
Collapse
|
24
|
Potassium Current Is Not Affected by Long-Term Exposure to Ghrelin or GHRP-6 in Somatotropes GC Cells. JOURNAL OF BIOPHYSICS 2013; 2013:913792. [PMID: 23533398 PMCID: PMC3600309 DOI: 10.1155/2013/913792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 12/17/2012] [Indexed: 11/17/2022]
Abstract
Ghrelin is a growth hormone (GH) secretagogue (GHS) and GHRP-6 is a synthetic peptide analogue; both act through the GHS receptor. GH secretion depends directly on the intracellular concentration of Ca(2+); this is determined from the intracellular reserves and by the entrance of Ca(2+) through the voltage-dependent calcium channels, which are activated by the membrane depolarization. Membrane potential is mainly determined by K(+) channels. In the present work, we investigated the effect of ghrelin (10 nM) or GHRP-6 (100 nM) for 96 h on functional expression of voltage-dependent K(+) channels in rat somatotropes: GC cell line. Physiological patch-clamp whole-cell recording was used to register the K(+) currents. With Cd(2+) (1 mM) and tetrodotoxin (1 μ m) in the bath solution recording, three types of currents were characterized on the basis of their biophysical and pharmacological properties. GC cells showed a K(+) current with a transitory component (I A) sensitive to 4-aminopyridine, which represents ~40% of the total outgoing current; a sustained component named delayed rectifier (I K), sensitive to tetraethylammonium; and a third type of K(+) current was recorded at potentials more negative than -80 mV, permitting the entrance of K(+) named inward rectifier (KIR). Chronic treatment with ghrelin or GHRP-6 did not modify the functional expression of K(+) channels, without significant changes (P < 0.05) in the amplitudes of the three currents observed; in addition, there were no modifications in their biophysical properties and kinetic activation or inactivation.
Collapse
|
25
|
Wise H. The roles played by highly truncated splice variants of G protein-coupled receptors. J Mol Signal 2012; 7:13. [PMID: 22938630 PMCID: PMC3477067 DOI: 10.1186/1750-2187-7-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/29/2012] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing of G protein-coupled receptor (GPCR) genes greatly increases the total number of receptor isoforms which may be expressed in a cell-dependent and time-dependent manner. This increased diversity of cell signaling options caused by the generation of splice variants is further enhanced by receptor dimerization. When alternative splicing generates highly truncated GPCRs with less than seven transmembrane (TM) domains, the predominant effect in vitro is that of a dominant-negative mutation associated with the retention of the wild-type receptor in the endoplasmic reticulum (ER). For constitutively active (agonist-independent) GPCRs, their attenuated expression on the cell surface, and consequent decreased basal activity due to the dominant-negative effect of truncated splice variants, has pathological consequences. Truncated splice variants may conversely offer protection from disease when expression of co-receptors for binding of infectious agents to cells is attenuated due to ER retention of the wild-type co-receptor. In this review, we will see that GPCRs retained in the ER can still be functionally active but also that highly truncated GPCRs may also be functionally active. Although rare, some truncated splice variants still bind ligand and activate cell signaling responses. More importantly, by forming heterodimers with full-length GPCRs, some truncated splice variants also provide opportunities to generate receptor complexes with unique pharmacological properties. So, instead of assuming that highly truncated GPCRs are associated with faulty transcription processes, it is time to reassess their potential benefit to the host organism.
Collapse
Affiliation(s)
- Helen Wise
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China.
| |
Collapse
|
26
|
Molica P, Nascif SO, Correa-Silva SR, de Sá LBPC, Vieira JGH, Lengyel AMJ. Effects of ghrelin, GH-releasing peptide-6 (GHRP-6) and GHRH on GH, ACTH and cortisol release in hyperthyroidism before and after treatment. Pituitary 2010; 13:315-23. [PMID: 20602173 DOI: 10.1007/s11102-010-0238-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In thyrotoxicosis GH responses to stimuli are diminished and the hypothalamic-pituitary-adrenal axis is hyperactive. There are no data on ghrelin or GHRP-6-induced GH, ACTH and cortisol release in treated hyperthyroidism. We, therefore, evaluated these responses in 10 thyrotoxic patients before treatment and in 7 of them after treatment. GHRH-induced GH release was also studied. Peak GH (μg/L; mean ± SE) values after ghrelin (22.6 ± 3.9), GHRP-6 (13.8 ± 2.3) and GHRH (4.9 ± 0.9) were lower in hyperthyroidism before treatment compared to controls (ghrelin: 67.6 ± 19.3; GHRP-6: 25.4 ± 2.7; GHRH: 12.2 ± 2.8) and did not change after 6 months of euthyroidism (ghrelin: 32.7 ± 4.7; GHRP-6: 15.6 ± 3.6; GHRH: 7.4 ± 2.3), although GH responses to all peptides increased in ~50% of the patients. In thyrotoxicosis before treatment ACTH response to ghrelin was two fold higher (107.4 ± 26.3) than those of controls (54.9 ± 10.3), although not significantly. ACTH response to GHRP-6 was similar in both groups (hyperthyroid: 44.7 ± 9.0; controls: 31.3 ± 7.9). There was a trend to a decreased ACTH response to ghrelin after 3 months of euthyroidism (35.6 ± 5.3; P = 0.052), but after 6 months this decrease was non-significant (50.7 ± 14.0). After 3 months ACTH response to GHRP-6 decreased significantly (20.4 ± 4.2), with no further changes. In hyperthyroidism before treatment, peak cortisol (μg/dL) responses to ghrelin (18.2 ± 1.2) and GHRP-6 (15.9 ± 1.4) were comparable to controls (ghrelin: 16.4 ± 1.6; GHRP-6: 13.5 ± 0.9) and no changes were seen after treatment. Our results suggest that the pathways of GH release after ghrelin/GHRP-6 and GHRH are similarly affected by thyroid hormone excess and hypothalamic mechanisms of ACTH release modulated by ghrelin/GHSs may be activated in this situation.
Collapse
Affiliation(s)
- Patricia Molica
- Division of Endocrinology, Universidade Federal de São Paulo, UNIFESP-EPM, Rua Pedro de Toledo 910, 04039-002, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
27
|
Müller TD, Perez-Tilve D, Tong J, Pfluger PT, Tschöp MH. Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia. J Cachexia Sarcopenia Muscle 2010; 1:159-167. [PMID: 21475701 PMCID: PMC3060653 DOI: 10.1007/s13539-010-0012-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/02/2010] [Indexed: 01/30/2023] Open
Abstract
The gastrointestinal "hunger" hormone ghrelin is the only known circulating peripheral molecule with the ability to decrease body fat utilization and to increase body weight gain. Accordingly, due to ghrelin's effects to promote food intake while decreasing energy expenditure ghrelin may offer potential as a drug for treatment of eating/wasting disorders and cachexia. Therapeutic potential of ghrelin and ghrelin analogues to promote food intake and body weight gain was recently indicated in several clinical studies. The recent discovery of the ghrelin O-acyltransferase as the key enzyme responsible for ghrelin acylation has further deepened our understanding of ghrelin activation, thereby paving the way for more efficient targeting of the ghrelin pathway. Here, we summarize the current knowledge pertaining to the potential of the endogenous ghrelin system as a drug target for the treatment of eating/wasting disorders and cachexia.
Collapse
Affiliation(s)
- Timo D. Müller
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| | - Diego Perez-Tilve
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| | - Jenny Tong
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| | - Paul T. Pfluger
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| | - Matthias H. Tschöp
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| |
Collapse
|
28
|
Cong WN, Golden E, Pantaleo N, White CM, Maudsley S, Martin B. Ghrelin receptor signaling: a promising therapeutic target for metabolic syndrome and cognitive dysfunction. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2010; 9:557-63. [PMID: 20632971 PMCID: PMC2967656 DOI: 10.2174/187152710793361513] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/25/2010] [Indexed: 02/05/2023]
Abstract
The neuroendocrine hormone ghrelin is an octanoylated 28-residue peptide that exerts numerous physiological functions. Ghrelin exerts its effects on the body mainly through a highly conserved G protein-coupled receptor known as the growth hormone secretagagogue receptor subtype 1a (GHS-R1a). Ghrelin and GSH-R1a are widely expressed in both peripheral and central tissues/organs, and ghrelin signaling plays a critical role in maintaining energy balance and neuronal health. The multiple orexigenic effects of ghrelin and its receptor have been studied in great detail, and GHS-R1a-mediated ghrelin signaling has long been a promising target for the treatment of metabolic disorders, such as obesity. In addition to its well-characterized metabolic effects, there is also mounting evidence that ghrelin-mediated GHS-R1a signaling exerts neuroprotective effects on the brain. In this review, we will summarize some of the effects of ghrelin-mediated GSH-R1a signaling on peripheral energy balance and cognitive function. We will also discuss the potential pharmacotherapeutic role of GSH-R1a-mediated ghrelin signaling for the treatment of complex neuroendocrine disorders.
Collapse
Affiliation(s)
- Wei-na Cong
- Metabolism Unit, Laboratory of Clinical Investigation, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224
| | - Erin Golden
- Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287
| | - Nick Pantaleo
- Receptor Pharmacology Unit, Laboratory of Neurosciences, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224
| | - Caitlin M. White
- Metabolism Unit, Laboratory of Clinical Investigation, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224
| | - Stuart Maudsley
- Receptor Pharmacology Unit, Laboratory of Neurosciences, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224
| | - Bronwen Martin
- Metabolism Unit, Laboratory of Clinical Investigation, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224
| |
Collapse
|
29
|
Figlewicz DP, Sipols AJ. Energy regulatory signals and food reward. Pharmacol Biochem Behav 2010; 97:15-24. [PMID: 20230849 PMCID: PMC2897918 DOI: 10.1016/j.pbb.2010.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/26/2010] [Accepted: 03/09/2010] [Indexed: 12/23/2022]
Abstract
The hormones insulin, leptin, and ghrelin have been demonstrated to act in the central nervous system (CNS) as regulators of energy homeostasis, acting at medial hypothalamic sites. Here, we summarize research demonstrating that, in addition to direct homeostatic actions at the hypothalamus, CNS circuitry that subserves reward and is also a direct and indirect target for the action of these endocrine regulators of energy homeostasis. Specifically, insulin and leptin can decrease food reward behaviors and modulate the function of neurotransmitter systems and neural circuitry that mediate food reward, the midbrain dopamine (DA) and opioidergic pathways. Ghrelin can increase food reward behaviors, and support midbrain DA neuronal function. We summarize discussion of behavioral, systems, and cellular evidence in support of the contributions of reward circuitry to the homeostatic roles of these hormones in the CNS. The understanding of neuroendocrine modulation of food reward, as well as food reward modulation by diet and obesity, may point to new directions for therapeutic approaches to overeating or eating disorders.
Collapse
Affiliation(s)
- Dianne P Figlewicz
- Metabolism/Endocrinology, VA Puget Sound Health Care System, Seattle Division, Seattle, WA 98108, USA.
| | | |
Collapse
|
30
|
Miljic D, Joksimovic M, Doknic M, Ivovic M, Djurovic M, Pekic S, Tancic M, Soldatovic I, Stojanovic M, Nale D, Macut D, Damjanovic S, Popovic V. ACTH and cortisol responses to ghrelin and desmopressin in patients with Cushing's disease and adrenal enlargement. J Endocrinol Invest 2010; 33:526-9. [PMID: 20142632 DOI: 10.1007/bf03346641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Overexpression of ghrelin and vasopressin (V3) receptors demonstrated on corticotrophe adenomas accounts for exaggerated ACTH and cortisol responses to ghrelin and desmopressin (DDAVP) in patients with Cushing's disease (CD). AIM In this study we have compared ACTH and cortisol responsiveness to DDAVP and ghrelin in CD patients with and without adrenal enlargement. SUBJECTS AND METHODS Ghrelin and DDAVP tests were performed in 15 patients with CD (7 with and 8 without signs of adrenal enlargement) with CRH test in 8 patients. In 7 age and sex-matched healthy subjects, ghrelin test was performed. Plasma ACTH and serum cortisol concentrations were measured after ghrelin, DDAVP and CRH. Growth hormone was measured after stimulation with ghrelin. RESULTS Significantly higher baseline and peak ACTH and cortisol concentrations after ghrelin were observed in all patients with CD compared to healthy control subjects. Patients with CD and adrenal enlargement had significantly lower baseline and peak ACTH concentrations after stimulation with ghrelin compared to CD patients without adrenal enlargement, while cortisol levels at baseline and after ghrelin administration were similar. Three out of seven patients with CD and adrenal enlargement did not respond to DDAVP while they responded well to CRH and ghrelin. CONCLUSION Patients with CD and adrenal enlargement pose special diagnostic problems. They may have lower baseline ACTH levels and may not respond to DDAVP while they respond to ghrelin and CRH. Despite increased endogenous cortisol levels in CD, cortisol responses to ghrelin and CRH are preserved in patients with CD and adrenal enlargement.
Collapse
Affiliation(s)
- D Miljic
- Institute of Endocrinology, University Clinical Center of Serbia, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ferrini F, Salio C, Lossi L, Merighi A. Ghrelin in central neurons. Curr Neuropharmacol 2010; 7:37-49. [PMID: 19721816 PMCID: PMC2724662 DOI: 10.2174/157015909787602779] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/15/2008] [Accepted: 09/01/2008] [Indexed: 12/20/2022] Open
Abstract
Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, is released in the bloodstream in response to a negative energetic status. Since discovery, the hypothalamus was identified as the main source of ghrelin in the CNS, and effects of the peptide have been mainly observed in this area of the brain. In recent years, an increasing number of studies have reported ghrelin synthesis and effects in specific populations of neurons also outside the hypothalamus. Thus, ghrelin activity has been described in midbrain, hindbrain, hippocampus, and spinal cord. The spectrum of functions and biological effects produced by the peptide on central neurons is remarkably wide and complex. It ranges from modulation of membrane excitability, to control of neurotransmitter release, neuronal gene expression, and neuronal survival and proliferation. There is not at present a general consensus concerning the source of ghrelin acting on central neurons. Whereas it is widely accepted that the hypothalamus represents the most important endogenous source of the hormone in CNS, the existence of extra-hypothalamic ghrelin-synthesizing neurons is still controversial. In addition, circulating ghrelin can theoretically be another natural ligand for central ghrelin receptors. This paper gives an overview on the distribution of ghrelin and its receptor across the CNS and critically analyses the data available so far as regarding the effects of ghrelin on central neurotransmission.
Collapse
Affiliation(s)
- F Ferrini
- Dipartimento di Morfofisiologia Veterinaria, Università di Torino, Via Leonardo da Vinci 44, 10095, Grugliasco, Italy
| | | | | | | |
Collapse
|
32
|
O'Brien M, Earley P, Morrison JJ, Smith TJ. Ghrelin in the human myometrium. Reprod Biol Endocrinol 2010; 8:55. [PMID: 20509935 PMCID: PMC2887880 DOI: 10.1186/1477-7827-8-55] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/28/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ghrelin is a 28-amino acid octanolyated peptide, synthesised primarily in the stomach. It stimulates growth hormone release, food intake and exhibits many other diverse effects. Our group have previously determined that ghrelin inhibited human contractility in vitro. The aim of this study therefore, was to investigate the expression of ghrelin, its receptor, the growth hormone secretagogue receptor type 1 (GHS-R1), ghrelin O-acyltransferase (GOAT) which catalyses ghrelin octanoylation, prohormone convertase 1/3 (PC1/3) responsible for pro-ghrelin processing, in human myometrium, during pregnancy prior to labour, during labour and in the non-pregnant state. Modulation of ghrelin and ghrelin receptor expression in cultured myometrial cells was also investigated. METHODS mRNA and protein were isolated from human myometrium and the myometrial smooth muscle cell line hTERT-HM; and real-time fluorescence RT-PCR, western blotting and fluorescence microscopy performed. The effects of beta-Estradiol and bacterial lipopolysaccharide (LPS) on hTERT-HM gene expression were evaluated by western blotting. RESULTS We have reported for the first time the expression and processing of ghrelin, GHS-R1, GOAT and PC1/3 expression in human myometrium, and also the down-regulation of ghrelin mRNA and protein expression during labour. Furthermore, GHS-R1 protein expression significantly decreased at labour. Myometrial GOAT expression significantly increased during term non-labouring pregnancy in comparison to both non-pregnant and labouring myometrium. Mature PC1/3 protein expression was significantly decreased at term pregnancy and labour in comparison to non-pregnant myometrium. Ghrelin, GHS-R1, GOAT and PC1/3 mRNA and protein expression was also detected in the hTERT-HM cells. Ghrelin protein expression decreased upon LPS treatment in these cells while beta-Estradiol treatment increased GHS-R1 expression. CONCLUSIONS Ghrelin processing occurred in the human myometrium at term pregnancy and in the non-pregnant state. GOAT expression which increased during term non-labouring pregnancy demonstrating a similar expression pattern to prepro-ghrelin and GHS-R1, decreased at labour, signifying possible myometrial ghrelin acylation. Moreover, the presence of PC1/3 may contribute to pro-ghrelin processing. These results along with the previous in vitro data suggest that myometrially-produced and processed ghrelin plays a significant autocrine or paracrine role in the maintenance of relaxation in this tissue during pregnancy. Furthermore, the significant uterine modulators LPS and beta-Estradiol are involved in the regulation of ghrelin and ghrelin receptor expression respectively, in the human myometrium.
Collapse
Affiliation(s)
- Margaret O'Brien
- National Centre for Biomedical and Engineering Science, Orbsen Building, National University of Ireland Galway, University Road, Galway, Ireland
| | - Padraig Earley
- National Centre for Biomedical and Engineering Science, Orbsen Building, National University of Ireland Galway, University Road, Galway, Ireland
| | - John J Morrison
- National Centre for Biomedical and Engineering Science, Orbsen Building, National University of Ireland Galway, University Road, Galway, Ireland
- Department of Obstetrics and Gynaecology, National University of Ireland Galway, Clinical Science Institute, University College Hospital Galway, Newcastle Road, Galway, Ireland
| | - Terry J Smith
- National Centre for Biomedical and Engineering Science, Orbsen Building, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
33
|
Metabolic and cardiovascular effects of ghrelin. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010. [PMID: 20798901 PMCID: PMC2925368 DOI: 10.1155/2010/864342] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 01/16/2010] [Indexed: 01/28/2023]
Abstract
Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is synthesized as a preprohormone and then proteolytically processed to yield a 28-amino acid peptide. This peptide was originally reported to induce growth hormone release; large evidence, however, has indicated many other physiological activities of ghrelin, including regulation of food intake and energy balance, as well as of lipid and glucose metabolism. Ghrelin receptors have been detected in the hypothalamus and the pituitary, but also in the cardiovascular system, where ghrelin exerts beneficial hemodynamic activities. Ghrelin administration acutely improves endothelial dysfunction by increasing nitric oxide bioavailability and normalizes the altered balance between endothelin-1 and nitric oxide within the vasculature of patients with metabolic syndrome. Other cardiovascular effects of ghrelin include improvement of left ventricular contractility and cardiac output, as well as reduction of arterial pressure and systemic vascular resistance. In addition, antinflammatory and antiapoptotic actions of ghrelin have been reported both in vivo and in vitro. This review summarizes the most recent findings on the metabolic and cardiovascular effects of ghrelin through GH-dependent and -independent mechanisms and the possible role of ghrelin as a therapeutic molecule for treating cardiovascular diseases.
Collapse
|
34
|
Abstract
The hormones insulin, leptin, and ghrelin have been demonstrated to act in the central nervous system (CNS) as regulators of energy homeostasis, acting at medial hypothalamic sites. Here, we summarize research demonstrating that, in addition to direct homeostatic actions at the hypothalamus, CNS circuitry that subserves reward and is also a direct and indirect target for the action of these endocrine regulators of energy homeostasis. Specifically, insulin and leptin can decrease food reward behaviors and modulate the function of neurotransmitter systems and neural circuitry that mediate food reward, the midbrain dopamine (DA) and opioidergic pathways. Ghrelin can increase food reward behaviors, and support midbrain DA neuronal function. We summarize discussion of behavioral, systems, and cellular evidence in support of the contributions of reward circuitry to the homeostatic roles of these hormones in the CNS. The understanding of neuroendocrine modulation of food reward, as well as food reward modulation by diet and obesity, may point to new directions for therapeutic approaches to overeating or eating disorders.
Collapse
|
35
|
Interactions of gastrointestinal peptides: ghrelin and its anorexigenic antagonists. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010. [PMID: 20798884 PMCID: PMC2925274 DOI: 10.1155/2010/817457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 12/21/2022]
Abstract
Food intake behaviour and energy homeostasis are strongly regulated by a complex system of humoral factors and nerval structures constituting the brain-gut-axis. To date the only known peripherally produced and centrally acting peptide that stimulates food intake is ghrelin, which is mainly synthesized in the stomach. Recent data indicate that the orexigenic effect of ghrelin might be influenced by other gastrointestinal peptides such as cholecystokinin (CCK), bombesin, desacyl ghrelin, peptide YY (PYY), as well as glucagon-like peptide (GLP). Therefore, we will review on the interactions of ghrelin with several gastrointestinal factors known to be involved in appetite regulation in order to elucidate the interdependency of peripheral orexigenic and anorexigenic peptides in the control of appetite.
Collapse
|
36
|
Morillo-Bernal J, Fernández-Santos JM, Utrilla JC, de Miguel M, García-Marín R, Martín-Lacave I. Functional expression of the thyrotropin receptor in C cells: new insights into their involvement in the hypothalamic-pituitary-thyroid axis. J Anat 2009; 215:150-8. [PMID: 19493188 DOI: 10.1111/j.1469-7580.2009.01095.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thyroid C cells, or parafollicular cells, are mainly known for producing calcitonin, a hormone involved in calcium homeostasis with hypocalcemic and hypophosphatemic effects. Classically, the main endocrine activity of this cell population has been believed to be restricted to its roles in serum calcium and bone metabolism. Nonetheless, in the last few years evidence has been accumulating in the literature with regard to local regulatory peptides secreted by C cells, such as somatostatin, ghrelin, thyrotropin releasing hormone or the recently described cocaine- and amphetamine-related transcript, which could modify thyroid function. As thyrotropin is the main hormone controlling the hypothalamic-pituitary-thyroid axis and, accordingly, thyroid function, we have examined the functional expression of the thyrotropin receptor in C-cell lines and in thyroid tissues. We have found that rat and human C-cell lines express the thyrotropin receptor at both mRNA and protein levels. Furthermore, incubation of C cells with thyrotropin resulted in a 10-fold inhibition of thyrotropin-receptor expression, and a concomitant decrease of the steady-state mRNA levels for calcitonin and calcitonin gene-related peptide determined by quantitative real-time PCR was found. Finally, thyrotropin receptor expression by C cells was confirmed at protein level in both normal and pathological thyroid tissues by immunohistochemistry and immunofluorescence. These results confirm that C cells, under regulation by thyrotropin, are involved in the hypothalamic-pituitary-thyroid axis and suggest a putative role in local fine-tuning of follicular cell activity.
Collapse
Affiliation(s)
- Jesús Morillo-Bernal
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Veldhuis JD, Mielke KL, Cosma M, Soares-Welch C, Paulo R, Miles JM, Bowers CY. Aromatase and 5alpha-reductase inhibition during an exogenous testosterone clamp unveils selective sex steroid modulation of somatostatin and growth hormone secretagogue actions in healthy older men. J Clin Endocrinol Metab 2009; 94:973-81. [PMID: 19088159 PMCID: PMC2681279 DOI: 10.1210/jc.2008-2108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND How endogenous testosterone (Te), 5alpha-dihydrotestosterone (DHT), and estradiol (E(2)) regulate pulsatile GH secretion is not understood. HYPOTHESIS Conversion of Te to androgenic (Te-->DHT) or estrogenic (Te-->E(2)) products directs GH secretion. SUBJECTS AND LOCATION: Healthy older men (N = 42, ages 50-79 yr) participated at an academic medical center. METHODS We inhibited 5alpha-reduction with dutasteride and aromatization with anastrozole during a pharmacological Te clamp and infused somatostatin (SS), GHRH, GH-releasing peptide-2 (GHRP-2), and L-arginine/GHRH/GHRP-2 (triple stimulus) to modulate GH secretion. ENDPOINTS Deconvolution-estimated basal and pulsatile GH secretion was assessed. RESULTS Administration of Te/placebo elevated Te by 2.8-fold, DHT by 2.6-fold, and E(2) concentrations by 1.9-fold above placebo/placebo. Te/dutasteride and Te/anastrozole reduced stimulated DHT and E(2) by 89 and 86%, respectively. Stepwise forward-selection regression analysis revealed that 1) Te positively determines mean (P = 0.017) and peak (P < 0.001) GH concentrations, basal GH secretion (P = 0.015), and pulsatile GH secretion stimulated by GHRP-2 (P < 0.001); 2) Te and E(2) jointly predict GH responses to the triple stimulus (positively for Te, P = 0.006, and negatively for E(2), P = 0.031); and 3) DHT correlates positively with pulsatile GH secretion during SS infusion (P = 0.011). These effects persisted when abdominal visceral fat was included in the regression. CONCLUSION The present outcomes suggest a tetrapartite model of GH regulation in men, in which systemic concentrations of Te, DHT, and E(2) along with abdominal visceral fat determine the selective actions of GH secretagogues and SS.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Department of Internal Medicine and Pediatrics, Endocrine Research Unit, Clinical Translational Research Center, Mayo Medical and Graduate Schools, Mayo Clinic, Rochester Minnesota 55901, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Grönberg M, Tsolakis AV, Magnusson L, Janson ET, Saras J. Distribution of obestatin and ghrelin in human tissues: immunoreactive cells in the gastrointestinal tract, pancreas, and mammary glands. J Histochem Cytochem 2008; 56:793-801. [PMID: 18474938 PMCID: PMC2516956 DOI: 10.1369/jhc.2008.951145] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 05/02/2008] [Indexed: 12/26/2022] Open
Abstract
Obestatin and ghrelin are two peptides derived from the same prohormone. It is well established that ghrelin is produced by endocrine cells in the gastric mucosa. However, the distribution of human obestatin immunoreactive cells is not thoroughly characterized. A polyclonal antibody that specifically recognizes human obestatin was produced. Using this antibody and a commercial antibody vs ghrelin, the distribution of obestatin and ghrelin immunoreactive cells was determined in a panel of human tissues using immunohistochemistry. The two peptides were detected in the mucosa of the gastrointestinal tract, from cardia to ileum, and in the pancreatic islets. Interestingly, epithelial cells in the ducts of mammary glands showed distinct immunoreactivity for both ghrelin and obestatin. By double immunofluorescence microscopy, it was shown that all detected cells were immunoreactive for both peptides. Furthermore, the subcellular localization of obestatin and ghrelin was essentially identical, indicating that obestatin and ghrelin are stored in the same secretory vesicles.
Collapse
Affiliation(s)
- Malin Grönberg
- Department of Medical Sciences, Section of Endocrine Oncology, University Hospital, SE-751 85 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
39
|
Machado MC, Sá SV, Goldbaum TS, Catania M, Campos VC, Corrêa-Giannella ML, Giannella-Neto D, Salgado LR. In vivo response to growth hormone-releasing peptide-6 in adrenocorticotropin-dependent Cushing's syndrome by lung carcinoid tumor is associated with growth hormone secretagogue receptor type 1a mRNA expression. J Endocrinol Invest 2007; 30:334-40. [PMID: 17556872 DOI: 10.1007/bf03346301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
GH secretagogues (GHS) have been used for the differential diagnosis of ACTH-dependent Cushing's syndrome (CS) since 1997 due to their ability to increase ACTH and cortisol levels in Cushing's disease. The aim of this study was to correlate ACTH response to GH-releasing peptide-6 (GHRP-6) in vivo with GH secretagogue receptor type 1a (GHSR-1a) mRNA expression in a patient with lung carcinoid tumor. The patient was a 26-yr-old male with diagnosis of ACTH-dependent CS. He presented negative responses to human CRH and desmopressin tests; yet, a significant increase in ACTH after the GHRP-6 test was observed. Sellar magnetic resonance imaging (MRI) showed slight posterior hypointensity, but bilateral petrosal sinus sampling did not show central gradient. Computed tomography (CT) and MRI of thorax/abdomen/cervical were negative and 111In-pentetreotide scintigraphy depicted abnormal uptake on the right lung. The patient was submitted to right thoracotomy for exeresis of lung nodule and hilar lymph node which were characterized as atypical lung carcinoid tumor and he presented clinical and laboratorial remission after surgery. GHSR-1a mRNA expression was studied with real-time quantitative PCR and tumor data were compared with fragments of normal lung and pituitary. There was a higher GHSR-1a expression in the lung carcinoid tumor as compared with normal tissues. The ACTH response to GHRP-6 in a patient with ectopic ACTH production by a lung carcinoid tumor was associated with GHSR-1a expression in the tumor tissue, suggesting an association between GHSR-1a mRNA overexpression and the in vivo response to GHS.
Collapse
MESH Headings
- ACTH Syndrome, Ectopic/complications
- ACTH Syndrome, Ectopic/diagnosis
- ACTH Syndrome, Ectopic/genetics
- Adult
- Carcinoid Tumor/complications
- Carcinoid Tumor/diagnosis
- Carcinoid Tumor/genetics
- Cushing Syndrome/diagnosis
- Cushing Syndrome/etiology
- Cushing Syndrome/genetics
- Diagnosis, Differential
- Diagnostic Techniques, Endocrine
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lung Neoplasms/complications
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Male
- Oligopeptides/genetics
- Oligopeptides/pharmacology
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Ghrelin
Collapse
Affiliation(s)
- M C Machado
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Ghrelin is a 28 amino-acid hormone with multiple functions. It is predominantly produced by the stomach but has also been detected in other organs, including the small intestine, pancreas, hypothalamus and pituitary, as well as in the immune system and almost every other normal human tissue examined. It is also present in neuroendocrine tumours, pituitary adenomas, endocrine tumours of the pancreas, breast tumours, and thyroid and medullary thyroid carcinomas. Ghrelin is a brain-gut peptide with growth hormone-releasing and appetite-inducing activities, and is the endogenous ligand of the G protein-coupled growth hormone secretagogue receptor (GHS-R). In this review we comprehensively summarize the available data regarding (a) the expression of ghrelin and the GHS-R in normal endocrine tissues and in pituitary adenomas and neuroendocrine tumours, (b) the levels of circulating ghrelin in patients with pituitary adenomas and neuroendocrine tumours and (c) the effects of ghrelin administration in these patients on the levels of other hormones and on the rate of proliferation of the tumour. It is clear that ghrelin has many more functions and is involved in many more processes than was initially postulated, and its endocrine, paracrine and autocrine effects play a role in its physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Chrysanthia A Leontiou
- Department of Endocrinology, William Harvey Research Institute, Barts and the London Medical School, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | |
Collapse
|
41
|
Cassoni P, Allia E, Marrocco T, Ghè C, Ghigo E, Muccioli G, Papotti M. Ghrelin and cortistatin in lung cancer: expression of peptides and related receptors in human primary tumors and in vitro effect on the H345 small cell carcinoma cell line. J Endocrinol Invest 2006; 29:781-90. [PMID: 17114908 DOI: 10.1007/bf03347371] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ghrelin, a natural GH secretagogue (GHS) acylated peptide, and cortistatin (CST), a natural SRIF-like peptide, interfere with neoplastic growth in different cancers. We tested forty-one lung carcinomas and the H345 small cell lung carcinoma (SCLC) cell line by RT-PCR to investigate the presence of ghrelin and CST and related receptors, including type 1a GHS receptor (GHS-R1a), all SRIF-receptor subtypes (sst 1-5) and MRGX2. Moreover, the presence of ghrelin and CST peptides was studied in both tumors and H345 cells. Ghrelin and CST mRNA were present in the majority of tested tumors, but ghrelin and CST proteins were revealed only in tumors with a neuroendocrine phenotype. All the receptors mRNA had a heterogeneous expression without correlation between ghrelin (or CST) and their receptor distribution. All the transcripts, but not GHS-R1a, were expressed in H345 cells. However, ghrelin and desacyl ghrelin induced in vitro a dose-dependent inhibition on the H345 cell proliferation and increased apoptosis. Conversely, neither CST nor SRIF affected H345 cell growth, despite the presence of their specific receptors. The anti-proliferative and the pro-apoptotic effects of ghrelin were consistent with binding experiments on H345 cell, where either acylated or des-acylated ghrelin recognized a common binding site. In conclusion, the present study indicates that: a) ghrelin and CST mRNAs are expressed in lung cancers, although some neuroendocrine tumors contain detectable amounts of the peptides; b) GHSR-1a mRNA is present exclusively in neuroendocrine tumors, whereas MRGX2 mRNA (but not peptide) is expressed in all histological types; c) both ghrelin forms inhibit H345 cell proliferation, both directly and enhancing apoptosis, despite the absence of GHS-R1a, whereas CST and its receptors do not interfere with cell growth.
Collapse
Affiliation(s)
- P Cassoni
- Department of Biomedical Sciences and Human Oncology, University of Turin, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Mottershead M, Karteris E, Barclay JY, Suortamo S, Newbold M, Randeva H, Nwokolo CU. Immunohistochemical and quantitative mRNA assessment of ghrelin expression in gastric and oesophageal adenocarcinoma. J Clin Pathol 2006; 60:405-9. [PMID: 16751299 PMCID: PMC2001112 DOI: 10.1136/jcp.2006.038356] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ghrelin is an orexigenic gut peptide produced predominantly by the stomach. Gastric mucosal ghrelin production could be compromised by an infiltrating adenocarcinoma. AIMS To assess the expression of ghrelin mRNA and peptide in oesophagogastric adenocarcinomas and adjacent non-neoplastic mucosa. METHODS 10 gastric and 22 oesophageal adenocarcinoma archival samples were randomly selected from a database. The presence of ghrelin-positive cells was assessed in cancer and corresponding non-neoplastic mucosa by immunohistochemistry. Quantitative reverse transcriptase polymerase chain reaction (PCR) for ghrelin mRNA was also performed on 24 gastric and 8 oesophageal adenocarcinoma specimens and adjacent non-neoplastic mucosa. RESULTS Immunohistochemistry and reverse transcriptase PCR confirm a negligible expression of ghrelin in adenocarcinoma specimens. By contrast, non-neoplastic gastric mucosa was rich in ghrelin-positive cells and ghrelin mRNA. The number (median and range) of ghrelin-positive cells per 2 mm section of non-neoplastic mucosa was 73 (45-215) in the corpus; this was significantly higher than in cardia mucosa (9 (0-64), p<0.001) and antral mucosa (5 (0-14), p<0.001). CONCLUSIONS Gastric and oesophageal adenocarcinomas have no ghrelin-producing cells. The highest level of ghrelin expression was noted in the non-neoplastic mucosa of the gastric corpus. Disruption of the gastric ghrelin-producing mechanism may occur during oesophagogastric malignancy.
Collapse
Affiliation(s)
- Marcus Mottershead
- Department of Gastroenterology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Pulman KJ, Fry WM, Cottrell GT, Ferguson AV. The subfornical organ: a central target for circulating feeding signals. J Neurosci 2006; 26:2022-30. [PMID: 16481435 PMCID: PMC6674925 DOI: 10.1523/jneurosci.3218-05.2006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 01/05/2005] [Accepted: 01/06/2006] [Indexed: 11/21/2022] Open
Abstract
The mechanisms through which circulating ghrelin relays hunger signals to the CNS are not yet fully understood. In this study, we have examined the potential role of the subfornical organ (SFO), a circumventricular structure that lacks the normal blood-brain barrier, as a CNS site in which ghrelin acts to influence the hypothalamic centers controlling food intake. We report that ghrelin increased intracellular calcium concentrations in 28% (12 of 43) of dissociated SFO neurons and that the SFO expresses mRNA for the growth hormone secretagogue receptor. Whole-cell patch recordings from SFO neurons demonstrated that in 29% (9 of 31) of neurons tested ghrelin induced a mean depolarization of 7.4 +/- 0.69 mV, accompanied by an increase in action potential frequency. Voltage-clamp recordings revealed that ghrelin activates a putative nonselective cationic conductance. Previous reports that the satiety signal amylin exerts similar excitatory effects on SFO neurons led us to examine whether these two peptides influence different subpopulations of SFO neurons. Concentration-dependent depolarizing effects of amylin were observed in 59% (28 of 47) of SFO neurons (mean depolarization, 8.32 +/- 0.60 mV). In contrast to ghrelin, voltage-clamp recordings suggest that amylin influences a voltage-dependent current activated at depolarized potentials. We tested single SFO neurons with both peptides and identified cells responsive only to ghrelin (n = 9) and only to amylin (n = 7) but no cells that responded to both peptides. These data support a role for the SFO as a center at which ghrelin and amylin may influence separate subpopulations of neurons to influence the hypothalamic regulation of feeding.
Collapse
|
44
|
Perez-Tilve D, Nogueiras R, Mallo F, Benoit SC, Tschoep M. Gut hormones ghrelin, PYY, and GLP-1 in the regulation of energy balance [corrected] and metabolism. Endocrine 2006; 29:61-71. [PMID: 16622293 DOI: 10.1385/endo:29:1:61] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 11/30/1999] [Accepted: 11/15/2005] [Indexed: 02/07/2023]
Abstract
The first hormone discovered in the gastrointestinal tract was secretin, isolated from duodenal mucosa. Some years later, two additional gastrointestinal hormones, gastrin and cholecystokinin (CCK), were discovered, but it was not until the 1970s that gastrointestinal endocrinology studies became more prevalent, resulting in the discovery of many more hormones. Here, we examine the role of gut hormones in energy balance regulation and their possible use as pharmaceutical targets for obesity.
Collapse
Affiliation(s)
- Diego Perez-Tilve
- Department of Psychiatry, University of Cincinnati Genome Research Institute, Cincinnati, OH 45237, USA
| | | | | | | | | |
Collapse
|
45
|
Correa-Silva SR, Nascif SO, Lengyel AMJ. Decreased GH secretion and enhanced ACTH and cortisol release after ghrelin administration in Cushing's disease: comparison with GH-releasing peptide-6 (GHRP-6) and GHRH. Pituitary 2006; 9:101-7. [PMID: 16832586 DOI: 10.1007/s11102-006-9149-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
GH responsiveness to GH secretagogues (GHS) is blunted in Cushing's disease (CD), while ACTH/cortisol responses are enhanced, by mechanisms still unclear. Ghrelin, the endogenous ligand for GHS-receptors (GHS-R), increases GH, ACTH, cortisol and glucose levels in humans. This study evaluated the GH, ACTH, cortisol and glucose-releasing effects of ghrelin in CD in comparison with GHRP-6. GHRH-induced GH release was also studied. Ten patients with CD (BMI 26.9+/-1.0 kg/m(2)) and ten controls (BMI 24.4+/-1.1 kg/m(2)) received ghrelin (1 microg/kg), GHRP-6 (1 microg/kg) and GHRH (100 microg) separately. GH, ACTH, cortisol and glucose levels were measured. In CD ghrelin-induced GH (microg/L; mean +/- SE) release (peak: 7.2+/-3.0) was higher than seen with GHRP-6 (2.7+/-1.0) and GHRH (0.7+/-0.2), but lower than in controls (ghrelin: 58.3+/-12.1; GHRP-6: 22.9+/-4.8; GHRH: 11.3+/-3.7). In controls ACTH (pg/mL) release after ghrelin (79.2+/-26.8) was higher than after GHRP-6 (23.6+/-5.7). In CD these responses (ghrelin: 192+/-43; GHRP-6: 185+/-56) were similar, and enhanced compared to controls. The same was observed with cortisol. Glucose levels failed to increase after ghrelin in CD, differently than in controls. Our data suggests that hypothalamic and pituitary pathways of GH release activated by ghrelin, GHRP-6 and GHRH are deranged in chronic hypercortisolism. The increased ACTH/cortisol responses to ghrelin and GHRP-6 in CD could be mediated by overexpression of GHS-R in ACTH-secreting adenomas. Hypercortisolism apparently impairs the ability of ghrelin to increase glucose levels.
Collapse
|
46
|
Han XF, Zhu YL, Hernandez M, Keating DJ, Chen C. Ghrelin reduces voltage-gated potassium currents in GH3 cells via cyclic GMP pathways. Endocrine 2005; 28:217-24. [PMID: 16388096 DOI: 10.1385/endo:28:2:217] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/05/2005] [Accepted: 06/10/2005] [Indexed: 11/11/2022]
Abstract
Ghrelin is an endogenous growth hormone secretagogue (GHS) causing release of GH from pituitary somatotropes through the GHS receptor. Secretion of GH is linked directly to intracellular free Ca(2+) concentration ([Ca(2+)]i), which is determined by Ca(2+) influx and release from intracellular Ca(2+) storage sites. Ca(2+) influx is via voltage-gated Ca(2+) channels, which are activated by cell depolarization. Membrane potential is mainly determined by transmembrane K(+) channels. The present study investigates the in vitroeffect of ghrelin on membrane voltage-gated K(+) channels in the GH3 rat somatotrope cell line. Nystatin-perforated patch clamp recording was used to record K(+) currents under voltage-clamp conditions. In the presence of Co(2+) (1 mM, Ca(2+) channel blocker) and tetrodotoxin (1 microM, Na(+) channel blocker) in the bath solution, two types of voltage-gated K(+) currents were characterized on the basis of their biophysical kinetics and pharmacological properties. We observed that transient K(+) current (IA) represented a significant proportion of total K(+) currents in some cells, whereas delayed rectifier K(+) current (IK) existed in all cells. The application of ghrelin (10 nM) reversibly and significantly decreased the amplitude of both IA and IK currents to 48% and 64% of control, respectively. Application of apamin (1 microM, SK channel blocker) or charybdotoxin (1 microM, BK channel blocker) did not alter the K(+) current or the response to ghrelin. The ghrelin-induced reduction in K(+) currents was not affected by PKC and PKA inhibitors. KT5823, a specific PKG inhibitor, totally abolished the K+ current response to ghrelin. These results suggest that ghrelin-induced reduction of voltage-gated K(+) currents in GH3 cells is mediated through a PKG-dependent pathway. A decrease in voltage-gated K(+) currents may increase the frequency, duration, and amplitude of action potentials and contribute to GH secretion from somatotropes.
Collapse
Affiliation(s)
- Xue Feng Han
- Department of Physiology, Fourth Military Medical University, Shannxi, China
| | | | | | | | | |
Collapse
|
47
|
Raghay K, García-Caballero T, Nogueiras R, Morel G, Beiras A, Diéguez C, Gallego R. Ghrelin localization in rat and human thyroid and parathyroid glands and tumours. Histochem Cell Biol 2005; 125:239-46. [PMID: 16187069 DOI: 10.1007/s00418-005-0044-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2005] [Indexed: 11/25/2022]
Abstract
Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHS-R), is a 28 amino acid peptide originally isolated from rat stomach that has been primarily involved in the central neuroregulation of GH secretion and food intake. Previous studies demonstrated that ghrelin has a widespread expression in different normal cells and tissues, as well as in gastric, thyroid, testicular, breast and lung neoplasias. In the current study, we use molecular biology to detect ghrelin transcripts expression in rats, and immunohistochemical techniques to investigate the cellular distribution of this peptide in rat and human thyroid and parathyroid glands and tumours. Ghrelin was localized in thyroid C cells and in parathyroid cells. Thyroid carcinomas (medullar, follicular and papillary) and parathyroid adenomas also showed intense and diffuse immunostaining for ghrelin. These data provide direct morphological evidence that ghrelin may well be acting in a paracrine fashion in the regulation of thyroid follicular cell function. The diffuse ghrelin immunostaining found in the parathyroid gland opens up the possibility of its secretion to the bloodstream or its involvement in the regulation of the parathyroid function. Overall, expression of ghrelin in human and rat thyroid and parathyroid glands is highly suggestive of a conserved role of this molecule in the regulation of thyroid and parathyroid cell function.
Collapse
Affiliation(s)
- Kawtar Raghay
- Department of Morphological Sciences, University Clinical Hospital, University of Santiago de Compostela, c/S. Francisco, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Janssen JAMJL, Poldermans D, Hofland LJ, Vourvouri EC, Muller AF, Bax JJ, Deghenghi R, Broglio F, Ghigo E, van der Lely AJ. There are no acute cardiac effects of a single iv dose of human ghrelin in severe growth hormone deficient patients. J Endocrinol Invest 2004; 27:659-64. [PMID: 15505990 DOI: 10.1007/bf03347499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It has previously been suggested that ghrelin mediates GH-independent biologic activities on the heart. We investigated the acute effects on cardiac contraction of a single iv administration of human ghrelin (in a dose of 1 microg/kg) in severe untreated GH deficient subjects. Prior to the ghrelin infusion, an echocardiographic examination was performed at rest (baseline), after physiologic saline and during dobutamine stress echocardiography (DSE) to exclude a preexisting (subclinical) myocardial dysfunction. To evaluate the acute cardiac effect of infusion and during DSE the velocity of left ventricular (LV) wall contraction was measured continuously by echocardiography. Despite severe GH deficiency we observed in all subjects a normal cardiac function at rest after physiologic saline and during DSE. No acute changes in cardiac performance or cardiac parameters could be observed after a single iv dose of ghrelin. Also, no important increase in GH secretion was detected after ghrelin administration. Our study suggests that, in contrast to hexarelin, a single iv administration of ghrelin in a physiological dose has no acute effects on cardiac function in severe GH deficiency. This suggests that GH-independent effects of ghrelin play no important role in the acute regulation of cardiac function in man.
Collapse
Affiliation(s)
- J A M J L Janssen
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Catabolism is a metabolic process in which muscle and fat cell tissues are broken down in their constituent parts to provide nutrients and energy for the body. Whilst undoubtedly a potent stimulator of GH secretion in pharmacological doses, at present no clear physiological role for ghrelin in the regulation of GH secretion has been identified in man. In addition to its GH-releasing properties, ghrelin stimulates food intake and adipogenesis. The role of ghrelin has been extensively studied in three human models of catabolism: anorexia nervosa, cardiac cachexia and cancer cachexia. In this review we discuss the role of ghrelin in the etiology and treatment of catabolism using these three human models of catabolism. In the presence of clear catabolism in all the three conditions plasma total ghrelin levels are increased, suggesting that ghrelin does not increase food intake and/or anabolism in these circumstances. In addition, it is at present unknown whether administration of additional ghrelin in these conditions may reduce (or attenuate) the development of cachexia. In conclusion, the anabolic effects of ghrelin in man have still to be demonstrated.
Collapse
Affiliation(s)
- J A M J L Janssen
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
50
|
Abstract
OBJECTIVE Ghrelin is a novel gastric hormone recognized in 1999 as a mediator of growth hormone release. Since growth hormone is anabolic, an important function of ghrelin may be to coordinate energy needs with the growth process. Newly discovered biologic roles of ghrelin imply that it may have other important physiological functions as well. This is a review of recent clinically relevant, yet less well-known, physiologic actions of ghrelin. SUMMARY BACKGROUND DATA Ghrelin has profound orexigenic, adipogenic, and somatotrophic properties, increasing food intake and body weight. Secreted predominantly from the stomach, ghrelin is the natural ligand for the growth hormone secretagogue receptor in the pituitary gland, thus fulfilling criteria of a brain-gut peptide. The brain-gut axis is the effector of anabolism by regulating growth, feeding, and metabolism via vagal afferents mediating ghrelin signaling. However, the wide tissue distribution of ghrelin suggests that it may have other functions as well. METHODS Systematic literature review of all PubMed citations between 1999 and August 2003 focusing on clinically relevant biochemical and physiological characteristics of ghrelin. RESULTS Ghrelin is an important component of an integrated regulatory system of growth and metabolism acting via the vagus nerve, and is implicated in a variety of altered energy states such as obesity, eating disorders, neoplasia, and cachexia. It also enhances immune responses and potentially down-regulates anti-inflammatory molecules. Ghrelin's role as a brain-gut peptide emphasizes the significance of afferent vagal fibers as a major pathway to the brain, serving the purpose of maintaining physiologic homeostasis. CONCLUSIONS The discovery of ghrelin has increased our understanding of feeding regulation, nutritional homeostasis, and metabolic processes. Further characterization of ghrelin's functions will likely generate new pharmacological approaches to diagnose and treat different disease entities including those related to the over-nutrition of obesity and the catabolic response to surgical trauma.
Collapse
Affiliation(s)
- James T Wu
- Department of Surgery, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | |
Collapse
|