1
|
Arslan G, Hazan F, Tabanlı G, Kırkgöz T, Özkan B. A rare case of skeletal dysplasia: biallelic variant in ACAN gene. J Pediatr Endocrinol Metab 2024; 37:1104-1111. [PMID: 39295451 DOI: 10.1515/jpem-2024-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024]
Abstract
OBJECTIVES Spondylo-epimetaphyseal dysplasia-aggregan (SEMD-ACAN) is a rare form of osteo-chondrodysplasia that includes vertebral, epiphyseal and metaphyseal dysplasia. It occurs as a result of loss-of-function mutations in the ACAN gene, which encodes aggregan protein, which is the basic component of the extracellular matrix in cartilage. It results in disproportionately short stature and skeletal abnormalities. Here, we aimed to present the fourth SEMD-ACAN report in the literature. CASE PRESENTATION A 9-year-old girl was admitted to our clinic with growth retardation. She was born from a first-degree cousin marriage with severe short stature (41 cm; -3.54 SDS). Her mother also had severe short stature. Her height was 110 cm (-4.6 SDS); she had midface hypoplasia, low-set ears, short neck, short limbs, and central obesity. Biochemical and hormonal tests were normal. Skeletal survey showed moderate platyspondylia, thoracolumbar scoliosis, lumbar lordosis, bilateral femoro-acetabular narrowing, and advanced bone age (10 years). The patient's brother was 100 cm (-3.97 SDS). He had similar but milder clinical findings. Biallelic ACAN variation (c.512C>T; p. Ala171Val) was detected in two siblings by next-generation sequencing. The parents were heterozygous carriers. Before, the heterozygous form of this variant has been reported in a 15-year-old boy with short stature, advanced bone age, and dysmorphic features. CONCLUSIONS SEMD-ACAN is a rare genetic condition that affects bone growth and development and can cause physical and developmental abnormalities. This article highlights the importance of considering genetic testing in characteristic symptoms associated with SEMD-ACAN, such as severe growth retardation and skeletal abnormalities.
Collapse
Affiliation(s)
- Gülçin Arslan
- Department of Pediatric Endocrinology, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - Filiz Hazan
- Department of Pediatric Genetic, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - Gülin Tabanlı
- Department of Pediatric Endocrinology, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - Tarık Kırkgöz
- Department of Pediatric Endocrinology, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| | - Behzat Özkan
- Department of Pediatric Endocrinology, Dr. Behçet Uz Training and Research Hospital, University of Health Science, Izmir, Türkiye
| |
Collapse
|
2
|
Muthuvel G, Dauber A, Alexandrou E, Tyzinski L, Hwa V, Backeljauw P. Treatment of Short Stature in Aggrecan-deficient Patients With Recombinant Human GH: 3-year Response. J Endocr Soc 2024; 8:bvae177. [PMID: 39502477 PMCID: PMC11535719 DOI: 10.1210/jendso/bvae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 11/08/2024] Open
Abstract
Context Patients with aggrecan (ACAN) deficiency present with dominantly inherited short stature, as well as early-onset joint disease. Objective The objective of this study was to evaluate the efficacy and safety of recombinant human GH (rhGH) on linear growth in ACAN-deficient children. Methods Open-label, single-arm, prospective study over 3 years recruiting 10 treatment-naïve patients with heterozygous mutations in ACAN, age ≥2 years, prepubertal, and normal IGF-I concentration. Patients were treated with rhGH (initially, 50 mcg/kg/day). Main outcomes were change in (Δ) height SD score (HtSDS) and height velocity (HV). Results Ten patients (6 females) enrolled with median chronological age (CA) of 5.6 years (range, 2.4-9.7). Baseline median HtSDS, HV, and bone age/CA were -2.5 (range, -4.3 to -1.1), 5.2 cm/year (range, 3.8 to 7.1), and 1.2 (range, 0.9 to 1.5), respectively. The cumulative median ΔHtSDS over 3 years was +1.21 (range, +0.82 to +1.94). Median HV increased to 8.3 cm/year (range, 7.3-11.2), 7.7 cm/year (range, 5.9-8.8), and 6.8 cm/year (range, 4.9-8.6) during years 1, 2, and 3, respectively. The median Δ predicated adult height was +6.8 cm over 3 years. Four female subjects entered puberty; nevertheless, median Δbone age/CA was -0.1. No adverse events related to rhGH were observed. Conclusion Linear growth improved in a cohort of ACAN-deficient patients treated with rhGH, albeit somewhat attenuated in older participants who entered puberty. Longitudinal follow-up is needed to assess the long-term efficacy of rhGH and adult height outcome.
Collapse
Affiliation(s)
- Gajanthan Muthuvel
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Eirene Alexandrou
- Division of Endocrinology, The University of Iowa Stead Family Children's Hospital, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Leah Tyzinski
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Philippe Backeljauw
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Karatas E, Demir M, Ozcelik F, Kara L, Akyurek E, Berber U, Hatipoglu N, Ozkul Y, Dundar M. A Case of Short Stature Caused by a Mutation in the ACAN Gene. Mol Syndromol 2023; 14:123-128. [PMID: 37064332 PMCID: PMC10091005 DOI: 10.1159/000526166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Aggrecanopathies are rare disorders associated with idiopathic short stature. They are caused by pathogenic changes in the ACAN gene located on chromosome 15q26. In this study, we present a case of short stature caused by mutations in the ACAN gene. Case Presentation A 3-year-3-month-old male patient was referred to us because of his short stature. Physical examination revealed proportional short stature, frontal bossing, macrocephaly, midface hypoplasia, ptosis in the right eye, and wide toes. When the patient was 6 years and 3 months old, his bone age was compatible with 7 years of age. The patient underwent clinical exome sequencing and a heterozygous nonsense c.1243G>T, p.(Glu415*) pathogenic variant was detected in the ACAN gene. The same variant was found in his phenotypically similar father. Our patient is the second case with ptosis. Discussion ACAN gene mutation should be considered in the differential diagnosis of patients with idiopathic short stature. The development and widespread use of next-generation sequencing technology has increased the diagnostic and treatment possibilities.
Collapse
Affiliation(s)
- Emine Karatas
- Medical Genetics Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mikail Demir
- Medical Genetics Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Firat Ozcelik
- Medical Genetics Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Leyla Kara
- Pediatric Endocrinology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Esra Akyurek
- Pediatric Endocrinology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ugur Berber
- Pediatric Endocrinology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nihal Hatipoglu
- Pediatric Endocrinology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Medical Genetics Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Medical Genetics Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
Kim SJ, Yoon JS, Hwang IT. A Novel Heterozygous ACAN Variant in a Short Patient Born Small for Gestational Age with Recurrent Patellar Dislocation: A Case Report. J Clin Res Pediatr Endocrinol 2022; 14:481-484. [PMID: 34210114 PMCID: PMC9724056 DOI: 10.4274/jcrpe.galenos.2021.2021.0081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ACAN variants can manifest as various clinical features, including short stature, advanced bone age (BA), and skeletal defects. Here, we report rare clinical manifestations of ACAN defects in a 9 year, 5 month-old girl born small for gestational age (SGA), who presented with short stature, and was initially diagnosed with idiopathic growth hormone deficiency. She displayed several dysmorphic features, including genu valgum, cubitus valgus, and recurrent patellar dislocations. She presented with progressive advancement of BA compared with chronological age. Whole exome sequencing confirmed the presence of a novel heterozygous nonsense variant, c.1968C>G, p.(Tyr656*), in ACAN. ACAN variants should be considered in short stature patients born SGA with joint problems, particularly those with recurrent patellar dislocation and genu valgum.
Collapse
Affiliation(s)
- Su Ji Kim
- Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Department of Pediatrics, Seoul, Korea
| | - Jong Seo Yoon
- Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Department of Pediatrics, Seoul, Korea
| | - Il Tae Hwang
- Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Department of Pediatrics, Seoul, Korea,* Address for Correspondence: Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Department of Pediatrics, Seoul, Korea Phone: +82-10-2396-1772 E-mail:
| |
Collapse
|
5
|
Wu S, Wang C, Cao Q, Zhu Z, Liu Q, Gu X, Zheng B, Zhou W, Jia Z, Gu W, Li X. The Spectrum of ACAN Gene Mutations in a Selected Chinese Cohort of Short Stature: Genotype-Phenotype Correlation. Front Genet 2022; 13:891040. [PMID: 35620465 PMCID: PMC9127616 DOI: 10.3389/fgene.2022.891040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Objective: Mutations in the ACAN gene have been reported to cause short stature. However, the prevalence estimates of pathogenic ACAN variants in individuals with short stature vary, and the correlation between ACAN genotype and clinical phenotype remain to be evaluated. To determine the prevalence of ACAN variants among Chinese people with short stature and analyze the relationship between genotype and main clinical manifestations of short stature and advanced bone age among patients with ACAN variants. Methods: We performed next-generation sequencing-based genetic analyses on 442 individuals with short stature. ACAN variants were summarized, previously reported cases were retrospectively analyzed, and an association analysis between genotype and phenotype was conducted. Result: We identified 15 novel and two recurrent ACAN gene variants in 16 different pedigrees that included index patients with short stature. Among the patients with ACAN variants, 12 of 18 had advanced bone age and 7 of 18 received growth hormone therapy, 5 (71.4%) of whom exhibited variable levels of height standard deviation score improvement. Further analysis showed that patients with ACAN truncating variants had shorter height standard deviation scores (p = 0.0001) and larger bone age–chronological age values (p = 0.0464). Moreover, patients in this Asian population had a smaller mean bone age–chronological age value than those that have been determined in European and American populations (p = 0.0033). Conclusion: Our data suggest that ACAN mutation is a common cause of short stature in China, especially among patients with a family history of short stature but also among those who were born short for their gestational age without a family history. Patients with truncating variants were shorter in height and had more obvious advanced bone age, and the proportion of patients with advanced bone age was lower in this Asian population than in Europe and America.
Collapse
Affiliation(s)
- Su Wu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Cao
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyang Zhu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqi Liu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyan Gu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Deng S, Hou L, Xia D, Li X, Peng X, Xiao X, Zhang J, Meng Z, Zhang L, Ouyang N, Liang L. Description of the molecular and phenotypic spectrum in Chinese patients with aggrecan deficiency: Novel ACAN heterozygous variants in eight Chinese children and a review of the literature. Front Endocrinol (Lausanne) 2022; 13:1015954. [PMID: 36387899 PMCID: PMC9649928 DOI: 10.3389/fendo.2022.1015954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study analyzed eight Chinese short stature children with aggrecan deficiency, and aimed to investigate potential genotype-phenotype correlations, differences in clinical characteristics between the Chinese and the Western populations, and effectiveness of recombinant human growth hormone therapy in patients with ACAN variants through a review of the literature. METHODS Pediatric short stature patients with ACAN heterozygous variants were identified using whole-exome sequencing. Subsequently, a literature review was carried out to summarize the clinical features, genetic findings, and efficacy of growth-promoting therapy in patients with ACAN variants. RESULTS We identified seven novel ACAN mutations and one recurrent variant. Patients in our center manifested with short stature (average height SDS: -3.30 ± 0.85) with slight dysmorphic characteristics. The prevalence of dysmorphic features in the Chinese populations is significantly lower than that in the Western populations. Meanwhile, only 24.24% of aggrecan-deficient Chinese children showed significantly advanced bone age (BA). Promising therapeutic benefits were seen in the patients who received growth-promoting treatment, with an increase in growth velocity from 4.52 ± 1.00 cm/year to 8.03 ± 1.16 cm/year. CONCLUSION This study further expanded the variation spectrum of the ACAN gene and demonstrated that Chinese children with short stature who carried ACAN heterozygous variants exhibited early growth cessation, which may remain unnoticed by clinicians as most of these children had very mild dysmorphic characteristics and showed BA that was consistent with the chronological age. Genetic testing may help in the diagnosis.
Collapse
Affiliation(s)
- Shuyun Deng
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lele Hou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Xia
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Li
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofang Peng
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqin Xiao
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieming Zhang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhe Meng
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lina Zhang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nengtai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nengtai Ouyang, ; Liyang Liang,
| | - Liyang Liang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nengtai Ouyang, ; Liyang Liang,
| |
Collapse
|
7
|
Denis A, Chergui S, Basalom S, Campeau PM, Janelle C, Pauyo T. Variable expressivity in a family with an aggrecanopathy. Mol Genet Genomic Med 2021; 10:e1773. [PMID: 34894100 PMCID: PMC8801139 DOI: 10.1002/mgg3.1773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/13/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022] Open
Abstract
Background Osteochondritis dissecans is a condition wherein there is a subchondral bone lesion that causes pain, inflammation, and cartilage damage. Dominant Familial Osteochondritis Dissecans is a rare and severe form of osteochondritis dissecans (OCD). It is caused by heterozygous pathogenic variants in the gene encoding Aggrecan; ACAN. Aggrecan, a proteoglycan, is an essential component of the articular and growth plate cartilage. Methods Herein, we report three individuals from one family; the proband who presented with short stature, a lower limb bone exostosis, and bilateral knee and elbow OCD at the age of 13 years old. His twin brother presented with isolated short stature and his father with short stature and lumbar disc herniation. Results Next‐generation sequencing of the ACAN gene in the proband identified a frameshift variant which is also present in the brother and father with short stature. The proband was treated surgically with bilateral elbow microfracture, after the failure of conservative therapy. Conclusion To the best of our knowledge, this is the first patient with an aggrecanopathy who presents with osteochondritis dissecans due to a frameshift variant. This family presents with variable expressivity which might be attributed to modifier genes.
Collapse
Affiliation(s)
- Antoine Denis
- Shriners Hospitals for Children, Montreal, Quebec, Canada
| | - Sami Chergui
- Shriners Hospitals for Children, Montreal, Quebec, Canada
| | - Shuaa Basalom
- Shriners Hospitals for Children, Montreal, Quebec, Canada
| | | | | | - Thierry Pauyo
- Shriners Hospitals for Children, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Wei M, Ying Y, Li Z, Weng Y, Luo X. Identification of novel ACAN mutations in two Chinese families and genotype-phenotype correlation in patients with 74 pathogenic ACAN variations. Mol Genet Genomic Med 2021; 9:e1823. [PMID: 34605228 PMCID: PMC8606199 DOI: 10.1002/mgg3.1823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
Background ACAN (OMIM 155760) is located on chromosome 15q26 and encodes the production of aggrecan. Aggrecan is a large chondroitin sulfate proteoglycan with a molecular weight of 254 kDa and contains 2530 amino acids. It is a critical structural component of the extracellular matrix of cartilage, including growth plate, articular, and intervertebral disk cartilage. It plays a key role in bone development. Methods Here, we describe two pedigrees with loss‐of‐function variants in ACAN. Whole exome sequencing was performed for the probands from each family. We illustrate the clinical variability associated with ACAN variants. Results The proband of pedigree A manifested short stature, relative macrocephaly, mild flat nasal bridge, low‐set ears, short neck, and short thumbs. The proband of pedigree B had short height, abnormal vertebral development, and central precocious puberty. By trio‐based whole exome sequencing and in silico analyses, we identified two de novo heterozygous variants of ACAN: NM_013227.4: c.116dupT, p.Arg40Glufs*51 and NM_013227.4: c.2367delC, p.Ser790Glnfs*20 (accession number: AC103982.10). Conclusion The clinical manifestations of ACAN gene variants are diverse. ACAN gene variants are important genetic factors for short stature and should be considered as the differential diagnosis of children with idiopathic short stature (ISS).
Collapse
Affiliation(s)
- Ming Wei
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqin Ying
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuxi Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Weng
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Jee YH, Gangat M, Yeliosof O, Temnycky AG, Vanapruks S, Whalen P, Gourgari E, Bleach C, Yu CH, Marshall I, Yanovski JA, Link K, Ten S, Baron J, Radovick S. Evidence That the Etiology of Congenital Hypopituitarism Has a Major Genetic Component but Is Infrequently Monogenic. Front Genet 2021; 12:697549. [PMID: 34456972 PMCID: PMC8386283 DOI: 10.3389/fgene.2021.697549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/12/2021] [Indexed: 01/31/2023] Open
Abstract
Purpose Congenital hypopituitarism usually occurs sporadically. In most patients, the etiology remains unknown. Methods We studied 13 children with sporadic congenital hypopituitarism. Children with non-endocrine, non-familial idiopathic short stature (NFSS) (n = 19) served as a control group. Exome sequencing was performed in probands and both unaffected parents. A burden testing approach was used to compare the number of candidate variants in the two groups. Results First, we assessed the frequency of rare, predicted-pathogenic variants in 42 genes previously reported to be associated with pituitary gland development. The average number of variants per individual was greater in probands with congenital hypopituitarism than those with NFSS (1.1 vs. 0.21, mean variants/proband, P = 0.03). The number of probands with at least 1 variant in a pituitary-associated gene was greater in congenital hypopituitarism than in NFSS (62% vs. 21%, P = 0.03). Second, we assessed the frequency of rare, predicted-pathogenic variants in the exome (to capture undiscovered causes) that were inherited in a fashion that could explain the sporadic occurrence of the proband's condition with a monogenic etiology (de novo mutation, autosomal recessive, or X-linked recessive) with complete penetrance. There were fewer monogenic candidates in the probands with congenital hypopituitarism than those with NFSS (1.3 vs. 2.5 candidate variants/proband, P = 0.024). We did not find any candidate variants (0 of 13 probands) in genes previously reported to explain the phenotype in congenital hypopituitarism, unlike NFSS (8 of 19 probands, P = 0.01). Conclusion Our findings provide evidence that the etiology of sporadic congenital hypopituitarism has a major genetic component but may be infrequently monogenic with full penetrance, suggesting a more complex etiology.
Collapse
Affiliation(s)
- Youn Hee Jee
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mariam Gangat
- Division of Pediatric Endocrinology Rutgers Robert Wood Johnson Medical School Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Olga Yeliosof
- Division of Pediatric Endocrinology Rutgers Robert Wood Johnson Medical School Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Adrian G Temnycky
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Selena Vanapruks
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Philip Whalen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Evgenia Gourgari
- Division of Pediatric Endocrinology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Cortney Bleach
- Division of Pediatric Endocrinology, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Christine H Yu
- Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, IL, United States
| | - Ian Marshall
- Division of Pediatric Endocrinology Rutgers Robert Wood Johnson Medical School Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Jack A Yanovski
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Kathleen Link
- Division of Pediatric Endocrinology, Pediatric Subspecialists of Virginia, Fairfax, VA, United States
| | - Svetlana Ten
- Pediatric Endocrinology, Richmond University Medical Center, Staten Island, NY, United States
| | - Jeffrey Baron
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sally Radovick
- Division of Pediatric Endocrinology Rutgers Robert Wood Johnson Medical School Child Health Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
10
|
Mancioppi V, Prodam F, Mellone S, Ricotti R, Giglione E, Grasso N, Vurchio D, Petri A, Rabbone I, Giordano M, Bellone S. Retrospective Diagnosis of a Novel ACAN Pathogenic Variant in a Family With Short Stature: A Case Report and Review of the Literature. Front Genet 2021; 12:708864. [PMID: 34456977 PMCID: PMC8397523 DOI: 10.3389/fgene.2021.708864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Short stature is a frequent disorder in the pediatric population and can be caused by multiple factors. In the last few years, the introduction of Next Generation Sequencing (NGS) in the molecular diagnostic workflow led to the discovery of mutations in novel genes causing short stature including heterozygous mutations in ACAN gene. It encodes for aggrecan, a primary proteoglycan component specific for the structure of the cartilage growth plate, articular and intervertebral disc. We report a novel ACAN heterozygous pathogenic variant in a family with idiopathic short stature, early-onset osteoarthritis and osteoarthritis dissecans (SSOAOD). We also performed a literature review summarizing the clinical characteristic of ACAN's patients. The probands are two Caucasian sisters with a family history of short stature and osteoarthritis dissecans. They showed dysmorphic features such as mild midface hypoplasia, brachydactyly and broad thumbs, especially the great toes. The same phenotype was presented in the mother who had had short stature and suffered from intervertebral disc disease. DNA sequencing identified a heterozygous pathogenic variation (c.4390delG p.Val1464Ter) in the sisters, with a maternal inheritance. The nonsense mutation, located on exon 12, results in premature truncation and presumed loss of protein function. In terms of treatment, our patients underwent recombinant human growth hormone replacement therapy, associated with gonadotropin releasing hormone therapy, in order to block early growth cessation and therefore reach a better final height. Our case suggests that SSOAOD ACAN related should be considered in the differential diagnosis of children with autosomal dominant short stature and family history of joints disease.
Collapse
Affiliation(s)
- Valentina Mancioppi
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Flavia Prodam
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.,Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Simona Mellone
- Laboratory of Genetics, SCDU Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy
| | - Roberta Ricotti
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Enza Giglione
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Nicolino Grasso
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Denise Vurchio
- Laboratory of Genetics, SCDU Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy
| | - Antonella Petri
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mara Giordano
- Laboratory of Genetics, SCDU Biochimica Clinica, Ospedale Maggiore della Carità, Novara, Italy.,Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Simonetta Bellone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Interdisciplinary Research Center of Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
11
|
Lin L, Li M, Luo J, Li P, Zhou S, Yang Y, Chen K, Weng Y, Ge X, Mireguli M, Wei H, Yang H, Li G, Sun Y, Cui L, Zhang S, Chen J, Zeng G, Xu L, Luo X, Shen Y. A High Proportion of Novel ACAN Mutations and Their Prevalence in a Large Cohort of Chinese Short Stature Children. J Clin Endocrinol Metab 2021; 106:e2711-e2719. [PMID: 33606014 PMCID: PMC8208663 DOI: 10.1210/clinem/dgab088] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT Aggrecan, encoded by the ACAN gene, is the main proteoglycan component in the extracellular cartilage matrix. Heterozygous mutations in ACAN have been reported to cause idiopathic short stature. However, the prevalence of ACAN pathogenic variants in Chinese short stature patients and clinical phenotypes remain to be evaluated. OBJECTIVE We sought to determine the prevalence of ACAN pathogenic variants among Chinese short stature children and characterize the phenotypic spectrum and their responses to growth hormone therapies. PATIENTS AND METHODS Over 1000 unrelated short stature patients ascertained across China were genetically evaluated by next-generation sequencing-based test. RESULT We identified 10 novel likely pathogenic variants and 2 recurrent pathogenic variants in this cohort. None of ACAN mutation carriers exhibited significant dysmorphic features or skeletal abnormities. The prevalence of ACAN defect is estimated to be 1.2% in the whole cohort; it increased to 14.3% among those with advanced bone age and to 35.7% among those with both advanced bone age and family history of short stature. Nonetheless, 5 of 11 ACAN mutation carries had no advanced bone age. Two individuals received growth hormone therapy with variable levels of height SD score improvement. CONCLUSION Our data suggest that ACAN mutation is 1 of the common causes of Chinese pediatric short stature. Although it has a higher detection rate among short stature patients with advanced bone age and family history, part of affected probands presented with delayed bone age in Chinese short stature population. The growth hormone treatment was moderately effective for both individuals.
Collapse
Affiliation(s)
- Li Lin
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Mengting Li
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Pin Li
- Department of Endocrinology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Zhou
- Department of Endocrinology, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yang
- Affiliation Children’s Hospital of Nanchang University, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Ka Chen
- Affiliation Children’s Hospital of Nanchang University, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Ying Weng
- Department of Pediatrics, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuying Ge
- Linyi Maternal and Child Health Care Hospital, Linyi, Shandong, China
| | - Maimaiti Mireguli
- Department of Pediatrics, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, China
| | - Haiyan Wei
- Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Haihua Yang
- Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Guimei Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Sun
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lanwei Cui
- Department of Pediatrics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shulin Zhang
- Department of Pediatrics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Chen
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guozhang Zeng
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Lijun Xu
- Department of Child Health, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
- Correspondence: Xiaoping Luo, Department of Pediatrics, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430074, China. E-mail:
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Neurology, Harvard Medical School, Boston, MA, USA
- Yiping Shen, Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China. E-mail:
| |
Collapse
|
12
|
Abstract
Osteochondritis dissecans (OCD) is a chronic disease of the articular cartilage characterized by focal lesions of subchondral bone and overlaying cartilage. Through the growing number of reports describing the high prevalence of OCD in some families, the subcategory termed familial OCD (FOCD) was established. With the development of genetic approaches such as genome-wide association studies and sequencing, aggrecan (ACAN) has been identified as one of the genes of interest associated with FOCD. Aggrecan is a crucial protein for the preservation and function of cartilage. However, due to FOCD being characterized relatively recently, there is a paucity of literature on the subject. The purpose of this review is to explore the relationship between ACAN mutations and familial OCD as well as to explore current treatment options and avenues for future research. In vitro and animal studies have shown the importance of ACAN in the preservation of cartilage. However, the only human ACAN mutation related to OCD ever identified is a V2303M mutation in the G3 domain. Multiple treatments have been superficially explored, and some options such as growth hormone (GH) and gonadotrophin-releasing hormone agonists (GnRHa) show potential. Thus, further research on FOCD in needed to identify other ACAN mutations and determine optimal treatment modalities for this patient population.
Collapse
|
13
|
Faienza MF, Chiarito M, Brunetti G, D'Amato G. Growth plate gene involment and isolated short stature. Endocrine 2021; 71:28-34. [PMID: 32504378 DOI: 10.1007/s12020-020-02362-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Short stature is a common clinical presentation, thus it is widely accepted that it is a polygenic trait. However, genome wide association and next generation sequencing studies have recently challenged this view, suggesting that many of the children classified as idiopathic short stature could instead have monogenic defects. Linear growth is determined primarily by chondrogenesis at the growth plate. This process results from chondrocyte proliferation, hypertrophy, and extracellular matrix secretion, and it is perfectly coordinated by complex networks of local paracrine and endocrine factors. Alterations in genes which control growth plate development can explain a large number of cases of isolated short stature, allowing an etiological diagnosis. METHODS/RESULTS We reviewed recent data on the genetic alterations in fundamental cellular processes, paracrine signaling, and cartilage matrix formation associated with impaired growth plate chondrogenesis. In particular we focused on growth plate gene involvement in nonsyndromic short stature. CONCLUSIONS The identification of genetic basis of growth failure will have a significant impact on the care of children affected with short stature.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Mariangela Chiarito
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University of Bari "A. Moro", Bari, Italy
| | | |
Collapse
|
14
|
Liang H, Miao H, Pan H, Yang H, Gong F, Duan L, Chen S, Wang L, Zhu H. Growth-Promoting Therapies May Be Useful In Short Stature Patients With Nonspecific Skeletal Abnormalities Caused By Acan Heterozygous Mutations: Six Chinese Cases And Literature Review. Endocr Pract 2020; 26:1255-1268. [PMID: 33471655 DOI: 10.4158/ep-2019-0518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE There are numerous reasons for short stature, including mutations in osteochondral development genes. ACAN, one such osteochondral development gene in which heterozygous mutations can cause short stature, has attracted attention from researchers in recent years. Therefore, we analyzed six cases of short stature with heterozygous ACAN mutations and performed a literature review. METHODS Clinical information and blood samples from 6 probands and their family members were collected after consent forms were signed. Gene mutations in the probands were detected by whole-exome sequencing. Then, we searched the literature, performed statistical analyses, and summarized the characteristics of all reported cases. RESULTS We identified six novel mutations in ACAN: c.1411C>T, c.1817C>A, c.1762C>T, c.2266G>C, c.7469G>A, and c.1733-1G>A. In the literature, more than 200 affected individuals have been diagnosed genetically with a similar condition (height standard deviation score [SDS] -3.14 ± 1.15). Among affected individuals receiving growth-promoting treatment, their height before and after treatment was SDS -2.92±1.07 versus SDS -2.14±1.23 (P<.001). As of July 1, 2019, a total of 57 heterozygous ACAN mutations causing nonsyndromic short stature had been reported, including the six novel mutations found in our study. Approximately half of these mutations can lead to protein truncation. CONCLUSIONS This study used clinical and genetic means to examine the relationship between the ACAN gene and short stature. To some extent, clear diagnosis is difficult, since most of these affected individuals' characteristics are not prominent. Growth-promoting therapies may be beneficial for increasing the height of affected patients. ABBREVIATIONS AI = aromatase inhibitor; ECM = extracellular matrix; GnRHa = gonadotropin-releasing hormone analogue; IQR = interquartile range; MIM = Mendelian Inheritance in Man; PGHD = partial growth hormone deficiency; rhGH = recombinant human growth hormone; SDS = standard deviation score; SGA = small for gestational age; SGHD = severe growth hormone deficiency.
Collapse
Affiliation(s)
- Hanting Liang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Miao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lian Duan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medixcal College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China..
| |
Collapse
|
15
|
Abstract
Osteoarthritis (OA) is a multifactorial disease with huge phenotypic heterogeneity. The disease affects all tissues in the joint, and the loss of articular cartilage is its hallmark. The main biochemical components of the articular cartilage are type II collagen, aggrecan, and water. Transforming growth factor-beta (TGF-β) signaling is one of the signaling pathways that maintains the healthy cartilage. However, the two subpathways of the TGF-β signaling-TGF-β and bone morphogenetic proteins (BMP) subpathways, lose their balance in OA, resulting an increased expression of cartilage degradation enzymes including matrix metallopeptidase 13 (MMP13), cathepsin B (CTSB), and cathepsin K (CTSK) and a decreased expression of aggrecan (ACAN). Thus, restoring the balance of two subpathways might provide a new avenue for treating OA patients. Further, metabolic changes are seen in OA and can be used to distinguish different subtypes of OA patients. Metabolomics studies showed that at least three endotypes of OA can be distinguished: 11% of OA patients are characterized by an elevated blood butyryl carnitine, 33% of OA patients have significant reduced arginine concentration, and 56% with metabolic alteration in phospholipid metabolism. While these findings need to be confirmed, they are promising personalized medicine tools for OA management.
Collapse
Affiliation(s)
- Guangju Zhai
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
16
|
Stavber L, Hovnik T, Kotnik P, Lovrečić L, Kovač J, Tesovnik T, Bertok S, Dovč K, Debeljak M, Battelino T, Avbelj Stefanija M. High frequency of pathogenic ACAN variants including an intragenic deletion in selected individuals with short stature. Eur J Endocrinol 2020; 182:243-253. [PMID: 31841439 PMCID: PMC7087498 DOI: 10.1530/eje-19-0771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
CONTEXT Defining the underlying etiology of idiopathic short stature (ISS) improves the overall management of an individual. OBJECTIVE To assess the frequency of pathogenic ACAN variants in selected individuals. DESIGN The single-center cohort study was conducted at a tertiary university children's hospital. From 51 unrelated patients with ISS, the 16 probands aged between 3 and 18 years (12 females) with advanced bone age and/or autosomal dominant inheritance pattern of short stature were selected for the study. Fifteen family members of ACAN-positive probands were included. Exome sequencing was performed in all probands, and additional copy number variation (CNV) detection was applied in selected probands with a distinct ACAN-associated phenotype. RESULTS Systematic phenotyping of the study cohort yielded 37.5% (6/16) ACAN-positive probands, with all novel pathogenic variants, including a 6.082 kb large intragenic deletion, detected by array comparative genomic hybridization (array CGH) and exome data analysis. All variants were co-segregated with short stature phenotype, except in one family member with the intragenic deletion who had an unexpected growth pattern within the normal range (-0.5 SDS). One patient presented with otosclerosis, a sign not previously associated with aggrecanopathy. CONCLUSIONS ACAN pathogenic variants presented a common cause of familial ISS. The selection criteria used in our study were suggested for a personalized approach to genetic testing of the ACAN gene in clinical practice. Our results expanded the number of pathogenic ACAN variants, including the first intragenic deletion, and suggested CNV evaluation in patients with typical clinical features of aggrecanopathy as reasonable. Intra-familial phenotypic variability in growth patterns should be considered.
Collapse
Affiliation(s)
- L Stavber
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - T Hovnik
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - P Kotnik
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - L Lovrečić
- Clinical Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia
| | - J Kovač
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - T Tesovnik
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - S Bertok
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - K Dovč
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - M Debeljak
- Unit for Special Laboratory Diagnostics, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
| | - T Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - M Avbelj Stefanija
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre, Ljubljana, Slovenia
- Correspondence should be addressed to M Avbelj Stefanija;
| |
Collapse
|
17
|
Wit JM, Kamp GA, Oostdijk W. Towards a Rational and Efficient Diagnostic Approach in Children Referred for Growth Failure to the General Paediatrician. Horm Res Paediatr 2020; 91:223-240. [PMID: 31195397 DOI: 10.1159/000499915] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022] Open
Abstract
Based on a recent Dutch national guideline, we propose a structured stepwise diagnostic approach for children with growth failure (short stature and/or growth faltering), aiming at high sensitivity for pathologic causes at acceptable specificity. The first step is a detailed clinical assessment, aiming at obtaining relevant clinical clues from the medical history (including family history), physical examination (emphasising head circumference, body proportions and dysmorphic features) and assessment of the growth curve. The second step consists of screening: a radiograph of the hand and wrist (for bone age and assessment of anatomical abnormalities suggestive for a skeletal dysplasia) and laboratory tests aiming at detecting disorders that can present as isolated short stature (anaemia, growth hormone deficiency, hypothyroidism, coeliac disease, renal failure, metabolic bone diseases, renal tubular acidosis, inflammatory bowel disease, Turner syndrome [TS]). We advise molecular array analysis rather than conventional karyotyping for short girls because this detects not only TS but also copy number variants and uniparental isodisomy, increasing diagnostic yield at a lower cost. Third, in case of diagnostic clues for primary growth disorders, further specific testing for candidate genes or a hypothesis-free approach is indicated; suspicion of a secondary growth disorder warrants adequate further targeted testing.
Collapse
Affiliation(s)
- Jan M Wit
- Department of Paediatrics, Leiden University Medical Center, Leiden, The Netherlands,
| | - Gerdine A Kamp
- Department of Paediatrics, Tergooi Hospital, Blaricum, The Netherlands
| | - Wilma Oostdijk
- Department of Paediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
18
|
Freire BL, Homma TK, Funari MFA, Lerario AM, Vasques GA, Malaquias AC, Arnhold IJP, Jorge AAL. Multigene Sequencing Analysis of Children Born Small for Gestational Age With Isolated Short Stature. J Clin Endocrinol Metab 2019; 104:2023-2030. [PMID: 30602027 DOI: 10.1210/jc.2018-01971] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/27/2018] [Indexed: 02/04/2023]
Abstract
CONTEXT Patients born small for gestational age (SGA) who present with persistent short stature could have an underlying genetic etiology that will account for prenatal and postnatal growth impairment. We applied a unique massive parallel sequencing approach in cohort of patients with exclusively nonsyndromic SGA to simultaneously interrogate for clinically substantial genetic variants. OBJECTIVE To perform a genetic investigation of children with isolated short stature born SGA. DESIGN Screening by exome (n = 16) or targeted gene panel (n = 39) sequencing. SETTING Tertiary referral center for growth disorders. PATIENTS AND METHODS We selected 55 patients born SGA with persistent short stature without an identified cause of short stature. MAIN OUTCOME MEASURES Frequency of pathogenic findings. RESULTS We identified heterozygous pathogenic or likely pathogenic genetic variants in 8 of 55 patients, all in genes already associated with growth disorders. Four of the genes are associated with growth plate development, IHH (n = 2), NPR2 (n = 2), SHOX (n = 1), and ACAN (n = 1), and two are involved in the RAS/MAPK pathway, PTPN11 (n = 1) and NF1 (n = 1). None of these patients had clinical findings that allowed for a clinical diagnosis. Seven patients were SGA only for length and one was SGA for both length and weight. CONCLUSION These genomic approaches identified pathogenic or likely pathogenic genetic variants in 8 of 55 patients (15%). Six of the eight patients carried variants in genes associated with growth plate development, indicating that mild forms of skeletal dysplasia could be a cause of growth disorders in this group of patients.
Collapse
Affiliation(s)
- Bruna L Freire
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP, Brazil
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP, Brazil
| | - Thais K Homma
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP, Brazil
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP, Brazil
| | - Antônio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Gabriela A Vasques
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP, Brazil
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP, Brazil
| | - Alexsandra C Malaquias
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP, Brazil
- Unidade de Endocrinologia Pediátrica, Departamento de Pediatria, Irmandade da Santa Casa de Misericórdia de São Paulo, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP, Brazil
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo CEP, Brazil
| |
Collapse
|
19
|
Yue S, Whalen P, Jee YH. Genetic regulation of linear growth. Ann Pediatr Endocrinol Metab 2019; 24:2-14. [PMID: 30943674 PMCID: PMC6449614 DOI: 10.6065/apem.2019.24.1.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Linear growth occurs at the growth plate. Therefore, genetic defects that interfere with the normal function of the growth plate can cause linear growth disorders. Many genetic causes of growth disorders have already been identified in humans. However, recent genome-wide approaches have broadened our knowledge of the mechanisms of linear growth, not only providing novel monogenic causes of growth disorders but also revealing single nucleotide polymorphisms in genes that affect height in the general population. The genes identified as causative of linear growth disorders are heterogeneous, playing a role in various growth-regulating mechanisms including those involving the extracellular matrix, intracellular signaling, paracrine signaling, endocrine signaling, and epigenetic regulation. Understanding the underlying genetic defects in linear growth is important for clinicians and researchers in order to provide proper diagnoses, management, and genetic counseling, as well as to develop better treatment approaches for children with growth disorders.
Collapse
Affiliation(s)
- Shanna Yue
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Philip Whalen
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Youn Hee Jee
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA,Address for correspondence: Youn Hee Jee, MD Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive MSC 1103, Bethesda, MD 20892-1103, USA Tel: +1-301-435-5834 Fax: +1-301-402-0574 E-mail:
| |
Collapse
|
20
|
Finken MJJ, van der Steen M, Smeets CCJ, Walenkamp MJE, de Bruin C, Hokken-Koelega ACS, Wit JM. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr Rev 2018; 39:851-894. [PMID: 29982551 DOI: 10.1210/er.2018-00083] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022]
Abstract
Children born small for gestational age (SGA), defined as a birth weight and/or length below -2 SD score (SDS), comprise a heterogeneous group. The causes of SGA are multifactorial and include maternal lifestyle and obstetric factors, placental dysfunction, and numerous fetal (epi)genetic abnormalities. Short-term consequences of SGA include increased risks of hypothermia, polycythemia, and hypoglycemia. Although most SGA infants show catch-up growth by 2 years of age, ∼10% remain short. Short children born SGA are amenable to GH treatment, which increases their adult height by on average 1.25 SD. Add-on treatment with a gonadotropin-releasing hormone agonist may be considered in early pubertal children with an expected adult height below -2.5 SDS. A small birth size increases the risk of later neurodevelopmental problems and cardiometabolic diseases. GH treatment does not pose an additional risk.
Collapse
Affiliation(s)
- Martijn J J Finken
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Carolina C J Smeets
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Marie J E Walenkamp
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Christiaan de Bruin
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Genome-wide approaches including genome-wide association studies as well as exome and genome sequencing represent powerful new approaches that have improved our ability to identify genetic causes of human disorders. The purpose of this review is to describe recent advances in the genetic causes of short stature. RECENT FINDINGS In addition to SHOX deficiency which is one of the most common causes of isolated short stature, PAPPA2, ACAN, NPPC, NPR2, PTPN11 (and other rasopathies), FBN1, IHH and BMP2 have been identified in isolated growth disorders with or without other mild skeletal findings. In addition, novel genetic causes of syndromic short stature have been discovered, including pathogenic variants in BRCA1, DONSON, AMMECR1, NFIX, SLC25A24, and FN1. SUMMARY Isolated growth disorders are often monogenic. Specific genetic causes typically have specific biochemical and/or phenotype characteristics which are diagnostically helpful. Identification of additional subjects with a specific genetic cause of short stature often leads to a broadening of the known clinical spectrum for that condition. The identification of novel genetic causes of short stature has provided important insights into the underlying molecular mechanisms of growth failure.
Collapse
|