1
|
Izar MC, Fonseca FAH. Novel Therapeutics for Familial Chylomicronemia Syndrome. Curr Atheroscler Rep 2025; 27:51. [PMID: 40257687 PMCID: PMC12011915 DOI: 10.1007/s11883-025-01295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2025] [Indexed: 04/22/2025]
Abstract
PURPOSE OF REVIEW This review discusses new treatment approaches for familial chylomicronemia syndrome (FCS), a rare disorder affecting triglyceride metabolism. The focus is on antisense oligonucleotides (ASO) and small-interfering RNA (siRNA) therapies targeting APOC3 and angiopoietin-like protein 3 (ANGPTL3). RECENT FINDINGS Volanesorsen, an ASO targeting APOC3, has shown effectiveness in managing FCS, multifactorial chylomicronemia, and familial partial lipodystrophy, but its use is limited by thrombocytopenia. Emerging therapies, Olezarsen (ASO anti-APOC3) and Plozasiran (siRNA anti-APOC3), both conjugated with GalNAc, show promise in reducing acute pancreatitis risk without platelet concerns. ANGPTL3 inhibition requires residual lipoprotein lipase (LPL) activity, with only siRNA-based therapies-zodasiran and solbinsiran-under investigation. Suppressing APOC3 expression and targeting ANGPTL3 via siRNA offer significant potential, but long-term studies are needed to confirm their efficacy and safety. Future research may explore gene-editing strategies using lipid nanoparticle-based CRISPR-Cas9 delivery for more durable treatment outcomes.
Collapse
Affiliation(s)
- Maria Cristina Izar
- Cardiology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP), Rua José de Magalhães, São Paulo, SP, 34004026 - 090, Brazil.
- Brazilian Network of Collaboration and Knowledge Advancement on Severe Hypertriglyceridemia - Hypertri Brazil Network, Casa Dos Raros, Porto Alegre, Brazil.
| | - Francisco Antonio Helfenstein Fonseca
- Cardiology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP), Rua José de Magalhães, São Paulo, SP, 34004026 - 090, Brazil
| |
Collapse
|
2
|
Brinton EA, Eckel RH, Gaudet D, Ballantyne CM, Baker BF, Ginsberg HN, Witztum JL. Familial chylomicronemia syndrome and treatments to target hepatic APOC3 mRNA. Atherosclerosis 2025; 403:119114. [PMID: 40068508 DOI: 10.1016/j.atherosclerosis.2025.119114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 04/20/2025]
Abstract
Familial chylomicronemia syndrome (FCS) is a rare, recessive monogenic disorder characterized by severely elevated plasma triglyceride (TG) levels due to absent or markedly impaired lipoprotein lipase activity, leading to a greatly increased risk of acute pancreatitis. Naturally occurring very low levels of apoC-III are associated with low TG levels; thus, apoC-III is a target for TG lowering, and therapies have been developed to reduce apoC-III. Strategies to inhibit hepatic apoC-III synthesis include antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs). In the last decade, technologies have been developed to enhance hepatic delivery of these potential therapeutic agents by conjugation of the ligand triantennary N-acetyl galactosamine to ASO and siRNA for receptor-mediated uptake by hepatocytes, where apoC-III is predominantly expressed. Enhanced delivery of these pharmacological agents to the target tissue has been found to support lower and/or less frequent dosing with consequent lower total systemic exposure. One antisense agent, the ASO olezarsen, is now approved by the US Food and Drug Administration (FDA) as an adjunct to diet to lower triglycerides in adults with FCS, and the other, the siRNA plozasiran, is in late-stage clinical development. Both agents have shown effectiveness in reducing both apoC-III and TG levels across several study populations. Reduced TG, lower rates of acute pancreatitis events, and similar proportions of adverse events in placebo and treated patients were recently demonstrated in placebo-controlled phase 3 trials of patients with FCS treated with olezarsen in Balance and with plozasiran in PALISADE. This review discusses causes and consequences of FCS and the rationale and progress made in developing APOC3 RNA-targeted therapeutics for the treatment of FCS.
Collapse
Affiliation(s)
- Eliot A Brinton
- The Utah Lipid Center, 421 S Wakara Way, Salt Lake City, UT, USA
| | - Robert H Eckel
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave, Aurora, CO, USA
| | - Daniel Gaudet
- Department of Medicine, Université de Montréal, PO Box 6128, Montréal, QC, H3C 3J7, ECOGENE-21, 930 Rue Jacques-Cartier E, Chicoutimi, QC, G7H 7K9, Canada
| | - Christie M Ballantyne
- Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, 6655 Travis Street, and the Texas Heart Institute, 6770 Bertner Ave, Houston, TX, USA
| | | | - Henry N Ginsberg
- Department of Internal Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 622 West 168th St, New York, NY, USA
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, Department of Medicine, M0682, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, USA.
| |
Collapse
|
3
|
Larouche M, Watts GF, Ballantyne C, Gaudet D. An overview of persistent chylomicronemia: much more than meets the eye. Curr Opin Endocrinol Diabetes Obes 2025; 32:75-88. [PMID: 39927417 PMCID: PMC11872273 DOI: 10.1097/med.0000000000000903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW The aim of this review is to provide an overview of severe hypertriglyceridemia presenting in the form of chylomicronemia that persists despite treatment of secondary causes and the use of conventional lipid-lowering treatment. RECENT FINDINGS Persistent chylomicronemia is a rare syndromic disorder that affects carriers of bi-allelic combinations of pathogenic gene variants impairing lipoprotein lipase (LPL) activity, as well as a significant number of individuals who do not meet this genetic criterion. It is associated with a high risk of acute pancreatitis and other morbidities. Effective innovative treatments for severe hypertriglyceridemia are being developed and are becoming available. Patients with persistent chylomicronemia of any cause respond equally to next-generation therapies with LPL-independent mechanisms of action and do not generally respond to conventional LPL-dependent treatments. SUMMARY Not all individuals with persistent chylomicronemia carry a proven pathogenic combination of gene variants that impair LPL activity. Documenting the clinical characteristics of people with persistent chylomicronemia and their response to emerging therapies is essential to correctly establish their risk trajectory and ensure equitable access to personalized treatment.
Collapse
Affiliation(s)
- Miriam Larouche
- Université de Montréal, Department of Medicine, Montreal
- ECOGENE-21, Chicoutimi, Quebec, Canada
| | - Gerald F. Watts
- Departments of Cardiology and Internal Medicine, Royal Perth Hospital, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | | | - Daniel Gaudet
- Université de Montréal, Department of Medicine, Montreal
- ECOGENE-21, Chicoutimi, Quebec, Canada
| |
Collapse
|
4
|
Hegele RA. What is the phenotype of heterozygous lipoprotein lipase deficiency? Curr Opin Lipidol 2025; 36:96-103. [PMID: 40223670 PMCID: PMC11888829 DOI: 10.1097/mol.0000000000000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
PURPOSE OF REVIEW Genetic testing of patients with severe hypertriglyceridemia often identifies a single heterozygous pathogenic variant in the LPL gene. The complex and variable phenotype associated with this genotype is the topic of this review. RECENT FINDINGS Previous research showed that heterozygosity for lipoprotein lipase deficiency is associated with reduced but variable post heparin lipolytic activity alongside inconsistent plasma lipid phenotypes ranging from normal to mild-to-moderate to severe hypertriglyceridemia. Recent research confirms and extends these observations, showing that a heterozygous individual can express a highly variable phenotype over time, depending on the presence of secondary factors. About 10% (range 8-20%) of patients with severe hypertriglyceridemia or multifactorial chylomicronemia syndrome are heterozygous for a rare pathogenic LPL variant, and a clinically relevant minority of these has recalcitrant or sustained hypertriglyceridemia. SUMMARY Heterozygosity for lipoprotein lipase deficiency predisposes to hypertriglyceridemia, which is sometimes severe depending on secondary factors, but is typically quite responsive to routine interventions such as diet, lifestyle and existing lipid-lowering therapies. However, many heterozygotes for pathogenic variants in LPL have completely normal plasma lipids.
Collapse
Affiliation(s)
- Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Javed F, Hegele RA, Garg A, Patni N, Gaudet D, Williams L, Khan M, Li Q, Ahmad Z. Familial chylomicronemia syndrome: An expert clinical review from the National Lipid Association. J Clin Lipidol 2025:S1933-2874(25)00066-2. [PMID: 40234111 DOI: 10.1016/j.jacl.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
Familial chylomicronemia syndrome (FCS) is a rare Mendelian autosomal recessive disorder (MIM 238600) characterized by extreme and sustained hypertriglyceridemia due to profound reduction of lipoprotein lipase (LPL) activity. This expert opinion statement synthesizes current knowledge on the definition, pathophysiology, genetics, prevalence, diagnosis, and management of FCS. FCS typically manifests at a young age with persistent severe hypertriglyceridemia-defined as ≥10 mmol/L (≥885 mg/dL), or ≥1000 mg/dL (≥11.2 mmol/L) depending on region and whether Systeme International (SI) units are utilized-in the absence of secondary factors, resistance to conventional lipid-lowering therapies, and a high lifetime risk of acute pancreatitis. It is caused by biallelic pathogenic variants in the LPL gene encoding LPL, or 1 of 4 other related genes that encode proteins that interact with LPL. Affected individuals require a strict, lifelong very low-fat diet with <15% of energy from fat. Emerging therapies inhibiting apolipoprotein C-III show promise in reducing serum triglycerides and pancreatitis risk in patients with FCS. A multidisciplinary approach, encompassing dietary management, pharmacotherapy, and patient education, is pivotal in mitigating the significant morbidity associated with FCS.
Collapse
Affiliation(s)
- Fiza Javed
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada (Dr Javed)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (Dr Hegele)
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine and the Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA (Dr Garg)
| | - Nivedita Patni
- Division of Pediatric Endocrinology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA (Dr Patni)
| | - Daniel Gaudet
- ECOGENE-21 Department of Medicine, Université de Montréal, Chicoutimi, QC, Canada (Dr Gaudet)
| | - Lauren Williams
- Department of Pediatric Cardiology, Baylor Scott & White McLane Children's Medical Center, Temple, TX, USA (Ms Williams)
| | - Mohamed Khan
- FCS Foundation, San Diego, CA, USA (Mrs Khan and Li)
| | - Qingyang Li
- FCS Foundation, San Diego, CA, USA (Mrs Khan and Li)
| | - Zahid Ahmad
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA (Dr Ahmad).
| |
Collapse
|
6
|
Spagnuolo CM, Wang J, McIntyre AD, Kennedy BA, Hegele RA. Comparison of Patients With Familial Chylomicronemia Syndrome and Multifactorial Chylomicronemia Syndrome. J Clin Endocrinol Metab 2025; 110:1158-1165. [PMID: 39238074 PMCID: PMC11913094 DOI: 10.1210/clinem/dgae613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
CONTEXT Patients with rare familial chylomicronemia syndrome (FCS) and relatively common multifactorial chylomicronemia syndrome (MCS) both express severe hypertriglyceridemia, defined as plasma triglyceride concentration ≥10 mmol/L (≥885 mg/dL). Clinically there can be confusion between the 2 conditions. OBJECTIVE To compare clinical and biochemical phenotypes in patients with genotypically characterized FCS and MCS. METHODS We performed targeted sequencing of DNA from 193 patients with severe hypertriglyceridemia, classified them as having either FCS or MCS, and compared clinical and biochemical characteristics. RESULTS Patients with FCS were significantly younger than patients with MCS (31.4 ± 16.7 vs 51.0 ± 11.3 years; P = .003), with earlier age at symptom onset (15.0 ± 15.8 vs 37.8 ± 8.8 years; P = .00066), lower body mass index (23.3 ± 3.1 vs 30.7 ± 5.0 kg/m2; P = .000016), and higher prevalence of pancreatitis events (81.8% vs 35.2%; P = .003). Furthermore, patients with FCS had a higher ratio of triglyceride to total cholesterol (ie, 4.18 ± 0.92 vs 1.08 ± 0.51; P < .0001) and lower plasma apolipoprotein B (ie, 0.56 ± 0.15 vs 1.02 ± 0.43 g/L; P < .0001) than patients with MCS. Patients with MCS with heterozygous pathogenic variants had a relatively more severe clinical presentation than other MCS genetic subgroups. CONCLUSION Patients with FCS have notable phenotypic differences from patients with MCS, although there is overlap. While genetic analysis of patients with persistent severe hypertriglyceridemia can definitively diagnose FCS, 8.8% of patients with MCS with sustained refractory hypertriglyceridemia behave functionally as if they have FCS, which should influence their eligibility for novel therapies for severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Catherine M Spagnuolo
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A 5B7
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A 5B7
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A 5B7
| | - Brooke A Kennedy
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A 5B7
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A 5B7
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A 5B7
| |
Collapse
|
7
|
Saadatagah S, Naderian M, Larouche M, Gaudet D, Kullo IJ, Ballantyne CM. Epidemiology and longitudinal course of chylomicronemia: Insights from NHANES and a large health care system. J Clin Lipidol 2025:S1933-2874(25)00031-5. [PMID: 40155283 DOI: 10.1016/j.jacl.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Chylomicronemia is characterized by fasting triglyceride (TG) ≥1000 mg/dL; its longitudinal course is not well studied. METHODS Using National Health and Nutrition Examination Survey (NHANES) data (1999-2018; n = 21,998), we determined chylomicronemia prevalence and temporal trend. Using Mayo Clinic data (4,524,506 TG measurements for 1,294,044 individuals), we studied the longitudinal course and ascertained persistent chylomicronemia (PC), defined as TG ≥1000 mg/dL in more than half the measurements for individuals with ≥3 measurements. We used logistic regression to assess factors associated with PC. RESULTS In NHANES, the prevalence of chylomicronemia was 0.20% overall, with higher prevalence in men (0.32%) and Hispanics (0.33%). Chylomicronemia prevalence declined from 0.34% in 1999-2004 to 0.11% in 2013-2018, while lipid-lowering pharmacotherapy use in chylomicronemia patients increased from 5.3% to 51.9%. In the Mayo Clinic data, 5618 individuals (0.43%) had at least 1 episode of chylomicronemia. Of these, 8.8% (390 of 4443 with ≥3 measurements) met the operational definition for PC. In individuals with TG <150 mg/dL, 1.3% had a diagnosis of acute pancreatitis, and 0.6% had chronic pancreatitis. Respective figures for individuals with nonpersistent chylomicronemia were 12.5% and 5.1%, and for individuals with PC were 26.2% and 11.5%. Younger age, Hispanic ethnicity, prior pancreatitis, and higher TG levels were associated with PC. CONCLUSION In the US, 1 in ∼500 adults has chylomicronemia and 1 in ∼5500 has PC. Individuals with PC have high occurrence of acute and chronic pancreatitis and may need more effective treatment.
Collapse
Affiliation(s)
- Seyedmohammad Saadatagah
- Sections of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA (Drs Saadatagah and Ballantyne); Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA (Dr Saadatagah)
| | - Mohammadreza Naderian
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA (Drs Naderian and Kullo)
| | - Miriam Larouche
- Department of Medicine, Université de Montréal and ECOGENE-21, Chicoutimi, Québec, Canada (Drs Larouche and Gaudet)
| | - Daniel Gaudet
- Department of Medicine, Université de Montréal and ECOGENE-21, Chicoutimi, Québec, Canada (Drs Larouche and Gaudet)
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA (Drs Naderian and Kullo); Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA (Dr Kullo)
| | - Christie M Ballantyne
- Sections of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA (Drs Saadatagah and Ballantyne).
| |
Collapse
|
8
|
Hegele RA, Ahmad Z, Ashraf A, Baldassarra A, Brown AS, Chait A, Freedman SD, Kohn B, Miller M, Patni N, Soffer DE, Wang J, Broder MS, Chang E, Yermilov I, Campos C, Gibbs SN. Development and validation of clinical criteria to identify familial chylomicronemia syndrome (FCS) in North America. J Clin Lipidol 2025; 19:83-94. [PMID: 39537503 DOI: 10.1016/j.jacl.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Familial chylomicronemia syndrome (FCS) is an ultrarare inherited disorder. Genetic testing is not always feasible or conclusive. European clinicians developed a "FCS score" to differentiate between FCS and multifactorial chylomicronemia syndrome (MCS), a more common condition with overlapping features. A diagnostic score has not been developed for use in the North American (NA) context. OBJECTIVE To develop and validate a diagnostic score for NA patients based on signs, symptoms and biochemical traits of FCS. METHODS Using the RAND/UCLA modified Delphi process, we convened 10 US/Canadian physicians with experience recognizing and treating FCS and 1 adult patient with FCS. The panel developed and rated 296 scenarios describing patients with FCS. Linear regression analyses used median post-meeting ratings to develop score parameters. We tested the score's sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) in patients with classical FCS, functional FCS, and MCS from Western University's Lipid Genetics Clinic's registry. RESULTS Numerical scores were attributed based upon the following: age, hypertriglyceridemia onset, body mass index, history of abdominal pain/pancreatitis, presence of secondary factors, triglyceride (TG) levels, ratio of TG/total cholesterol, and apolipoprotein B level. Scores ≥ 60 indicate definite classical FCS; the score distinguished patients with FCS from MCS in a real-world registry (100.0% specificity, 66.7% sensitivity, 100.0% PPV, 95.5% NPV). Scores ≥ 45 were "very likely" to have classical FCS (96.9% specificity, 88.9% sensitivity). CONCLUSION Given its simplicity and high specificity for distinguishing patients with FCS from MCS, the NAFCS Score could be used in lieu of - or while awaiting - genetic testing to optimize treatment.
Collapse
Affiliation(s)
- Robert A Hegele
- Western University, London, Ontario, Canada (Dr Hegele, Baldassarra, and Wang).
| | - Zahid Ahmad
- UT Southwestern Medical Center, Dallas, TX, USA (Dr Ahmad and Patni)
| | - Ambika Ashraf
- University of Alabama at Birmingham, Birmingham, AL, USA (Dr Ashraf)
| | - Andrew Baldassarra
- Western University, London, Ontario, Canada (Dr Hegele, Baldassarra, and Wang)
| | - Alan S Brown
- Advocate Lutheran General Hospital, Downers Grove, IL, USA (Dr Brown)
| | - Alan Chait
- University of Washington, Seattle, WA, USA (Dr Chait)
| | | | - Brenda Kohn
- New York University, New York, USA (Dr Kohn)
| | - Michael Miller
- Crescenz Veterans Administration Medical Center, Philadelphia, PA, USA (Dr Miller); University of Pennsylvania, Translational Medicine and Human Genetics, Philadelphia, PA, USA (Dr Miller, and Soffer)
| | - Nivedita Patni
- UT Southwestern Medical Center, Dallas, TX, USA (Dr Ahmad and Patni)
| | - Daniel E Soffer
- University of Pennsylvania, Translational Medicine and Human Genetics, Philadelphia, PA, USA (Dr Miller, and Soffer)
| | - Jian Wang
- Western University, London, Ontario, Canada (Dr Hegele, Baldassarra, and Wang)
| | - Michael S Broder
- PHAR, Beverly Hills, CA, USA (Dr Broder, Chang, Yermilov, Campos, and Gibbs)
| | - Eunice Chang
- PHAR, Beverly Hills, CA, USA (Dr Broder, Chang, Yermilov, Campos, and Gibbs)
| | - Irina Yermilov
- PHAR, Beverly Hills, CA, USA (Dr Broder, Chang, Yermilov, Campos, and Gibbs)
| | - Cynthia Campos
- PHAR, Beverly Hills, CA, USA (Dr Broder, Chang, Yermilov, Campos, and Gibbs)
| | - Sarah N Gibbs
- PHAR, Beverly Hills, CA, USA (Dr Broder, Chang, Yermilov, Campos, and Gibbs)
| |
Collapse
|
9
|
Bedoya C, Thomas R, Bjarvin A, Ji W, Samara H, Tai J, Green L, Frost PH, Malloy MJ, Pullinger CR, Kane JP, Péterfy M. Identification and functional analysis of novel homozygous LMF1 variants in severe hypertriglyceridemia. J Clin Lipidol 2025; 19:95-104. [PMID: 39537501 DOI: 10.1016/j.jacl.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The genetic basis of hypertriglyceridemia (HTG) is complex and includes variants in lipase maturation factor 1 (LMF1), an endoplasmic reticulum (ER)-chaperone involved in the post-translational activation of lipoprotein lipase (LPL). OBJECTIVE The objective of this study was to identify and functionally characterize biallelic LMF1 variants in patients with HTG. METHODS Genomic DNA sequencing was used to identify biallelic LMF1 variants in HTG patients without deleterious variants in LPL, apolipoprotein C-II (APOC2), glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) or apolipoprotein A-V (APOA5). LMF1 variants were functionally evaluated by in silico analyses and assessing their impact on LPL activity, LMF1 protein expression, and specific activity in transiently transfected HEK293 cells. RESULTS We identified four homozygous LMF1 variants in patients with severe HTG: two novel rare variants (p.Asn147Lys and p.Pro246Arg) and two low-frequency variants (p.Arg354Trp and p.Arg364Gln) previously reported at heterozygosity. We demonstrate that all four variants reduce the secretion of enzymatically active LPL by impairing the specific activity of LMF1, whereas p.Asn147Lys also diminishes LMF1 protein expression. CONCLUSION This study extends the role of LMF1 as a genetic determinant in severe HTG and demonstrates that rare and low-frequency LMF1 variants can underlie this condition through distinct molecular mechanisms. The clinical phenotype of patients affected by partial loss of LMF1 function is consistent with multifactorial chylomicronemia syndrome (MCS) and suggests that secondary factors and additional genetic determinants contribute to HTG in these subjects.
Collapse
Affiliation(s)
- Candy Bedoya
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy)
| | - Rishi Thomas
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy)
| | - Anna Bjarvin
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy)
| | - Wilbur Ji
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy)
| | - Hanien Samara
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy)
| | - Jody Tai
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy)
| | - Laurie Green
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA (Drs Green, Malloy, Pullinger, and Kane)
| | - Philip H Frost
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA (Drs Green, Malloy, Pullinger, and Kane)
| | - Mary J Malloy
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA (Drs Green, Malloy, Pullinger, and Kane)
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA (Drs Green, Malloy, Pullinger, and Kane)
| | - John P Kane
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA (Drs Green, Malloy, Pullinger, and Kane)
| | - Miklós Péterfy
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA (Dr Bedoya, Thomas, Bjarvin, Ji, Samara, Tai, and Péterfy).
| |
Collapse
|
10
|
Muñiz-Grijalvo O, Blanco Echevarría A, Ariza Corbo MJ, Díaz-Díaz JL. Multifactorial chylomicronemia: keys to detecting severe forms. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36 Suppl 2:S13-S17. [PMID: 39672667 DOI: 10.1016/j.arteri.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Multifactorial chylomicronemia associated with multiple comorbidities, drugs and habits is much more common than familial chylomicronemia, an autosomal recessive disease that can be considered as "rare disease". Like the rest of hypertriglyceridemias, chylomicronemias could be classified as primary or monogenic and secondary in which, on the basis of polygenic predisposition, there is concomitant exposure to multiple triggering factors. In this brief revision, we will review its causes and management as well as the keys to its differential diagnosis of the Multifactorial Chylomicronemia.
Collapse
Affiliation(s)
- Ovidio Muñiz-Grijalvo
- UCERV-UCAMI, Departamento de Medicina Interna, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - Agustín Blanco Echevarría
- Servicio de Medicina Interna, Instituto de Investigación Biomédica, Hospital Universitario 12 de Octubre, Madrid, España
| | - María José Ariza Corbo
- Departamento de Medicina y Dermatología, Laboratorio de Lípidos y Aterosclerosis, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga plataforma Bionand (IBIMA), Universidad de Málaga, España.
| | - José Luis Díaz-Díaz
- Unidad de Lípidos y Riesgo Cardiovascular Servicio de Medicina Interna, Complejo Hospitalario Universitario de A Coruña, A Coruña, España
| |
Collapse
|
11
|
Russo GT, Manicardi V, Rocca A, Nicolucci A, Giandalia A, Lucisano G, Rossi MC, Graziano G, Di Bartolo P, De Cosmo S, Candido R, Di Cianni G. Severe Hypertriglyceridemia in Patients with Type 2 Diabetes Mellitus Participating in the AMD Annals Initiative. Metab Syndr Relat Disord 2024; 22:661-668. [PMID: 39088376 DOI: 10.1089/met.2024.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024] Open
Abstract
Background: Familial chylomicronemia syndrome (FCS) is a rare inherited condition due to lipoprotein lipase deficiency, characterized by hyperchylomicronemia and severe hypertriglyceridemia. Diagnosis is often delayed, thus increasing the risk of acute pancreatitis and hospitalization. Hypertriglyceridemia is a common finding in patients with type 2 diabetes (T2D), who may harbor FCS among the most severe forms. Aim of the Study: We investigated the prevalence and clinical characteristics associated with severe hypertriglyceridemia in a range indicative of FCS, in a large population of subjects with T2D. Methods: Within the large population of the AMD Annals Initiative, patients with T2D with a lipid profile suggestive of FCS [triglycerides >880 mg/dL and/or high-density lipoprotein (HDL)-cholesterol <22 mg/dL or non-HDL-cholesterol ≤70 mg/dL] and their clinical features have been identified. Results: Overall, 8592 patients had triglyceride values >880 mg/dL in a single examination, 613 in two examinations, and 34 in three or more measurements. Patients with high triglyceride levels were mostly male (80%), with a relatively young age (54 years), short duration of diabetes (6.3 years), and elevated hemoglobin A1c (HbA1c) levels (9.4%). By stratifying this group of patients according to the severity of hypertriglyceridemia, more severe hypertriglyceridemia (triglyceride levels ≥2000 mg/dL) was associated with an even younger age (52 vs. 54 years), even higher mean HbA1c values (10.0% vs. 9.4%), and significantly higher HDL-cholesterol levels (37.9 vs. 32.4 mg/dL; P < 0.0001). Patients with persistently elevated triglyceride levels (n = 34), on three measurements, had a younger age; lower body mass index, HbA1c, and HDL-cholesterol levels; more frequent use of fibrates and insulin; and a higher prevalence of major cardiovascular events. Conclusions: Severe hypertriglyceridemia is a frequent condition in outpatients with T2D participating in the AMD Annals Initiative, and it is associated with male sex, young age, short disease duration, and a worse glycemic profile. Among patients with persistent severe hypertriglyceridemia, hidden FCS may be present.
Collapse
Affiliation(s)
- Giuseppina T Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Alberto Rocca
- G. Segalini H. Bassini Cinisello Balsamo ASST Nord, Milan, Italy
| | - Antonio Nicolucci
- CORESEARCH, Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Annalisa Giandalia
- Department of Human Pathology of Adulthood and Childhood "G. Barresi," University of Messina, Messina, Italy
| | - Giuseppe Lucisano
- CORESEARCH, Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Maria Chiara Rossi
- CORESEARCH, Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Giusi Graziano
- CORESEARCH, Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Paolo Di Bartolo
- Diabetes Unit, Local Healthcare Authority of Romagna, Ravenna, Italy
| | - Salvatore De Cosmo
- Department of Medical Sciences, Scientific Institute "Casa Sollievo della Sofferenza," San Giovanni Rotondo, Italy
| | - Riccardo Candido
- Department of Medical Surgical and Health Sciences, University of Trieste, Diabetes Center, ASUGI, Trieste, Italy
| | - Graziano Di Cianni
- ASL North-West Tuscany, Diabetes and Metabolic Diseases, Livorno Hospital, Livorno, Italy
| |
Collapse
|
12
|
Bashir B, Downie P, Forrester N, Wierzbicki AS, Dawson C, Jones A, Jenkinson F, Mansfield M, Datta D, Delaney H, Teoh Y, Hamilton P, Ferdousi M, Kwok S, O’Sullivan D, Wang J, Hegele RA, Durrington PN, Soran H. Ethnic Diversity and Distinctive Features of Familial Versus Multifactorial Chylomicronemia Syndrome: Insights From the UK FCS National Registry. Arterioscler Thromb Vasc Biol 2024; 44:2334-2346. [PMID: 39234690 PMCID: PMC11495541 DOI: 10.1161/atvbaha.124.320955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Familial chylomicronemia syndrome (FCS) is a rare autosomal recessive disorder. This study aimed to study the genotype distribution of FCS-causing genes in the United Kingdom, genotype-phenotype correlation, and clinical differences between FCS and multifactorial chylomicronemia syndrome (MCS). METHODS The study included 154 patients (FCS, 74; MCS, 80) from the UK FCS national registry and the UK arm of the FCS International Quality Improvement and Service Evaluation Project. RESULTS FCS was relatively common in non-Europeans and those with parental consanguinity (P<0.001 for both). LPL variants were more common in European patients with FCS (European, 64%; non-European, 46%), while the genotype was more diverse in non-European patients with FCS. Patients with FCS had a higher incidence compared with patients with MCS of acute pancreatitis (84% versus 60%; P=0.001), recurrent pancreatitis (92% versus 63%; P<0.001), unexplained abdominal pain (84% versus 52%; P<0.001), earlier age of onset (median [interquartile range]) of symptoms (15.0 [5.5-26.5] versus 34.0 [25.2-41.7] years; P<0.001), and of acute pancreatitis (24.0 [10.7-31.0] versus 33.5 [26.0-42.5] years; P<0.001). Adverse cardiometabolic features and their co-occurrence was more common in individuals with MCS compared with those with FCS (P<0.001 for each). Atherosclerotic cardiovascular disease was more prevalent in individuals with MCS than those with FCS (P=0.04). However, this association became nonsignificant after adjusting for age, sex, and body mass index. The prevalence of pancreatic complications and cardiometabolic profile of variant-positive MCS was intermediate between FCS and variant-negative MCS. CONCLUSIONS The frequency of gene variant distribution varies based on the ethnic origin of patients with FCS. Patients with FCS are at a higher risk of pancreatic complications while the prevalence of atherosclerotic cardiovascular disease is lower in FCS compared with MCS. Carriers of heterozygous pathogenic variants have an intermediate phenotype between FCS and variant-negative MCS.
Collapse
Affiliation(s)
- Bilal Bashir
- Faculty of Biology Medicine and Health, University of Manchester, United Kingdom (B.B., M.F., P.N.D., H.S.)
- Department of Endocrinology, Diabetes and Metabolism, Manchester University NHS Foundation Trust, United Kingdom (B.B., S.K., H.S.)
| | - Paul Downie
- Department of Clinical Biochemistry, Bristol Royal Infirmary, United Kingdom (P.D.)
- Salisbury NHS Foundation Trust, United Kingdom (P.D.)
| | - Natalie Forrester
- Bristol Genetics Laboratory, North Bristol NHS Trust, United Kingdom (N.F.)
| | - Anthony S. Wierzbicki
- Department of Metabolic Medicine and Chemical Pathology, Guy’s and St. Thomas’ Hospitals, London, United Kingdom (A.S.W.)
| | - Charlotte Dawson
- Department of Diabetes, Endocrinology and Metabolism, Queen Elizabeth Hospital NHS Foundation Trust, Birmingham, United Kingdom (C.D.)
| | - Alan Jones
- Department of Clinical Biochemistry and Immunology, Heart of England NHS Foundation Trust, Birmingham, United Kingdom (A.J.)
| | - Fiona Jenkinson
- Clinical Biochemistry and Metabolic Medicine, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom (F.J.)
| | - Michael Mansfield
- Leeds Centre for Diabetes and Endocrinology, Leeds Teaching Hospitals NHS Trust, United Kingdom (M.M.)
| | - Dev Datta
- Lipid Unit, University Hospital Llandough, Cardiff, United Kingdom (D.D.)
| | - Hannah Delaney
- Department of Clinical Chemistry, Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom (H.D.)
| | - Yee Teoh
- Department of Chemical Pathology and Metabolic Medicine, Wrexham Maelor Hospital, United Kingdom (Y.T.)
| | - Paul Hamilton
- Centre for Medical Education, Queen’s University Belfast, United Kingdom (P.H.)
| | - Maryam Ferdousi
- Faculty of Biology Medicine and Health, University of Manchester, United Kingdom (B.B., M.F., P.N.D., H.S.)
| | - See Kwok
- Department of Endocrinology, Diabetes and Metabolism, Manchester University NHS Foundation Trust, United Kingdom (B.B., S.K., H.S.)
| | - Dawn O’Sullivan
- North of Scotland Genetics Laboratory, Aberdeen, Scotland (D.O.)
- Department of Medical Genetics, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, United Kingdom (D.O.)
| | - Jian Wang
- Robarts Research Institute, Western University, London, Ontario, Canada (J.W., R.A.H.)
| | - Robert A. Hegele
- Robarts Research Institute, Western University, London, Ontario, Canada (J.W., R.A.H.)
| | - Paul N. Durrington
- Faculty of Biology Medicine and Health, University of Manchester, United Kingdom (B.B., M.F., P.N.D., H.S.)
| | - Handrean Soran
- Faculty of Biology Medicine and Health, University of Manchester, United Kingdom (B.B., M.F., P.N.D., H.S.)
- Department of Endocrinology, Diabetes and Metabolism, Manchester University NHS Foundation Trust, United Kingdom (B.B., S.K., H.S.)
| |
Collapse
|
13
|
Bashir B, Ferdousi M, Durrington P, Soran H. Pancreatic and cardiometabolic complications of severe hypertriglyceridaemia. Curr Opin Lipidol 2024; 35:208-218. [PMID: 38841827 PMCID: PMC11224574 DOI: 10.1097/mol.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW This review endeavours to explore the aetiopathogenesis and impact of severe hypertriglyceridemia (SHTG) and chylomicronaemia on cardiovascular, and pancreatic complications and summarizes the novel pharmacological options for management. RECENT FINDINGS SHTG, although rare, presents significant diagnostic and therapeutic challenges. Familial chylomicronaemia syndrome (FCS), is the rare monogenic form of SHTG, associated with increased acute pancreatitis (AP) risk, whereas relatively common multifactorial chylomicronaemia syndrome (MCS) leans more towards cardiovascular complications. Despite the introduction and validation of the FCS Score, FCS continues to be underdiagnosed and diagnosis is often delayed. Longitudinal data on disease progression remains scant. SHTG-induced AP remains a life-threatening concern, with conservative treatment as the cornerstone while blood purification techniques offer limited additional benefit. Conventional lipid-lowering medications exhibit minimal efficacy, underscoring the growing interest in novel therapeutic avenues, that is, antisense oligonucleotides (ASO) and short interfering RNA (siRNA) targeting apolipoprotein C3 (ApoC3) and angiopoietin-like protein 3 and/or 8 (ANGPTL3/8). SUMMARY Despite advancements in understanding the genetic basis and pathogenesis of SHTG, diagnostic and therapeutic challenges persist. The rarity of FCS and the heterogenous phenotype of MCS underscore the need for the development of predictive models for complications and tailored personalized treatment strategies. The establishment of national and international registries is advocated to augment disease comprehension and identify high-risk individuals.
Collapse
Affiliation(s)
- Bilal Bashir
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust
- NIHR/WELLCOME Trust Clinical Research Facility, Manchester, UK
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester
- NIHR/WELLCOME Trust Clinical Research Facility, Manchester, UK
| | - Paul Durrington
- Faculty of Biology, Medicine and Health, University of Manchester
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust
- NIHR/WELLCOME Trust Clinical Research Facility, Manchester, UK
| |
Collapse
|
14
|
Bashir B, Kwok S, Wierzbicki AS, Jones A, Dawson C, Downie P, Jenkinson F, Delaney H, Mansfield M, Datta D, Teoh Y, Hamilton P, Forrester N, O'Sullivan D, Ferdousi M, Durrington PN, AbdelRazik A, Gallo A, Moulin P, Soran H. Validation of the familial chylomicronaemia syndrome (FCS) score in an ethnically diverse cohort from UK FCS registry: Implications for diagnosis and differentiation from multifactorial chylomicronaemia syndrome (MCS). Atherosclerosis 2024; 391:117476. [PMID: 38447437 DOI: 10.1016/j.atherosclerosis.2024.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND AND AIMS Prognosis and management differ between familial chylomicronaemia syndrome (FCS), a rare autosomal recessive disorder, and multifactorial chylomicronaemia syndrome (MCS) or severe mixed hyperlipidaemia. A clinical scoring tool to differentiate these conditions has been devised but not been validated in other populations. The objective of this study was to validate this score in the UK population and identify any additional factors that might improve it. METHODS A retrospective validation study was conducted using data from 151 patients comprising 75 FCS and 76 MCS patients. All participants had undergone genetic testing for genes implicated in FCS. Validation was performed by standard methods. Additional variables were identified from clinical data by logistic regression analysis. RESULTS At the recommended FCS score threshold ≥10 points, the sensitivity and specificity of the score in the UK population were 96% and 75%, respectively. The receiver operating characteristic (ROC) curve analysis yielded an area under the curve (AUC) of 0.88 (95% CI 0.83-0.94, p < 0.001). This study identified non-European (predominantly South Asian) ethnicity, parental consanguinity, body mass index (BMI) < 25 kg/m2, and recurrent pancreatitis as additional positive predictors, while BMI >30 kg/m2 was found to be a negative predictor for FCS. However, inclusion of additional FCS predictors had no significant impact on performance of standard FCS score. CONCLUSIONS Our study validates the FCS score in the UK population to distinguish FCS from MCS. While additional FCS predictors were identified, they did not improve further the score diagnostic performance.
Collapse
Affiliation(s)
- Bilal Bashir
- Faculty of Biology Medicine & Health, University of Manchester, UK; Department of Endocrinology, Diabetes and Metabolism, Manchester University NHS Foundation Trust, Manchester, UK
| | - See Kwok
- Faculty of Biology Medicine & Health, University of Manchester, UK
| | - Anthony S Wierzbicki
- Department of Metabolic Medicine and Chemical Pathology, Guy's and St. Thomas' Hospitals, London, UK
| | - Alan Jones
- Department of Clinical Biochemistry and Immunology, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Charlotte Dawson
- Department of Metabolic Medicine, Queen Elizabeth Hospital NHS Foundation Trust, Birmingham, UK
| | - Paul Downie
- Department of Clinical Biochemistry, Bristol Royal Infirmary, Bristol, UK; Salisbury NHS Foundation Trust, Salisbury, UK
| | - Fiona Jenkinson
- Clinical Biochemistry and Metabolic Medicine, Royal Victoria Infirmary, Newcastle Upon Tyne, New Castle, UK
| | - Hannah Delaney
- Department Clinical Chemistry, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Michael Mansfield
- Leeds Centre for Diabetes & Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Dev Datta
- Department of Metabolic Medicine, University Hospital of Wales, Cardiff, UK
| | - Yee Teoh
- Department of Chemical Pathology & Metabolic Medicine, Wrexham Maelor Hospital, Wrexham, UK
| | - Paul Hamilton
- Centre for Medical Education, Queen's University Belfast, Belfast, UK; Department of Clinical Biochemistry, Belfast Health and Social Care Trust, Belfast, UK
| | | | - Dawn O'Sullivan
- North of Scotland Genetics Laboratory, Polwarth Building, Aberdeen, Scotland, UK
| | - Maryam Ferdousi
- Faculty of Biology Medicine & Health, University of Manchester, UK
| | | | | | - Antonio Gallo
- Cardiovascular Prevention Unit, Department of Endocrinology and Metabolism, Pitié-Salpêtrière University Hospital, Paris, France; Laboratoire d'imagerie Biomédicale, INSERM 1146, CNRS 7371, Sorbonne University, Paris, France
| | - Philippe Moulin
- Department of Endocrinology, Hôpital Louis Pradel, Hospices Civils de Lyon, CarMenN laboratrory INSERM, INRAE, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Handrean Soran
- Faculty of Biology Medicine & Health, University of Manchester, UK; Department of Endocrinology, Diabetes and Metabolism, Manchester University NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
15
|
Chait A. Multifactorial chylomicronemia syndrome. Curr Opin Endocrinol Diabetes Obes 2024; 31:78-83. [PMID: 37994661 DOI: 10.1097/med.0000000000000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
PURPOSE OF REVIEW The aim of this review was to understand the role of multifactorial chylomicronemia syndrome (MFCS) as a cause of severe hypertriglyceridemia; to distinguish it from other causes of severe hypertriglyceridemia; and to provide a rational approach to treatment. RECENT FINDINGS There have been advances in understanding the genetic underpinning of MFCS, and a better appreciation as to how to differentiate it from the much rarer familial chylomicronemia syndrome, in which there are substantial differences in the approach to their treatment. New approaches to triglyceride lowering will help reduce the risk of pancreatitis, the major complication of MFCS. SUMMARY MCSF is a condition in which plasma triglyceride levels are severely elevated, usually to due exacerbation of common genetic forms of hypertriglyceridemia by secondary causes of hypertriglyceridemia and/or triglyceride-raising drugs. Triglyceride-induced pancreatitis can be prevented by markedly reducing triglyceride levels by treating secondary causes and/or eliminating of triglyceride-raising drugs, and by using triglyceride-lowering drugs, especially fibrates. MFCS also increases cardiovascular disease risk, for which lifestyle measures and drugs are required.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, USA
| |
Collapse
|
16
|
Williams K, Tickler G, Valdivielso P, Alonso J, Vera-Llonch M, Cubells L, Acaster S. Symptoms and impacts of familial chylomicronemia syndrome: a qualitative study of the patient experience. Orphanet J Rare Dis 2023; 18:316. [PMID: 37817256 PMCID: PMC10565991 DOI: 10.1186/s13023-023-02927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Familial chylomicronemia syndrome (FCS) is a rare, hereditary, metabolic disorder. FCS causes high levels of triglycerides in the blood, which can lead to abdominal pain, xanthomas, and acute pancreatitis (AP). Volanesorsen, along with adherence to a very low-fat diet is used to reduce triglyceride levels in individuals with FCS. We aimed to understand the symptoms of FCS and their impact on health-related quality of life (HRQoL). METHODS Interviews were conducted with individuals with genetically confirmed FCS in the UK and Spain, some of whom had been treated with volanesorsen. Interview guides were developed with input from a patient advocacy group to explore the symptoms, impacts and management of FCS. Interviews were conducted by telephone and were recorded and transcribed. Data were analyzed using thematic analysis and saturation was recorded. RESULTS Seventeen interviews were conducted with individuals with FCS (aged 27-68 years), thirteen of whom were currently/previously treated with volanesorsen. Episodes of AP were the most impactful reported symptom, resulting in severe abdominal pain, nausea, vomiting, fever, bloating and appetite loss. Other symptoms and functional issues included abdominal pain, gastrointestinal symptoms, impaired cognitive function and fatigue. These had an impact on work, social activities, relationships and psychological wellbeing. These symptoms and impacts were illustrated in a conceptual model, including management strategies. The challenges of managing a low-fat diet and experience with volanesorsen were discussed. CONCLUSION Individuals with FCS experience a range of interrelated symptoms and functional limitations which impact their broader HRQoL. Treatments which alleviate symptoms and reduce the incidence of AP episodes have the potential to improve the HRQoL of these individuals.
Collapse
Affiliation(s)
| | | | - Pedro Valdivielso
- Servicio de Medicina Interna, Hospital Virgen de la Victoria, University of Málaga and Instituto de Investigaciones Biomédicas de Málaga (IBIMA), Málaga, Spain
| | - Jordi Alonso
- IMIM-Institut Hospital del Mar d'Investigacions Mèdiques, CIBERESP, Pompeu Fabra University, Barcelona, Spain
| | | | - Laia Cubells
- Akcea Therapeutics, Avenida Ernest Lluch, 32 TCM 2 of 6.18, 08302, Mataró, Barcelona, Spain
| | | |
Collapse
|
17
|
De Villers-Lacasse A, Paquette M, Baass A, Bernard S. Non-alcoholic fatty liver disease in patients with chylomicronemia syndromes. J Clin Lipidol 2023; 17:475-482. [PMID: 37258405 DOI: 10.1016/j.jacl.2023.05.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Chylomicronemia syndrome is a form of severe hypertriglyceridemia (HTG) caused by the familial chylomicronemia syndrome (FCS) or multifactorial chylomicronemia syndrome (MCS). Non-alcoholic fatty liver disease (NAFLD) has been associated with components of the metabolic syndrome and is more prevalent in subjects with elevated triglycerides. OBJECTIVE The primary objective was to compare the prevalence of hepatic steatosis assessed by conventional imaging between HTG groups (FSC, MCS and moderate HTG (mHTG)). The secondary objective was to determine the difference in the prevalence of liver fibrosis. METHODS This cross-sectional observational study was performed on adult patients from the lipid clinic of the Montreal Clinical Research Institute (IRCM). We retrospectively reviewed the imaging reports available in the patients' files for signs of NAFLD. We also used the FIB-4 index as a surrogate marker of liver fibrosis. RESULTS We reviewed the medical files of 300 patients; 22 with FCS, 82 with MCS and 196 with mHTG. There was significantly more hepatic steatosis in the MCS group compared to the mHTG and FCS groups (79%, 66% and 43% respectively p=0.02). There was a significantly higher prevalence of subjects within the "unlikely fibrosis" category in the mHTG group (91%) compared to the MCS (84%) and FCS groups (59%), p=0.0004. CONCLUSION We found that the prevalence of hepatic steatosis was 3-, 2.5-, and 2-fold higher in MCS, mHTG and FCS patients than in the general population. This suggests that patients with elevated triglycerides, regardless of the underlying etiology, are at higher risk of hepatic steatosis and NAFLD.
Collapse
Affiliation(s)
- Ariane De Villers-Lacasse
- Department of Medicine, Division of Endocrinology, University of Montreal, Montreal (Québec, Canada)
| | - Martine Paquette
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal (Québec, Canada)
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal (Québec, Canada); Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Montreal (Québec, Canada)
| | - Sophie Bernard
- Department of Medicine, Division of Endocrinology, University of Montreal, Montreal (Québec, Canada); Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal (Québec, Canada); Research Centre of the Centre Hospitalier Universitaire de Montréal (CRCHUM), Montreal, (Québec, Canada).
| |
Collapse
|
18
|
Bashir B, Ho JH, Downie P, Hamilton P, Ferns G, Datta D, Cegla J, Wierzbicki AS, Dawson C, Jenkinson F, Delaney H, Mansfield M, Teoh Y, Miedzybrodzka Z, Haso H, Durrington PN, Soran H. Severe Hypertriglyceridaemia and Chylomicronaemia Syndrome-Causes, Clinical Presentation, and Therapeutic Options. Metabolites 2023; 13:metabo13050621. [PMID: 37233662 DOI: 10.3390/metabo13050621] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
We have reviewed the genetic basis of chylomicronaemia, the difference between monogenic and polygenic hypertriglyceridaemia, its effects on pancreatic, cardiovascular, and microvascular complications, and current and potential future pharmacotherapies. Severe hypertriglyceridaemia (TG > 10 mmol/L or 1000 mg/dL) is rare with a prevalence of <1%. It has a complex genetic basis. In some individuals, the inheritance of a single rare variant with a large effect size leads to severe hypertriglyceridaemia and fasting chylomicronaemia of monogenic origin, termed as familial chylomicronaemia syndrome (FCS). Alternatively, the accumulation of multiple low-effect variants causes polygenic hypertriglyceridaemia, which increases the tendency to develop fasting chylomicronaemia in presence of acquired factors, termed as multifactorial chylomicronaemia syndrome (MCS). FCS is an autosomal recessive disease characterized by a pathogenic variant of the lipoprotein lipase (LPL) gene or one of its regulators. The risk of pancreatic complications and associated morbidity and mortality are higher in FCS than in MCS. FCS has a more favourable cardiometabolic profile and a low prevalence of atherosclerotic cardiovascular disease (ASCVD) compared to MCS. The cornerstone of the management of severe hypertriglyceridaemia is a very-low-fat diet. FCS does not respond to traditional lipid-lowering therapies. Several novel pharmacotherapeutic agents are in various phases of development. Data on the correlation between genotype and phenotype in FCS are scarce. Further research to investigate the impact of individual gene variants on the natural history of the disease, and its link with ASCVD, microvascular disease, and acute or recurrent pancreatitis, is warranted. Volanesorsen reduces triglyceride concentration and frequency of pancreatitis effectively in patients with FCS and MCS. Several other therapeutic agents are in development. Understanding the natural history of FCS and MCS is necessary to rationalise healthcare resources and decide when to deploy these high-cost low-volume therapeutic agents.
Collapse
Affiliation(s)
- Bilal Bashir
- Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Department of Endocrinology, Diabetes & Metabolism, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Jan H Ho
- Department of Endocrinology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Paul Downie
- Department of Laboratory Medicine, Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK
| | - Paul Hamilton
- Centre for Medical Education, Queen's University Belfast, Belfast BT7 1NN, UK
- Department of Clinical Biochemistry, Belfast Health and Social Care Trust, Belfast BT13 1FD, UK
| | - Gordon Ferns
- Brighton and Sussex Medical School, Brighton BN1 9PH, UK
| | - Dev Datta
- Lipid Unit, University Hospital Llandough, Cardiff CF64 2XX, UK
| | - Jaimini Cegla
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London SW7 2BX, UK
| | - Anthony S Wierzbicki
- Department of Metabolic Medicine and Chemical Pathology, Guy's and St. Thomas' Hospitals, London SE1 7EH, UK
| | - Charlotte Dawson
- Department of Metabolic Medicine, Queen Elizabeth Hospital NHS Foundation Trust, Birmingham PE30 4ET, UK
| | - Fiona Jenkinson
- Clinical Biochemistry and Metabolic Medicine, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Hannah Delaney
- Department of Clinical Chemistry, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK
| | - Michael Mansfield
- Leeds Centre for Diabetes & Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
| | - Yee Teoh
- Department of Chemical Pathology & Metabolic Medicine, Wrexham Maelor Hospital, Wrexham LL13 7TD, UK
| | - Zosia Miedzybrodzka
- Department of Medical Genetics, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Haya Haso
- School of Medicine, University of Kurdistan Hewler, Erbil 44001, Iraq
| | - Paul N Durrington
- Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Handrean Soran
- Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Department of Endocrinology, Diabetes & Metabolism, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| |
Collapse
|
19
|
Rodriguez FH, Estrada JM, Quintero HMA, Nogueira JP, Porras-Hurtado GL. Analyses of familial chylomicronemia syndrome in Pereira, Colombia 2010-2020: a cross-sectional study. Lipids Health Dis 2023; 22:43. [PMID: 36978188 PMCID: PMC10045250 DOI: 10.1186/s12944-022-01768-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/28/2022] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND AND AIM Familial chylomicronemia syndrome (FCS) is a rare autosomal recessive metabolic disorder caused by mutations in genes involved in chylomicron metabolism. On the other hand, multifactorial chylomicronemia syndrome (MCS) is a polygenic disorder and the most frequent cause of chylomicronemia, which results from the presence of multiple genetic variants related to chylomicron metabolism, in addition to secondary factors. Indeed, the genetic determinants that predispose to MCS are the presence of a heterozygous rare variant or an accumulation of several SNPs (oligo/polygenic). However, their clinical, paraclinical, and molecular features are not well established in our country. The objective of this study was to describe the development and results of a screening program for severe hypertriglyceridemia in Colombia. METHODS A cross-sectional study was performed. All patients aged >18 years with triglyceride levels ≥500 mg/dL from 2010 to 2020 were included. The program was developed in three stages: 1. Review of electronic records and identification of suspected cases based on laboratory findings (triglyceride levels ≥500 mg/dL); 2. Identification of suspected cases based on laboratory findings that also allowed us to exclude secondary factors; 3. Patients with FCS scores <8 were excluded. The remaining patients underwent molecular analysis. RESULTS In total, we categorized 2415 patients as suspected clinical cases with a mean age of 53 years, of which 68% corresponded to male patients. The mean triglyceride levels were 705.37 mg/dL (standard deviation [SD] 335.9 mg/dL). After applying the FCS score, 2.4% (n = 18) of patients met the probable case definition and underwent a molecular test. Additionally, 7 patients had unique variants in the APOA5 gene (c.694 T > C; p. Ser232Pro) or in the GPIHBP1 gene (c.523G > C; p. Gly175Arg), for an apparent prevalence of familial chylomicronemia in the consulting population of 0.41 per 1.000 patients with severe HTG measurement. No previously reported pathogenic variants were detected. CONCLUSION This study describes a screening program for the detection of severe hypertriglyceridemia. Although we identified seven patients as carriers of a variant in the APOA5 gene, we diagnosed only one patient with FCS. We believe that more programs of these characteristics should be developed in our region, given the importance of early detection of this metabolic disorder.
Collapse
Affiliation(s)
- Franklin Hanna Rodriguez
- International Center Research In Health Comfamiliar, Comfamiliar Risaralda, Pereira, Risaralda, Colombia.
| | - Jorge Mario Estrada
- International Center Research In Health Comfamiliar, Comfamiliar Risaralda, Pereira, Risaralda, Colombia
| | | | | | | |
Collapse
|
20
|
Bourgault J, Abner E, Manikpurage HD, Pujol-Gualdo N, Laisk T, Gobeil É, Gagnon E, Girard A, Mitchell PL, Thériault S, Esko T, Mathieu P, Arsenault BJ. Proteome-Wide Mendelian Randomization Identifies Causal Links Between Blood Proteins and Acute Pancreatitis. Gastroenterology 2023; 164:953-965.e3. [PMID: 36736436 DOI: 10.1053/j.gastro.2023.01.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Acute pancreatitis (AP) is a complex disease and the leading cause of gastrointestinal disease-related hospital admissions. Few therapeutic options exist for AP prevention. Blood proteins with causal evidence may represent promising drug targets, but few have been causally linked with AP. Our objective was to identify blood proteins linked with AP by combining genome-wide association meta-analysis and proteome-wide Mendelian randomization (MR) studies. METHODS We performed a genome-wide association meta-analysis totalling 10,630 patients with AP and 844,679 controls and a series of inverse-variance weighted MR analyses using cis-acting variants on 4719 blood proteins from the deCODE study (n = 35,559) and 4979 blood proteins from the Fenland study (n = 10,708). RESULTS The meta-analysis identified genome-wide significant variants (P <5 × 10-8) at 5 loci (ABCG5/8, TWIST2, SPINK1, PRSS2 and MORC4). The proteome-wide MR analyses identified 68 unique blood proteins that may causally be associated with AP, including 29 proteins validated in both data sets. Functional annotation of these proteins confirmed expression of many proteins in metabolic tissues responsible for digestion and energy metabolism, such as the esophagus, adipose tissue, and liver as well as acinar cells of the pancreas. Genetic colocalization and investigations into the druggable genome also identified potential drug targets for AP. CONCLUSIONS This large genome-wide association study meta-analysis for AP identified new variants linked with AP as well as several blood proteins that may be causally associated with AP. This study provides new information on the genetic architecture of this disease and identified pathways related to AP, which may be further explored as possible therapeutic targets for AP.
Collapse
Affiliation(s)
- Jérôme Bourgault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Hasanga D Manikpurage
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Natàlia Pujol-Gualdo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Émilie Gobeil
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Eloi Gagnon
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Arnaud Girard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Patricia L Mitchell
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Sébastien Thériault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Patrick Mathieu
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
21
|
Imran KM, Ganguly A, Paul T, Powar M, Vlaisavljevich E, Cho CS, Allen IC. Magic bubbles: utilizing histotripsy to modulate the tumor microenvironment and improve systemic anti-tumor immune responses. Int J Hyperthermia 2023; 40:2244206. [PMID: 37580047 PMCID: PMC10430775 DOI: 10.1080/02656736.2023.2244206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023] Open
Abstract
Focused Ultrasound (FUS) is emerging as a promising primary and adjunct therapy for the treatment of cancer. This includes histotripsy, which is a noninvasive, non-ionizing, non-thermal ultrasound guided ablation modality. As histotripsy has progressed from bench-to-bedside, it has become evident that this therapy has benefits beyond local tumor ablation. Specifically, histotripsy has the potential to shift the local tumor microenvironment from immunologically 'cold' to 'hot'. This is associated with the production of damage associated molecular patterns, the release of a selection of proinflammatory mediators, and the induction of inflammatory forms of cell death in cells just outside of the treatment zone. In addition to the induction of this innate immune response, histotripsy can also improve engagement of the adaptive immune system and promote systemic anti-tumor immunity targeting distal tumors and metastatic lesions. These tantalizing observations suggest that, in settings of widely metastatic disease burden, selective histotripsy of a limited number of accessible tumors could be a means of maximizing responsiveness to systemic immunotherapy. More work is certainly needed to optimize treatment strategies that best synergize histotripsy parameters with innate and adaptive immune responses. Likewise, rigorous clinical studies are still necessary to verify the presence and repeatability of these phenomena in human patients. As this technology nears regulatory approval for clinical use, it is our expectation that the insights and immunomodulatory mechanisms summarized in this review will serve as directional guides for rational clinical studies to validate and optimize the potential immunotherapeutic role of histotripsy tumor ablation.
Collapse
Affiliation(s)
- Khan M. Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
| | - Anutosh Ganguly
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tamalika Paul
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Manali Powar
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
- Institute for Critical and Applied Science Center for Engineered Health, Virginia Tech, Blacksburg, VA, USA
| | - Clifford S. Cho
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, MI, USA
| | - Irving C. Allen
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Institute for Critical and Applied Science Center for Engineered Health, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
22
|
Ayoub C, Azar Y, Maddah D, Ghaleb Y, Elbitar S, Abou-Khalil Y, Jambart S, Varret M, Boileau C, El Khoury P, Abifadel M. Low circulating PCSK9 levels in LPL homozygous children with chylomicronemia syndrome in a syrian refugee family in Lebanon. Front Genet 2022; 13:961028. [PMID: 36061186 PMCID: PMC9437297 DOI: 10.3389/fgene.2022.961028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 12/17/2022] Open
Abstract
Familial chylomicronemia syndrome is a rare autosomal recessive disorder of lipoprotein metabolism characterized by the presence of chylomicrons in fasting plasma and an important increase in plasma triglycerides (TG) levels that can exceed 22.58 mmol/l. The disease is associated with recurrent episodes of abdominal pain and pancreatitis, eruptive cutaneous xanthomatosis, lipemia retinalis, and hepatosplenomegaly. A consanguineous Syrian family who migrated to Lebanon was referred to our laboratory after perceiving familial chylomicronemia syndrome in two children. The LPL and PCSK9 genes were sequenced and plasma PCSK9 levels were measured. Sanger sequencing of the LPL gene revealed the presence of the p.(Val227Phe) pathogenic variant in exon 5 at the homozygous state in the two affected children, and at the heterozygous state in the other recruited family members. Interestingly, PCSK9 levels in homozygous carriers of the p.(Val227Phe) were ≈50% lower than those in heterozygous carriers of the variant (p-value = 0.13) and ranged between the 5th and the 7.5th percentile of PCSK9 levels in a sample of Lebanese children of approximately the same age group. Moreover, this is the first reported case of individuals carrying simultaneously an LPL pathogenic variant and PCSK9 variants, the L10 and L11 leucine insertion, which can lower and raise low-density lipoprotein cholesterol (LDL-C) levels respectively. TG levels fluctuated concomitantly between the two children, were especially high following the migration from a country to another, and were reduced under a low-fat diet. This case is crucial to raise public awareness on the risks of consanguineous marriages to decrease the emergence of inherited autosomal recessive diseases. It also highlights the importance of the early diagnosis and management of these diseases to prevent serious complications, such as recurrent pancreatitis in the case of familial hyperchylomicronemia.
Collapse
Affiliation(s)
- Carine Ayoub
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Yara Azar
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Dina Maddah
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Youmna Ghaleb
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Sandy Elbitar
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Yara Abou-Khalil
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Selim Jambart
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Catherine Boileau
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
- Genetic Department, AP-HP, Hôpital Bichat, Paris, France
| | - Petra El Khoury
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
- *Correspondence: Marianne Abifadel,
| |
Collapse
|
23
|
Williams L, Baker-Smith CM, Bolick J, Carter J, Kirkpatrick C, Ley SL, Peterson AL, Shah AS, Sikand G, Ware AL, Wilson DP. Nutrition interventions for youth with dyslipidemia an national lipid association clinical perspective. J Clin Lipidol 2022; 16:776-796. [DOI: 10.1016/j.jacl.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
|
24
|
Aguilar-Salinas CA, Gómez-Díaz RA, Corral P. New Therapies for Primary Hyperlipidemia. J Clin Endocrinol Metab 2022; 107:1216-1224. [PMID: 34888679 DOI: 10.1210/clinem/dgab876] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Indexed: 11/19/2022]
Abstract
Primary hyperlipidemias include a heterogeneous set of monogenic and polygenic conditions characterized by a strong family aggregation, severe forms of hypercholesterolemia and/or hypertriglyceridemia, appearance early on life, and a high risk of cardiovascular events and/or recurrent pancreatitis. In real life, a small proportion of the primary hyperlipidemia cases is recognized and treated properly. Our goal is to present an update of current and upcoming therapies for patients with primary hyperlipidemia. Recently, new lipid-lowering medications have obtained authorization from the U.S. Food and Drug Administration and the European Medicines Agency. These drugs target metabolic pathways, including (adenosine 5'-triphosphates)-citrate lyase (bempedoic acid), proprotein convertase subtilisin/kexin 9 (inclisiran), apolipoprotein CIII (volanesorsen), and angiopoietin-like 3 (volanesorsen), that have additive effects with the actions of the currently available therapies (i.e., statins, ezetimibe or fibrates). We discuss the potential clinical indications for the novel medications. To conclude, the addition of these new medications to the therapeutic options for primary hyperlipidemia patients may increase the likelihood of achieving the treatment targets. Also, it could be a safer alternative for patients with side effects for the currently available drugs.
Collapse
Affiliation(s)
- Carlos A Aguilar-Salinas
- Direction of Nutrition Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, México
| | - Rita A Gómez-Díaz
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Pablo Corral
- Pharmacology Department, School of Medicine, FASTA University, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
25
|
Paquette M, Bernard S. The Evolving Story of Multifactorial Chylomicronemia Syndrome. Front Cardiovasc Med 2022; 9:886266. [PMID: 35498015 PMCID: PMC9046927 DOI: 10.3389/fcvm.2022.886266] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Multifactorial chylomicronemia syndrome (MCS or type V hyperlipoproteinemia) is the most frequent cause of severe hypertriglyceridemia and is associated with an increased risk of acute pancreatitis, cardiovascular disease, and non-alcoholic steatohepatitis. The estimated prevalence of MCS in the North American population is 1:600–1:250 and is increasing due to the increasing prevalence of obesity, metabolic syndrome, and type 2 diabetes. Differentiating between familial chylomicronemia syndrome and MCS is crucial due to their very different treatments. In recent years, several cohort studies have helped to differentiate these two conditions, and recent evidence suggests that MCS itself is a heterogeneous condition. This mini-review will summarize recent literature on MCS, with a specific focus on the genetic determinants of the metabolic risk and the latest developments concerning the pharmacological and non-pharmacological treatment options for these patients. Possible research directions in this field will also be discussed.
Collapse
Affiliation(s)
- Martine Paquette
- Genetic Dyslipidemias Clinic, Montreal Clinical Research Institute, Montreal, QC, Canada
| | - Sophie Bernard
- Genetic Dyslipidemias Clinic, Montreal Clinical Research Institute, Montreal, QC, Canada
- Division of Endocrinology, Department of Medicine, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Sophie Bernard
| |
Collapse
|
26
|
Chait A, Feingold KR. Approach to patients with hypertriglyceridemia. Best Pract Res Clin Endocrinol Metab 2022; 37:101659. [PMID: 35459627 DOI: 10.1016/j.beem.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated triglyceride levels increase the risk of arteriosclerotic cardiovascular disease (ASCVD) and severely elevated triglyceride levels also increase the risk of triglyceride-induced pancreatitis. Although substantially reducing triglyceride levels will prevent pancreatitis, whether lowering triglycerides per se will reduce CVD risk is unclear. In this review, we outline several principles that will help in deciding who and how to treat patients with elevated triglyceride levels in order to prevent both ASCVD and pancreatitis. Using these principles will help in making decisions regarding the treatment of elevated triglyceride levels.
Collapse
Affiliation(s)
- Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
27
|
Pang J, Li SCH, Chan DC, Sullivan DR, Woodward AM, Watts GF. Hypertriglyceridemia: rationale, design and implementation of the Australian Hypertriglyceridemia Registry. Curr Opin Endocrinol Diabetes Obes 2022; 29:131-140. [PMID: 35066540 DOI: 10.1097/med.0000000000000715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Hypertriglyceridemia (HTG) is a risk factor for atherosclerotic cardiovascular disease (ASCVD), aortic stenosis, hepatic steatosis and pancreatitis. We briefly review the aetiology and treatment of HTG and familial chylomicronemia syndrome (FCS), as well as the implementation of a clinical quality registry for improving care, the Australian Hypertriglyceridemia (AUSTRIG) Registry. RECENT FINDINGS There is a need to improve the detection of individuals with severe HTG and FCS, who could benefit from more intense and novel treatments to prevent end-organ damage. Patient registries provide valuable data for advancing care of individuals with severe HTG at high risk of acute pancreatitis, steatohepatitis and ASCVD. However, there is a paucity of registries of such patients. We outline the design and implementation of the AUSTRIG Registry. SUMMARY Clinical registries can be employed in many ways for improving outcomes for patients with HTG, through the collation and analysis of data for enabling health service planning, clinical trials and audits, and for better informing and empowering registrants.
Collapse
Affiliation(s)
- Jing Pang
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth
| | - Stephen C H Li
- Core Pathology & Clinical Chemistry, Pathology West, Westmead Hospital, NSW Health Pathology, Westmead
| | - Dick C Chan
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth
| | - David R Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, NSW Health Pathology, Camperdown
| | - Ann-Marie Woodward
- Lipid Disorders Clinic, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia
| | - Gerald F Watts
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth
- Lipid Disorders Clinic, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
28
|
Mszar R, Webb GB, Kulkarni VT, Ahmad Z, Soffer D. Genetic Lipid Disorders Associated with Atherosclerotic Cardiovascular Disease: Molecular Basis to Clinical Diagnosis and Epidemiologic Burden. Med Clin North Am 2022; 106:325-348. [PMID: 35227434 DOI: 10.1016/j.mcna.2021.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genetic lipid disorders, ranging from common dyslipidemias such as familial hypercholesterolemia, lipoprotein (a), and familial combined hyperlipidemia to rare disorders including familial chylomicronemia syndrome and inherited hypoalphalipoproteinemias (ie, Tangier and fish eye diseases), affect millions of individuals in the United States and tens of millions around the world and are often undiagnosed in the general population. Clinicians should take into consideration the potential of inherited lipid disorders or syndromes when severe derangements in lipid parameters are observed. Patients' combined genotype and phenotype should be evaluated in conjunction with a host of environmental factors impacting their risk of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Reed Mszar
- Yale Center for Outcomes Research and Evaluation, New Haven, CT, USA
| | - Gayley B Webb
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivek T Kulkarni
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zahid Ahmad
- Division of Nutrition and Metabolic Disease, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Soffer
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Paquette M, Amyot J, Fantino M, Baass A, Bernard S. Rare Variants in Triglycerides-Related Genes Increase Pancreatitis Risk in Multifactorial Chylomicronemia Syndrome. J Clin Endocrinol Metab 2021; 106:e3473-e3482. [PMID: 34019660 DOI: 10.1210/clinem/dgab360] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 01/24/2023]
Abstract
CONTEXT Severe hypertriglyceridemia (fasting triglycerides [TG] concentration ≥10 mmol/L) can be caused by multifactorial chylomicronemia syndrome (MCS) or familial chylomicronemia syndrome (FCS). Both conditions are associated with an increased risk of acute pancreatitis. The clinical differences between MCS patients with or without a rare variant in TG-related genes have never been studied. OBJECTIVE To compare the clinical and biochemical characteristics of FCS, positive-MCS patients, and negative-MCS patients, as well as to investigate the predictors of acute pancreatitis in MCS patients. METHODS All patients referred at the clinic for severe hypertriglyceridemia underwent genetic testing for the 5 canonical genes involved in TG metabolism (LPL, APOC2, GPIHBP1, APOA5, and LMF1) using next-generation sequencing. RESULTS A total of 53 variant negative-MCS, 22 variant positive-MCS and 28 FCS subjects were included in this retrospective cross-sectional study. A significant difference was observed in the prevalence of pancreatitis (9%, 41%, and 61%) and multiple pancreatitis (6%, 23%, and 46%) in the negative-MCS, the positive-MCS, and the FCS groups, respectively (P < 0.0001). Predictors of pancreatitis among MCS subjects included the presence of a rare variant, lower apolipoprotein B, as well as higher gamma-glutamyl transferase, maximal TG value, and fructose consumption. CONCLUSION We observed that the MCS individuals who carried a rare variant have an intermediate phenotype between FCS and negative-MCS subjects. Since novel molecules such as the antisense oligonucleotide against APOC3 mRNA showed high efficacy in reducing TG levels in patients with multifactorial chylomicronemia, identification of higher-risk MCS patients who would benefit from additional treatment is essential.
Collapse
Affiliation(s)
- Martine Paquette
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec H2W 1R7, Canada
| | - Julie Amyot
- Molecular diagnostic laboratory, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Québec H1T 1C8, Canada
| | - Manon Fantino
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec H2W 1R7, Canada
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec H2W 1R7, Canada
- Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Québec H3A 0G4, Canada
| | - Sophie Bernard
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec H2W 1R7, Canada
- Department of Medicine, Division of Endocrinology, Université de Montreal, Québec H3T 1J4, Canada
| |
Collapse
|
30
|
Abstract
INTRODUCTION Familial chylomicronemia syndrome (FCS) is a rare subtype of severe hypertriglyceridemia that affects ~1 in 100, 000 to 1,000,000 individuals. The major risk to health is acute pancreatitis. FCS is defined by biallelic loss-of-function mutations in one of five canonical genes that encode proteins critical to lipolysis of large triglyceride-rich lipoprotein particles. Unlike the vast majority of patients with severe hypertriglyceridemia, FCS patients lack any lipolytic capacity and are thus resistant to standard medications. AREAS COVERED This review focuses on a mechanism that effectively reduces elevated triglyceride levels in FCS, namely interference of synthesis of apolipoprotein (apo) C-III. Volanesorsen is an antisense RNA drug administered subcutaneously that knocks down apo C-III, resulting in dramatic reductions in triglyceride levels both in FCS patients and in the wider population of subjects with severe hypertriglyceridemia. EXPERT OPINION Volanesorsen is a highly effective treatment to reduce elevated triglycerides in FCS patients, providing proof-of-concept of the validity of targeting apo C-III. However, off target effects of volanesorsen, including thrombocytopenia, may ultimately limit its use. Nonetheless, building on the knowledge derived from the volanesorsen experience, there is intensified interest in promising newer agents that also target apo C-III but have technical modifications that limit potential off target adverse effects.
Collapse
Affiliation(s)
- Julieta Lazarte
- Departments of Medicine, Medicine and Dentistry, Western University, London, Canada.,Biochemistry, Medicine and Dentistry, Western University, London, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Robert A Hegele
- Departments of Medicine, Medicine and Dentistry, Western University, London, Canada.,Biochemistry, Medicine and Dentistry, Western University, London, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
31
|
Kobayashi J, Minamizuka T, Koshizaka M, Maezawa Y, Ono H, Yokote K. Serum HDL-C values: An extremely useful marker for differentiating homozygous lipoprotein lipase deficiency from severe hypertriglyceridemia with other causes in Japan: A meta-analysis based on literatures on Japanese homozygous lipoprotein lipase deficiency. Clin Chim Acta 2021; 521:85-89. [PMID: 34242636 DOI: 10.1016/j.cca.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUNDS AND AIM Lipoprotein lipase (LPL) deficiency is a genetic disorder with a defective gene for lipoprotein lipase, leading to very high triglycerides. In the daily practice it is much more common to come across severely hypertriglyceridemia without homozygous or compound heterozygous LPL deficiency (SHTG). METHODS We investigated on how to screen homozygous or compound heterozygous LPL deficiency using lipid parameters by meta-analyzing past 20 subjects on this genetic disease reported by Japanese investigators. As a comparison with LPL deficiency, 21 subjects with SHTG from recent two studies were included in this study. RESULTS Serum HDL-C levels were significantly lower in LPL deficiency than in SHTG (0.38 ± 0.13 vs 0.94 ± 0.28 mmol/L (mean ± SD), p < 0.001), whereas other serum lipids did not differ between the two groups. The ROC curve ± standard error for serum HDL-C for discriminating the two groups was 0.97 ± 0.019. Sensitivity and specificity for distinguishing the two groups were 90% and 95%, respectively when serum HDL-C 0.62 mmol/L was adopted as cut point. CONCLUSION We found for the first time that serum HDL-C is an extremely useful marker for discriminating LPL deficiency from SHTG in Japanese population.
Collapse
Affiliation(s)
- Junji Kobayashi
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan.
| | - Takuya Minamizuka
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| | - Masaya Koshizaka
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| | - Yoshiro Maezawa
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| | - Hiraku Ono
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| | - Koutaro Yokote
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| |
Collapse
|
32
|
Muñiz-Grijalvo O, Diaz-Diaz JL. Familial chylomicronemia and multifactorial chylomicronemia. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2021; 33 Suppl 2:56-62. [PMID: 34006355 DOI: 10.1016/j.arteri.2021.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022]
Abstract
The accumulation of chylomicrons in plasma beyond the postprandial period is a pathological event secondary to the partial or complete lack of activity of lipoprotein lipase that can lead to recurrent episodes of abdominal pain and acute pancreatitis. This article reviews the pathophysiology of this syndrome and the differential characteristics depending on whether it is due to congenital monogenic causes or acquired on a polygenic basis in which multiple factors may inluence.
Collapse
Affiliation(s)
| | - José Luis Diaz-Diaz
- Unidad de Lípidos, Servicio de Medicina interna, Complexo Hospitalario Universitario de A Coruña
| |
Collapse
|
33
|
Charrière S. Hypertriglycéridémies majeures : diagnostic et prise en charge. NUTR CLIN METAB 2021. [DOI: 10.1016/j.nupar.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Abstract
PURPOSE OF REVIEW The relationship between elevated triglyceride levels (i.e. hypertriglyceridemia) and risk of atherosclerotic cardiovascular disease (ASCVD) has been investigated for decades. Recent genetic studies have sought to resolve the decades-old question of a causal relationship. RECENT FINDINGS Genetic studies seem to demonstrate associations between elevated triglyceride levels and ASCVD risk. Mendelian randomization studies suggest this association may be causal. However, simultaneous pleiotropic effects of metabolically linked lipid variables - such as non-HDL cholesterol, apolipoprotein B and HDL cholesterol -- often go unaccounted for in these studies. Complex underlying pleiotropic interactions of triglycerides with these lipid fractions together with unmeasured intercalated nonlipid-related mechanisms, such as inflammation and coagulation, impair the ability of genetic studies to implicate a direct role for triglycerides on ASCVD risk. One potential mechanism seems largely driven by the cholesterol carried within triglyceride-rich lipoproteins and their remnants, rather than their triglyceride content. SUMMARY Although the exact mechanisms linking elevated triglyceride levels to ASCVD remain to be determined, new therapeutics that reduce triglyceride levels might be advantageous in certain patients. Newer investigational triglyceride-lowering therapies derived from human genetics target key proteins, such as apo C-III and ANGPTL3. Although these treatments clearly lower triglyceride levels, their efficacy in atherosclerotic risk reduction remains unproven.
Collapse
|
35
|
Cruz-Bautista I, Huerta-Chagoya A, Moreno-Macías H, Rodríguez-Guillén R, Ordóñez-Sánchez ML, Segura-Kato Y, Mehta R, Almeda-Valdés P, Gómez-Munguía L, Ruiz-De Chávez X, Rosas-Flota X, Andrade-Amado A, Bernal-Barroeta B, López-Carrasco MG, Guillén-Pineda LE, López-Estrada A, Elías-López D, Martagón-Rosado AJ, Gómez-Velasco D, Lam-Chung CE, Bello-Chavolla OY, Del Razo-Olvera F, Cetina-Pérez LD, Acosta-Rodríguez JL, Tusié-Luna MT, Aguilar-Salinas CA. Familial hypertriglyceridemia: an entity with distinguishable features from other causes of hypertriglyceridemia. Lipids Health Dis 2021; 20:14. [PMID: 33588820 PMCID: PMC7885394 DOI: 10.1186/s12944-021-01436-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Familial hypertriglyceridemia (FHTG) is a partially characterized primary dyslipidemia which is frequently confused with other forms hypertriglyceridemia. The aim of this work is to search for specific features that can help physicians recognize this disease. METHODS This study included 84 FHTG cases, 728 subjects with common mild-to-moderate hypertriglyceridemia (CHTG) and 609 normotriglyceridemic controls. All subjects underwent genetic, clinical and biochemical assessments. A set of 53 single nucleotide polymorphisms (SNPs) previously associated with triglycerides levels, as well as 37 rare variants within the five main genes associated with hypertriglyceridemia (i.e. LPL, APOC2, APOA5, LMF1 and GPIHBP1) were analyzed. A panel of endocrine regulatory proteins associated with triglycerides homeostasis were compared between the FHTG and CHTG groups. RESULTS Apolipoprotein B, fibroblast growth factor 21(FGF-21), angiopoietin-like proteins 3 (ANGPTL3) and apolipoprotein A-II concentrations, were independent components of a model to detect FHTG compared with CHTG (AUC 0.948, 95%CI 0.901-0.970, 98.5% sensitivity, 92.2% specificity, P < 0.001). The polygenic set of SNPs, accounted for 1.78% of the variance in triglyceride levels in FHTG and 6.73% in CHTG. CONCLUSIONS The clinical and genetic differences observed between FHTG and CHTG supports the notion that FHTG is a unique entity, distinguishable from other causes of hypertriglyceridemia by the higher concentrations of insulin, FGF-21, ANGPTL3, apo A-II and lower levels of apo B. We propose the inclusion of these parameters as useful markers for differentiating FHTG from other causes of hypertriglyceridemia.
Collapse
Affiliation(s)
- Ivette Cruz-Bautista
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Alicia Huerta-Chagoya
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán e Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico
- CONACyT. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Hortensia Moreno-Macías
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán e Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico
- Departamento de Economía, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Rosario Rodríguez-Guillén
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán e Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico
| | - María Luisa Ordóñez-Sánchez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán e Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico
| | - Yayoi Segura-Kato
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán e Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico
| | - Roopa Mehta
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Paloma Almeda-Valdés
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Lizeth Gómez-Munguía
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Ximena Ruiz-De Chávez
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Ximena Rosas-Flota
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Arali Andrade-Amado
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Bárbara Bernal-Barroeta
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - María Guadalupe López-Carrasco
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Luz Elizabeth Guillén-Pineda
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Angelina López-Estrada
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Daniel Elías-López
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Alexandro J Martagón-Rosado
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, NL, Mexico
| | - Donají Gómez-Velasco
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Cesar Ernesto Lam-Chung
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Omar Yaxmehen Bello-Chavolla
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Research Division, Instituto Nacional de Geriatría, Mexico City, Mexico
| | - Fabiola Del Razo-Olvera
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico
| | - Lucely D Cetina-Pérez
- Departamento de Oncología Médica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - María Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán e Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico.
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080, Mexico City, Mexico.
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, NL, Mexico.
| |
Collapse
|
36
|
Maltais M, Brisson D, Gaudet D. Non-Alcoholic Fatty Liver in Patients with Chylomicronemia. J Clin Med 2021; 10:669. [PMID: 33572376 PMCID: PMC7916177 DOI: 10.3390/jcm10040669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 01/21/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is frequent in patients with features of the metabolic syndrome (MetS), obesity, or type 2 diabetes. Lipoprotein lipase (LPL) is the main driver of triglyceride (TG) hydrolysis in chylomicrons and very-low density lipoproteins (VLDL). In some patients with MetS, dysfunction of this pathway can lead to plasma TG values > 10 mmol/L (multifactorial chylomicronemia or MCS). Chylomicronemia also characterizes LPL deficiency (LPLD), a rare autosomal recessive disease called familial chylomicronemia syndrome (FCS), which is associated with an increased risk of recurrent pancreatitis. This study aims to investigate the expression of NAFLD, as assessed by transient elastography, in MCS and FCS subjects. Data were obtained from 38 subjects with chylomicronemia; 19 genetically confirmed FCS and 19 sex- and age-matched MCS. All participants underwent liver ultrasonography and stiffness measurement after a 4-h fast using transient elastography (FibroScan®, Echosens, Waltham, MA, USA). NAFLD (controlled attenuation parameter (CAP) > 280 dB/m) was observed in 42.1% of FCS and 73.7% of MCS subjects (p = 0.05). FCS subjects had lower body mass index (BMI) than MCS. Only 25% of FCS subjects with NAFLD had a BMI ≥ 30 compared to 64.3% in MCS (p = 0.004). In FCS, NAFLD occurred even in the presence of very low (≤18 kg/m2) BMI. In both FCS and MCS, CAP was negatively associated with acute pancreatitis risk. In this study, NAFLD was commonly observed in both FCS and MCS subjects and occurred independently of the BMI and fasting glucose values in FCS; NAFLD was associated with a lower occurrence of acute pancreatitis episodes.
Collapse
Affiliation(s)
| | | | - Daniel Gaudet
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC G7H 7K9, Canada; (M.M.); (D.B.)
| |
Collapse
|
37
|
Hegele RA, Dron JS. 2019 George Lyman Duff Memorial Lecture: Three Decades of Examining DNA in Patients With Dyslipidemia. Arterioscler Thromb Vasc Biol 2020; 40:1970-1981. [PMID: 32762461 DOI: 10.1161/atvbaha.120.313065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dyslipidemias include both rare single gene disorders and common conditions that have a complex underlying basis. In London, ON, there is fortuitous close physical proximity between the Lipid Genetics Clinic and the London Regional Genomics Centre. For >30 years, we have applied DNA sequencing of clinical samples to help answer scientific questions. More than 2000 patients referred with dyslipidemias have participated in an ongoing translational research program. In 2013, we transitioned to next-generation sequencing; our targeted panel is designed to concurrently assess both monogenic and polygenic contributions to dyslipidemias. Patient DNA is screened for rare variants underlying 25 mendelian dyslipidemias, including familial hypercholesterolemia, hepatic lipase deficiency, abetalipoproteinemia, and familial chylomicronemia syndrome. Furthermore, polygenic scores for LDL (low-density lipoprotein) and HDL (high-density lipoprotein) cholesterol, and triglycerides are calculated for each patient. We thus simultaneously document both rare and common genetic variants, allowing for a broad view of genetic predisposition for both individual patients and cohorts. For instance, among patients referred with severe hypertriglyceridemia, defined as ≥10 mmol/L (≥885 mg/dL), <1% have a mendelian disorder (ie, autosomal recessive familial chylomicronemia syndrome), ≈15% have heterozygous rare variants (a >3-fold increase over normolipidemic individuals), and ≈35% have an extreme polygenic score (a >3-fold increase over normolipidemic individuals). Other dyslipidemias show a different mix of genetic determinants. Genetic results are discussed with patients and can support clinical decision-making. Integrating DNA testing into clinical care allows for a bidirectional flow of information, which facilitates scientific discoveries and clinical translation.
Collapse
Affiliation(s)
- Robert A Hegele
- From the Department of Medicine (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biochemistry (R.A.H., J.S.D.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (R.A.H., J.S.D.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jacqueline S Dron
- Department of Biochemistry (R.A.H., J.S.D.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (R.A.H., J.S.D.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
38
|
Gallo A, Béliard S, D'Erasmo L, Bruckert E. Familial Chylomicronemia Syndrome (FCS): Recent Data on Diagnosis and Treatment. Curr Atheroscler Rep 2020; 22:63. [PMID: 32852651 DOI: 10.1007/s11883-020-00885-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Familial chylomicronemia syndrome (FCS) is a rare recessive genetic disorder often underdiagnosed with potentially severe clinical consequences. In this review, we describe the clinical and biological characteristics of the disease together with its main complication, i.e., acute pancreatitis. We focused the paper on new diagnostic tools, progress in understanding the role of two key proteins (apolipoprotein CIII (apo CIII) and angiopoietin-like3 (ANGPTL-3)), and new therapeutic options. RECENT FINDINGS Recently, a new diagnostic tool has been proposed by European experts to help identify these patients. This tool with two recently identified parameters (low LDL and low body mass index) can help identify patients who should be genetically tested or who may have the disease when genetic testing is not available. FCS is caused by homozygous or compound heterozygous mutations of lipoprotein lipase, apolipoprotein C-II, apolipoprotein A-V, glycosylphosphatidylinositol anchored high-density lipoprotein-binding protein 1, and lipase maturation factor. Two proteins have been identified as important player in the metabolism of triglyceride-rich lipoprotein and its regulation. These two proteins are therapeutic target. Antisense oligonucleotide targeting apo CIII has been shown to significantly decrease triglyceride levels even in FCS and is the first available treatment for these patients. Further development might identify new compounds with reduced risk to develop severe thrombocytopenia. ANGPTL-3 inhibitors have not yet been tested in FCS patients but exert significant hypotriglyceridemic effect in the more frequent and less severe polygenic forms. Beyond these two new targets, microsomal triglyceride transfer protein (MTTP) inhibitors could also be part of the armamentarium, if on-going trials confirm their efficacy. New clinical tools and simple criteria can help select patients with possible FCS and identify patients who should have a genetic testing. Identifying patients with FCS is a major issue since these patients have a high risk to suffer severe episodes of acute pancreatitis and may now benefit from new therapeutic options including antisense oligonucleotide targeting apo CIII.
Collapse
Affiliation(s)
- Antonio Gallo
- Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Sophie Béliard
- Department of Nutrition, Maladies Métaboliques et Endocrinologie, Hôpital Conception, Marseille, France
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Eric Bruckert
- Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.
| |
Collapse
|
39
|
Plengpanich W, Muanpetch S, Charoen S, Kiateprungvej A, Khovidhunkit W. Genetic and functional studies of the LMF1 gene in Thai patients with severe hypertriglyceridemia. Mol Genet Metab Rep 2020; 23:100576. [PMID: 32190547 PMCID: PMC7068683 DOI: 10.1016/j.ymgmr.2020.100576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/23/2022] Open
Abstract
Severe hypertriglyceridemia (HTG) due to chylomicronemia is associated with acute pancreatitis and is related to genetic disturbances in several proteins involved in triglyceride (TG) metabolism. Lipase maturation factor 1 (LMF1) is a protein essential for the maturation of lipoprotein lipase (LPL). In this study, we examined the genetic spectrum of the LMF1 gene among subjects with severe HTG and investigated the functional significance of 6 genetic variants in vitro. All 11 exons of the LMF1 gene were sequenced in 101 Thai subjects with severe HTG. For an in vitro study, we performed site-directed mutagenesis, transient expression in cld cells, and measured LPL protein and LPL activity. We identified 2 common variants [p.(Gly36Asp) and p.(Pro562Arg)] and 12 rare variants [p.(Thr143Met), p.(Asn249Ser), p.(Ala287Val), p.(Met346Val), p.(Thr395Ile), p.(Gly410Arg), p.(Asp433Asn), p.(Asp491Asn), p.(Asn501Tyr), p.(Ala504Val), p.(Arg523His), and p.(Leu563Arg)] in 29 patients. In vitro study of the p.(Gly36Asp), p.(Asn249Ser), p.(Ala287Val), p.(Asn501Tyr), p.(Pro562Arg) and p.(Leu563Arg) variants, however, revealed that both LPL mass and LPL activity in each of the transfected cells were not significantly different from those in the wild type LMF1 transfected cells, suggesting that these variants might not play a significant role in severe HTG phenotype in our subjects. Among 101 subjects with severe hypertriglyceridemia (HTG), 2 common and 12 rare variants in the LMF1 gene were identified None of the 6 missense variants studied were associated with a reduction in lipoprotein mass or activity These rare variants in the LMF1 gene may not play an important role in severe HTG phenotypes in the Thai population
Collapse
Affiliation(s)
- Wanee Plengpanich
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| | - Suwanna Muanpetch
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| | - Supannika Charoen
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| | - Arunrat Kiateprungvej
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| | - Weerapan Khovidhunkit
- Endocrinology and Metabolism Unit, Department of Medicine and Hormonal and Metabolic Disorders Research Unit, Faculty of Medicine, Chulalongkorn University, Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
40
|
Abstract
Hypertriglyceridemia, a commonly encountered phenotype in cardiovascular and metabolic clinics, is surprisingly complex. A range of genetic variants, from single-nucleotide variants to large-scale copy number variants, can lead to either the severe or mild-to-moderate forms of the disease. At the genetic level, severely elevated triglyceride levels resulting from familial chylomicronemia syndrome (FCS) are caused by homozygous or biallelic loss-of-function variants in LPL, APOC2, APOA5, LMF1, and GPIHBP1 genes. In contrast, susceptibility to multifactorial chylomicronemia (MCM), which has an estimated prevalence of ~1 in 600 and is at least 50-100-times more common than FCS, results from two different types of genetic variants: (1) rare heterozygous variants (minor allele frequency <1%) with variable penetrance in the five causal genes for FCS; and (2) common variants (minor allele frequency >5%) whose individually small phenotypic effects are quantified using a polygenic score. There is indirect evidence of similar complex genetic predisposition in other clinical phenotypes that have a component of hypertriglyceridemia, such as combined hyperlipidemia and dysbetalipoproteinemia. Future considerations include: (1) evaluation of whether the specific type of genetic predisposition to hypertriglyceridemia affects medical decisions or long-term outcomes; and (2) searching for other genetic contributors, including the role of genome-wide polygenic scores, novel genes, non-linear gene-gene or gene-environment interactions, and non-genomic mechanisms including epigenetics and mitochondrial DNA.
Collapse
|