1
|
Ming Z, Vining B, Bagheri-Fam S, Harley V. SOX9 in organogenesis: shared and unique transcriptional functions. Cell Mol Life Sci 2022; 79:522. [PMID: 36114905 PMCID: PMC9482574 DOI: 10.1007/s00018-022-04543-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
The transcription factor SOX9 is essential for the development of multiple organs including bone, testis, heart, lung, pancreas, intestine and nervous system. Mutations in the human SOX9 gene led to campomelic dysplasia, a haploinsufficiency disorder with several skeletal malformations frequently accompanied by 46, XY sex reversal. The mechanisms underlying the diverse SOX9 functions during organ development including its post-translational modifications, the availability of binding partners, and tissue-specific accessibility to target gene chromatin. Here we summarize the expression, activities, and downstream target genes of SOX9 in molecular genetic pathways essential for organ development, maintenance, and function. We also provide an insight into understanding the mechanisms that regulate the versatile roles of SOX9 in different organs.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
2
|
Rossitto M, Déjardin S, Rands CM, Le Gras S, Migale R, Rafiee MR, Neirijnck Y, Pruvost A, Nguyen AL, Bossis G, Cammas F, Le Gallic L, Wilhelm D, Lovell-Badge R, Boizet-Bonhoure B, Nef S, Poulat F. TRIM28-dependent SUMOylation protects the adult ovary from activation of the testicular pathway. Nat Commun 2022; 13:4412. [PMID: 35906245 PMCID: PMC9338040 DOI: 10.1038/s41467-022-32061-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/17/2022] [Indexed: 11/08/2022] Open
Abstract
Gonadal sexual fate in mammals is determined during embryonic development and must be actively maintained in adulthood. In the mouse ovary, oestrogen receptors and FOXL2 protect ovarian granulosa cells from transdifferentiation into Sertoli cells, their testicular counterpart. However, the mechanism underlying their protective effect is unknown. Here, we show that TRIM28 is required to prevent female-to-male sex reversal of the mouse ovary after birth. We found that upon loss of Trim28, ovarian granulosa cells transdifferentiate to Sertoli cells through an intermediate cell type, different from gonadal embryonic progenitors. TRIM28 is recruited on chromatin in the proximity of FOXL2 to maintain the ovarian pathway and to repress testicular-specific genes. The role of TRIM28 in ovarian maintenance depends on its E3-SUMO ligase activity that regulates the sex-specific SUMOylation profile of ovarian-specific genes. Our study identifies TRIM28 as a key factor in protecting the adult ovary from the testicular pathway.
Collapse
Affiliation(s)
- Moïra Rossitto
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Stephanie Déjardin
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
| | - Chris M Rands
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Stephanie Le Gras
- GenomEast platform, IGBMC, 1, rue Laurent Fries, 67404 ILLKIRCH Cedex, Illkirch-Graffenstaden, France
| | - Roberta Migale
- The Francis Crick Institute, 1 Midland Road, London, NW1 2 1AT, UK
| | | | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Alain Pruvost
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Anvi Laetitia Nguyen
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Florence Cammas
- Institut de Recherche en Cancérologie de Montpellier, IRCM, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Lionel Le Gallic
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
| | - Dagmar Wilhelm
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Francis Poulat
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France.
| |
Collapse
|
3
|
Abe I, Tanaka T, Ohe K, Fujii H, Nagata M, Ochi K, Senda Y, Takeshita K, Koga M, Kudo T, Enjoji M, Yanase T, Kobayashi K. Inhibition of NR5A1 phosphorylation alleviates a transcriptional suppression defect caused by a novel NR0B1 mutation. J Endocr Soc 2022; 6:bvac068. [PMID: 35592512 PMCID: PMC9113462 DOI: 10.1210/jendso/bvac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Context Mutations in the NR0B1 gene, also well-known as the DAX1 gene, are known to cause congenital adrenal hypoplasia associated with hypogonadotropic hypogonadism. The abnormal NR0B1 protein fails to suppress the transcription of promoters of steroidogenic enzymes, which are also targets of NR5A1 protein, also well-known as Ad4BP/SF-1 protein. Since NR5A1 and NR0B1 have antagonistic effects on steroidogenesis, the loss of function due to NR0B1 mutations may be compensated by inducing loss of function of NR5A1 protein. Patient A middle-aged man was diagnosed with congenital adrenal hypoplasia associated with hypogonadotropic hypogonadism and genetic analysis revealed him to have a novel NR0B1 mutation, c.1222C>T(p.Gln408Ter). Methods NR0B1 activity was evaluated in CLK1/4 inhibitor-treated 293T cells via immunoblotting and luciferase assays of the STAR promoter. Results TG003 treatment suppressed NR5A1 protein function to compensate for the mutant NR0B1 showing inhibited suppression of transcription. Immunoblotting analyses showed that the phosphorylation status of NR5A1 at Ser203 was attenuated by the CLK1/4 inhibitor. Conclusion The specific reduction of NR5A1 phosphorylation by a CLK1/4 inhibitor may alleviate developmental defects in patients with NR0B1 mutations.
Collapse
Affiliation(s)
- Ichiro Abe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Zokumyoin, Chikushino, Fukuoka, Japan
| | - Tomoko Tanaka
- Department of Regenerative Medicine and Transplantation, Fukuoka University, Nanakuma Jonan-ku, Fukuoka, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Hideyuki Fujii
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Zokumyoin, Chikushino, Fukuoka, Japan
| | - Mai Nagata
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Zokumyoin, Chikushino, Fukuoka, Japan
| | - Kentaro Ochi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Zokumyoin, Chikushino, Fukuoka, Japan
| | - Yuki Senda
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Zokumyoin, Chikushino, Fukuoka, Japan
| | - Kaori Takeshita
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Zokumyoin, Chikushino, Fukuoka, Japan
| | - Midori Koga
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Zokumyoin, Chikushino, Fukuoka, Japan
| | - Tadachika Kudo
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Zokumyoin, Chikushino, Fukuoka, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka, Japan
| | | | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Zokumyoin, Chikushino, Fukuoka, Japan
| |
Collapse
|
4
|
The role of SUMOylation during development. Biochem Soc Trans 2021; 48:463-478. [PMID: 32311032 PMCID: PMC7200636 DOI: 10.1042/bst20190390] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
During the development of multicellular organisms, transcriptional regulation plays an important role in the control of cell growth, differentiation and morphogenesis. SUMOylation is a reversible post-translational process involved in transcriptional regulation through the modification of transcription factors and through chromatin remodelling (either modifying chromatin remodelers or acting as a ‘molecular glue’ by promoting recruitment of chromatin regulators). SUMO modification results in changes in the activity, stability, interactions or localization of its substrates, which affects cellular processes such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic transport. This review focuses on the role of SUMO machinery and the modification of target proteins during embryonic development and organogenesis of animals, from invertebrates to mammals.
Collapse
|
5
|
Sapir A. Not So Slim Anymore-Evidence for the Role of SUMO in the Regulation of Lipid Metabolism. Biomolecules 2020; 10:E1154. [PMID: 32781719 PMCID: PMC7466032 DOI: 10.3390/biom10081154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
One of the basic building blocks of all life forms are lipids-biomolecules that dissolve in nonpolar organic solvents but not in water. Lipids have numerous structural, metabolic, and regulative functions in health and disease; thus, complex networks of enzymes coordinate the different compositions and functions of lipids with the physiology of the organism. One type of control on the activity of those enzymes is the conjugation of the Small Ubiquitin-like Modifier (SUMO) that in recent years has been identified as a critical regulator of many biological processes. In this review, I summarize the current knowledge about the role of SUMO in the regulation of lipid metabolism. In particular, I discuss (i) the role of SUMO in lipid metabolism of fungi and invertebrates; (ii) the function of SUMO as a regulator of lipid metabolism in mammals with emphasis on the two most well-characterized cases of SUMO regulation of lipid homeostasis. These include the effect of SUMO on the activity of two groups of master regulators of lipid metabolism-the Sterol Regulatory Element Binding Protein (SERBP) proteins and the family of nuclear receptors-and (iii) the role of SUMO as a regulator of lipid metabolism in arteriosclerosis, nonalcoholic fatty liver, cholestasis, and other lipid-related human diseases.
Collapse
Affiliation(s)
- Amir Sapir
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel
| |
Collapse
|
6
|
Emura N, Wang CM, Yang WH, Yang WH. Steroidogenic Factor 1 (NR5A1) Activates ATF3 Transcriptional Activity. Int J Mol Sci 2020; 21:ijms21041429. [PMID: 32093223 PMCID: PMC7073147 DOI: 10.3390/ijms21041429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Steroidogenic Factor 1 (SF-1/NR5A1), an orphan nuclear receptor, is important for sexual differentiation and the development of multiple endocrine organs, as well as cell proliferation in cancer cells. Activating transcription factor 3 (ATF3) is a transcriptional repressor, and its expression is rapidly induced by DNA damage and oncogenic stimuli. Since both NR5A1 and ATF3 can regulate and cooperate with several transcription factors, we hypothesized that NR5A1 may interact with ATF3 and plays a functional role in cancer development. First, we found that NR5A1 physically interacts with ATF3. We further demonstrated that ATF3 expression is up-regulated by NR5A1. Moreover, the promoter activity of the ATF3 is activated by NR5A1 in a dose-dependent manner in several cell lines. By mapping the ATF3 promoter as well as the site-directed mutagenesis analysis, we provide evidence that NR5A1 response elements (-695 bp and -665 bp) are required for ATF3 expression by NR5A1. It is well known that the transcriptional activities of NR5A1 are modulated by post-translational modifications, such as small ubiquitin-related modifier (SUMO) modification and phosphorylation. Notably, we found that both SUMOylation and phosphorylation of NR5A1 play roles, at least in part, for NR5A1-mediated ATF3 expression. Overall, our results provide the first evidence of a novel relationship between NR5A1 and ATF3.
Collapse
Affiliation(s)
- Natsuko Emura
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan;
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
| | - Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
| | - William Harry Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
- Correspondence: ; Tel.: +1-912-721-8203; Fax: +1-912-721-8268
| |
Collapse
|
7
|
Generation of a Quantitative Luciferase Reporter for Sox9 SUMOylation. Int J Mol Sci 2020; 21:ijms21041274. [PMID: 32070068 PMCID: PMC7072981 DOI: 10.3390/ijms21041274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 01/11/2023] Open
Abstract
Sox9 is a master transcription factor for chondrogenesis, which is essential for chondrocyte proliferation, differentiation, and maintenance. Sox9 activity is regulated by multiple layers, including post-translational modifications, such as SUMOylation. A detection method for visualizing the SUMOylation in live cells is required to fully understand the role of Sox9 SUMOylation. In this study, we generated a quantitative reporter for Sox9 SUMOylation that is based on the NanoBiT system. The simultaneous expression of Sox9 and SUMO1 constructs that are conjugated with NanoBiT fragments in HEK293T cells induced luciferase activity in SUMOylation target residue of Sox9-dependent manner. Furthermore, the reporter signal could be detected from both cell lysates and live cells. The signal level of our reporter responded to the co-expression of SUMOylation or deSUMOylation enzymes by several fold, showing dynamic potency of the reporter. The reporter was active in multiple cell types, including ATDC5 cells, which have chondrogenic potential. Finally, using this reporter, we revealed a extracellular signal conditions that can increase the amount of SUMOylated Sox9. In summary, we generated a novel reporter that was capable of quantitatively visualizing the Sox9-SUMOylation level in live cells. This reporter will be useful for understanding the dynamism of Sox9 regulation during chondrogenesis.
Collapse
|
8
|
Dumontet T, Sahut‐Barnola I, Dufour D, Lefrançois‐Martinez A, Berthon A, Montanier N, Ragazzon B, Djari C, Pointud J, Roucher‐Boulez F, Batisse‐Lignier M, Tauveron I, Bertherat J, Val P, Martinez A. Hormonal and spatial control of SUMOylation in the human and mouse adrenal cortex. FASEB J 2019; 33:10218-10230. [DOI: 10.1096/fj.201900557r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Typhanie Dumontet
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Isabelle Sahut‐Barnola
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Damien Dufour
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Anne‐Marie Lefrançois‐Martinez
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Annabel Berthon
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Nathanaëlle Montanier
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Service d'EndocrinologieCentre Hospitalier Régional (CHR)Hôpital de la Source Orléans France
| | - Bruno Ragazzon
- Institut CochinCentre National de la Recherche Scientifique (CNRS)INSERMUniversité Paris Descartes Paris France
| | - Cyril Djari
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Jean‐Christophe Pointud
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Florence Roucher‐Boulez
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Endocrinologie Moléculaire et Maladies RaresCHUUniversité Claude Bernard Lyon 1 Bron France
| | - Marie Batisse‐Lignier
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Service d'EndocrinologieFaculté de MédecineCentre Hospitalier Universitaire (CHU)Université Clermont‐Auvergne Clermont‐Ferrand France
| | - Igor Tauveron
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
- Service d'EndocrinologieFaculté de MédecineCentre Hospitalier Universitaire (CHU)Université Clermont‐Auvergne Clermont‐Ferrand France
| | - Jérôme Bertherat
- Institut CochinCentre National de la Recherche Scientifique (CNRS)INSERMUniversité Paris Descartes Paris France
- Centre Maladies Rares de la SurrénaleService d'EndocrinologieHôpital CochinAssistance Publique Hôpitaux de Paris Paris France
| | - Pierre Val
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| | - Antoine Martinez
- Génétique Reproduction and Dévelopement (GReD)Centre National de la Recherche Scientifique (CNRS)INSERMUniversité Clermont‐Auvergne Clermont‐Ferrand France
| |
Collapse
|
9
|
Baba T, Otake H, Inoue M, Sato T, Ishihara Y, Moon JY, Tsuchiya M, Miyabayashi K, Ogawa H, Shima Y, Wang L, Sato R, Yamazaki T, Suyama M, Nomura M, Choi MH, Ohkawa Y, Morohashi KI. Ad4BP/SF-1 regulates cholesterol synthesis to boost the production of steroids. Commun Biol 2018; 1:18. [PMID: 30271905 PMCID: PMC6123728 DOI: 10.1038/s42003-018-0020-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/14/2018] [Indexed: 11/09/2022] Open
Abstract
Housekeeping metabolic pathways such as glycolysis are active in all cell types. In addition, many types of cells are equipped with cell-specific metabolic pathways. To properly perform their functions, housekeeping and cell-specific metabolic pathways must function cooperatively. However, the regulatory mechanisms that couple metabolic pathways remain largely unknown. Recently, we showed that the steroidogenic cell-specific nuclear receptor Ad4BP/SF-1, which regulates steroidogenic genes, also regulates housekeeping glycolytic genes. Here, we identify cholesterogenic genes as the targets of Ad4BP/SF-1. Further, we reveal that Ad4BP/SF-1 regulates Hummr, a candidate mediator of cholesterol transport from endoplasmic reticula to mitochondria. Given that cholesterol is the starting material for steroidogenesis and is synthesized from acetyl-CoA, which partly originates from glucose, our results suggest that multiple biological processes involved in synthesizing steroid hormones are governed by Ad4BP/SF-1. To our knowledge, this study provides the first example where housekeeping and cell-specific metabolism are coordinated at the transcriptional level.
Collapse
Affiliation(s)
- Takashi Baba
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroyuki Otake
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Miki Inoue
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan
| | - Ju-Yeon Moon
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Megumi Tsuchiya
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Osaka, 565-0871, Japan
| | - Kanako Miyabayashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hidesato Ogawa
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Osaka, 565-0871, Japan
| | - Yuichi Shima
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Lixiang Wang
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryuichiro Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Takeshi Yamazaki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Asahimachi 67, Kurume, 830-0011, Japan
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Yasuyuki Ohkawa
- Division of Transcritomics, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
10
|
Scortegagna M, Berthon A, Settas N, Giannakou A, Garcia G, Li JL, James B, Liddington RC, Vilches-Moure JG, Stratakis CA, Ronai ZA. The E3 ubiquitin ligase Siah1 regulates adrenal gland organization and aldosterone secretion. JCI Insight 2017; 2:97128. [PMID: 29212953 DOI: 10.1172/jci.insight.97128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/19/2017] [Indexed: 01/07/2023] Open
Abstract
Primary and secondary hypertension are major risk factors for cardiovascular disease, the leading cause of death worldwide. Elevated secretion of aldosterone resulting from primary aldosteronism (PA) is a key driver of secondary hypertension. Here, we report an unexpected role for the ubiquitin ligase Siah1 in adrenal gland development and PA. Siah1a-/- mice exhibit altered adrenal gland morphology, as reflected by a diminished X-zone, enlarged medulla, and dysregulated zonation of the glomerulosa as well as increased aldosterone levels and aldosterone target gene expression and reduced plasma potassium levels. Genes involved in catecholamine biosynthesis and cAMP signaling are upregulated in the adrenal glands of Siah1a-/- mice, while genes related to retinoic acid signaling and cholesterol biosynthesis are downregulated. Loss of Siah1 leads to increased expression of the Siah1 substrate PIAS1, an E3 SUMO protein ligase implicated in the suppression of LXR, a key regulator of cholesterol levels in the adrenal gland. In addition, SIAH1 sequence variants were identified in patients with PA; such variants impaired SIAH1 ubiquitin ligase activity, resulting in elevated PIAS1 expression. These data identify a role for the Siah1-PIAS1 axis in adrenal gland organization and function and point to possible therapeutic targets for hyperaldosteronism.
Collapse
Affiliation(s)
- Marzia Scortegagna
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Annabel Berthon
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Nikolaos Settas
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Andreas Giannakou
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Guillermina Garcia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Brian James
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert C Liddington
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - José G Vilches-Moure
- Department of Comparative Medicine, Stanford University Medical Center, Stanford, California, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
Abstract
Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.
Collapse
|
12
|
Lorenzo PI, Juárez-Vicente F, Cobo-Vuilleumier N, García-Domínguez M, Gauthier BR. The Diabetes-Linked Transcription Factor PAX4: From Gene to Functional Consequences. Genes (Basel) 2017; 8:genes8030101. [PMID: 28282933 PMCID: PMC5368705 DOI: 10.3390/genes8030101] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Paired box 4 (PAX4) is a key factor in the generation of insulin producing β-cells during embryonic development. In adult islets, PAX4 expression is sequestered to a subset of β-cells that are prone to proliferation and more resistant to stress-induced apoptosis. The importance of this transcription factor for adequate pancreatic islets functionality has been manifested by the association of mutations in PAX4 with the development of diabetes, independently of its etiology. Overexpression of this factor in adult islets stimulates β-cell proliferation and increases their resistance to apoptosis. Additionally, in an experimental model of autoimmune diabetes, a novel immunomodulatory function for this factor has been suggested. Altogether these data pinpoint at PAX4 as an important target for novel regenerative therapies for diabetes treatment, aiming at the preservation of the remaining β-cells in parallel to the stimulation of their proliferation to replenish the β-cell mass lost during the progression of the disease. However, the adequate development of such therapies requires the knowledge of the molecular mechanisms controlling the expression of PAX4 as well as the downstream effectors that could account for PAX4 action.
Collapse
Affiliation(s)
- Petra I Lorenzo
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Francisco Juárez-Vicente
- Cell differentiation Lab, Department of Cell Signaling and Dynamics, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Nadia Cobo-Vuilleumier
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Mario García-Domínguez
- Cell differentiation Lab, Department of Cell Signaling and Dynamics, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Benoit R Gauthier
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| |
Collapse
|
13
|
Abstract
SOX9 is a pivotal transcription factor in developing and adult cartilage. Its gene is expressed from the multipotent skeletal progenitor stage and is active throughout chondrocyte differentiation. While it is repressed in hypertrophic chondrocytes in cartilage growth plates, it remains expressed throughout life in permanent chondrocytes of healthy articular cartilage. SOX9 is required for chondrogenesis: it secures chondrocyte lineage commitment, promotes cell survival, and transcriptionally activates the genes for many cartilage-specific structural components and regulatory factors. Since heterozygous mutations within and around SOX9 were shown to cause the severe skeletal malformation syndrome called campomelic dysplasia, researchers around the world have worked assiduously to decipher the many facets of SOX9 actions and regulation in chondrogenesis. The more we learn, the more we realize the complexity of the molecular networks in which SOX9 fulfills its functions and is regulated at the levels of its gene, RNA, and protein, and the more we measure the many gaps remaining in knowledge. At the same time, new technologies keep giving us more means to push further the frontiers of knowledge. Research efforts must be pursued to fill these gaps and to better understand and treat many types of cartilage diseases in which SOX9 has or could have a critical role. These diseases include chondrodysplasias and cartilage degeneration diseases, namely osteoarthritis, a prevalent and still incurable joint disease. We here review the current state of knowledge of SOX9 actions and regulation in the chondrocyte lineage, and propose new directions for future fundamental and translational research projects.
Collapse
Affiliation(s)
- Véronique Lefebvre
- Department of Cellular & Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Mona Dvir-Ginzberg
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Katanasaka Y, Suzuki H, Sunagawa Y, Hasegawa K, Morimoto T. Regulation of Cardiac Transcription Factor GATA4 by Post-Translational Modification in Cardiomyocyte Hypertrophy and Heart Failure. Int Heart J 2016; 57:672-675. [PMID: 27818483 DOI: 10.1536/ihj.16-404] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heart failure is a leading cause of cardiovascular mortality in industrialized countries. During development and deterioration of heart failure, cardiomyocytes undergo maladaptive hypertrophy, and changes in the cellular phenotype are accompanied by reinduction of the fetal gene program. Gene expression in cardiomyocytes is regulated by various nuclear transcription factors, co-activators, and co-repressors. The zinc finger protein GATA4 is one such transcription factor involved in the regulation of cardiomyocyte hypertrophy. In response to hypertrophic stimuli such as those involving the sympathetic nervous and renin-angiotensin systems, changes in protein interaction and/or post-translational modifications of GATA4 cause hypertrophic gene transcription in cardiomyocytes. In this article, we focus on cardiac nuclear signaling molecules, especially GATA4, that are promising as potential targets for heart failure therapy.
Collapse
Affiliation(s)
- Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka
| | | | | | | | | |
Collapse
|
15
|
Suzawa M, Miranda DA, Ramos KA, Ang KKH, Faivre EJ, Wilson CG, Caboni L, Arkin MR, Kim YS, Fletterick RJ, Diaz A, Schneekloth JS, Ingraham HA. A gene-expression screen identifies a non-toxic sumoylation inhibitor that mimics SUMO-less human LRH-1 in liver. eLife 2015; 4. [PMID: 26653140 PMCID: PMC4749390 DOI: 10.7554/elife.09003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
SUMO-modification of nuclear proteins has profound effects on gene expression. However, non-toxic chemical tools that modulate sumoylation in cells are lacking. Here, to identify small molecule sumoylation inhibitors we developed a cell-based screen that focused on the well-sumoylated substrate, human Liver Receptor Homolog-1 (hLRH-1, NR5A2). Our primary gene-expression screen assayed two SUMO-sensitive transcripts, APOC3 and MUC1, that are upregulated by SUMO-less hLRH-1 or by siUBC9 knockdown, respectively. A polyphenol, tannic acid (TA) emerged as a potent sumoylation inhibitor in vitro (IC50 = 12.8 µM) and in cells. TA also increased hLRH-1 occupancy on SUMO-sensitive transcripts. Most significantly, when tested in humanized mouse primary hepatocytes, TA inhibits hLRH-1 sumoylation and induces SUMO-sensitive genes, thereby recapitulating the effects of expressing SUMO-less hLRH-1 in mouse liver. Our findings underscore the benefits of phenotypic screening for targeting post-translational modifications, and illustrate the potential utility of TA for probing the cellular consequences of sumoylation. DOI:http://dx.doi.org/10.7554/eLife.09003.001 Proteins in cells carry out diverse tasks. One way in which this diversity is achieved by proteins is through the attachment of molecular tags. SUMO is one such tag that can reversibly attach to proteins and alter their activity. The modification of proteins by SUMO is known as sumoylation, and it regulates many processes that are essential for living cells. In particular, transcription factors—the proteins that bind to DNA to switch genes on or off—are highly modified by SUMO. However, the consequences of sumoylation are not fully understood, and current research into this area has been hindered by a lack of effective and non-toxic chemicals that stop or slow down sumoylation. Suzawa, Miranda, Ramos et al. have now screened a large collection of compounds, which had already been approved for medical use, to find one that could inhibit sumoylation without toxic effects. The compounds were tested for their ability to alter the activity of a transcription factor called human Liver Receptor Homolog-1. This protein, which is referred to as LRH-1 for short, is an ideal candidate to test SUMO inhibitors because it is highly modified by multiple SUMO tags. This screen identified a compound from plants called tannic acid as a non-toxic and potent inhibitor of sumoylation. Further experiments confirmed that tannic acid prevented the modification of LHR-1 as well a number of different proteins that also commonly modified by SUMO. Inhibiting the sumoylation of LRH-1 led to an increase in the expression of genes that are normally silenced by SUMO-modified LRH-1. Similar results were obtained when tannic acid was tested using human cells and “humanized” liver cells from mice that had been engineered to express human LRH-1. The next big challenge is to find new chemical probes that can be used to specifically promote or inhibit SUMO modification of just one particular protein. DOI:http://dx.doi.org/10.7554/eLife.09003.002
Collapse
Affiliation(s)
- Miyuki Suzawa
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Diego A Miranda
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Karmela A Ramos
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Kenny K-H Ang
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Emily J Faivre
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Christopher G Wilson
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Laura Caboni
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Michelle R Arkin
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Yeong-Sang Kim
- Chemical Biology Laboratory, National Cancer Institute, Frederick, United States
| | - Robert J Fletterick
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Aaron Diaz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, United States
| | - Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
16
|
Abstract
Since its discovery nearly 30 years ago, the Hedgehog (Hh) signaling pathway has been shown to be pivotal in many developmental and pathophysiological processes in several steroidogenic tissues, including the testis, ovary, adrenal cortex, and placenta. New evidence links the evolutionarily conserved Hh pathway to the steroidogenic organs, demonstrating how Hh signaling can influence their development and homeostasis and can act in concert with steroids to mediate physiological functions. In this review, we highlight the role of the components of the Hh signaling pathway in steroidogenesis of endocrine tissues.
Collapse
Affiliation(s)
- Isabella Finco
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan 48109; , ,
| | | | | | | |
Collapse
|
17
|
Venegas-Vega C, Nieto-Martínez K, Martínez-Herrera A, Gómez-Laguna L, Berumen J, Cervantes A, Kofman S, Fernández-Ramírez F. 19q13.11 microdeletion concomitant with ins(2;19)(p25.3;q13.1q13.4)dn in a boy: potential role of UBA2 in the associated phenotype. Mol Cytogenet 2014; 7:61. [PMID: 25516771 PMCID: PMC4266984 DOI: 10.1186/s13039-014-0061-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
The 19q13.11 microdeletion syndrome (MIM613026) is a clinically recognisable condition in which a 324-kb minimal overlapping critical region has been recently described. However, genes not included within this region, such as WTIP and UBA2, have been proposed to contribute to the clinical characteristics observed in patients. Using cytogenetic techniques, single nucleotide polymorphism arrays, and the quantitative polymerase chain reaction, we identified a novel case with a 2.49-Mb deletion derived from a de novo chromosomal rearrangement. Based on a review of the literature, we support the notion that UBA2 haploinsufficiency could contribute to the phenotype of this rare genomic disorder. UBA2 belongs to a protein complex with sumoylation activity, and several transcription factors, hormone receptors, and signalling proteins related to brain and sexual development are regulated by this post-translational modification. Additional clinical reports and further research on UBA2 molecular function are warranted.
Collapse
Affiliation(s)
- Carlos Venegas-Vega
- Unidad de Genética, Hospital General de México, Dr. Balmis 148, México, D.F 06726 México ; Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, México, D.F 04510 México
| | - Karem Nieto-Martínez
- Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, México, D.F 04510 México
| | - Alejandro Martínez-Herrera
- Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, México, D.F 04510 México
| | - Laura Gómez-Laguna
- Unidad de Genética, Hospital General de México, Dr. Balmis 148, México, D.F 06726 México
| | - Jaime Berumen
- Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, México, D.F 04510 México ; Unidad de Medicina Genómica, Hospital General de México, Dr. Balmis 148, México, D.F 06726 México
| | - Alicia Cervantes
- Unidad de Genética, Hospital General de México, Dr. Balmis 148, México, D.F 06726 México ; Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, México, D.F 04510 México
| | - Susana Kofman
- Unidad de Genética, Hospital General de México, Dr. Balmis 148, México, D.F 06726 México ; Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, México, D.F 04510 México
| | | |
Collapse
|
18
|
Baba T, Otake H, Sato T, Miyabayashi K, Shishido Y, Wang CY, Shima Y, Kimura H, Yagi M, Ishihara Y, Hino S, Ogawa H, Nakao M, Yamazaki T, Kang D, Ohkawa Y, Suyama M, Chung BC, Morohashi KI. Glycolytic genes are targets of the nuclear receptor Ad4BP/SF-1. Nat Commun 2014; 5:3634. [PMID: 24727981 DOI: 10.1038/ncomms4634] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
Genetic deficiencies in transcription factors can lead to the loss of certain types of cells and tissue. The steroidogenic tissue-specific nuclear receptor Ad4BP/SF-1 (NR5A1) is one such gene, because mice in which this gene is disrupted fail to develop the adrenal gland and gonads. However, the specific role of Ad4BP/SF-1 in these biological events remains unclear. Here we use chromatin immunoprecipitation sequencing to show that nearly all genes in the glycolytic pathway are regulated by Ad4BP/SF-1. Suppression of Ad4BP/SF-1 by small interfering RNA reduces production of the energy carriers ATP and nicotinamide adenine dinucleotide phosphate, as well as lowers expression of genes involved in glucose metabolism. Together, these observations may explain tissue dysgenesis as a result of Ad4BP/SF-1 gene disruption in vivo. Considering the function of estrogen-related receptor α, the present study raises the possibility that certain types of nuclear receptors regulate sets of genes involved in metabolic pathways to generate energy carriers.
Collapse
Affiliation(s)
- Takashi Baba
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Otake
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kanako Miyabayashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yurina Shishido
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chia-Yih Wang
- 1] Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Nankang, Taipei 115, Taiwan [2] Present address: Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yuichi Shima
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroshi Kimura
- Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Osaka 565-0871, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hidesato Ogawa
- 1] Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Osaka 565-0871, Japan [2] Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Iwaoka 588-2, Nishi-ku, Kobe 651-2492, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takeshi Yamazaki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Nankang, Taipei 115, Taiwan
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
19
|
|
20
|
Cai K, Lucki NC, Sewer MB. Silencing diacylglycerol kinase-theta expression reduces steroid hormone biosynthesis and cholesterol metabolism in human adrenocortical cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:552-62. [PMID: 24369117 DOI: 10.1016/j.bbalip.2013.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/10/2013] [Accepted: 12/13/2013] [Indexed: 11/29/2022]
Abstract
Diacylglycerol kinase theta (DGKθ) plays a pivotal role in regulating adrenocortical steroidogenesis by synthesizing the ligand for the nuclear receptor steroidogenic factor 1 (SF1). In response to activation of the cAMP signaling cascade nuclear DGK activity is rapidly increased, facilitating PA-mediated, SF1-dependent transcription of genes required for cortisol and dehydroepiandrosterone (DHEA) biosynthesis. Based on our previous work identifying DGKθ as the enzyme that produces the agonist for SF1, we generated a tetracycline-inducible H295R stable cell line to express a short hairpin RNA (shRNA) against DGKθ and characterized the effect of silencing DGKθ on adrenocortical gene expression. Genome-wide DNA microarray analysis revealed that silencing DGKθ expression alters the expression of multiple genes, including steroidogenic genes, nuclear receptors and genes involved in sphingolipid, phospholipid and cholesterol metabolism. Interestingly, the expression of sterol regulatory element binding proteins (SREBPs) was also suppressed. Consistent with the suppression of SREBPs, we observed a down-regulation of multiple SREBP target genes, including 3-hydroxy-3-methylglutary coenzyme A reductase (HMG-CoA red) and CYP51, concomitant with a decrease in cellular cholesterol. DGKθ knockdown cells exhibited a reduced capacity to metabolize PA, with a down-regulation of lipin and phospholipase D (PLD) isoforms. In contrast, suppression of DGKθ increased the expression of several genes in the sphingolipid metabolic pathway, including acid ceramidase (ASAH1) and sphingosine kinases (SPHK). In summary, these data demonstrate that DGKθ plays an important role in steroid hormone production in human adrenocortical cells.
Collapse
Affiliation(s)
- Kai Cai
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Natasha C Lucki
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marion B Sewer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Wang CM, Liu R, Wang L, Yang WH. Acidic residue Glu199 increases SUMOylation level of nuclear hormone receptor NR5A1. Int J Mol Sci 2013; 14:22331-45. [PMID: 24232453 PMCID: PMC3856066 DOI: 10.3390/ijms141122331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 01/29/2023] Open
Abstract
Steroidogenic factor 1 (NR5A1/SF1) is a well-known master regulator in controlling adrenal and sexual development, as well as regulating numerous genes involved in adrenal and gonadal steroidogenesis. Several studies including ours have demonstrated that NR5A1 can be SUMOylated on lysine 194 (K194, the major site) and lysine 119 (K119, the minor site), and the cycle of SUMOylation regulates NR5A1’s transcriptional activity. An extended consensus negatively charged amino acid-dependent SUMOylation motif (NDSM) enhances the specificity of substrate modification by SUMO has been reported; however, the mechanism of NDSM for NR5A1 remains to be clarified. In this study, we investigated the functional significance of the acidic residue located downstream from the core consensus SUMO site of NR5A1. Here we report that E199A (glutamic acid was replaced with alanine) of NR5A1 reduced, but not completely abolished, its SUMOylation level. We next characterized the functional role of NR5A1 E199A on target gene expression and protein levels. We found that E199A alone, as well as combination with K194R, increased Mc2r and Cyp19a1 reporter activities. Moreover, E199A alone as well as combination with K194R enhanced NR5A1-mediated STAR protein levels in mouse adrenocortical cancer Y1 cells. We also observed that E199A increased interaction of NR5A1 with CDK7 and SRC1. Overall, we provide the evidence that the acidic residue (E199) located downstream from the core consensus SUMO site of NR5A1 is, at least in part, required for SUMOylation of NR5A1 and for its mediated target gene and protein expression.
Collapse
Affiliation(s)
- Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; E-Mail:
| | - Runhua Liu
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mails: (R.L.); (L.W.)
| | - Lizhong Wang
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mails: (R.L.); (L.W.)
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-912-350-1708; Fax: +1-912-350-1765
| |
Collapse
|
22
|
Chen L, Ma Y, Qian L, Wang J. Sumoylation regulates nuclear localization and function of zinc finger transcription factor ZIC3. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2725-2733. [PMID: 23872418 DOI: 10.1016/j.bbamcr.2013.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/14/2013] [Accepted: 07/12/2013] [Indexed: 11/24/2022]
Abstract
ZIC3, an X-linked zinc finger transcription factor, was the first identified gene involved in establishing normal left-right patterning in humans. Mutations in the Zic3 gene in patients cause heterotaxy, which includes congenital heart defects. However, very little is known about how the function of the ZIC3 protein is regulated. Sumoylation is a posttranslational modification process in which a group of small ubiquitin-like modifier (SUMO) proteins is covalently attached to targets via a series of enzymatic reactions. Here, we report for the first time that sumoylation targets human ZIC3 primarily on the consensus lysine residue K248, which is critical for the nuclear retention of ZIC3. Consequently, SUMO modification potentiates the repressive activity of ZIC3 on the promoter of its target gene cardiac α-actin, and the mutation of lysine 248 to arginine (K248R) abolishes its repressive function. We further revealed that ZIC3 variants with mutations found in human patients with congenital anomalies exhibit aberrant sumoylation activity, which at least partially accounts for their cytoplasmic diffusion. Improved sumoylation of human disease-associated ZIC3 variants reestablishes their nuclear occupancy in the presence of SUMO E3 ligase and SUMO-1. Thus, the altered sumoylation status of ZIC3 underpins the developmental abnormalities associated with these ZIC3 mutants. The SUMO targeting consensus sequence in ZIC3 is highly conserved in its paralogs and orthologs, pointing to sumoylation as a general mechanism underlying the functional control of ZIC proteins. This study provides a potential therapeutic strategy to regain the normal subcellular distribution and function of ZIC3 mutants by restoring SUMO conjugation.
Collapse
Affiliation(s)
- Li Chen
- The Center for Stem Cell Engineering, Texas Heart Institute, Houston, TX 77030, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Yanlin Ma
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Ling Qian
- The Center for Stem Cell Engineering, Texas Heart Institute, Houston, TX 77030, USA
| | - Jun Wang
- The Center for Stem Cell Engineering, Texas Heart Institute, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Cai K, Sewer MB. cAMP-stimulated transcription of DGKθ requires steroidogenic factor 1 and sterol regulatory element binding protein 1. J Lipid Res 2013; 54:2121-2132. [PMID: 23610160 DOI: 10.1194/jlr.m035634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diacylglycerol kinase (DGK)θ is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid (PA). We have previously shown that PA is a ligand for the nuclear receptor steroidogenic factor 1 (SF1) and that cAMP-stimulated expression of SF1 target genes requires DGKθ. In this study, we sought to investigate the role of cAMP signaling in regulating DGKθ gene expression. Real time RT-PCR and Western blot analysis revealed that dibutyryl cAMP (Bt2cAMP) increased the mRNA and protein expression, respectively, of DGKθ in H295R human adrenocortical cells. SF1 and sterol regulatory element binding protein 1 (SREBP1) increased the transcriptional activity of a reporter plasmid containing 1.5 kb of the DGKθ promoter fused to the luciferase gene. Mutation of putative cAMP responsive sequences abolished SF1- and SREBP-dependent DGKθ reporter gene activation. Consistent with this finding, chromatin immunoprecipitation assay demonstrated that Bt2cAMP signaling increased the recruitment of SF1 and SREBP1 to the DGKθ promoter. Coimmunoprecipitation assay revealed that SF1 and SREBP1 interact, suggesting that the two transcription factors form a complex on the DGKθ promoter. Finally, silencing SF1 and SREBP1 abolished cAMP-stimulated DGKθ expression. Taken together, we demonstrate that SF1 and SREBP1 activate DGKθ transcription in a cAMP-dependent manner in human adrenocortical cells.
Collapse
Affiliation(s)
- Kai Cai
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Marion B Sewer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093.
| |
Collapse
|
24
|
Scavenger receptors mediate the role of SUMO and Ftz-f1 in Drosophila steroidogenesis. PLoS Genet 2013; 9:e1003473. [PMID: 23637637 PMCID: PMC3630131 DOI: 10.1371/journal.pgen.1003473] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/07/2013] [Indexed: 12/31/2022] Open
Abstract
SUMOylation participates in ecdysteroid biosynthesis at the onset of metamorphosis in Drosophila melanogaster. Silencing the Drosophila SUMO homologue smt3 in the prothoracic gland leads to reduced lipid content, low ecdysone titers, and a block in the larval–pupal transition. Here we show that the SR-BI family of Scavenger Receptors mediates SUMO functions. Reduced levels of Snmp1 compromise lipid uptake in the prothoracic gland. In addition, overexpression of Snmp1 is able to recover lipid droplet levels in the smt3 knockdown prothoracic gland cells. Snmp1 expression depends on Ftz-f1 (an NR5A-type orphan nuclear receptor), the expression of which, in turn, depends on SUMO. Furthermore, we show by in vitro and in vivo experiments that Ftz-f1 is SUMOylated. RNAi–mediated knockdown of ftz-f1 phenocopies that of smt3 at the larval to pupal transition, thus Ftz-f1 is an interesting candidate to mediate some of the functions of SUMO at the onset of metamorphosis. Additionally, we demonstrate that the role of SUMOylation, Ftz-f1, and the Scavenger Receptors in lipid capture and mobilization is conserved in other steroidogenic tissues such as the follicle cells of the ovary. smt3 knockdown, as well as ftz-f1 or Scavenger knockdown, depleted the lipid content of the follicle cells, which could be rescued by Snmp1 overexpression. Therefore, our data provide new insights into the regulation of metamorphosis via lipid homeostasis, showing that Drosophila Smt3, Ftz-f1, and SR-BIs are part of a general mechanism for uptake of lipids such as cholesterol, required during development in steroidogenic tissues. Steroid hormones are cholesterol derivates that control many aspects of animal physiology, including development of the adult organisms, growth, energy storage, and reproduction. In insects, pulses of the steroid hormone ecdysone precede molting and metamorphosis, the regulation of hormonal synthesis being a crucial step that determines animal viability and size. Reduced levels of the small ubiquitin-like modifier SUMO in the prothoracic gland block the synthesis of ecdysone, as SUMO is needed for cholesterol intake. Here we show that SUMO is required for the expression of Scavenger Receptors (Class B, type I). These membrane receptors are necessary for lipid uptake by the gland. Strikingly, their expression is sufficient to recover lipid content when SUMO is removed. The expression of the Scavenger Receptors depends on Ftz-f1, a nuclear transcription factor homologous to mammalian Steroidogenic factor 1 (SF-1). Interestingly, the expression of Ftz-f1 also depends on SUMO and, in addition, Ftz-f1 is SUMOylated. This modification modulates its capacity to activate the Scavenger Receptor Snmp1. The role of SUMO, Scavenger Receptors, and Ftz-f1 on lipid intake is conserved in other tissues that synthesize steroid hormones, such as the ovaries. These factors are conserved in vertebrates, with mutations underlying human disease, so this mechanism to regulate lipid uptake could have implications for human health.
Collapse
|
25
|
Tahmasebi S, Ghorbani M, Savage P, Yan K, Gocevski G, Xiao L, You L, Yang XJ. Sumoylation of Krüppel-like factor 4 inhibits pluripotency induction but promotes adipocyte differentiation. J Biol Chem 2013; 288:12791-804. [PMID: 23515309 DOI: 10.1074/jbc.m113.465443] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ectopic expression of transcription factors has been shown to reprogram somatic cells into induced pluripotent stem (iPS) cells. It remains largely unexplored how this process is regulated by post-translational modifications. Several reprogramming factors possess conserved sumoylation sites, so we investigated whether and how this modification regulates reprogramming of fibroblasts into iPS cells. Substitution of the sole sumoylation site of the Krüppel-like factor (KLF4), a well known reprogramming factor, promoted iPS cell formation. In comparison, much smaller effects on reprogramming were observed for sumoylation-deficient mutants of SOX2 and OCT4, two other classical reprogramming factors. We also analyzed KLF2, a KLF4 homolog and a member of the KLF family of transcription factors with a known role in reprogramming. KLF2 was sumoylated at two conserved neighboring motifs, but substitution of the key lysine residues only stimulated reprogramming slightly. KLF5 is another KLF member with an established link to embryonic stem cell pluripotency. Interestingly, although it was much more efficiently sumoylated than either KLF2 or KLF4, KLF5 was inactive in reprogramming, and its sumoylation was not responsible for this deficiency. Furthermore, sumoylation of KLF4 but not KLF2 or KLF5 stimulated adipocyte differentiation. These results thus demonstrate the importance KLF4 sumoylation in regulating pluripotency and adipocyte differentiation.
Collapse
Affiliation(s)
- Soroush Tahmasebi
- Department of Anatomy and Cell Biology, McGill University Health Center, Montréal, Québec H3A 1A3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu JAJ, Wu MH, Yan CH, Chau BKH, So H, Ng A, Chan A, Cheah KSE, Briscoe J, Cheung M. Phosphorylation of Sox9 is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling. Proc Natl Acad Sci U S A 2013; 110:2882-2887. [PMID: 23382206 PMCID: PMC3581920 DOI: 10.1073/pnas.1211747110] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Coordination of neural crest cell (NCC) induction and delamination is orchestrated by several transcription factors. Among these, Sry-related HMG box-9 (Sox9) and Snail2 have been implicated in both the induction of NCC identity and, together with phoshorylation, NCC delamination. How phosphorylation effects this function has not been clear. Here we show, in the developing chick neural tube, that phosphorylation of Sox9 on S64 and S181 facilitates its SUMOylation, and the phosphorylated forms of Sox9 are essential for trunk neural crest delamination. Both phosphorylation and to a lesser extent SUMOylation, of Sox9 are required to cooperate with Snail2 to promote delamination. Moreover, bone morphogenetic protein and canonical Wnt signaling induce phosphorylation of Sox9, thereby connecting extracellular signals with the delamination of NCCs. Together the data suggest a model in which extracellular signals initiate phosphorylation of Sox9 and its cooperation with Snail2 to induce NCC delamination.
Collapse
Affiliation(s)
- Jessica A. J. Liu
- Department of Biochemistry, Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; and
| | - Ming-Hoi Wu
- Department of Biochemistry, Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; and
| | - Carol H. Yan
- Department of Biochemistry, Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; and
| | - Bolton K. H. Chau
- Department of Biochemistry, Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; and
| | - Henry So
- Department of Biochemistry, Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; and
| | - Alvis Ng
- Department of Biochemistry, Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; and
| | - Alan Chan
- Department of Biochemistry, Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; and
| | - Kathryn S. E. Cheah
- Department of Biochemistry, Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; and
| | - James Briscoe
- Division of Developmental Biology, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Martin Cheung
- Department of Biochemistry, Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; and
| |
Collapse
|
27
|
Acid ceramidase (ASAH1) represses steroidogenic factor 1-dependent gene transcription in H295R human adrenocortical cells by binding to the receptor. Mol Cell Biol 2012; 32:4419-31. [PMID: 22927646 DOI: 10.1128/mcb.00378-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adrenocorticotropin (ACTH) signaling increases glucocorticoid production by promoting the interaction of transcription factors and coactivator proteins with the promoter of steroidogenic genes. The nuclear receptor steroidogenic factor 1 (SF-1) is essential for steroidogenic gene transcription. Sphingosine (SPH) is a ligand for SF-1. Moreover, suppression of expression of acid ceramidase (ASAH1), an enzyme that produces SPH, increases the transcription of multiple steroidogenic genes. Given that SF-1 is a nuclear protein, we sought to define the molecular mechanisms by which ASAH1 regulates SF-1 function. We show that ASAH1 is localized in the nuclei of H295R adrenocortical cells and that cyclic AMP (cAMP) signaling promotes nuclear sphingolipid metabolism in an ASAH1-dependent manner. ASAH1 suppresses SF-1 activity by directly interacting with the receptor. Chromatin immunoprecipitation (ChIP) assays revealed that ASAH1 is recruited to the promoter of various SF-1 target genes and that ASAH1 and SF-1 colocalize on the same promoter region of the CYP17A1 and steroidogenic acute regulatory protein (StAR) genes. Taken together, these results demonstrate that ASAH1 is a novel coregulatory protein that represses SF-1 function by directly binding to the receptor on SF-1 target gene promoters and identify a key role for nuclear lipid metabolism in regulating gene transcription.
Collapse
|
28
|
Belaguli NS, Zhang M, Garcia AH, Berger DH. PIAS1 is a GATA4 SUMO ligase that regulates GATA4-dependent intestinal promoters independent of SUMO ligase activity and GATA4 sumoylation. PLoS One 2012; 7:e35717. [PMID: 22539995 PMCID: PMC3334497 DOI: 10.1371/journal.pone.0035717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/20/2012] [Indexed: 01/12/2023] Open
Abstract
GATA4 confers cell type-specific gene expression on genes expressed in cardiovascular, gastro-intestinal, endocrine and neuronal tissues by interacting with various ubiquitous and cell-type-restricted transcriptional regulators. By using yeast two-hybrid screening approach, we have identified PIAS1 as an intestine-expressed GATA4 interacting protein. The physical interaction between GATA4 and PIAS1 was confirmed in mammalian cells by coimmunoprecipitation and two-hybrid analysis. The interacting domains were mapped to the second zinc finger and the adjacent C-terminal basic region of GATA4 and the RING finger and the adjoining C-terminal 60 amino acids of PIAS1. PIAS1 and GATA4 synergistically activated IFABP and SI promoters but not LPH promoters suggesting that PIAS1 differentially activates GATA4 targeted promoters. In primary murine enterocytes PIAS1 was recruited to the GATA4-regulated IFABP promoter. PIAS1 promoted SUMO-1 modification of GATA4 on lysine 366. However, sumoylation was not required for the nuclear localization and stability of GATA4. Further, neither GATA4 sumoylation nor the SUMO ligase activity of PIAS1 was required for coactivation of IFABP promoter by GATA4 and PIAS1. Together, our results demonstrate that PIAS1 is a SUMO ligase for GATA4 that differentially regulates GATA4 transcriptional activity independent of SUMO ligase activity and GATA4 sumoylation.
Collapse
Affiliation(s)
- Narasimhaswamy S. Belaguli
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
- * E-mail: (NSB); (DHB)
| | - Mao Zhang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
| | - Andres-Hernandez Garcia
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
| | - David H. Berger
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
- * E-mail: (NSB); (DHB)
| |
Collapse
|
29
|
Gardiner JR, Shima Y, Morohashi KI, Swain A. SF-1 expression during adrenal development and tumourigenesis. Mol Cell Endocrinol 2012; 351:12-8. [PMID: 22024498 DOI: 10.1016/j.mce.2011.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 02/01/2023]
Abstract
SF-1 is a master regulator of steroidogenesis whose expression is critical for normal adrenal and gonadal organogenesis. Strict maintenance of SF-1 levels is essential, and mutations causing under- or overexpression result in congenital adrenal and gonadal defects or hyperplasia, respectively. Data from transgenic mouse models points to a network of transcription factors responsible for stringent regulation of Sf-1 expression during development, which bind to intronic enhancer elements in addition to the basal promoter to specifically modulate transcription in each Sf-1-expressing tissue. Furthermore, analysis of the role of SF-1 in adrenal tumourigenesis implies that improper developmental regulation of Sf-1 expression may have postnatal consequences separate from the well-documented developmental defects.
Collapse
|
30
|
Abdel-Hafiz HA, Horwitz KB. Control of progesterone receptor transcriptional synergy by SUMOylation and deSUMOylation. BMC Mol Biol 2012; 13:10. [PMID: 22439847 PMCID: PMC3373386 DOI: 10.1186/1471-2199-13-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/22/2012] [Indexed: 12/02/2022] Open
Abstract
Background Covalent modification of nuclear receptors by the Small Ubiquitin-like Modifier (SUMO) is dynamically regulated by competing conjugation/deconjugation steps that modulate their overall transcriptional activity. SUMO conjugation of progesterone receptors (PRs) at the N-terminal lysine (K) 388 residue of PR-B is hormone-dependent and suppresses PR-dependent transcription. Mutation of the SUMOylation motif promotes transcriptional synergy. Results The present studies address mechanisms underlying this transcriptional synergy by using SUMOylation deficient PR mutants and PR specifically deSUMOylated by Sentrin-specific proteases (SENPs). We show that deSUMOylation of a small pool of receptors by catalytically competent SENPs globally modulates the cooperativity-driven transcriptional synergy between PR observed on exogenous promoters containing at least two progesterone-response elements (PRE2). This occurs in part by raising PR sensitivity to ligands. The C-terminal ligand binding domain of PR is required for the transcriptional stimulatory effects of N-terminal deSUMOylation, but neither a functional PR dimerization interface, nor a DNA binding domain exhibiting PR specificity, are required. Conclusion We conclude that direct and reversible SUMOylation of a minor PR protein subpopulation tightly controls the overall transcriptional activity of the receptors at complex synthetic promoters. Transcriptional synergism controlled by SENP-dependent PR deSUMOylation is dissociable from MAPK-catalyzed receptor phosphorylation, from SRC-1 coactivation and from recruitment of histone deacetylases to promoters. This will provide more information for targeting PR as a part of hormonal therapy of breast cancer. Taken together, these data demonstrate that the SUMOylation/deSUMOylation pathway is an interesting target for therapeutic treatment of breast cancer.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | | |
Collapse
|
31
|
Knockdown of SF-1 and RNF31 affects components of steroidogenesis, TGFβ, and Wnt/β-catenin signaling in adrenocortical carcinoma cells. PLoS One 2012; 7:e32080. [PMID: 22427816 PMCID: PMC3302881 DOI: 10.1371/journal.pone.0032080] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/20/2012] [Indexed: 11/19/2022] Open
Abstract
The orphan nuclear receptor Steroidogenic Factor-1 (SF-1, NR5A1) is a critical regulator of development and homeostasis of the adrenal cortex and gonads. We recently showed that a complex containing E3 ubiquitin ligase RNF31 and the known SF-1 corepressor DAX-1 (NR0B1) interacts with SF-1 on target promoters and represses transcription of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) genes. To further evaluate the role of SF-1 in the adrenal cortex and the involvement of RNF31 in SF-1-dependent pathways, we performed genome-wide gene-expression analysis of adrenocortical NCI-H295R cells where SF-1 or RNF31 had been knocked down using RNA interference. We find RNF31 to be deeply connected to cholesterol metabolism and steroid hormone synthesis, strengthening its role as an SF-1 coregulator. We also find intriguing evidence of negative crosstalk between SF-1 and both transforming growth factor (TGF) β and Wnt/β-catenin signaling. This crosstalk could be of importance for adrenogonadal development, maintenance of adrenocortical progenitor cells and the development of adrenocortical carcinoma. Finally, the SF-1 gene profile can be used to distinguish malignant from benign adrenocortical tumors, a finding that implicates SF-1 in the development of malignant adrenocortical carcinoma.
Collapse
|
32
|
Tsuchiya M, Ogawa H, Suzuki T, Sugiyama N, Haraguchi T, Hiraoka Y. Exportin 4 interacts with Sox9 through the HMG Box and inhibits the DNA binding of Sox9. PLoS One 2011; 6:e25694. [PMID: 21991335 PMCID: PMC3185033 DOI: 10.1371/journal.pone.0025694] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/08/2011] [Indexed: 11/23/2022] Open
Abstract
Sox9 is a transcription factor that is required for tissue development in mammals. In general, such transcription factors require co-regulators for precise temporal and spatial control of the activation and inactivation of the numerous genes necessary for precise development during embryogenesis. Here we identify a new Sox9 co-regulator: Using affinity chromatography with immobilized Sox9 protein, we identified exportin 4 (Exp4) as an interacting protein of Sox9 in human cultured cells. Interaction between endogenous Exp4 and Sox9 proteins was confirmed in the human osteosarcoma U2OS cells by immunoprecipitation experiments using anti-Sox9 antibody. siRNA depletion of Exp4 enhanced transcription of Sox9 target genes in U2OS cells, but did not affect nuclear localization of Sox9. These results suggest that Exp4 regulates Sox9 activity in the nucleus. Furthermore we found that the HMG box of Sox9 was responsible for binding to Exp4, and the HMG box was required for suppression of Sox9-mediated transcription. This contrasts with the known Sox9 co-regulators which bind to its transcriptional activation domain. Chromatin immunoprecipitation analyses revealed that Exp4 prevents Sox9 binding to the enhancers of its target genes. These results demonstrate that Exp4 acts as a Sox9 co-regulator that directly regulates binding of Sox9 to its target genes.
Collapse
Affiliation(s)
- Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Division of Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Division of Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Taiga Suzuki
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, California, United States of America
| | - Noriyuki Sugiyama
- Kyoto Prefectural University of Medicine, Kawaramachi-dori, Kyoto, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
33
|
Lee FY, Faivre EJ, Suzawa M, Lontok E, Ebert D, Cai F, Belsham DD, Ingraham HA. Eliminating SF-1 (NR5A1) sumoylation in vivo results in ectopic hedgehog signaling and disruption of endocrine development. Dev Cell 2011; 21:315-27. [PMID: 21820362 DOI: 10.1016/j.devcel.2011.06.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/23/2011] [Accepted: 06/24/2011] [Indexed: 11/16/2022]
Abstract
Sumoylation is generally considered a repressive mark for many transcription factors. However, the in vivo importance of sumoylation for any given substrate remains unclear and is questionable because the extent of sumoylation appears exceedingly low for most substrates. Here, we permanently eliminated SF-1/NR5A1 sumoylation in mice (Sf-1(K119R, K194R, or 2KR)) and found that Sf-1(2KR/2KR) mice failed to phenocopy a simple gain of SF-1 function or show elevated levels of well-established SF-1 target genes. Instead, mutant mice exhibited marked endocrine abnormalities and changes in cell fate that reflected an inappropriate activation of hedgehog signaling and other potential SUMO-sensitive targets. Furthermore, unsumoylatable SF-1 mutants activated Shh and exhibited preferential recruitment to Shh genomic elements in cells. We conclude that the sumoylation cycle greatly expands the functional capacity of transcription factors such as SF-1 and is leveraged during development to achieve cell-type-specific gene expression in multicellular organisms.
Collapse
Affiliation(s)
- Florence Y Lee
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochim Biophys Acta Mol Basis Dis 2011; 1812:909-18. [DOI: 10.1016/j.bbadis.2010.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 02/07/2023]
|
35
|
Wang J. Cardiac function and disease: emerging role of small ubiquitin-related modifier. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:446-57. [PMID: 21197655 PMCID: PMC3110591 DOI: 10.1002/wsbm.130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small ubiquitin-related modifiers, or SUMOs, have emerged as versatile regulators of many biological functions that do so by covalent attachment to a variety of substrates via enzymatic reactions. SUMO conjugation has also been shown to be involved in a number of human pathogenic processes. More recent advances in the SUMO field have indicated a potential role for SUMO conjugation pathway in cardiogenesis. This advanced review will describe the basic features of the SUMO conjugation pathway and will summarize the most recent studies implicating the influence of the sumoylation pathway in cardiac function under both physiological and pathological conditions. WIREs Syst Biol Med 2011 3 446-457 DOI: 10.1002/wsbm.130
Collapse
Affiliation(s)
- Jun Wang
- Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
36
|
Suzuki YJ. Cell signaling pathways for the regulation of GATA4 transcription factor: Implications for cell growth and apoptosis. Cell Signal 2011; 23:1094-9. [PMID: 21376121 PMCID: PMC3078531 DOI: 10.1016/j.cellsig.2011.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/12/2011] [Accepted: 02/22/2011] [Indexed: 01/28/2023]
Abstract
GATA4 is a member of the GATA family of zinc finger transcription factor, which regulates gene transcription by binding to GATA elements. GATA4 was originally discovered as a regulator of cardiac development and subsequently identified as a major regulator of adult cardiac hypertrophy. GATA4 regulates gene expression of various genes, which are involved in cardiac development and cardiac hypertrophy and heart failure. In addition to the heart, GATA4 plays important roles in the reproductive system, gastrointestinal system, respiratory system and cancer. Positive and negative regulations of GATA4 therefore are important components of biologic functions. The activation of GATA4 occurs via various cell signaling events. Earlier studies have identified protein-protein interactions of GATA4 with other factors. The discovery of interactions of GATA4 with nuclear factor for activated T cells (NFAT) revealed the importance of calcium signaling in the activation of GATA4. GATA4 can also be phosphorylated by mitogen activated protein kinases and protein kinase A. Lysine modifications also occur on the GATA4 molecule including acetylation and sumoylation. Both reactive oxygen-dependent and -independent antioxidant-sensitive pathways for GATA4 activation have also been demonstrated. The GATA4 activity is also regulated by modulating the level of GATA4 expression via transcriptional as well as translational mechanisms. This work summarizes the current understanding of regulatory mechanisms for modulating GATA4 activity.
Collapse
Affiliation(s)
- Yuichiro J Suzuki
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA.
| |
Collapse
|
37
|
Kim EY, Chen L, Ma Y, Yu W, Chang J, Moskowitz IP, Wang J. Expression of sumoylation deficient Nkx2.5 mutant in Nkx2.5 haploinsufficient mice leads to congenital heart defects. PLoS One 2011; 6:e20803. [PMID: 21677783 PMCID: PMC3108998 DOI: 10.1371/journal.pone.0020803] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/12/2011] [Indexed: 12/16/2022] Open
Abstract
Nkx2.5 is a cardiac specific homeobox gene critical for normal heart development. We previously identified Nkx2.5 as a target of sumoylation, a posttranslational modification implicated in a variety of cellular activities. Sumoylation enhanced Nkx2.5 activity via covalent attachment to the lysine residue 51, the primary SUMO acceptor site. However, how sumoylation regulates the activity of Nkx2.5 in vivo remains unknown. We generated transgenic mice overexpressing sumoylation deficient mutant K51R (conversion of lysine 51 to arginine) specifically in mouse hearts under the control of cardiac α-myosin heavy chain (α-MHC) promoter (K51R-Tg). Expression of the Nkx2.5 mutant transgene in the wild type murine hearts did not result in any overt cardiac phenotype. However, in the presence of Nkx2.5 haploinsufficiency, cardiomyocyte-specific expression of the Nkx2.5 K51R mutant led to congenital heart diseases (CHDs), accompanied with decreased cardiomyocyte proliferation. Also, a number of human CHDs-associated Nkx2.5 mutants exhibited aberrant sumoylation. Our work demonstrates that altered sumoylation status may underlie the development of human CHDs associated with Nkx2.5 mutants.
Collapse
Affiliation(s)
- Eun Young Kim
- Program in Genes and Development, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Li Chen
- Department of Basic Research Laboratories, Texas Heart Institute, Houston, Texas, United States of America
| | - Yanlin Ma
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Wei Yu
- Department of Biochemistry and Molecular Biology, University of Houston, Houston, Texas, United States of America
| | - Jiang Chang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Ivan P. Moskowitz
- Departments of Pediatrics and Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jun Wang
- Department of Basic Research Laboratories, Texas Heart Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Suda N, Shibata H, Kurihara I, Ikeda Y, Kobayashi S, Yokota K, Murai-Takeda A, Nakagawa K, Oya M, Murai M, Rainey WE, Saruta T, Itoh H. Coactivation of SF-1-mediated transcription of steroidogenic enzymes by Ubc9 and PIAS1. Endocrinology 2011; 152:2266-77. [PMID: 21467194 PMCID: PMC3100613 DOI: 10.1210/en.2010-1232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 03/10/2011] [Indexed: 01/07/2023]
Abstract
Steroidogenic factor-1 (SF-1) is a nuclear orphan receptor, which is essential for adrenal development and regulation of steroidogenic enzyme expression. SF-1 is posttranslationally modified by small ubiquitin-related modifier-1 (SUMO-1), thus mostly resulting in attenuation of transcription. We investigated the role of sumoylation enzymes, Ubc9 and protein inhibitors of activated STAT1 (PIAS1), in SF-1-mediated transcription of steroidogenic enzyme genes in the adrenal cortex. Coimmunoprecipitation assays showed that both Ubc9 and PIAS1 interacted with SF-1. Transient transfection assays in adrenocortical H295R cells showed Ubc9 and PIAS1 potentiated SF-1-mediated transactivation of reporter constructs containing human CYP17, CYP11A1, and CYP11B1 but not CYP11B2 promoters. Reduction of endogenous Ubc9 and PIAS1 by introducing corresponding small interfering RNA significantly reduced endogenous CYP17, CYP11A1, and CYP11B1 mRNA levels, indicating that they normally function as coactivators of SF-1. Wild type and sumoylation-inactive mutants of Ubc9 and PIAS1 can similarly enhance the SF-1-mediated transactivation of the CYP17 gene, indicating that the coactivation potency of Ubc9 and PIAS1 is independent of sumoylation activity. Chromatin immunoprecipitation assays demonstrated that SF-1, Ubc9, and PIAS1 were recruited to an endogenous CYP17 gene promoter in the context of chromatin in vivo. Immunohistochemistry and Western blotting showed that SF-1, Ubc9, and PIAS1 were expressed in the nuclei of the human adrenal cortex. In cortisol-producing adenomas, the expression pattern of SF-1 and Ubc9 were markedly increased, whereas that of PIAS1 was decreased compared with adjacent normal adrenals. These results showed the physiological roles of Ubc9 and PIAS1 as SF-1 coactivators beyond sumoylation enzymes in adrenocortical steroidogenesis and suggested their possible pathophysiological roles in human cortisol-producing adenomas.
Collapse
Affiliation(s)
- Noriko Suda
- Department of Internal Medicine, School of Medicine, Keio University, Shinjujku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang J, Chen L, Wen S, Zhu H, Yu W, Moskowitz IP, Shaw GM, Finnell RH, Schwartz RJ. Defective sumoylation pathway directs congenital heart disease. ACTA ACUST UNITED AC 2011; 91:468-76. [PMID: 21563299 DOI: 10.1002/bdra.20816] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/17/2011] [Accepted: 02/25/2011] [Indexed: 12/17/2022]
Abstract
Congenital heart defects (CHDs) are the most common of all birth defects, yet molecular mechanism(s) underlying highly prevalent atrial septal defects (ASDs) and ventricular septal defects (VSDs) have remained elusive. We demonstrate the indispensability of "balanced" posttranslational small ubiquitin-like modifier (SUMO) conjugation-deconjugation pathway for normal cardiac development. Both hetero- and homozygous SUMO-1 knockout mice exhibited ASDs and VSDs with high mortality rates, which were rescued by cardiac reexpression of the SUMO-1 transgene. Because SUMO-1 was also involved in cleft lip/palate in human patients, the previous findings provided a powerful rationale to question whether SUMO-1 was mutated in infants born with cleft palates and ASDs. Sequence analysis of DNA from newborn screening blood spots revealed a single 16 bp substitution in the SUMO-1 regulatory promoter of a patient displaying both oral-facial clefts and ASDs. Diminished sumoylation activity whether by genetics, environmental toxins, and/or pharmaceuticals may significantly contribute to susceptibility to the induction of congenital heart disease worldwide. Birth Defects Research (Part A) 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jun Wang
- Center for Stem Cell Engineering, Texas Heart Institute, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wood MA, Hammer GD. Adrenocortical stem and progenitor cells: unifying model of two proposed origins. Mol Cell Endocrinol 2011; 336:206-12. [PMID: 21094677 PMCID: PMC3397472 DOI: 10.1016/j.mce.2010.11.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 01/22/2023]
Abstract
The origins of our understanding of the cellular and molecular mechanisms by which signaling pathways and downstream transcription factors coordinate the specification of adrenocortical cells within the adrenal gland have arisen from studies on the role of Sf1 in steroidogenesis and adrenal development initiated 20 years ago in the laboratory of Dr. Keith Parker. Adrenocortical stem/progenitor cells have been predicted to be undifferentiated and quiescent cells that remain at the periphery of the cortex until needed to replenish the organ, at which time they undergo proliferation and terminal differentiation. Identification of these stem/progenitor cells has only recently been explored. Recent efforts have examined signaling molecules, including Wnt, Shh, and Dax1, which may coordinate intricate lineage and signaling relationships between the adrenal capsule (stem cell niche) and underlying cortex (progenitor cell pool) to maintain organ homeostasis in the adrenal gland.
Collapse
Affiliation(s)
| | - Gary D. Hammer
- Corresponding author: University of Michigan, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109. Telephone: (734) 615-2421 Fax: (734) 647-9559,
| |
Collapse
|
41
|
Abstract
During the early phases of development, adrenal glands share a common origin with kidneys and gonads. The action of diverse transcription factors, signalling pathways and endocrine signals is required for the individualization of the adrenal primordium and its subsequent differentiation into an adult adrenal gland, with massive remodelling taking place around the time of birth in humans. Here I summarize the most important steps by which the adrenal cortex is shaped and present an overview of the current understanding of the genes and molecular pathways implicated in adrenal development and involved in the pathogenesis of its congenital diseases. Evidence is accumulating that some pivotal factors acting during adrenocortical development also play an important role to regulate the growth of adrenocortical tumors, representing promising therapeutical targets for a biology-oriented therapy.
Collapse
Affiliation(s)
- Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France.
| |
Collapse
|
42
|
Abstract
Sumoylation is a posttranslational modification process in which SUMO proteins are covalently and reversibly conjugated to their targets via enzymatic cascade reactions. Since the discovery of SUMO-1 in 1996, the SUMO pathway has garnered increased attention due to its role in a number of important biological activities such as cell cycle progression, epigenetic modulation, signal transduction, and DNA replication/repair, as well as its potential implication in human pathogenesis such as in cancer development and metastasis, neurodegenerative disorders and craniofacial defects. The role of the SUMO pathway in regulating cardiogenic gene activity, development and/or disorders is just emerging. Our review is based on recent advances that highlight the regulation of cardiac gene activity in cardiac development and disease by the SUMO conjugation pathway.
Collapse
Affiliation(s)
- Jun Wang
- Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute, Houston, TX 77030
| | - Robert J Schwartz
- Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute, Houston, TX 77030
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| |
Collapse
|
43
|
Du JX, McConnell BB, Yang VW. A small ubiquitin-related modifier-interacting motif functions as the transcriptional activation domain of Krüppel-like factor 4. J Biol Chem 2010; 285:28298-308. [PMID: 20584900 DOI: 10.1074/jbc.m110.101717] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zinc finger transcription factor, Krüppel-like factor 4 (KLF4), regulates numerous biological processes, including proliferation, differentiation, and embryonic stem cell self-renewal. Although the DNA sequence to which KLF4 binds is established, the mechanism by which KLF4 controls transcription is not well defined. Small ubiquitin-related modifier (SUMO) is an important regulator of transcription. Here we show that KLF4 is both SUMOylated at a single lysine residue and physically interacts with SUMO-1 in a region that matches an acidic and hydrophobic residue-rich SUMO-interacting motif (SIM) consensus. The SIM in KLF4 is required for transactivation of target promoters in a SUMO-1-dependent manner. Mutation of either the acidic or hydrophobic residues in the SIM significantly impairs the ability of KLF4 to interact with SUMO-1, activate transcription, and inhibit cell proliferation. Our study provides direct evidence that SIM in KLF4 functions as a transcriptional activation domain. A survey of transcription factor sequences reveals that established transactivation domains of many transcription factors contain sequences highly related to SIM. These results, therefore, illustrate a novel mechanism by which SUMO interaction modulates the activity of transcription factors.
Collapse
Affiliation(s)
- James X Du
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
44
|
Molvaersmyr AK, Saether T, Gilfillan S, Lorenzo PI, Kvaløy H, Matre V, Gabrielsen OS. A SUMO-regulated activation function controls synergy of c-Myb through a repressor-activator switch leading to differential p300 recruitment. Nucleic Acids Res 2010; 38:4970-84. [PMID: 20385574 PMCID: PMC2926607 DOI: 10.1093/nar/gkq245] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Synergy between transcription factors operating together on complex promoters is a key aspect of gene activation. The ability of specific factors to synergize is restricted by sumoylation (synergy control, SC). Focusing on the haematopoietic transcription factor c-Myb, we found evidence for a strong SC linked to SUMO-conjugation in its negative regulatory domain (NRD), while AMV v-Myb has escaped this control. Mechanistic studies revealed a SUMO-dependent switch in the function of NRD. When NRD is sumoylated, the activity of c-Myb is reduced. When sumoylation is abolished, NRD switches into being activating, providing the factor with a second activation function (AF). Thus, c-Myb harbours two AFs, one that is constitutively active and one in the NRD being SUMO-regulated (SRAF). This double AF augments c-Myb synergy at compound natural promoters. A similar SUMO-dependent switch was observed in the regulatory domains of Sp3 and p53. We show that the change in synergy behaviour correlates with a SUMO-dependent differential recruitment of p300 and a corresponding local change in histone H3 and H4 acetylation. We therefore propose a general model for SUMO-mediated SC, where SUMO controls synergy by determining the number and strength of AFs associated with a promoter leading to differential chromatin signatures.
Collapse
|
45
|
Schimmer BP, White PC. Minireview: steroidogenic factor 1: its roles in differentiation, development, and disease. Mol Endocrinol 2010; 24:1322-37. [PMID: 20203099 DOI: 10.1210/me.2009-0519] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The orphan nuclear receptor steroidogenic factor 1 (SF-1, also called Ad4BP, encoded by the NR5A1 gene) is an essential regulator of endocrine development and function. Initially identified as a tissue-specific transcriptional regulator of cytochrome P450 steroid hydroxylases, studies of both global and tissue-specific knockout mice have demonstrated that SF-1 is required for the development of the adrenal glands, gonads, and ventromedial hypothalamus and for the proper functioning of pituitary gonadotropes. Many genes are transcriptionally regulated by SF-1, and many proteins, in turn, interact with SF-1 and modulate its activity. Whereas mice with heterozygous mutations that disrupt SF-1 function have only subtle abnormalities, humans with heterozygous SF-1 mutations can present with XY sex reversal (i.e. testicular failure), ovarian failure, and occasionally adrenal insufficiency; dysregulation of SF-1 has been linked to diseases such as endometriosis and adrenocortical carcinoma. The current state of knowledge of this important transcription factor will be reviewed with a particular emphasis on the pioneering work on SF-1 by the late Keith Parker.
Collapse
Affiliation(s)
- Bernard P Schimmer
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G1L6, Canada
| | | |
Collapse
|
46
|
Hoivik EA, Lewis AE, Aumo L, Bakke M. Molecular aspects of steroidogenic factor 1 (SF-1). Mol Cell Endocrinol 2010; 315:27-39. [PMID: 19616058 DOI: 10.1016/j.mce.2009.07.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/01/2009] [Accepted: 07/08/2009] [Indexed: 12/24/2022]
Abstract
Steroidogenic factor 1 (SF-1, also called Ad4BP and NR5A1) is a nuclear receptor with critical roles in steroidogenic tissues, as well as in the brain and pituitary. In particular, SF-1 has emerged as an essential regulator of adrenal and gonadal functions and development. In the last few years, our knowledge on SF-1 has increased considerably at all levels, from the gene to the protein, and on its specific roles in different physiological processes. In this review, we discuss the current understanding on SF-1 with focus on the parameters that control the transcriptional capacity of SF-1 and the mechanisms that ensure proper stage- and tissue-specific expression of the gene encoding SF-1.
Collapse
Affiliation(s)
- Erling A Hoivik
- Department of Biomedicine, University of Bergen, Jonas Lies vei 9, N-5009 Bergen, Norway.
| | | | | | | |
Collapse
|
47
|
Luo Z, Wijeweera A, Oh Y, Liou YC, Melamed P. Pin1 facilitates the phosphorylation-dependent ubiquitination of SF-1 to regulate gonadotropin beta-subunit gene transcription. Mol Cell Biol 2010; 30:745-63. [PMID: 19995909 PMCID: PMC2812243 DOI: 10.1128/mcb.00807-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/10/2009] [Accepted: 11/23/2009] [Indexed: 11/20/2022] Open
Abstract
Pin1 is a peptidyl-prolyl cis-trans isomerase which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds. Pin1 knockout mice have marked abnormalities in their reproductive development and function. However, the molecular mechanisms underlying their reproductive defects are poorly understood. Herein, we demonstrate that Pin1 is required for both basal and GnRH-induced gonadotropin beta-subunit gene transcription, through interactions with the transcription factors SF-1, Pitx1, and Egr-1. Pin1 activates transcription of the gonadotropin beta-subunit genes synergistically with these transcription factors, either by modulating their stability or by increasing their protein-protein interactions. Notably, we provide evidence that Pin1 is required for the Ser203 phosphorylation-dependent ubiquitination of SF-1, which facilitates SF-1-Pitx1 interactions and therefore results in an enhancement of SF-1 transcriptional activity. Furthermore, we demonstrate that in gonadotrope cells, sufficient levels of activated Pin1 are maintained through transcriptional and posttranslational regulation by GnRH-induced signaling cascades. Our results suggest that Pin1 functions as a novel player in GnRH-induced signal pathways and is involved in gonadotropin beta-subunit gene transcription by modulating the activity of various specific transcription factors.
Collapse
Affiliation(s)
- Zhuojuan Luo
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Andrea Wijeweera
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Yingzi Oh
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Yih-Cherng Liou
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Philippa Melamed
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543, Singapore, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
48
|
SUMO and ubiquitin modifications during steroid hormone synthesis and function. Biochem Soc Trans 2010; 38:54-9. [DOI: 10.1042/bst0380054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Steroid hormones control many aspects of animal physiology and behaviour. They are highly regulated, among other mechanisms, by post-translational modifications of the transcription factors involved in their synthesis and response. In the present review, we will focus on the influence of SUMO (small ubiquitin-related modifier) and ubiquitin modifications on the function of transcription factors involved in adrenal cortex formation, steroidogenesis and the hormonal response.
Collapse
|
49
|
Doghman M, Madoux F, Hodder P, Lalli E. Identification and Characterization of Steroidogenic Factor-1 Inverse Agonists. Methods Enzymol 2010; 485:3-23. [DOI: 10.1016/b978-0-12-381296-4.00001-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Kuo FT, Bentsi-Barnes IK, Barlow GM, Bae J, Pisarska MD. Sumoylation of forkhead L2 by Ubc9 is required for its activity as a transcriptional repressor of the Steroidogenic Acute Regulatory gene. Cell Signal 2009; 21:1935-44. [PMID: 19744555 DOI: 10.1016/j.cellsig.2009.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 08/27/2009] [Accepted: 09/01/2009] [Indexed: 12/15/2022]
Abstract
Forkhead L2 (FOXL2) is a member of the forkhead/hepatocyte nuclear factor 3 (FKH/HNF3) gene family of transcription factors and acts as a transcriptional repressor of the Steroidogenic Acute Regulatory (StAR) gene, a marker of granulosa cell differentiation. FOXL2 may play a role in ovarian follicle maturation and prevent premature follicle depletion leading to premature ovarian failure. In this study, we found that FOXL2 interacts with Ubc9, an E2-conjugating enzyme that mediates sumoylation, a key mechanism in transcriptional regulation. FOXL2 and Ubc9 are co-expressed in granulosa cells of small and medium ovarian follicles. FOXL2 is sumoylated by Ubc9, and this Ubc9-mediated sumoylation is essential to the transcriptional activity of FOXL2 on the StAR promoter. As FOXL2 is endogenous to granulosa cells, we generated a stable cell line expressing FOXL2 and found that activity of the StAR promoter in this cell line is greatly decreased in the presence of Ubc9. The sumoylation site was identified at lysine 25 of FOXL2. Mutation of lysine 25 to arginine leads to loss of transcriptional repressor activity of FOXL2. Taken together, we propose that Ubc9-mediated sumoylation at lysine 25 of FOXL2 is required for transcriptional repression of the StAR gene and may be responsible for controlling the development of ovarian follicles.
Collapse
Affiliation(s)
- Fang-Ting Kuo
- Center for Fertility and Reproductive Medicine, Division of REI, Department of Ob/Gyn, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | | | | | | | | |
Collapse
|