1
|
Yan L, Li X, Xu J, Tang S, Wang G, Shi M, Liu P. The CNC-family transcription factor NRF3: A crucial therapeutic target for cancer treatment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167794. [PMID: 40081618 DOI: 10.1016/j.bbadis.2025.167794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
The CNC-bZIP family member NRF3 (NFE2L3) has received limited attention since its discovery. However, recent research has gradually revealed its biological functions, such as involvement in the regulation of cell differentiation, lipid metabolism, and malignant cell proliferation. Under physiological conditions, NRF3 is anchored to the endoplasmic reticulum within the cytoplasm and is biologically inactive. Upon cellular exposure to microenvironmental stresses such as oxidative stress, NRF3 translocates to the nucleus, binds to DNA, and acts as a transcription factor by inducing or repressing the expression of various genes. In terms of tumor regulation, NRF3 exhibits a dual role. It can function as a tumor suppressor to prevent the malignant progression of tumor tissues, protecting the organism from harm. Conversely, current research indicates that NRF3 plays a tumor-promoting role in most tumor tissues. NRF3 enhances the proliferation, migration and invasion of tumor cells by regulating cell cycle-related proteins and enhancing proteasome assembly to degrade tumor suppressors. Studies correlating NRF3 expression with clinical tumor features have found that elevated NRF3 expression is often associated with poor prognoses in various cancers, with patients exhibiting higher NRF3 expression typically having lower survival rates. Several studies suggest that NRF3 could serve as a clinical diagnostic and prognostic marker for tumors. Finally, from the clinical perspective, exploring the feasibility of inhibiting NRF3 activity in tumor treatment provides new insights for the development of NRF3-targeted oncological therapies.
Collapse
Affiliation(s)
- Liangwen Yan
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyan Li
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayi Xu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shenkang Tang
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Gang Wang
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| | - Mengjiao Shi
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Pengfei Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China.
| |
Collapse
|
2
|
Yaker L, Saliba J, Scott LPC, Sood AK, Gujral P, Orozco-Alonso E, Yan X, Yeh A, Blank V. NFE2L3 regulates inflammation and oxidative stress-related genes in the colon. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119987. [PMID: 40360021 DOI: 10.1016/j.bbamcr.2025.119987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 04/04/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
The molecular mechanisms leading to inflammatory bowel disease (IBD) are only partially understood. We investigated the role of the transcription factor NFE2L3 in a mouse model of colitis by inducing inflammation using dextran sodium sulfate (DSS). We confirmed the presence of inflammation by histological analysis and elevated levels of the inflammation marker lipocalin-2 (LCN2) in the stool. We found that Lcn2 transcript levels are significantly less elevated in Nfe2l3-/- mice than wild type mice. We further showed a reduction of Nfe2l3 mRNA, in wildtype mice upon DSS treatment. We cross referenced ENCODE ChIP data of NFE2L3 binding partners MAFF and MAFK with known IBD and DSS effectors and identified Stat1, Hmox1, and Slc7a11 as potential NFE2L3 targets. These proteins are induced during colitis to suppress the immune response, reduce oxidative stress, and trigger ferroptosis, respectively. We analyzed the candidate targets and observed an increase in their protein expression upon DSS treatment in wild type but not in Nfe2l3-/- mice. Furthermore, in the absence of DSS, we observed an increase in the basal levels of pSTAT1 and SLC7A11 proteins in Nfe2l3-/- mice. These data suggest that the NFE2L3 transcription factor primes the microenvironment towards a pro-inflammatory ready state during inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Linda Yaker
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - James Saliba
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Liam P C Scott
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Anantpreet Kaur Sood
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Palak Gujral
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Eduardo Orozco-Alonso
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Xingyue Yan
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Adam Yeh
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada
| | - Volker Blank
- Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Canada; Department of Medicine, McGill University, Montreal, H4A 3J1, Canada; Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
3
|
Murray MB, Dixon SJ. Ferroptosis regulation by Cap'n'collar family transcription factors. J Biol Chem 2024; 300:107583. [PMID: 39025451 PMCID: PMC11387702 DOI: 10.1016/j.jbc.2024.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death mechanism that may be important to prevent tumor formation and useful as a target for new cancer therapies. Transcriptional networks play a crucial role in shaping ferroptosis sensitivity by regulating the expression of transporters, metabolic enzymes, and other proteins. The Cap'n'collar (CNC) protein NFE2 like bZIP transcription factor 2 (NFE2L2, also known as NRF2) is a key regulator of ferroptosis in many cells and contexts. Emerging evidence indicates that the related CNC family members, BTB domain and CNC homolog 1 (BACH1) and NFE2 like bZIP transcription factor 1 (NFE2L1), also have roles in ferroptosis regulation. Here, we comprehensively review the role of CNC transcription factors in governing cellular sensitivity to ferroptosis. We describe how CNC family members regulate ferroptosis sensitivity through modulation of iron, lipid, and redox metabolism. We also use examples of ferroptosis regulation by CNC proteins to illustrate the flexible and highly context-dependent nature of the ferroptosis mechanism in different cells and conditions.
Collapse
Affiliation(s)
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, California, USA.
| |
Collapse
|
4
|
Xiong G, Li J, Yao F, Yang F, Xiang Y. New insight into the CNC-bZIP member, NFE2L3, in human diseases. Front Cell Dev Biol 2024; 12:1430486. [PMID: 39149514 PMCID: PMC11325725 DOI: 10.3389/fcell.2024.1430486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Nuclear factor erythroid 2 (NF-E2)-related factor 3 (NFE2L3), a member of the CNC-bZIP subfamily and widely found in a variety of tissues, is an endoplasmic reticulum (ER) membrane-anchored transcription factor that can be released from the ER and moved into the nucleus to bind the promoter region to regulate a series of target genes involved in antioxidant, inflammatory responses, and cell cycle regulation in response to extracellular or intracellular stress. Recent research, particularly in the past 5 years, has shed light on NFE2L3's participation in diverse biological processes, including cell differentiation, inflammatory responses, lipid homeostasis, immune responses, and tumor growth. Notably, NFE2L3 has been identified as a key player in the development and prognosis of multiple cancers including colorectal cancer, thyroid cancer, breast cancer, hepatocellular carcinoma, gastric cancer, renal cancer, bladder cancer, esophageal squamous cell carcinoma, T cell lymphoblastic lymphoma, pancreatic cancer, and squamous cell carcinoma. Furthermore, research has linked NFE2L3 to other cancers such as lung adenocarcinoma, malignant pleural mesothelioma, ovarian cancer, glioblastoma multiforme, and laryngeal carcinoma, indicating its potential as a target for innovative cancer treatment approaches. Therefore, to gain a better understanding of the role of NFE2L3 in disease, this review offers insights into the discovery, structure, function, and recent advancements in the study of NFE2L3 to lay the groundwork for the development of NFE2L3-targeted cancer therapies.
Collapse
Affiliation(s)
- Guanghui Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Children Rehabilitation, Maternal and Child Health Hospital of Jintang County, Chendu, Sichuan, China
| | - Jie Li
- Department of Anaesthesia, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Fuli Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Fang Yang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Walber S, Partalidou G, Gerling‐Driessen UIM. NGLY1 Deficiency: A Rare Genetic Disorder Unlocks Therapeutic Potential for Common Diseases. Isr J Chem 2022. [DOI: 10.1002/ijch.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simon Walber
- Institute of Organic and Macromolecular Chemistry Heinrich Heine University Duesseldorf Universitaetsstrasse 1 40225 Duesseldorf Germany
| | - Georgia Partalidou
- Institute of Organic and Macromolecular Chemistry Heinrich Heine University Duesseldorf Universitaetsstrasse 1 40225 Duesseldorf Germany
| | - Ulla I. M. Gerling‐Driessen
- Institute of Organic and Macromolecular Chemistry Heinrich Heine University Duesseldorf Universitaetsstrasse 1 40225 Duesseldorf Germany
| |
Collapse
|
6
|
Saliba J, Coutaud B, Makhani K, Epstein Roth N, Jackson J, Park JY, Gagnon N, Costa P, Jeyakumar T, Bury M, Beauchemin N, Mann KK, Blank V. Loss of NFE2L3 protects against inflammation-induced colorectal cancer through modulation of the tumor microenvironment. Oncogene 2022; 41:1563-1575. [PMID: 35091681 PMCID: PMC8913363 DOI: 10.1038/s41388-022-02192-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
We investigated the role of the NFE2L3 transcription factor in inflammation-induced colorectal cancer. Our studies revealed that Nfe2l3−/− mice exhibit significantly less inflammation in the colon, reduced tumor size and numbers, and skewed localization of tumors with a more pronounced decrease of tumors in the distal colon. CIBERSORT analysis of RNA-seq data from normal and tumor tissue predicted a reduction in mast cells in Nfe2l3−/− animals, which was confirmed by toluidine blue staining. Concomitantly, the transcript levels of Il33 and Rab27a, both important regulators of mast cells, were reduced and increased, respectively, in the colorectal tumors of Nfe2l3−/− mice. Furthermore, we validated NFE2L3 binding to the regulatory sequences of the IL33 and RAB27A loci in human colorectal carcinoma cells. Using digital spatial profiling, we found that Nfe2l3−/− mice presented elevated FOXP3 and immune checkpoint markers CTLA4, TIM3, and LAG3, suggesting an increase in Treg counts. Staining for CD3 and FOXP3 confirmed a significant increase in immunosuppressive Tregs in the colon of Nfe2l3−/− animals. Also, Human Microbiome Project (HMP2) data showed that NFE2L3 transcript levels are higher in the rectum of ulcerative colitis patients. The observed changes in the tumor microenvironment provide new insights into the molecular differences regarding colon cancer sidedness. This may be exploited for the treatment of early-onset colorectal cancer as this emerging subtype primarily displays distal/left-sided tumors.
Collapse
Affiliation(s)
- James Saliba
- Lady Davis Institute for Medical Research, Montreal, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Kiran Makhani
- Lady Davis Institute for Medical Research, Montreal, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Noam Epstein Roth
- Lady Davis Institute for Medical Research, Montreal, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jennie Jackson
- Lady Davis Institute for Medical Research, Montreal, Canada.,Life Sciences Institute and Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joo Yeoun Park
- Lady Davis Institute for Medical Research, Montreal, Canada
| | | | - Paolo Costa
- Lady Davis Institute for Medical Research, Montreal, Canada
| | - Thiviya Jeyakumar
- Goodman Cancer Institute and Departments of Oncology, Biochemistry and Medicine, McGill University, Montreal, Quebec, Canada
| | - Marina Bury
- Lady Davis Institute for Medical Research, Montreal, Canada.,De Duve Institute, UCLouvain, Brussels, Belgium
| | - Nicole Beauchemin
- Goodman Cancer Institute and Departments of Oncology, Biochemistry and Medicine, McGill University, Montreal, Quebec, Canada
| | - Koren K Mann
- Lady Davis Institute for Medical Research, Montreal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Volker Blank
- Lady Davis Institute for Medical Research, Montreal, Canada. .,Department of Medicine, McGill University, Montreal, Quebec, Canada. .,Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Yap YW, Hannan NJ, Wallace EM, Marshall SA. Silencing of Nrf genes in the human placenta as measured by SDS-PAGE and Western Blotting techniques. Placenta 2022; 118:70-74. [PMID: 35045361 DOI: 10.1016/j.placenta.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
Nuclear factor erythroid 2-related factor-2 (Nrf2), and the less well characterised proteins Nrf1 and Nrf3, are member of the cap 'n' collar family of transcription factors. Nrf proteins regulate the expression of endogenous antioxidant enzymes and have recently become the targets for various therapeutic treatments. Recently, Nrf proteins have been of particular interest as a target in placental-derived oxidative stress induced pregnancy disorders. Here, we report the presence of Nrf1, Nrf2 and Nrf3 proteins in both human primary trophoblast and human trophoblast choriocarcinoma cell line (BeWo). We also detail the steps taken to successfully silence all Nrf proteins in both human primary trophoblast cells and BeWo via detection of mRNA and protein using quantitative PCR, and SDS-PAGE and Western Blotting respectively.
Collapse
Affiliation(s)
- Yann W Yap
- The Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia; The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne & Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| | - Sarah A Marshall
- The Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia; The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia.
| |
Collapse
|
8
|
Pathophysiological Potentials of NRF3-Regulated Transcriptional Axes in Protein and Lipid Homeostasis. Int J Mol Sci 2021; 22:ijms222312686. [PMID: 34884489 PMCID: PMC8657584 DOI: 10.3390/ijms222312686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
NRF3 (NFE2L3) belongs to the CNC-basic leucine zipper transcription factor family. An NRF3 homolog, NRF1 (NFE2L1), induces the expression of proteasome-related genes in response to proteasome inhibition. Another homolog, NRF2 (NFE2L2), induces the expression of genes related to antioxidant responses and encodes metabolic enzymes in response to oxidative stress. Dysfunction of each homolog causes several diseases, such as neurodegenerative diseases and cancer development. However, NRF3 target genes and their biological roles remain unknown. This review summarizes our recent reports that showed NRF3-regulated transcriptional axes for protein and lipid homeostasis. NRF3 induces the gene expression of POMP for 20S proteasome assembly and CPEB3 for NRF1 translational repression, inhibiting tumor suppression responses, including cell-cycle arrest and apoptosis, with resistance to a proteasome inhibitor anticancer agent bortezomib. NRF3 also promotes mevalonate biosynthesis by inducing SREBP2 and HMGCR gene expression, and reduces the intracellular levels of neural fatty acids by inducing GGPS1 gene expression. In parallel, NRF3 induces macropinocytosis for cholesterol uptake by inducing RAB5 gene expression. Finally, this review mentions not only the pathophysiological aspects of these NRF3-regulated axes for cancer cell growth and anti-obesity potential but also their possible role in obesity-induced cancer development.
Collapse
|
9
|
Liu T, Lv YF, Zhao JL, You QD, Jiang ZY. Regulation of Nrf2 by phosphorylation: Consequences for biological function and therapeutic implications. Free Radic Biol Med 2021; 168:129-141. [PMID: 33794311 DOI: 10.1016/j.freeradbiomed.2021.03.034] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) participates in the activation of the antioxidant cytoprotective pathway and other important physiological processes to maintain cellular homeostasis. The dysregulation of NRF2 activity plays a role in various diseases, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Thus, NRF2 activity is tightly regulated through multiple mechanisms, among which phosphorylation by kinases is critical in the posttranslational regulation of NRF2. For instance, PKC, casein kinase 2, and AMP-activated kinase positively, while GSK-3 negatively regulates NRF2 activity through phosphorylation of different sites. Here, we provide an overview of the phosphorylation regulation pattern of NRF2 and discuss the therapeutic potential of interventions targeting NRF2 phosphorylation.
Collapse
Affiliation(s)
- Tian Liu
- State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi-Fei Lv
- State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing-Long Zhao
- State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines, And Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
NFE2L3 Controls Colon Cancer Cell Growth through Regulation of DUX4, a CDK1 Inhibitor. Cell Rep 2020; 29:1469-1481.e9. [PMID: 31693889 DOI: 10.1016/j.celrep.2019.09.087] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 06/26/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
Constitutive nuclear factor κB (NF-κB) activation is a hallmark of colon tumor growth. Cyclin-dependent kinases (CDKs) are critical cell-cycle regulators, and inhibition of CDK activity has been used successfully as anticancer therapy. Here, we show that the NFE2L3 transcription factor functions as a key regulator in a pathway that links NF-κB signaling to the control of CDK1 activity, thereby driving colon cancer cell proliferation. We found that NFE2L3 expression is regulated by the RELA subunit of NF-κB and that NFE2L3 levels are elevated in patients with colon adenocarcinoma when compared with normal adjacent tissue. Silencing of NFE2L3 significantly decreases colon cancer cell proliferation in vitro and tumor growth in vivo. NFE2L3 knockdown results in increased levels of double homeobox factor 4 (DUX4), which functions as a direct inhibitor of CDK1. The discovered oncogenic pathway governing cell-cycle progression may open up unique avenues for precision cancer therapy.
Collapse
|
11
|
Kobayashi A. Roles of NRF3 in the Hallmarks of Cancer: Proteasomal Inactivation of Tumor Suppressors. Cancers (Basel) 2020; 12:cancers12092681. [PMID: 32962187 PMCID: PMC7563620 DOI: 10.3390/cancers12092681] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary This review summarizes recent advances in our understanding of the physiological roles of the NFE2-related factor 2 (NRF2)-related transcription factor NRF3 in cancer. NRF3 confers cells with six so-called “hallmarks of cancer” through upregulating gene expression of specific target genes, leading to tumorigenesis and cancer malignancy. These driver gene-like functions of NRF3 in cancer are distinct from those of NRF2. Abstract The physiological roles of the NRF2-related transcription factor NRF3 (NFE2L3) have remained unknown for decades. The remarkable development of human cancer genome databases has led to strong suggestions that NRF3 has functional significance in cancer; specifically, high NRF3 mRNA levels are induced in many cancer types, such as colorectal cancer and pancreatic adenocarcinoma, and are associated with poor prognosis. On the basis of this information, the involvement of NRF3 in tumorigenesis and cancer malignancy has been recently proposed. NRF3 confers cancer cells with selective growth advantages by enhancing 20S proteasome assembly through induction of the chaperone gene proteasome maturation protein (POMP) and consequently promoting degradation of the tumor suppressors p53 and retinoblastoma (Rb) in a ubiquitin-independent manner. This new finding offers insight into the proteasomal but not the genetic inactivation mechanism of tumor suppressors. Moreover, NRF3 promotes cancer malignancy-related processes, including metastasis and angiogenesis. Finally, the molecular mechanisms underlying NRF3 activation have been elucidated, and this knowledge is expected to provide many insights that are useful for the development of anticancer drugs that attenuate NRF3 transcriptional activity. Collectively, the evidence indicates that NRF3 confers cells with six so-called “hallmarks of cancer”, implying that it exhibits cancer driver gene-like function. This review describes recent research advances regarding the newly discovered addiction of cancer cells to NRF3 compared to NRF2.
Collapse
Affiliation(s)
- Akira Kobayashi
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan; ; Tel.: +81-774-65-6273
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
12
|
Molecular Mechanisms Underlying Hepatocellular Carcinoma Induction by Aberrant NRF2 Activation-Mediated Transcription Networks: Interaction of NRF2-KEAP1 Controls the Fate of Hepatocarcinogenesis. Int J Mol Sci 2020; 21:ijms21155378. [PMID: 32751080 PMCID: PMC7432811 DOI: 10.3390/ijms21155378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
NF-E2-related factor 2 (NRF2) is a basic leucine zipper transcription factor, a master regulator of redox homeostasis regulating a variety of genes for antioxidant and detoxification enzymes. NRF2 was, therefore, initially thought to protect the liver from oxidative stress. Recent studies, however, have revealed that mutations in NRF2 cause aberrant accumulation of NRF2 in the nucleus and exert the upregulation of NRF2 target genes. Moreover, among all molecular changes in hepatocellular carcinoma (HCC), NRF2 activation has been revealed as a more prominent pathway contributing to the progression of precancerous lesions to malignancy. Nevertheless, how its activation leads to poor prognosis in HCC patients remains unclear. In this review, we provide an overview of how aberrant activation of NRF2 triggers HCC development. We also summarize the emerging roles of other NRF family members in liver cancer development.
Collapse
|
13
|
Sun J, Zheng Z, Chen Q, Pan Y, Lu H, Zhang H, Yu Y, Dai Y. NRF3 suppresses breast cancer cell metastasis and cell proliferation and is a favorable predictor of survival in breast cancer. Onco Targets Ther 2019; 12:3019-3030. [PMID: 31114245 PMCID: PMC6489644 DOI: 10.2147/ott.s197409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
Background: Cancer metastasis is the leading cause of cancer-related death in breast cancer. However, our understanding of its mechanisms is still limited. At this study, the biological roles and clinical significance of NRF3 (NFE2L3, nuclear factor, Erythroid 2 Like 3) in breast cancer are evaluated for the first time. Methods: NRF3 expression in breast cancer cell lines and clinical specimens was determined by western blot and immunohistochemistry, respectively. Cell proliferation, cell cycle distribution, cell migration, and invasion were detected by MTT, colony formation, flow cytometry, and transwell assays, respectively. All other proteins were measured by western blot. The clinical significance of NRF3 was analyzed using the data from tissue microarray. Results: We found that NRF3 expression was obviously suppressed in breast cancer tissues, and negatively associated with the Lymph node metastasis status and tumor stages. Our data also indicated NRF3 expression was much higher in MCF-7 cells than that in MDA-MB-231 and SKBR3 cells which were more malignant. Silence of NRF3 in MCF-7 cells could significantly promote cell proliferation by reducing the cell number in the G0/G1 phase. Exogenous expression of NRF3 in SKBR3 and MDA-MB-231 cells effectively inhibited both cell growth and metastasis with epithelial–mesenchymal transition and MMPs expression suppressed. NRF3 overexpression also impaired the ID3 expression by inactivating the AKT signaling pathway. Exogenous expression of ID3 could not only effectively promote breast cancer cell invasion by inhibiting E-cadherin expression and upregulating MMP-2 expression, but also attenuated the inhibitory function of NRF3 on the breast cancer cell invasion. Conclusion: Our findings suggested that NRF3 inhibited breast cancer cell proliferation and metastasis via inhibiting AKT/ID3 axis at least partially, and potentially to be a valuable clinic marker in breast cancer prognosis.
Collapse
Affiliation(s)
- Jianguo Sun
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China.,Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China
| | - Zhibao Zheng
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China
| | - Yin Pan
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China
| | - Hongsheng Lu
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China
| | - Hui Zhang
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China
| | - Yingzhi Yu
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China
| | - Yuechu Dai
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People's Republic of China
| |
Collapse
|
14
|
Yu MM, Feng YH, Zheng L, Zhang J, Luo GH. Short hairpin RNA-mediated knockdown of nuclear factor erythroid 2-like 3 exhibits tumor-suppressing effects in hepatocellular carcinoma cells. World J Gastroenterol 2019; 25:1210-1223. [PMID: 30886504 PMCID: PMC6421239 DOI: 10.3748/wjg.v25.i10.1210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality-to-incidence ratios. Nuclear factor erythroid 2-like 3 (NFE2L3), also known as NRF3, is a member of the cap 'n' collar basic-region leucine zipper family of transcription factors. NFE2L3 is involved in the regulation of various biological processes, whereas its role in HCC has not been elucidated. AIM To explore the expression and biological function of NFE2L3 in HCC. METHODS We analyzed the expression of NFE2L3 in HCC tissues and its correlation with clinicopathological parameters based on The Cancer Genome Atlas (TCGA) data portal. Short hairpin RNA (shRNA) interference technology was utilized to knock down NFE2L3 in vitro. Cell apoptosis, clone formation, proliferation, migration, and invasion assays were used to identify the biological effects of NFE2L3 in BEL-7404 and SMMC-7721 cells. The expression of epithelial-mesenchymal transition (EMT) markers was examined by Western blot analysis. RESULTS TCGA analysis showed that NFE2L3 expression was significantly positively correlated with tumor grade, T stage, and pathologic stage. The qPCR and Western blot results showed that both the mRNA and protein levels of NFE2L3 were significantly decreased after shRNA-mediated knockdown in BEL-7404 and SMMC-7721 cells. The shRNA-mediated knockdown of NFE2L3 could induce apoptosis and inhibit the clone formation and cell proliferation of SMMC-7721 and BEL-7404 cells. NFE2L3 knockdown also significantly suppressed the migration, invasion, and EMT of the two cell lines. CONCLUSION Our study showed that shRNA-mediated knockdown of NFE2L3 exhibited tumor-suppressing effects in HCC cells.
Collapse
Affiliation(s)
- Miao-Mei Yu
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Yue-Hua Feng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Lu Zheng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Jun Zhang
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Guang-Hua Luo
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
15
|
Saliba J, Coutaud B, Solovieva V, Lu F, Blank V. Regulation of CXCL1 chemokine and CSF3 cytokine levels in myometrial cells by the MAFF transcription factor. J Cell Mol Med 2019; 23:2517-2525. [PMID: 30669188 PMCID: PMC6433675 DOI: 10.1111/jcmm.14136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022] Open
Abstract
Cytokines play key roles in a variety of reproductive processes including normal parturition as well as preterm birth. Our previous data have shown that MAFF, a member of the MAF family of bZIP transcription factors, is rapidly induced by pro‐inflammatory cytokines in PHM1‐31 myometrial cells. We performed loss‐of‐function studies in PHM1‐31 cells to identify MAFF dependent genes. We showed that knockdown of MAFF significantly decreased CXCL1 chemokine and CSF3 cytokine transcript and protein levels. Using chromatin immunoprecipitation analyzes, we confirmed CXCL1 and CSF3 genes as direct MAFF targets. We also demonstrated that MAFF function in PHM1‐31 myometrial cells is able to control cytokine and matrix metalloproteinase gene expression in THP‐1 monocytic cells in a paracrine fashion. Our studies provide valuable insights into the MAFF dependent transcriptional network governing myometrial cell function. The data suggest a role of MAFF in parturition and/or infection‐induced preterm labour through modulation of inflammatory processes in the microenvironment.
Collapse
Affiliation(s)
- James Saliba
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Baptiste Coutaud
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Vera Solovieva
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Fangshi Lu
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Volker Blank
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Cloning and expression analysis of the nuclear factor erythroid 2-related factor 2 (Nrf2) gene of grass carp (Ctenopharyngodon idellus) and the dietary effect of Eucommia ulmoides on gene expression. AQUACULTURE AND FISHERIES 2018. [DOI: 10.1016/j.aaf.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol 2018; 17:297-314. [PMID: 29775961 PMCID: PMC6007815 DOI: 10.1016/j.redox.2018.05.002] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/25/2018] [Accepted: 05/05/2018] [Indexed: 12/20/2022] Open
Abstract
Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Raju Nagarajan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia
| | - Jinsong Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India.
| |
Collapse
|
18
|
Hahn ME, Timme-Laragy AR, Karchner SI, Stegeman JJ. Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio). Free Radic Biol Med 2015; 88:275-289. [PMID: 26130508 PMCID: PMC4698826 DOI: 10.1016/j.freeradbiomed.2015.06.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap'n'collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America.
| | - Alicia R Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
19
|
Kannan MB, Dodard-Friedman I, Blank V. Stringent Control of NFE2L3 (Nuclear Factor, Erythroid 2-Like 3; NRF3) Protein Degradation by FBW7 (F-box/WD Repeat-containing Protein 7) and Glycogen Synthase Kinase 3 (GSK3). J Biol Chem 2015; 290:26292-302. [PMID: 26306035 DOI: 10.1074/jbc.m115.666446] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The NFE2L3 transcription factor has been implicated in various cellular processes, including carcinogenesis, stress response, differentiation, and inflammation. Previously it has been shown that NFE2L3 has a rapid turnover and is stabilized by proteasomal inhibitors. The mechanisms regulating the degradation of this protein have not been investigated. Here we report ubiquitination of NFE2L3 and demonstrate that F-box/WD repeat-containing protein 7 (FBW7 or FBWX7), a component of Skp1, Cullin 1, F-box containing complex (SCF)-type E3 ligase, is the E3 ligase mediating the degradation of NFE2L3. We showed that FBW7 interacts with NFE2L3 and that dimerization of FBW7 is required for the degradation of the transcription factor. We also demonstrate that the kinase glycogen synthase kinase 3 (GSK3) mediates the FBW7-dependent ubiquitination of NFE2L3. We show phosphorylation of NFE2L3 by GSK3 and its significance in the regulation of NFE2L3 by the tumor suppressor FBW7. FBW7 abrogated NFE2L3-mediated repression of the NAD(P)H quinone oxidoreductase 1 (NQO1) gene antioxidant response element (ARE). Our findings reveal FBW7 and GSK3 as novel regulators of the NFE2L3 transcription factor and a potential mechanism by which FBW7 might regulate detoxification and the cellular response to stress.
Collapse
Affiliation(s)
| | | | - Volker Blank
- From the Lady Davis Institute for Medical Research, Department of Medicine, and Department of Physiology, McGill University, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
20
|
Ponniah M, Billett EE, De Girolamo LA. Bisphenol A increases BeWo trophoblast survival in stress-induced paradigms through regulation of oxidative stress and apoptosis. Chem Res Toxicol 2015; 28:1693-703. [PMID: 26247420 DOI: 10.1021/acs.chemrestox.5b00093] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bisphenol A (BPA) is ubiquitous in the environment and is reported to be present at high concentrations in placental tissue, where its presence raises concerns over its potential to disrupt placental function. This report investigates how BPA interferes with the survival of human choriocarcinoma BeWo cells (a model of placental trophoblasts) under stress-induced paradigms reminiscent of pathways activated in placental development. These include conditions that promote oxidative stress (glutathione depletion) and apoptosis (serum withdrawal) or mimic hypoxia (HIF-1α accumulation via dimethyloxalylglycine treatment). Treatment of BeWo cells with BPA during stress-induced paradigms led to a consistent and significant increase in cell viability, with a concomitant increase in glutathione levels and a reduction in apoptosis. Assessment of the antioxidant capacity of BPA revealed its ability to quench reactive oxygen species and reduce the levels generated during glutathione and serum depletion. BPA was also able to reduce the activation of the antioxidant response element (ARE) through mediation of its activators, nuclear factor erythroid related factor family members (Nrf's). Indeed, the expression and nuclear translocation of Nrf2 (an important ARE activator) were impaired by BPA, while Nrf1 and Nrf3 expression levels were increased. Furthermore, BPA increased the levels of the anti-apoptotic proteins (Bcl-2 and Hsp70) and decreased HIF-1α levels during stress-induced conditions. Together, these results indicate that BPA inhibits trophoblast cell death under conditions of cellular stress. This could have implications on placental trophoblasts during development.
Collapse
Affiliation(s)
- Muralitharan Ponniah
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University , Nottingham NG11 8NS, U.K
| | - E Ellen Billett
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University , Nottingham NG11 8NS, U.K
| | - Luigi A De Girolamo
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University , Nottingham NG11 8NS, U.K
| |
Collapse
|
21
|
Changing gears in Nrf1 research, from mechanisms of regulation to its role in disease and prevention. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1260-76. [PMID: 26254094 DOI: 10.1016/j.bbagrm.2015.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/02/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022]
Abstract
The "cap'n'collar" bZIP transcription factor Nrf1 heterodimerizes with small Maf proteins to bind to the Antioxidant Response Element/Electrophile Response Element to transactivate antioxidant enzyme, phase 2 detoxification enzyme and proteasome subunit gene expression. Nrf1 specifically regulates pathways in lipid metabolism, amino acid metabolism, proteasomal degradation, the citric acid cycle, and the mitochondrial respiratory chain. Nrf1 is maintained in the endoplasmic reticulum (ER) in an inactive glycosylated state. Activation involves retrotranslocation from the ER lumen to the cytoplasm, deglycosylation and partial proteolytic processing to generate the active forms of Nrf1. Recent evidence has revealed how this factor is regulated and its involvement in various metabolic diseases. This review outlines Nrf1 structure, function, regulation and its links to insulin resistance, diabetes and inflammation. The glycosylation/deglycosylation of Nrf1 is controlled by glucose levels. Nrf1 glycosylation affects its control of glucose transport, glycolysis, gluconeogenesis and lipid metabolism.
Collapse
|
22
|
Williams LM, Timme-Laragy AR, Goldstone JV, McArthur AG, Stegeman JJ, Smolowitz RM, Hahn ME. Developmental expression of the Nfe2-related factor (Nrf) transcription factor family in the zebrafish, Danio rerio. PLoS One 2013; 8:e79574. [PMID: 24298298 PMCID: PMC3840143 DOI: 10.1371/journal.pone.0079574] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/24/2013] [Indexed: 12/30/2022] Open
Abstract
Transcription factors in the CNC-bZIP family (NFE2, NRF1, NRF2 and NRF3) regulate genes with a wide range of functions in response to both physiological and exogenous signals, including those indicating changes in cellular redox status. Given their role in helping to maintain cellular homeostasis, it is imperative to understand the expression, regulation, and function of CNC-bZIP genes during embryonic development. We explored the expression and function of six nrf genes (nfe2, nrf1a, nrf1b, nrf2a, nrf2b, and nrf3) using zebrafish embryos as a model system. Analysis by microarray and quantitative RT-PCR showed that genes in the nrf family were expressed throughout development from oocytes to larvae. The spatial expression of nrf3 suggested a role in regulating the development of the brain, brachia and pectoral fins. Knock-down by morpholino anti-sense oligonucleotides suggested that none of the genes were necessary for embryonic viability, but nfe2 was required for proper cellular organization in the pneumatic duct and subsequent swim bladder function, as well as for proper formation of the otic vesicles. nrf genes were induced by the oxidant tert-butylhydroperoxide, and some of this response was regulated through family members Nrf2a and Nrf2b. Our results provide a foundation for understanding the role of nrf genes in normal development and in regulating the response to oxidative stress in vertebrate embryos.
Collapse
Affiliation(s)
- Larissa M. Williams
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- Biology Department, Bates College, Lewiston, Maine, United States of America
| | - Alicia R. Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Jared V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | | | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Roxanna M. Smolowitz
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island, United States of America
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Zhang Y, Hayes JD. The membrane-topogenic vectorial behaviour of Nrf1 controls its post-translational modification and transactivation activity. Sci Rep 2013; 3:2006. [PMID: 23774320 PMCID: PMC3684815 DOI: 10.1038/srep02006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/30/2013] [Indexed: 12/17/2022] Open
Abstract
The integral membrane-bound Nrf1 transcription factor fulfils important functions in maintaining cellular homeostasis and organ integrity, but how it is controlled vectorially is unknown. Herein, creative use of Gal4-based reporter assays with protease protection assays (GRAPPA), and double fluorescence protease protection (dFPP), reveals that the membrane-topogenic vectorial behaviour of Nrf1 dictates its post-translational modification and transactivation activity. Nrf1 is integrated within endoplasmic reticulum (ER) membranes through its NHB1-associated TM1 in cooperation with other semihydrophobic amphipathic regions. The transactivation domains (TADs) of Nrf1, including its Asn/Ser/Thr-rich (NST) glycodomain, are transiently translocated into the ER lumen, where it is glycosylated in the presence of glucose to become a 120-kDa isoform. Thereafter, the NST-adjoining TADs are partially repartitioned out of membranes into the cyto/nucleoplasmic side, where Nrf1 is subject to deglycosylation and/or proteolysis to generate 95-kDa and 85-kDa isoforms. Therefore, the vectorial process of Nrf1 controls its target gene expression.
Collapse
Affiliation(s)
- Yiguo Zhang
- The NSFC-funded Laboratory of Cell Biochemistry and Gene Regulation, College of Medical Bioengineering and Faculty of Life Sciences, University of Chongqing, Shapingba District, Chongqing, China.
| | | |
Collapse
|
24
|
The small MAF transcription factors MAFF, MAFG and MAFK: current knowledge and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1841-6. [PMID: 22721719 DOI: 10.1016/j.bbamcr.2012.06.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 12/13/2022]
Abstract
The small MAFs, MAFF, MAFG and MAFK have emerged as crucial regulators of mammalian gene expression. Previous studies have linked small MAF function, by virtue of their heterodimerization with the Cap 'n' Collar (CNC) family of transcription factors, to the stress response and detoxification pathways. Recent analyses have revealed a complex regulatory network involving small MAF transcription factors and other cellular proteins. The expression and activity of small MAFs are tightly regulated at multiple levels. With regard to their clinical importance, small MAFs have been linked to various diseases, such as diabetes, neuronal disorders, thrombocytopenia and carcinogenesis. A better understanding of the molecular mechanisms governing the activity of small MAFs will provide novel insights into the control of mammalian transcription and may lead to the development of novel therapeutic strategies to treat common human disorders.
Collapse
|
25
|
Palma M, Lopez L, García M, de Roja N, Ruiz T, García J, Rosell E, Vela C, Rueda P, Rodriguez MJ. Detection of collagen triple helix repeat containing-1 and nuclear factor (erythroid-derived 2)-like 3 in colorectal cancer. BMC Clin Pathol 2012; 12:2. [PMID: 22321245 PMCID: PMC3293008 DOI: 10.1186/1472-6890-12-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/09/2012] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Collagen Triple Helix Repeat Containing-1 (CTHRC1) and Nuclear factor (erythroid-derived 2)-like 3 (NFE2L3) may be useful biomarker candidates for the diagnosis of colorectal cancer (CRC) since they have shown an increase messenger RNA transcripts (mRNA) expression level in adenomas and colorectal tumours when compared to normal tissues. METHODS To evaluate CTHRC1 and NFE2L3 as cancer biomarkers, it was generated and characterised several novel specific polyclonal antibodies (PAb), monoclonal antibodies (MAbs) and soluble Fab fragments (sFabs) against recombinant CTHRC1 and NFE2L3 proteins, which were obtained from different sources, including a human antibody library and immunised animals. The antibodies and Fab fragments were tested for recognition of native CTHRC1 and NFE2L3 proteins by immunoblotting analysis and enzyme-linked immunosorbent assay (ELISA) in colorectal cell lines derived from tumour and cancer tissues. RESULTS Both, antibodies and a Fab fragment showed high specificity since they recognised only their corresponding recombinant antigens, but not a panel of different unrelated- and related proteins.In Western blot analysis of CTHRC1, a monoclonal antibody designated CH21D7 was able to detect a band of the apparent molecular weight of a full-length CTHRC1 in the human colon adenocarcinoma cell line HT29. This result was confirmed by a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) with the monoclonal antibodies CH21D7 and CH24G2, detecting CTHRC1 in HT29 and in the colon adenocarcinoma cell line SW620.Similar experiments were performed with PAb, MAbs, and sFab against NFE2L3. The immunoblot analysis showed that the monoclonal antibody 41HF8 recognised NFE2L3 in HT29, and leukocytes. These results were verified by DAS-ELISA assay using the pairs PAb/sFab E5 and MAb 41HF8/sFab E5.Furthermore, an immunoassay for simultaneous detection of the two cancer biomarkers was developed using a Dissociation-Enhanced Lanthanide Fluorescent Immunoassay technology (DELFIA). CONCLUSIONS In conclusion, the antibodies obtained in this study are specific for CTHRC1 and NFE2L3 since they do not cross-react with unrelated- and related proteins and are useful for specific measurement of native CTHRC1 and NFE2L3 proteins. The antibodies and immunoassays may be useful for the analysis of CTHRC1 and NFE2L3 in clinical samples and for screening of therapeutic compounds in CRC.
Collapse
Affiliation(s)
- Marco Palma
- Inmunología y Genética aplicada, S.A., Madrid, Spain
- Inmunología y Genética Aplicada, SA, Calle Hermanos García Noblejas, 39 - 28037 Madrid, Spain
| | - Lissett Lopez
- Inmunología y Genética aplicada, S.A., Madrid, Spain
| | | | - Nuria de Roja
- Inmunología y Genética aplicada, S.A., Madrid, Spain
| | - Tamara Ruiz
- Inmunología y Genética aplicada, S.A., Madrid, Spain
| | - Julita García
- Inmunología y Genética aplicada, S.A., Madrid, Spain
| | | | - Carmen Vela
- Inmunología y Genética aplicada, S.A., Madrid, Spain
| | - Paloma Rueda
- Inmunología y Genética aplicada, S.A., Madrid, Spain
| | | |
Collapse
|
26
|
Chevillard G, Blank V. NFE2L3 (NRF3): the Cinderella of the Cap'n'Collar transcription factors. Cell Mol Life Sci 2011; 68:3337-48. [PMID: 21687990 PMCID: PMC11114735 DOI: 10.1007/s00018-011-0747-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/28/2011] [Accepted: 05/30/2011] [Indexed: 12/18/2022]
Abstract
NFE2L3 [Nuclear factor (erythroid-derived 2)-like 3] or NRF3, a member of the Cap'n'Collar (CNC) family, is a basic-region leucine zipper (bZIP) transcription factor that was first identified over 10 years ago. Contrary to its extensively studied homolog NFE2L2 (NRF2), the regulation and function of the NFE2L3 protein have not yet attracted as much attention. Nevertheless, several recent reports have now shed light on the possible roles of NFE2L3. Structural and biochemical studies revealed a series of domains and modifications that are critical for its cellular regulation. The control of the subcellular localization of NFE2L3 appears to be essential for understanding its role in various cellular processes. Importantly, newer studies provide fascinating insights linking NFE2L3 to differentiation, inflammation, and carcinogenesis. Here, we present an overview of the current level of knowledge of NFE2L3 transcription factor biology in humans and mice. From being the Cinderella of the CNC transcription factors for many years, NFE2L3 may now rapidly come into its own.
Collapse
Affiliation(s)
- Grégory Chevillard
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada.
| | | |
Collapse
|
27
|
Zhao R, Hou Y, Xue P, Woods CG, Fu J, Feng B, Guan D, Sun G, Chan JY, Waalkes MP, Andersen ME, Pi J. Long isoforms of NRF1 contribute to arsenic-induced antioxidant response in human keratinocytes. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:56-62. [PMID: 20805060 PMCID: PMC3018500 DOI: 10.1289/ehp.1002304] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 08/30/2010] [Indexed: 05/10/2023]
Abstract
BACKGROUND Human exposure to inorganic arsenic (iAs), a potent oxidative stressor, causes various dermal disorders, including hyperkeratosis and skin cancer. Nuclear factor-erythroid 2-related factor 1 (NRF1, also called NFE2L1) plays a critical role in regulating the expression of many antioxidant response element (ARE)-dependent genes. OBJECTIVES We investigated the role of NRF1 in arsenic-induced antioxidant response and cytotoxicity in human keratinocytes. RESULTS In cultured human keratinocyte HaCaT cells, inorganic arsenite (iAs3+) enhanced the protein accumulation of long isoforms (120-140 kDa) of NRF1 in a dose- and time-dependent fashion. These isoforms accumulated mainly in the nuclei of HaCaT cells. Selective deficiency of NRF1 by lentiviral short-hairpin RNAs in HaCaT cells [NRF1-knockdown (KD)] led to decreased expression of γ-glutamate cysteine ligase catalytic subunit (GCLC) and regulatory subunit (GCLM) and a reduced level of intracellular glutathione. In response to acute iAs3+ exposure, induction of some ARE-dependent genes, including NAD(P)H:quinone oxidoreductase 1 (NQO1), GCLC, and GCLM, was significantly attenuated in NRF1-KD cells. However, the iAs3-induced expression of heme oxygenase 1 (HMOX-1) was unaltered by silencing NRF1, suggesting that HMOX-1 is not regulated by NRF1. In addition, the lack of NRF1 in HaCaT cells did not disturb iAs3+-induced NRF2 accumulation but noticeably decreased Kelch-like ECH-associated protein 1 (KEAP1) levels under basal and iAs3+-exposed conditions, suggesting a potential interaction between NRF1 and KEAP1. Consistent with the critical role of NRF1 in the transcriptional regulation of some ARE-bearing genes, knockdown of NRF1 significantly increased iAs3+-induced cytotoxicity and apoptosis. CONCLUSIONS Here, we demonstrate for the first time that long isoforms of NRF1 contribute to arsenic-induced antioxidant response in human keratinocytes and protect the cells from acute arsenic cytotoxicity.
Collapse
Affiliation(s)
- Rui Zhao
- School of Forensic Medicine, China Medical University, Shenyang, China
- Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
| | - Yongyong Hou
- Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
- School of Public Health and
| | - Peng Xue
- Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
- School of Public Health and
| | - Courtney G. Woods
- Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jingqi Fu
- Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
- School of Public Health and
| | - Bo Feng
- First Clinical College, China Medical University, Shenyang, China
| | - Dawei Guan
- School of Forensic Medicine, China Medical University, Shenyang, China
| | | | - Jefferson Y. Chan
- Department of Laboratory Medicine and Pathology, University of California–Irvine, Irvine, California, USA
| | - Michael P. Waalkes
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Melvin E. Andersen
- Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jingbo Pi
- Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
28
|
Abstract
Cap'n'collar (Cnc) transcription factors are conserved in metazoans and have important developmental and homeostatic functions. The vertebrate Nrf1, Nrf2, and Nrf3; the Caenorhabditis elegans SKN-1; and the Drosophila CncC comprise a subgroup of Cnc factors that mediate adaptive responses to cellular stress. The most studied stress-activated Cnc factor is Nrf2, which orchestrates the transcriptional response of cells to oxidative stressors and electrophilic xenobiotics. In rodent models, signaling by Nrf2 defends against oxidative stress and aging-associated disorders, such as neurodegeneration, respiratory diseases, and cancer. In humans, polymorphisms that decrease Nrf2 abundance have been associated with various pathologies of the skin, respiratory system, and digestive tract. In addition to preventing disease in rodents and humans, Cnc factors have life-span-extending and anti-aging functions in invertebrates. However, despite the pro-longevity and antioxidant roles of stress-activated Cnc factors, their activity paradoxically declines in aging model organisms and in humans suffering from progressive respiratory disease or neurodegeneration. We review the roles and regulation of stress-activated Cnc factors across species, present all reported instances in which their activity is paradoxically decreased in aging and disease, and discuss the possibility that the pharmacological restoration of Nrf2 signaling may be useful in the prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Gerasimos P Sykiotis
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
29
|
Pepe AE, Xiao Q, Zampetaki A, Zhang Z, Kobayashi A, Hu Y, Xu Q. Crucial role of nrf3 in smooth muscle cell differentiation from stem cells. Circ Res 2010; 106:870-9. [PMID: 20093628 DOI: 10.1161/circresaha.109.211417] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RATIONALE Nuclear factor erythroid 2-related factor (Nrf)3, a member of the cap 'N' collar family of transcription factors that bind to the DNA-antioxidant responsive elements, is involved in reactive oxygen species balancing and in muscle precursor migration during early embryo development. OBJECTIVE To investigate the functional role of Nrf3 in smooth muscle cell (SMC) differentiation in vitro and in vivo. METHODS AND RESULTS Nrf3 was upregulated significantly following 1 to 8 days of SMC differentiation. Knockdown of Nrf3 resulted in downregulation of smooth muscle specific markers expression, whereas enforced expression of Nrf3 enhanced SMC differentiation in a dose-dependent manner. SMC-specific transcription factor myocardin, but not serum response factor, was significantly upregulated by Nrf3 overexpression. Strikingly, the binding of SRF and myocardin to the promoter of smooth muscle differentiation genes was dramatically increased by Nrf3 overexpression, and Nrf3 can directly bind to the promoters of SMC differentiation genes as demonstrated by chromatin immunoprecipitation assay. Moreover, NADPH-derived reactive oxygen species production during SMC differentiation was further enhanced by Nrf3 overexpression through upregulation of NADPH oxidase and inhibition of antioxidant signaling pathway. In addition, Nrf3 was involved in the endoplasmic reticulum stressor induced SMC differentiation. CONCLUSION Our findings demonstrate for the first time that Nrf3 has a crucial role in SMC differentiation from stem cells indicating that Nrf3 could be a potential target for manipulation of stem cell differentiation toward vascular lineage.
Collapse
Affiliation(s)
- Anna Elena Pepe
- Cardiovascular Division, King's College London, The James Black Centre, 125 Coldharbour Ln, London SE5 9NU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Chevillard G, Nouhi Z, Anna D, Paquet M, Blank V. Nrf3-deficient mice are not protected against acute lung and adipose tissue damages induced by butylated hydroxytoluene. FEBS Lett 2010; 584:923-8. [PMID: 20085761 DOI: 10.1016/j.febslet.2010.01.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/12/2010] [Accepted: 01/14/2010] [Indexed: 10/20/2022]
Abstract
We found that both wild type and Nrf3 (NF-E2-related factor 3) deficient mice are sensitive to BHT single administration exhibiting respiratory distress and considerably lose body weight following treatment. At time of sacrifice, the BHT-treated Nrf3-/- mice had lost significantly more body weight than their WT counterparts. In the lung, transcript levels of the transcription factors Nrf1, Nrf2 and Nrf3 were differentially regulated by BHT treatment. In addition, genes implicated in adipogenesis were repressed following BHT exposure in the white adipose tissue. Together, our data provide the first evidence that BHT exposure not only affects lung function but also leads to impaired adipogenesis in adipocytes.
Collapse
Affiliation(s)
- Grégory Chevillard
- Lady Davis Institute for Medical Research, Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
31
|
Pi J, Freeman ML, Yamamoto M. Nrf2 in toxicology and pharmacology: the good, the bad and the ugly? Toxicol Appl Pharmacol 2010; 244:1-3. [PMID: 20079756 DOI: 10.1016/j.taap.2010.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Shen H, Gao W, Wu YJ, Qiu HR, Shu YQ. Multicolor fluorescence in situ hybridization and comparative genomic hybridization reveal molecular events in lung adenocarcinomas and squamous cell lung carcinomas. Biomed Pharmacother 2009; 63:396-403. [DOI: 10.1016/j.biopha.2008.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 08/24/2008] [Indexed: 01/03/2023] Open
|
33
|
Rhee DK, Park SH, Jang YK. Molecular signatures associated with transformation and progression to breast cancer in the isogenic MCF10 model. Genomics 2008; 92:419-28. [PMID: 18804527 DOI: 10.1016/j.ygeno.2008.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 06/26/2008] [Accepted: 08/06/2008] [Indexed: 12/01/2022]
Abstract
Comparative microarray analyses provided insight into understanding transcript changes during cancer progression; however, a reproducible signature underlying breast carcinogenesis has yet to be little available. We utilized gene expression profiling to define molecular signatures associated with transformation and cancer progression in a series of isogenic human breast cancer cell lines including a normal, benign, noninvasive and invasive carcinoma. Clustering analysis revealed four distinct expression patterns based on upregulation or downregulation patterns. These profiles proved quite useful for describing breast cancer tumorigenesis and invasiveness. Downregulation of TNFSF7, S100A4, S100A7, S100A8, and S100A9 (calcium-binding protein family), and upregulation of kallikrein-5 and thrombospondin-1 were associated with transformation and progression of breast cancer cells. Importantly, downregulation of the genes was reversed by treatment with silencing inhibitors, implying the potential roles of epigenetic inactivation in breast carcinogenesis. Exogenous expressions of S100A8 and S100A9 inhibit growth in benign and noninvasive carcinoma cells, suggesting their negative role in cell proliferation. The data presented here may facilitate the identification and functional analyses of prognostic biomarkers for breast cancer.
Collapse
Affiliation(s)
- Dong Keun Rhee
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | |
Collapse
|
34
|
Shen H, Zhu Y, Wu YJ, Qiu HR, Shu YQ. Genomic alterations in lung adenocarcinomas detected by multicolor fluorescence in situ hybridization and comparative genomic hybridization. ACTA ACUST UNITED AC 2008; 181:100-7. [PMID: 18295661 DOI: 10.1016/j.cancergencyto.2007.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 11/18/2007] [Accepted: 11/27/2007] [Indexed: 11/25/2022]
Abstract
We used two molecular cytogenetic techniques, multicolor fluorescence in situ hybridization (M-FISH) and comparative genomic hybridization (CGH), to analyze three established lung adenocarcinoma cell lines (A549, H1650, and SPC-A-1) and primary lung adenocarcinoma samples, to identify common chromosomal aberrations. M-FISH revealed numerous complex chromosomal rearrangements. Chromosomes 5, 6, 11, 12, and 17 were most frequently involved in interchromosomal translocations. CGH revealed regions on 1q, 2p, 3q, 5p, 5q, 7p, 8q, 11q, 12q, 14q, 16p, 17p, 19q, 20q, 21q, and 22q to be commonly overrepresented and regions on 2q, 3p, 4p, 5q, 7q, 8p, 9p, 13q, 14q, and 17p to be underrepresented. The most common gains were found in 16p13 (in 50% of samples), and 16p13 amplification was associated with relatively poor differentiation and late stage. M-FISH and CGH can be a powerful tool in identification of genomic alterations in lung cancer, as well as in diagnosis. The overrepresented regions may harbor potential candidate genes involved in lung adenocarcinoma pathogenesis.
Collapse
Affiliation(s)
- Hua Shen
- Cancer Biotherapy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | |
Collapse
|
35
|
Blank V. Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators? J Mol Biol 2007; 376:913-25. [PMID: 18201722 DOI: 10.1016/j.jmb.2007.11.074] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/09/2007] [Accepted: 11/26/2007] [Indexed: 12/13/2022]
Abstract
The small Maf basic leucine zipper (bZIP) proteins MafF, MafG and MafK, while modest in size, have emerged as crucial regulators of mammalian gene expression. Intriguingly, small Mafs do not contain an obvious transcriptional activation domain. However, previously perceived as "mere" partner molecules conferring DNA binding specificity to complexes with larger bZIP proteins, such as the CNC family member Nrf2, it has become clear that small Maf proteins are essential and dynamically regulated transcription factors. Current data suggest stringent control of small Maf protein function through transcriptional and post-translational mechanisms. Initial gene targeting experiments revealed considerable functional redundancy among small Maf proteins in vivo. This was not unexpected, due to the high level of homology among the three small Mafs. Nevertheless, further studies showed that these transcription factors have critical roles in various cellular processes, including stress signaling, hematopoiesis, CNS function and oncogenesis. Recent data provide a possible link between small Maf-mediated transcription and the inflammatory response.
Collapse
Affiliation(s)
- Volker Blank
- Lady Davis Institute for Medical Research, 3755, Côte Sainte-Catherine, Montreal, Quebec, Canada.
| |
Collapse
|
36
|
Nouhi Z, Chevillard G, Derjuga A, Blank V. Endoplasmic reticulum association and N-linked glycosylation of the human Nrf3 transcription factor. FEBS Lett 2007; 581:5401-6. [PMID: 17976382 DOI: 10.1016/j.febslet.2007.10.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/19/2007] [Accepted: 10/22/2007] [Indexed: 12/30/2022]
Abstract
We have analysed the molecular and cellular regulation of the basic-leucine zipper (bZIP) transcription factor Nrf3 (NFE2-Related Factor 3). Cycloheximide studies revealed a rapid turnover of Nrf3. We showed that the proteasome inhibitor MG-132 increases Nrf3 protein levels. Furthermore, we demonstrated that Nrf3 is an N-glycosylated protein associated with the endoplasmic reticulum. Thus, our studies provide the first evidence of a post-translational modification of Nrf3.
Collapse
Affiliation(s)
- Zaynab Nouhi
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
37
|
Choi JS, Zheng LT, Ha E, Lim YJ, Kim YH, Wang YP, Lim Y. Comparative Genomic Hybridization Array Analysis and Real-Time PCR Reveals Genomic Copy Number Alteration for Lung Adenocarcinomas. Lung 2006; 184:355-62. [PMID: 17086460 DOI: 10.1007/s00408-006-0009-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2006] [Indexed: 01/21/2023]
Abstract
Genomic alterations in lung cancer tissues have been observed in various studies. To analyze the aberrations in the genome of lung cancer patients, we used array comparative genomic hybridization (array CGH) in 15 lung adenocarcinoma (AdC) tissues. Copy number gains and losses in chromosomal regions were detected and corresponding genes were confirmed by real-time polymerase chain reaction (PCR). As for the results, several frequently altered loci, including gain of 16p (46% of samples), were found, and the most common losses were found in 14q32.33 (26% of samples). High-level DNA amplifications (> 0.8 log(2) ratio) were detected at 1p, 5p, 7p, 9p, 11p, 11q, 12q, 14q, 16p, 17q, 19q, 20p, 21q, and 22q. A subset of genes, gained or lost, was checked for over- or underrepresentation by means of real-time PCR. The degree of fold change was highest in ECGF1 (22q13.33), HOXA9 (7p15.2), MAFG (17q25.3), TSC2 (16p13.3), and ICAM1 (19p13.2) genes and the 16p chromosome terminal region (16p13.3pter). Taken together, these results show that array CGH could be used as a powerful tool for identification of genomic alteration for lung cancer, and the above-mentioned genes may represent potential candidate genes in the study of lung cancer pathogenesis and diagnosis.
Collapse
Affiliation(s)
- Jin Soo Choi
- Catholic Neuroscience Center, The Catholic University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Massrieh W, Derjuga A, Blank V. Induction of endogenous Nrf2/small maf heterodimers by arsenic-mediated stress in placental choriocarcinoma cells. Antioxid Redox Signal 2006; 8:53-9. [PMID: 16487037 DOI: 10.1089/ars.2006.8.53] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exposure to inorganic arsenic has been associated with various forms of cancer, nervous system pathogenesis, and vascular diseases, as well as reproductive and developmental toxicity. Here, the effect of inorganic arsenic on placental JAR choriocarcinoma cells was assessed. The nuclear protein levels of the CNC transcription factor Nrf2 were strongly induced in the presence of arsenic. Dosage response experiments showed that 0.5 microM of arsenic is sufficient to augment Nrf2 levels. The expression of the Nrf2 dimerization partners MafG and MafK appeared not to be modulated by arsenic, whereas MafF protein levels were slightly increased. Arsenic also induced the binding of endogenous Nrf2/small Maf DNA-binding complexes to a stress response element (StRE) recognition site. In addition, arsenic caused oxidative stress in the choriocarcinoma cell model as evidenced by an increase in intracellular H2O2 levels. Expression of the enzyme heme oxygenase-1 (HO-1), a known Nrf2 target gene, was upregulated by exposure of JAR cells to arsenic. These results suggest that Nrf2/small Maf heterodimers may play an important role in the response to arsenic-mediated stress in placental cells.
Collapse
Affiliation(s)
- Wael Massrieh
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|