1
|
Sundstrom J, Vanderleeden E, Barton NJ, Redick SD, Dawes P, Murray LF, Olson MN, Tran K, Chigas SM, Orszulak AR, Church GM, Readhead B, Oh HS, Harlan DM, Knipe DM, Wang JP, Chan Y, Lim ET. Herpes Simplex Virus 1 Infection of Human Brain Organoids and Pancreatic Stem Cell-Islets Drives Organoid-Specific Transcripts Associated with Alzheimer's Disease and Autoimmune Diseases. Cells 2024; 13:1978. [PMID: 39682726 PMCID: PMC11640215 DOI: 10.3390/cells13231978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Viral infections leading to inflammation have been implicated in several common diseases, such as Alzheimer's disease (AD) and type 1 diabetes (T1D). Of note, herpes simplex virus 1 (HSV-1) has been reported to be associated with AD. We sought to identify the transcriptomic changes due to HSV-1 infection and anti-viral drug (acyclovir, ACV) treatment of HSV-1 infection in dissociated cells from human cerebral organoids (dcOrgs) versus stem cell-derived pancreatic islets (sc-islets) to gain potential biological insights into the relevance of HSV-1-induced inflammation in AD and T1D. We observed that differentially expressed genes (DEGs) in HSV-1-infected sc-islets were enriched for genes associated with several autoimmune diseases, most significantly, T1D, but also rheumatoid arthritis, psoriasis, Crohn's disease, and multiple sclerosis, whereas DEGs in HSV-1-infected dcOrgs were exclusively enriched for genes associated with AD. The ACV treatment of sc-islets was not as effective in rescuing transcript perturbations of autoimmune disease-associated genes. Finally, we identified gene ontology categories that were enriched for DEGs that were in common across, or unique to, viral treatment of dcOrgs and sc-islets, such as categories involved in the transferase complex, mitochondrial, and autophagy function. In addition, we compared transcriptomic signatures from HSV-1-infected sc-islets with sc-islets that were infected with the coxsackie B virus (CVB) that had been associated with T1D pathogenesis. Collectively, this study provides tissue-specific insights into the molecular effects of inflammation in AD and T1D.
Collapse
Affiliation(s)
- Jonathan Sundstrom
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Emma Vanderleeden
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nathaniel J. Barton
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sambra D. Redick
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Pepper Dawes
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Liam F. Murray
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Meagan N. Olson
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Khanh Tran
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Graduate Program in Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Samantha M. Chigas
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Graduate Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Adrian R. Orszulak
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Graduate Program in Immunology and Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - George M. Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA
| | - Hyung Suk Oh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - David M. Harlan
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David M. Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer P. Wang
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yingleong Chan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Elaine T. Lim
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Lemos JRN, Hirani K, von Herrath M. Immunological and virological triggers of type 1 diabetes: insights and implications. Front Immunol 2024; 14:1326711. [PMID: 38239343 PMCID: PMC10794398 DOI: 10.3389/fimmu.2023.1326711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Type 1 diabetes (T1D) is caused by an autoimmune process which culminates in the destruction of insulin-producing beta cells in the pancreas. It is widely believed that a complex and multifactorial interplay between genetic and environmental factors, such as viruses, play a crucial role in the development of the disease. Research over the past few decades has shown that there is not one single viral culprit, nor one single genetic pathway, causing the disease. Rather, viral infections, most notably enteroviruses (EV), appear to accelerate the autoimmune process leading to T1D and are often seen as a precipitator of clinical diagnosis. In support of this hypothesis, the use of anti-viral drugs has recently shown efficacy in preserving beta cell function after onset of diabetes. In this review, we will discuss the various pathways that viral infections utilize to accelerate the development of T1D. There are three key mechanisms linking viral infections to beta-cell death: One is modulated by the direct infection of islets by viruses, resulting in their impaired function, another occurs in a more indirect fashion, by modulating the immune system, and the third is caused by heightened stress on the beta-cell by interferon-mediated increase of insulin resistance. The first two aspects are surprisingly difficult to study, in the case of the former, because there are still many questions about how viruses might persist for longer time periods. In the latter, indirect/immune case, viruses might impact immunity as a hit-and-run scenario, meaning that many or all direct viral footprints quickly vanish, while changes imprinted upon the immune system and the anti-islet autoimmune response persist. Given the fact that viruses are often associated with the precipitation of clinical autoimmunity, there are concerns regarding the impact of the recent global coronavirus-2019 (COVID-19) pandemic on the development of autoimmune disease. The long-term effects of COVID-19 infection on T1D will therefore be discussed, including the increased development of new cases of T1D. Understanding the interplay between viral infections and autoimmunity is crucial for advancing our knowledge in this field and developing targeted therapeutic interventions. In this review we will examine the intricate relationship between viral infections and autoimmunity and discuss potential considerations for prevention and treatment strategies.
Collapse
Affiliation(s)
- Joana R. N. Lemos
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, United States
| | - Khemraj Hirani
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Matthias von Herrath
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark
| |
Collapse
|
3
|
Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023; 15:v15030782. [PMID: 36992490 PMCID: PMC10051805 DOI: 10.3390/v15030782] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.
Collapse
Affiliation(s)
- Bhargavi Sundaresan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Fatemeh Shirafkan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kevin Ripperger
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kristin Rattay
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
4
|
Nekoua MP, Alidjinou EK, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2022; 18:503-516. [PMID: 35650334 PMCID: PMC9157043 DOI: 10.1038/s41574-022-00688-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 12/15/2022]
Abstract
Enteroviruses are believed to trigger or accelerate islet autoimmunity in genetically susceptible individuals, thereby resulting in loss of functional insulin-producing β-cells and type 1 diabetes mellitus (T1DM). Although enteroviruses are primarily involved in acute and lytic infections in vitro and in vivo, they can also establish a persistent infection. Prospective epidemiological studies have strongly associated the persistence of enteroviruses, especially coxsackievirus B (CVB), with the appearance of islet autoantibodies and an increased risk of T1DM. CVB can persist in pancreatic ductal and β-cells, which leads to structural or functional alterations of these cells, and to a chronic inflammatory response that promotes recruitment and activation of pre-existing autoreactive T cells and β-cell autoimmune destruction. CVB persistence in other sites, such as the intestine, blood cells and thymus, has been described; these sites could serve as a reservoir for infection or reinfection of the pancreas, and this persistence could have a role in the disturbance of tolerance to β-cells. This Review addresses the involvement of persistent enterovirus infection in triggering islet autoimmunity and T1DM, as well as current strategies to control enterovirus infections for preventing or reducing the risk of T1DM onset.
Collapse
Affiliation(s)
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France.
| |
Collapse
|
5
|
Oelen R, de Vries DH, Brugge H, Gordon MG, Vochteloo M, Ye CJ, Westra HJ, Franke L, van der Wijst MGP. Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread, context-specific gene expression regulation upon pathogenic exposure. Nat Commun 2022; 13:3267. [PMID: 35672358 PMCID: PMC9174272 DOI: 10.1038/s41467-022-30893-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
The host's gene expression and gene regulatory response to pathogen exposure can be influenced by a combination of the host's genetic background, the type of and exposure time to pathogens. Here we provide a detailed dissection of this using single-cell RNA-sequencing of 1.3M peripheral blood mononuclear cells from 120 individuals, longitudinally exposed to three different pathogens. These analyses indicate that cell-type-specificity is a more prominent factor than pathogen-specificity regarding contexts that affect how genetics influences gene expression (i.e., eQTL) and co-expression (i.e., co-expression QTL). In monocytes, the strongest responder to pathogen stimulations, 71.4% of the genetic variants whose effect on gene expression is influenced by pathogen exposure (i.e., response QTL) also affect the co-expression between genes. This indicates widespread, context-specific changes in gene expression level and its regulation that are driven by genetics. Pathway analysis on the CLEC12A gene that exemplifies cell-type-, exposure-time- and genetic-background-dependent co-expression interactions, shows enrichment of the interferon (IFN) pathway specifically at 3-h post-exposure in monocytes. Similar genetic background-dependent association between IFN activity and CLEC12A co-expression patterns is confirmed in systemic lupus erythematosus by in silico analysis, which implies that CLEC12A might be an IFN-regulated gene. Altogether, this study highlights the importance of context for gaining a better understanding of the mechanisms of gene regulation in health and disease.
Collapse
Affiliation(s)
- Roy Oelen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Dylan H de Vries
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Harm Brugge
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - M Grace Gordon
- Biological and Medical Informatics Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Martijn Vochteloo
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Chun J Ye
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- UCSF Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Harm-Jan Westra
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Buchacher T, Honkimaa A, Välikangas T, Lietzén N, Hirvonen MK, Laiho JE, Sioofy-Khojine AB, Eskelinen EL, Hyöty H, Elo LL, Lahesmaa R. Persistent coxsackievirus B1 infection triggers extensive changes in the transcriptome of human pancreatic ductal cells. iScience 2022; 25:103653. [PMID: 35024587 PMCID: PMC8728469 DOI: 10.1016/j.isci.2021.103653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses, particularly the group B coxsackieviruses (CVBs), have been associated with the development of type 1 diabetes. Several CVB serotypes establish chronic infections in human cells in vivo and in vitro. However, the mechanisms leading to enterovirus persistency and, possibly, beta cell autoimmunity are not fully understood. We established a carrier-state-type persistent infection model in human pancreatic cell line PANC-1 using two distinct CVB1 strains and profiled the infection-induced changes in cellular transcriptome. In the current study, we observed clear changes in the gene expression of factors associated with the pancreatic microenvironment, the secretory pathway, and lysosomal biogenesis during persistent CVB1 infections. Moreover, we found that the antiviral response pathways were activated differently by the two CVB1 strains. Overall, our study reveals extensive transcriptional responses in persistently CVB1-infected pancreatic cells with strong opposite but also common changes between the two strains.
Collapse
Affiliation(s)
- Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Anni Honkimaa
- Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Niina Lietzén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - M. Karoliina Hirvonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Jutta E. Laiho
- Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | | | | | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere FI-33520, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku FI-20014, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Bernard H, Teijeiro A, Chaves-Pérez A, Perna C, Satish B, Novials A, Wang JP, Djouder N. Coxsackievirus B Type 4 Infection in β Cells Downregulates the Chaperone Prefoldin URI to Induce a MODY4-like Diabetes via Pdx1 Silencing. CELL REPORTS MEDICINE 2020; 1:100125. [PMID: 33205075 PMCID: PMC7659558 DOI: 10.1016/j.xcrm.2020.100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Enteroviruses are suspected to contribute to insulin-producing β cell loss and hyperglycemia-induced diabetes. However, mechanisms are not fully defined. Here, we show that coxsackievirus B type 4 (CVB4) infection in human islet-engrafted mice and in rat insulinoma cells displays loss of unconventional prefoldin RPB5 interactor (URI) and PDX1, affecting β cell function and identity. Genetic URI ablation in the mouse pancreas causes PDX1 depletion in β cells. Importantly, diabetic PDX1 heterozygous mice overexpressing URI in β cells are more glucose tolerant. Mechanistically, URI loss triggers estrogen receptor nuclear translocation leading to DNA methyltransferase 1 (DNMT1) expression, which induces Pdx1 promoter hypermethylation and silencing. Consequently, demethylating agent procainamide-mediated DNMT1 inhibition reinstates PDX1 expression and protects against diabetes in pancreatic URI-depleted mice . Finally, the β cells of human diabetes patients show correlations between viral protein 1 and URI, PDX1, and DNMT1 levels. URI and DNMT1 expression and PDX1 silencing provide a causal link between enterovirus infection and diabetes. Coxsackievirus B type 4 infection downregulates URI and affects β cell function Genetic URI ablation in mouse pancreas recapitulates diabetes URI controls Pdx1 methylation via ERα-activating DNMT1 Coxsackievirus B type 4, URI, PDX1, and DNMT1 expression correlate in human pancreata
Collapse
MESH Headings
- Animals
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Coxsackievirus Infections/genetics
- Coxsackievirus Infections/metabolism
- Coxsackievirus Infections/pathology
- Coxsackievirus Infections/virology
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/virology
- Disease Models, Animal
- Enterovirus B, Human/genetics
- Enterovirus B, Human/metabolism
- Enterovirus B, Human/pathogenicity
- Female
- Gene Expression Regulation
- Glucose/metabolism
- Glucose/pharmacology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Insulin-Secreting Cells/transplantation
- Male
- Mice
- Mice, Transgenic
- Procainamide/pharmacology
- Rats
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Hugo Bernard
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Ana Teijeiro
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Almudena Chaves-Pérez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Basanthi Satish
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Novials
- IDIBAPS, August Pi i Sunyer Biomedical Research Institute and, CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
- Corresponding author
| |
Collapse
|
8
|
Nyalwidhe JO, Jurczyk A, Satish B, Redick S, Qaisar N, Trombly MI, Vangala P, Racicot R, Bortell R, Harlan DM, Greiner DL, Brehm MA, Nadler JL, Wang JP. Proteomic and Transcriptional Profiles of Human Stem Cell-Derived β Cells Following Enteroviral Challenge. Microorganisms 2020; 8:microorganisms8020295. [PMID: 32093375 PMCID: PMC7074978 DOI: 10.3390/microorganisms8020295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/04/2023] Open
Abstract
Enteroviral infections are implicated in islet autoimmunity and type 1 diabetes (T1D) pathogenesis. Significant β-cell stress and damage occur with viral infection, leading to cells that are dysfunctional and vulnerable to destruction. Human stem cell-derived β (SC-β) cells are insulin-producing cell clusters that closely resemble native β cells. To better understand the events precipitated by enteroviral infection of β cells, we investigated transcriptional and proteomic changes in SC-β cells challenged with coxsackie B virus (CVB). We confirmed infection by demonstrating that viral protein colocalized with insulin-positive SC-β cells by immunostaining. Transcriptome analysis showed a decrease in insulin gene expression following infection, and combined transcriptional and proteomic analysis revealed activation of innate immune pathways, including type I interferon (IFN), IFN-stimulated genes, nuclear factor-kappa B (NF-κB) and downstream inflammatory cytokines, and major histocompatibility complex (MHC) class I. Finally, insulin release by CVB4-infected SC-β cells was impaired. These transcriptional, proteomic, and functional findings are in agreement with responses in primary human islets infected with CVB ex vivo. Human SC-β cells may serve as a surrogate for primary human islets in virus-induced diabetes models. Because human SC-β cells are more genetically tractable and accessible than primary islets, they may provide a preferred platform for investigating T1D pathogenesis and developing new treatments.
Collapse
Affiliation(s)
- Julius O. Nyalwidhe
- Department of Microbiology and Molecular Cell Biology and Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (J.O.N.); (J.L.N.)
| | - Agata Jurczyk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; (A.J.); (S.R.); (R.B.); (D.L.G.); (M.A.B.)
| | - Basanthi Satish
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; (B.S.); (N.Q.); (M.I.T.); (R.R.); (D.M.H.)
| | - Sambra Redick
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; (A.J.); (S.R.); (R.B.); (D.L.G.); (M.A.B.)
| | - Natasha Qaisar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; (B.S.); (N.Q.); (M.I.T.); (R.R.); (D.M.H.)
| | - Melanie I. Trombly
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; (B.S.); (N.Q.); (M.I.T.); (R.R.); (D.M.H.)
| | - Pranitha Vangala
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Riccardo Racicot
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; (B.S.); (N.Q.); (M.I.T.); (R.R.); (D.M.H.)
| | - Rita Bortell
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; (A.J.); (S.R.); (R.B.); (D.L.G.); (M.A.B.)
| | - David M. Harlan
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; (B.S.); (N.Q.); (M.I.T.); (R.R.); (D.M.H.)
| | - Dale L. Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; (A.J.); (S.R.); (R.B.); (D.L.G.); (M.A.B.)
| | - Michael A. Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; (A.J.); (S.R.); (R.B.); (D.L.G.); (M.A.B.)
| | - Jerry L. Nadler
- Department of Microbiology and Molecular Cell Biology and Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (J.O.N.); (J.L.N.)
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; (B.S.); (N.Q.); (M.I.T.); (R.R.); (D.M.H.)
- Correspondence: ; Tel.: +01-508-856-8414
| |
Collapse
|
9
|
Piganelli JD, Mamula MJ, James EA. The Role of β Cell Stress and Neo-Epitopes in the Immunopathology of Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:624590. [PMID: 33679609 PMCID: PMC7930070 DOI: 10.3389/fendo.2020.624590] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Due to their secretory function, β cells are predisposed to higher levels of endoplasmic reticulum (ER) stress and greater sensitivity to inflammation than other cell types. These stresses elicit changes in β cells that alter their function and immunogenicity, including defective ribosomal initiation, post-translational modifications (PTMs) of endogenous β cell proteins, and alternative splicing. Multiple published reports confirm the presence of not only CD8+ T cells, but also autoreactive CD4+ T cells within pancreatic islets. Although the specificities of T cells that infiltrate human islets are incompletely characterized, they have been confirmed to include neo-epitopes that are formed through stress-related enzymatic modifications of β cell proteins. This article summarizes emerging knowledge about stress-induced changes in β cells and data supporting a role for neo-antigen formation and cross-talk between immune cells and β cells that provokes autoimmune attack - leading to a breakdown in tissue-specific tolerance in subjects who develop type 1 diabetes.
Collapse
Affiliation(s)
- Jon D. Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mark J. Mamula
- Section of Rheumatology, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Eddie A. James
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
- *Correspondence: Eddie A. James,
| |
Collapse
|
10
|
Lietzén N, Hirvonen K, Honkimaa A, Buchacher T, Laiho JE, Oikarinen S, Mazur MA, Flodström-Tullberg M, Dufour E, Sioofy-Khojine AB, Hyöty H, Lahesmaa R. Coxsackievirus B Persistence Modifies the Proteome and the Secretome of Pancreatic Ductal Cells. iScience 2019; 19:340-357. [PMID: 31404834 PMCID: PMC6699423 DOI: 10.1016/j.isci.2019.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
The group B Coxsackieviruses (CVB), belonging to the Enterovirus genus, can establish persistent infections in human cells. These persistent infections have been linked to chronic diseases including type 1 diabetes. Still, the outcomes of persistent CVB infections in human pancreas are largely unknown. We established persistent CVB infections in a human pancreatic ductal-like cell line PANC-1 using two distinct CVB1 strains and profiled infection-induced changes in cellular protein expression and secretion using mass spectrometry-based proteomics. Persistent infections, showing characteristics of carrier-state persistence, were associated with a broad spectrum of changes, including changes in mitochondrial network morphology and energy metabolism and in the regulated secretory pathway. Interestingly, the expression of antiviral immune response proteins, and also several other proteins, differed clearly between the two persistent infections. Our results provide extensive information about the protein-level changes induced by persistent CVB infection and the potential virus-associated variability in the outcomes of these infections.
Collapse
Affiliation(s)
- Niina Lietzén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Karoliina Hirvonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Anni Honkimaa
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Jutta E Laiho
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Magdalena A Mazur
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm 141 86, Sweden
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm 141 86, Sweden
| | - Eric Dufour
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 Tampere, Finland
| | | | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; Fimlab Laboratories, Pirkanmaa Hospital District, FI-33520 Tampere, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland.
| |
Collapse
|
11
|
Nakayasu ES, Qian WJ, Evans-Molina C, Mirmira RG, Eizirik DL, Metz TO. The role of proteomics in assessing beta-cell dysfunction and death in type 1 diabetes. Expert Rev Proteomics 2019; 16:569-582. [PMID: 31232620 PMCID: PMC6628911 DOI: 10.1080/14789450.2019.1634548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Introduction: Type 1 diabetes (T1D) is characterized by autoimmune-induced dysfunction and destruction of the pancreatic beta cells. Unfortunately, this process is poorly understood, and the current best treatment for type 1 diabetes is the administration of exogenous insulin. To better understand these mechanisms and to develop new therapies, there is an urgent need for biomarkers that can reliably predict disease stage. Areas covered: Mass spectrometry (MS)-based proteomics and complementary techniques play an important role in understanding the autoimmune response, inflammation and beta-cell death. MS is also a leading technology for the identification of biomarkers. This, and the technical difficulties and new technologies that provide opportunities to characterize small amounts of sample in great depth and to analyze large sample cohorts will be discussed in this review. Expert opinion: Understanding disease mechanisms and the discovery of disease-associated biomarkers are highly interconnected goals. Ideal biomarkers would be molecules specific to the different stages of the disease process that are released from beta cells to the bloodstream. However, such molecules are likely to be present in trace amounts in the blood due to the small number of pancreatic beta cells in the human body and the heterogeneity of the target organ and disease process.
Collapse
Affiliation(s)
- Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
12
|
Rogal J, Zbinden A, Schenke-Layland K, Loskill P. Stem-cell based organ-on-a-chip models for diabetes research. Adv Drug Deliv Rev 2019; 140:101-128. [PMID: 30359630 DOI: 10.1016/j.addr.2018.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/10/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) ranks among the severest global health concerns of the 21st century. It encompasses a group of chronic disorders characterized by a dysregulated glucose metabolism, which arises as a consequence of progressive autoimmune destruction of pancreatic beta-cells (type 1 DM), or as a result of beta-cell dysfunction combined with systemic insulin resistance (type 2 DM). Human cohort studies have provided evidence of genetic and environmental contributions to DM; yet, these studies are mostly restricted to investigating statistical correlations between DM and certain risk factors. Mechanistic studies, on the other hand, aimed at re-creating the clinical picture of human DM in animal models. A translation to human biology is, however, often inadequate owing to significant differences between animal and human physiology, including the species-specific glucose regulation. Thus, there is an urgent need for the development of advanced human in vitro models with the potential to identify novel treatment options for DM. This review provides an overview of the technological advances in research on DM-relevant stem cells and their integration into microphysiological environments as provided by the organ-on-a-chip technology.
Collapse
Affiliation(s)
- Julia Rogal
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| | - Aline Zbinden
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 3645, Los Angeles, CA, USA.
| | - Peter Loskill
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany
| |
Collapse
|
13
|
Rodriguez-Calvo T. Enterovirus infection and type 1 diabetes: unraveling the crime scene. Clin Exp Immunol 2018; 195:15-24. [PMID: 30307605 DOI: 10.1111/cei.13223] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Enteroviruses (EV) have been historically associated to type 1 diabetes. Definitive proof for their implication in disease development is lacking, but growing evidence suggests that they could be involved in beta cell destruction either directly by killing beta cells or indirectly by creating an exacerbated inflammatory response in the islets, capable of attracting autoreactive T cells to the 'scene of the crime'. Epidemiological and serological studies have been associated with the appearance of islet autoimmunity and EV RNA has been detected in prospective studies. In addition, the EV capsid protein has been detected in the islets of recent-onset type 1 diabetic donors, suggesting the existence of a low-grade EV infection that could become persistent. Increasing evidence in the field shows that a 'viral signature' exists in type 1 diabetes and involves interferon responses that could be sustained during prolonged periods. These include the up-regulation of markers such as protein kinase R (PKR), melanoma differentiation-associated protein 5 (MDA5), retinoic acid inducible gene I (RIG-I), myxovirus resistance protein (MxA) and human leukocyte antigen-I (HLA-I) and the release of chemokines able to attract immune cells to the islets leading to insulitis. In this scenario, the hyperexpression of HLA-I molecules would promote antigen presentation to autoreactive T cells, favoring beta cell recognition and, ultimately, destruction. In this review, an overview is provided of the standing evidence that implicates EVs in beta cell 'murder', the time-line of events is investigated from EV entry in the cell to beta cell death and possible accomplices are highlighted that might be involved in beta cell demise.
Collapse
Affiliation(s)
- T Rodriguez-Calvo
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
14
|
Enteroviral infections in the pathogenesis of type 1 diabetes: new insights for therapeutic intervention. Curr Opin Pharmacol 2018; 43:11-19. [PMID: 30064099 PMCID: PMC6294842 DOI: 10.1016/j.coph.2018.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022]
Abstract
Enteroviral infection has been long-associated with type 1 diabetes in epidemiological studies. β-Cells express a specific enteroviral receptor isoform, CAR-SIV, mainly on secretory granules. β-Cells respond to enteroviruses by allowing the establishment of a persistent infection. Enteroviral vaccines are under development that might be effective in type 1 diabetes.
The development of islet autoimmunity and type 1 diabetes has long been linked with enteroviral infection but a causal relationship has proven hard to establish. This is partly because much of the epidemiological evidence derives from studies of neutralising antibody generation in blood samples while less attention has been paid to the pancreatic beta cell as a site of infection. Nevertheless, recent studies have revealed that beta cells express specific enteroviral receptors and that they can sustain a productive enteroviral infection. Importantly, they can also mount antiviral responses which attenuate viral replication and may favour the establishment of a persistent enteroviral infection. Together, these responses combine to create the Trojan horse by which enteroviruses might precipitate islet autoimmunity.
Collapse
|
15
|
Eizirik DL, Op de Beeck A. Coxsackievirus and Type 1 Diabetes Mellitus: The Wolf's Footprints. Trends Endocrinol Metab 2018; 29:137-139. [PMID: 29326001 DOI: 10.1016/j.tem.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022]
Abstract
Enteroviruses are important environmental contributors to islet inflammation (insulitis) in type 1 diabetes mellitus (T1DM). A recent study characterized the proteomic alterations induced by Coxsackievirus type B (CVB) infection of human islets. This provides relevant information to decipher the words of the virus-induced 'dialog' between β cells and the immune system that leads to autoimmunity.
Collapse
Affiliation(s)
- Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium.
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
16
|
Oshima M, Knoch KP, Diedisheim M, Petzold A, Cattan P, Bugliani M, Marchetti P, Choudhary P, Huang GC, Bornstein SR, Solimena M, Albagli-Curiel O, Scharfmann R. Virus-like infection induces human β cell dedifferentiation. JCI Insight 2018; 3:97732. [PMID: 29415896 DOI: 10.1172/jci.insight.97732] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic disease characterized by an autoimmune-mediated destruction of insulin-producing pancreatic β cells. Environmental factors such as viruses play an important role in the onset of T1D and interact with predisposing genes. Recent data suggest that viral infection of human islets leads to a decrease in insulin production rather than β cell death, suggesting loss of β cell identity. We undertook this study to examine whether viral infection could induce human β cell dedifferentiation. Using the functional human β cell line EndoC-βH1, we demonstrate that polyinosinic-polycytidylic acid (PolyI:C), a synthetic double-stranded RNA that mimics a byproduct of viral replication, induces a decrease in β cell-specific gene expression. In parallel with this loss, the expression of progenitor-like genes such as SOX9 was activated following PolyI:C treatment or enteroviral infection. SOX9 was induced by the NF-κB pathway and also in a paracrine non-cell-autonomous fashion through the secretion of IFN-α. Lastly, we identified SOX9 targets in human β cells as potentially new markers of dedifferentiation in T1D. These findings reveal that inflammatory signaling has clear implications in human β cell dedifferentiation.
Collapse
Affiliation(s)
- Masaya Oshima
- INSERM U1016, Cochin Institute, Paris, France.,CNRS UMR 8104, Paris, France.,University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Klaus-Peter Knoch
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Molecular Diabetology, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marc Diedisheim
- INSERM U1016, Cochin Institute, Paris, France.,CNRS UMR 8104, Paris, France.,University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Antje Petzold
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Molecular Diabetology, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pierre Cattan
- Cell Therapy Unit Hospital Saint-Louis and University Paris-Diderot, Paris, France
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pratik Choudhary
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, Denmark Hill, King's College London, London, United Kingdom
| | - Guo-Cai Huang
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, Denmark Hill, King's College London, London, United Kingdom
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Molecular Diabetology, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Olivier Albagli-Curiel
- INSERM U1016, Cochin Institute, Paris, France.,CNRS UMR 8104, Paris, France.,University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Raphael Scharfmann
- INSERM U1016, Cochin Institute, Paris, France.,CNRS UMR 8104, Paris, France.,University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|